
Volume III, Number 1 Spring 1986

S I L I C O N G R A P H I C S

2.4 and 3.4 releases

Releases 2.4 and 3.4 for IRIS series
2000 and 3000 systems will be avail-
able in May. These will be the last
releases sent automatically to all cus-
tomers. To receive these releases,
you need only complete the software
form enclosed with your IRIS User
Survey (see page 20).

To receive future releases automati-
cally, your system must be in the
warranty period or covered by a sup-
port agreement (see page 3).
Releases will be available to others
for a fee. The 2.3 release was the
last general release for IRIS 1000
systems.

Releases 2.4 and 3.4 include these
features:

• Shared memory

• Many Graphics Library bug fixes,
especially to the window manager

• Window manager enhancements,
including a pop-up menu package
and multiple windows and processes
for IRIS models 2300 and above

• Support for rational cubic splines

• A timer pseudo-device to introduce
timer events into the event queue at
specified intervals

• New light pen peripheral option

• The source-level debugger dbx for
FORTRAN as well as C, and a new
tutorial for novice users

• Pascal Graphics Library for IRIS
workstations

• The capability to intermix C, FOR-
TRAN, and Pascal routines without
wrappers in an IRIS workstation pro-
gram

• The ability to trap floating-point
exceptions extended to Pascal

Release 2.4 for IRIS 2400 and 2500
workstations includes features
already incorporated in the 3000
series:

• Extent File System, Silicon Graph-
ics’ fast file system

• Color printer support

• .o files (standard Unix binaries)
instead of .j files (special FORTRAN
binaries) for FORTRAN and Pascal to
allow use of Unix utilities

• Many bug fixes to utilities

Page 2

Silicon Graphics Pipeline
Because of the level of increased
functionality provided in this
release, users must recompile all
programs. The conversion to the
Extent File System on IRIS 2300,
2400, and 2500 systems requires
users to back up all personal files
onto tape or another machine since
disks are wiped clean during the
upgrade procedure.
1 Unix is a trademark of AT&T
Bell Laboratories.

Silicon Graphics Pipeline
Editor: Marcia Allen
Editorial assistant: Diane Wilford
Photographer: Henry Moreton
Masthead designer: Hulda Nelson
Page designer: Robin Bristow
Contributors and reviewers:
Chris Blumenthal Susan Luttner
Greg Boyd Gail Madison
Al Casarez Zsuzsanna Molnar
Dennis Daniels Henry Moreton
Tom Davis Beat Poltera
Susan Ellis Amy Smith
The Silicon Graphics Pipeline is published by Silicon Graphics,
Inc. as a service to our customers. Please circulate it only
within your site. For additional copies, write: Silicon Graph-
ics, Inc., 2011 Stierlin Road, Mountain View, CA 94043. Attn:
Marketing Communications.

Copyright© 1986 Silicon Graphics, Inc.

This document contains proprietary information of Silicon
Graphics, Inc., and is protected by Federal copyright law.
The information may not be disclosed to third parties or
copied or duplicated in any form, in whole or in part,
without prior written consent of Silicon Graphics. Inc.
Document number: 007-7086-010

3.3.1 update release

A 3.3.1 update package has been
sent to all customers with series 2000
Turbo systems. If you have not
received your package, please call
Susan Wilson at (415) 960-1980, ext.
636. Be ready to provide this infor-
mation:

• The model number of your system

• The serial number of your system

• All software options you have
purchased

• Your correct address

IRIS series 3000

Three new 68020-based products
were added to the IRIS family in
February. These products offer two
to three times the computing perfor-
mance of the 68010-based IRIS series
2000 products. The IRIS series 3000
systems with FPA run up to twice as
fast as a VAX1 11/780 with FPA.

The IRIS series 3000 product line
includes the IRIS 3010 terminal and
two workstations, the IRIS 3020 and
the IRIS 3030. The new series offers
these features:

• 68020 CPU and expandable
memory (from 2 to 16 MB for the
workstations; from 2 to 12 MB
for the terminal)

• Optional floating-point
accelerator

• 125-nanosecond Geometry Engines2

• 19-inch tilt-and-swivel monitor
(optional 15-inch monitor)

• Optical mouse

• Extent File System

The Extent File System is four to six
times faster than the standard Sys-
tem V file system.

The IRIS 3010 terminal runs a termi-
nal emulation program over the
Unix operating system. A 20 MB
hard disk and 1 MB floppy disk drive
are standard on the system. The
IRIS 3010 functions as either a host-

Page 3

dependent terminal or as an
execute-only workstation.

A 72 MB hard disk is standard on
the IRIS 3020. The IRIS 3030
features a 170 MB hard disk with
ESDI interface and the Storager II
disk controller. A second disk is
available on both workstations. The
IRIS 3030 offers six to eight times the
performance of the standard System
V file system.

The 68010-based IRIS series 2000
products are available at advanta-
geous pricing for those who need 3D
graphics, but who do not require the
additional computing power.

The IRIS series 3000 systems are
software compatible with series 2000
systems. You need only recompile
when moving between the 68010-
and 68020-based systems.

1 VAX is a trademark of Digital
Equipment Corporation.

2 Geometry Engine is a trademark of
Silicon Graphics, Inc.

Customer support
programs

Field Engineering is expanding the
support options available to custo-
mers. In addition to the hardware
support programs currently offered,
we are developing a program to
allow users to purchase a Software
Maintenance Agreement or a
Software Subscription Service. Bene-
fits of the Software Maintenance
Agreement include:

• telephone support for quick
response to software questions and
problems,

• new releases and updates,

• new or improved documentation.

The Software Subscription Service is
designed to keep your software and
documentation up to date, but does
not include access to the Hotline.

Beginning July 1, 1986, Field
Engineering’s Hotline support will
be available only to certain custo-
mers:

• those with a system in the war-
ranty period,

• those with a hardware or software
support agreement,

• those seeking Time and Material
support.

Additional details on the two new
software support programs will be in
the mail to you shortly.

Current support programs
The remainder of this article sum-
marizes these current support pro-
grams:

• Product Warranty
• Field Installation
• Basic Support Program
• Full Support Program
• Extended Warranty

Only highlights of the programs are
presented here; contact your Silicon
Graphics Sales or Service Represen-
tative for a more complete explana-
tion of our support programs.

Product Warranty
All customers receive a 90-day war-
ranty covering the cost to repair or
replace any part returned to Silicon
Graphics that proves to be defective.
Return-to-customer freight charges

Page 4

Silicon Graphics Pipeline
are also covered, but installation and
on-site service are not. This pro-
gram includes emergency parts
exchange to resolve hardware
failures, and hardware and software
updates during the warranty period.

Field Installation
Under this program, Silicon Graphics
provides installation, on-site service,
and full support for its products dur-
ing the warranty period. System
problems are resolved by a combina-
tion of home-office and on-site sup-
port; defective parts are replaced
on-site at no additional charge.

Basic Support Program
This program provides materials for
product maintenance, but the custo-
mer is liable for time and travel
charges for on-site service, if
required. Hardware and software
updates are provided. This program
is recommended for customers who
have the technical expertise neces-
sary to provide the labor required for
product maintenance. It is strongly
recommended that customer
representatives attend the Silicon
Graphics Product Maintenance class
before beginning this program.

Full Support Program
The Full Support Program provides a
comprehensive product support
plan. Initial equipment installation
and full remedial and preventive
maintenance is provided on-site dur-
ing the standard hours of coverage (8
a.m. to 5 p.m. Monday through Fri-
day excluding holidays); extended
coverage is available for an addi-
tional charge when approved by Sili-
con Graphics Field Engineering.
Hardware and software updates are
provided and installed, where appli-
cable (most software updates are

easily installable by the customer).
Please note that the equipment must
be maintainable in its current condi-
tion. This is automatically assumed
if the equipment was covered by any
hardware support program immedi-
ately before the Full Support Agree-
ment is signed. If not, Silicon Graph-
ics must certify the equipment; there
may be a charge for certification. If
you select the Full Support Program
when you initially purchase equip-
ment, the program covers fifteen
months, with twelve months billed.
Extended Warranty
The Extended Warranty is available
only when you initially purchase
equipment. This enhanced warranty
includes all Full Support Program
benefits, but for only the first twelve
months after installation.
Support program pricing
The following customers are eligible
for Support Program discounts:
• Customers who have purchased
the Extended Warranty, the Full
Support Program, or the Field Instal-
lation and who have more than ten
units at a single location.
• Customers who pay for the full
yearly term of the Basic or Full Sup-
port Program in advance.
Additional charges may apply to cus-
tomers located outside a Silicon
Graphics Local Service Area. A
Local Service Area is defined as a
100-mile radius in driving miles
around the city center in an area
where a Silicon Graphics service
center has been established.

Page 5

Unix manuals

Some of our early customers
received comb-bound Unix manu-
als, rather than manuals in three-
ring binders. If your editions of the
Unix Programmer’s Manual, Volume IA
and Volume IB are comb-bound,
please leave a message at (415) 960-
1020, ext. 950. We’ll send you new
Volume I manuals in three-ring
binders.

Training and consulting

The goal of a recent research project
at Silicon Graphics has been to iden-
tify methods to improve your pro-
ductivity as you use your IRIS sys-
tem. Two methods stand out: learn-
ing about 3-D graphics programming
and spending hands-on time with an
expert programmer. To meet these
needs, Silicon Graphics is pleased to
announce the formation of a new
Education/Consulting Group.

Silicon Graphics provides a full pro-
gram of scheduled software and
hardware training classes throughout
the year. The IRIS Graphics I course
is designed to give applications pro-
grammers a comfortable level of pro-
ficiency in the use of the IRIS Graph-
ics Library.1 All major Graphics
Library command structures are
presented in the context of practical
application through extensive class-
room instruction and hands-on pro-
jects.

The class features a new on-line
learning environment to demonstrate
transformations and viewing opera-
tions. The Training Group is also
available to teach the graphics course

at your site. For more information
on training, contact Monica Schulze
in the Technical Marketing Depart-
ment.
The goal of the Applications Con-
sulting Group is to shorten your
implementation cycle. The Applica-
tions Consulting Group uses stan-
dard Silicon Graphics software, such
as the Graphics Library, to help you:
• design your application code
• optimize your code
• integrate standard multibus boards
and devices
For more information, please contact
Zsuzsanna Molnar, Technical Mar-
keting Manager.
1 IRIS Graphics Library is a trademark of
Silicon Graphics, Inc.

Bugs and fixes

Unwanted horizontal lines
Unwanted horizontal lines may sud-
denly appear on the screens of series
2000 and 3000 systems. These lines
have a dashed appearance and are
spaced about one character apart.
They appear because of a Graphics
Library bug that corrupts the space
for font 0.
This bug will be fixed in Releases 2.4
and 3.4. To eliminate these lines in
the meantime, compile the following
program with -Zg (and also -DIP2
for 68020-based systems). This pro-
gram allows you to rewrite the ordi-
narily unwritable font 0. Without
this program, it is necessary to
reboot the system to eliminate the
lines.
#include <gl2/globals.h>
#include <gl2/immed.h>

Page 6

Silicon Graphics Pipeline
main(argc, argv)
int argc;
char **argv;
{
 im_setup;
 register x, i;

 noport();
 getport();
 x = -1;
 im_outfontbase(0);
 im_passthru(18);
 im_outshort(FBCloadmasks);
 im_outshort(0);
 /* pattern 0 address */
 for(i=0; i<8; i++)
 im_outlong(x);
 im_outfontbase
 (gl_wstatep- > fontrambase);
 im_freepipe;
 gexit();
}

fastimmed.h
The last issue of Pipeline (Fall 1985)
contained an error in the article on
fast immediate mode. The line on
page 6, column 1 that reads:

#include "fastimmed.h"

should read:

#include "gl2/fastimmed.h"

sqrt(0.0) on series 2000 systems
With the FPA board used in series
2000 non-Turbo systems (IRIS 2300,
2400, and 2500), sqrt(0.0) is not quite
zero. This isn’t usually a problem,
except for the lookat command,
lookat calculates an incorrect view-
ing matrix in the case where one
looks down the y-axis. The bug
makes the view appear flat.

The command lookat(0.0, 100.0,
0.0, 0.0, 0.0, 0.0, 0) should gen-
erate the matrix:

1 0 0 0
0 0 1 0
0 –1 0 0
0 0 100 1

With the IRIS 2300, 2400, and 2500
FPA board and associated software,
it generates:

0 0 0 0
0 0 1 0
0 0 0 0
0 0 100 1

This problem will be fixed in Release
2.4. In the meantime, avoid calling
lookat looking directly down the y
axis; rather, use suitably small
numbers for either the x or z values.

Perspective

The perspective command should
theoretically report an error if the
near clipping plane is zero, per-
spective transforms a truncated
viewing pyramid into a unit cube for
clipping. If the near clipping plane
is at zero, the pyramid is no longer
truncated. There is no homogeneous
way to transform the five-sided
pyramid into a six-sided cube.

However, no error is reported in the
Graphics Library. Setting the near
clipping plane to zero eliminates

Page 7

both near and far clipping, so every-
thing is visible regardless of its z
coordinate. If you need far clipping
but no near clipping in perspective,
set near to .00001 (or some other suit-
ably small number).

Z clipping option

The z clipping option is required for
most applications that use depth-
cueing or z buffering, or that use
feedback mode to get z values in
screen coordinates. These applica-
tions require z clipping because of
the way the graphics hardware per-
forms transformations.
Points, lines, and polygons are
transformed in three steps:
• A matrix multiplication transforms
the world coordinates so that the
three-dimensional region to be
viewed is mapped into a cube whose
x, y, and z coordinates are between
-1.0 and 1.0.
• The geometry is clipped to elim-
inate points outside this range.
• The points (now guaranteed to
have coordinates between -1.0 and
1.0) are scaled to screen coordinates
with an appropriate multiplication
and addition.
Systems without z clippers clip only
in the x and y directions, so the
resulting z coordinates may fall out-
side the range -1.0 to 1.0. z values
outside this range are not scaled
correctly by the hardware. For
almost all drawing, the z values are
meaningless and are discarded by
the scan-conversion hardware, so the
lack of z clippers has no effect. How-
ever, depth-cueing and z buffering
require correctly scaled z values.

If the visible geometry happens to be
transformed so that all z values lie
between -1.0 and 1.0, the picture
will be displayed correctly.
Although this range cannot be
guaranteed for arbitrary geometry, it
can be guaranteed if you know the
range of the data. Z buffering and
depth-cueing work correctly if you
set the near and far planes in the
viewing transformations far enough
apart so that all geometry lies
between them.

Object headers

The use of objects in GL2 entails a
small memory overhead. This over-
head can normally be ignored, but in
some cases it is important to under-
stand its implications. In GL2, every
object built by the graphics library
with makeobj()-closeobj() has a
small associated object header. The
header contains, among other
things, pointers to included tag
information, the location of the
object’s contents, and statistics for
garbage collection. It also contains
one bit that tells whether the object
is deleted.
Assuming that objects 2 and 3 are
already built, consider the following
code sequence:
makeobj(1);
callobj(2);
callobj(3);
closeobj();
delobj(2);
callobj(1);

The result is the same as if the
deleted object 2 were present, but
empty. This behavior is possible
because the header for object 2 is

Page 8

Silicon Graphics Pipeline
still present; in the header, object 2
is marked as deleted.
Even after the object is deleted, the
header remains for two reasons:
• An object need not be defined
before it is used. Object 1, built in
the example above, works even if
objects 2 and 3 had never existed,
callobj(2) makes a header (marked
deleted) for object 2 if object 2 does
not exist at the time.
• Display list traversal is more effi-
cient if actual addresses of the object
headers are contained so no lookup
is required. (In GL1, a lookup was
done for every callobj(); GL2 per-
forms callobj() 20 times faster.)
The fact that headers remain after
objects have been deleted does,
however, present these disadvan-
tages:
• Some space is taken up by the
headers of deleted objects. The
headers are relatively small
(currently 36 bytes), but programs
that make lots of objects using
genobj() may run low on space even
if they carefully delete unused ob-
jects. Since genobj() never
returns the same number, a program
that uses genobj() to create and
display an object for each frame may
lose 36 bytes 60 times each second.
• Although object headers are rela-
tively small and there may be only a
moderate number of them, they may
be scattered throughout memory so
that the free list becomes badly frag-
mented. This causes a slowdown in
memory allocation. In extreme
cases, a program could fail because
all the fragments would be too small
Object headers are reused, so if
object 2 is deleted and then created

again with makeobj(2), the same
header is used, and no additional
memory is lost.
The Silicon Graphics display list
implementation is fairly general and
easy to use. However, if your appli-
cation is memory intensive, consider
designing a custom display list
tailored to it. For more information,
see “Fast immediate vs. display list
mode”, Pipeline II, 1 (Fall 1985)’.

Cartridge tape maintenance

For reliable cartridge tape operation,
the tape must be handled, stored,
and cleaned properly. If you have
had problems with the cartridge
tape on your IRIS, please review the
guidelines in this article.
Handling and storage
• Avoid exposing the tape cartridge
to dirt, moisture, or extreme tem-
peratures (outside the range of 41
to 131 degrees Farenheit or 5 to 45
degrees Celsius). If the tape
cartridge’s environment temperature
changes dramatically, give the car-
tridge time to acclimatize before use.
• Store the tape cartridge on its
edge.
• Place labels on the tape only in the
area where the manufacturer’s label
is affixed.
• Do not open the tape access cover
to expose the tape when the car-
tridge is not in use.
• Do not touch the tape; this can
contaminate the magnetic coating.
• Do not attempt to use a damaged
cartridge; this can damage the tape
drive.

Page 9

Hand cleaning
Clean the recording head and the
tape cleaners two hours after a new
tape cartridge has been inserted, and
then after every 8 hours of actual
use. You will need these supplies:
• Plastic foam swabs (not cotton
swabs, which leave fibers that can
cause oxide build-up on the
read/write head)
• Trichlorotrifluoroethane solvent,
also known as Freon T F (not
alcohol, which leaves a residue that
can cause load failures and data
errors)
The right supplies are included in
the Cipher Cleaning Kit, part
number 960855-001.
To clean the recording head and tape
cleaners, follow these steps:
• Wet the swab with the solvent.
• Rub the tape head with the wet
swab in the direction of tape motion.
• Rub the tape head with a clean,
dry swab in the same direction.
• Clean the roller guides.
Tape retension
Take the tape to the end and then
rewind it in these situations:
• if it is a new tape,
• if it has been dropped,
• if it has been in storage,
• after 8 hours of use,
• before using it to make a system
backup.
On IRIS series 2000 Turbo and series
3000 workstations, issue the com-
mand mt ret to perform tape reten-
sion. On series 1000 and 2000
workstations with Release 2.3,
issue the command smt ret.

Density and suppliers
Tape density is certified for 10,000
flux changes per second, 100k per
foot. Tape suppliers are 3M/Scotch;
Data Electronics, Inc.; and Control
Data Corporation.

Technical Publications

The Technical Publications Depart-
ment at Silicon Graphics is working
on several projects to improve the
quality of technical manuals.

An introductory guide, Getting
Started with Your IRIS Workstation, is
now available. This pamphlet,
designed for programmers with little
or no Unix experience, shows the
new user how to issue basic Unix
commands, get started with vi, and
create and run two simple graphics
programs.

New communications manuals that
are scheduled to appear soon include
TCP/IP User’s Guide and IBM Terminal
Emulation. A communications over-
view document is scheduled for this
summer.

Our most recent owner’s manuals
have been reorganized to include
simple instructions for booting sys-
tems, as well as disk configuration
and other new procedures. Plans
are underway to modularize manu-
als, so that only customers who
order an option receive documenta-
tion for that option.

We’re looking forward to receiving
customer input via the IRIS User
Survey (see page 20). This survey
gives you the opportunity to influ-
ence the future development of our
technical manuals.

Page 10

Silicon Graphics Pipeline

Graftals:
trees, weeds, and grasses

The graftal as a means for describing
plant life was introduced by Alvy
Ray Smith in the 1984 SIGGRAPH
proceedings.1 Graftals are based on
a class of formal language. This
language class is defined by parallel
graph grammars called L-systems.2
Each word in such a language, as
defined by a specific graph grammar,
describes the branching structure of
a plant. These words may then be
used to generate renderings of
plants. The tree shown in plate 1 is
based on a word from a very simple
graph grammar; it illustrates the
compact descriptive power of graf-
tals.

Parallel graph grammars
Context-free parallel graph gram-
mars, called 0L-systems, are defined
by an alphabet, a substitution rule or
production for each member of the
alphabet, and a start symbol or
string of symbols. Context-sensitive
grammars have multiple substitution
rules. For each member of the alpha-
bet, rules are selected depending on
the context in which the symbol
appears. The extent of the context
classifies the grammar, e.g., a gram-
mar that uses one symbol on either
side of the symbol for substitution is
called a 2L-system.

Each word in the language of a
grammar corresponds to a string
generated by applying the substitu-
tion rules to the start string or other
words in the language. All words are
therefore descendants of the start
string. When productions are
applied to the symbols of a string,

they are applied in parallel, produc-
ing a new string or word in the
language.
The following example illustrates a
simple context-free parallel graph
grammar with the alphabet {01[]}.
When this grammar is related to
plant structure, {01} represent plant
stems and limbs, and {[]} represent
the beginnings and ends of
branches, with leaves placed at the
ends of branches. The right hand
side of the 0 and 1 productions are
shown in italics and bold respec-
tively.
alphabet: productions:

{01[]} 0 → 1[0]0
 1 → 11

start string: [→ [
0] →]

Plate 1

Page 11

Plate 2
words in the language:

word
0
1
2
3

0
1[0]0

11[1[0]0]1[0]0
1111[11[1[0]0]1[0]0]11[1[0]0...

Plate 2 illustrates three words from a
grammar. The three plants are
described by words two, four, and
eight from the following grammar:
alphabet:

{01[]}
start string:

0
productions:

0 → 1[[[0]]]1[[[0]]]
1 → 1
[→ [
] →]

Word generators
The following C function generates a
word in a language from an input

word and grammar. The parameters
to the function are the input word,
the alphabet of the grammar, the
substitution rules, and the lengths
of the respective substitution strings
rulen. The function returns a pointer
to the newly generated word, new-
word.

char *
grow(word,alphabet,rules,rulen)
register char
 /* input word */
 *word,
 /* alphabet of grammar */
 *alphabet,
 /* replacement rules for each symbol
 in alphabet */
 **rules;
 /* length of each replacement string */
register int *rulen;
{
 register char *newword, *symbol;

Page 12

Silicon Graphics Pipeline
register int i,newlength,length;
char *oldstring;
newword = malloc(1);
newword[0] = 0;
length = 1;
/* loop until end of input word */
while(*word) {
 symbol = alphabet;
 i = 0;
 /* find symbol in alphabet */
 while(*symbol &&(*a != *word)) {
 symbol++;
 i++;
 }
 /* replace with corresponding string
 of symbols */
 newlength = rulen[i] + length;
 newword = (char *)
 realloc(newword,newlength);
 strcpy(newword+length-1,
 rules[i]);
 length = newlength;
 word++
 }
 return newword;
}

The following program segment
prints ten generations of words from
the sample grammar shown above:

alphabet = "01[]";
rules = (char **)
 malloc(4*sizeof(char *));
rules[0] = "1[0]0";
rulen[0] = strlen(rules[0]);
rules[1] = "11";
rulen[1] = strlen(rules[1]);
rules[2] = "[";
rulen[2] = strlen(rules[2]);
rules[3] = "]";
rulen[3] = strlen(rules[3]);
word = malloc(2);
word[0] = '0';
word[1] = 0;
for (i = 0; i < 10; i++) {

 newword = grow(word,
 alphabet,rules,rulen);
 free(word);
 word = newword;
 printf("%s\n",word);
}
Plant rendering
Supplied with words from a
language, the program can create
realistic images of plants. Programs
for rendering plants from strings of
symbols could be developed to take
many complex factors into account.
Factors such as geo- and photo-
tropism typically affect plant growth.
Surprisingly realistic images may be
created from very simple programs
that completely ignore these factors.
The program described below allows
the user to specify a branch angle
range, trunk thickness, and numeric
seed used to generate random
numbers. Fixed ranges of colors are
used for shading leaves, branches,
and the trunk. These colors may be
altered using the editing tools cedit
and interp. Use showmap to display
the color map.
Provided with a string representing a
word from a plant grammar, a trunk
thickness, a branch angle, and a ran-
dom seed, the rendering program
displays the corresponding plant in
wire frame or Gouraud shaded form.
The drawing is generated by parsing
the string, translating and rotating
a local coordinate system for every
letter encountered.
When “stems” (‘0’ or ‘1’) are
encountered, a move to the origin
(0,0,0) is made followed by two ran-
dom rotations of ± 3° about x and z.
A stem segment length is then
looked up in a small table using a
random index, and a segment of that

Page 13

Plate 3
length is drawn along the y axis of
the local coordinate system.
After the segment is drawn, the local
coordinate system is translated by
the length of the stem segment along
the y axis; this leaves the origin of
the coordinate system at the end of
the current stem segment.
When the beginning of a branch (‘[‘)
is encountered, the current matrix is
saved using pushmatrix, and a ran-
dom rotation about the y axis is per-
formed, followed by a rotation about
the z axis of the fixed branch angle.
This leaves the local coordinate sys-
tem with the y axis lined up along
the branch of the tree; subsequent
“stems” will be drawn along the
branch.
When the end of a branch (‘]’) is
encountered, a leaf of random color
is drawn and a popmatrix command
is issued. The popmatrix command
returns the local coordinate system
to the base of the branch, oriented as
before the branch was encountered.

Plate 4
Typically, the user interactively
modifies the branch angle and ran-
dom seed until a structurally satis-
factory plant/tree is arrived at. Once
the skeletal appearance of the plant
is satisfactory, a shaded version may
be drawn. The trunk thickness is
adjustable and renderings of the
same plant with various stem
thicknesses may be created. Plates 3
and 4 depict the same plant with
differing branch angles and trunk
thicknesses.
The thickness parameter controls the
diameter of the plant at its base.
The stem thickness tapers linearly as
the stem segments are closer and
closer to the tips of branches. When
the shaded plant is being drawn, an
exhaustive search is made to find the
longest path in stem segments (0s
and 1s) to the most distant branch
tip (taper=thickness/distance).
The stem thickness or diameter is
then divided by the distance to the
most distant branch tip. This value is
used as the rate of taper of the
plant’s stem.

Page 14

Silicon Graphics Pipeline
Shading is done by drawing a
tapered octagonal prism in feedback
mode, and computing the shading of
the prism in 3D screen space. The
diameters of the prism ends are
determined by their distance to the
most distant branch tip. The two
diameters are distance*taper and
(distance-1)*taper. The shade of
each of the prism’s polygons is taken
as the z component of fhe polygon’s
normal vector. This model assumes
diffuse lighting with the light at
infinity on the z axis. The shades of
neighboring polygons are then aver-
aged to yield vertex shades for each
polygon. The polygons are then
redrawn in shaded z buffer mode.
Since a large viewport and setdepth
range are defined, enough precision
is available to do reasonable lighting
calculations. The rendering program
saves the current viewport using
pushviewport. viewport
(-1000,1500,-1000,1500) and
setdepth(-1000,1500) set up the
new viewport. The program then
draws the appropriate prism in feed-
back mode and calculates the light-
ing based on the 3D screen coordi-
nates. The original viewport is
restored by popviewport, and the
prism is redrawn in shaded form.
This process is performed for every
stem segment making up a plant.

1 Smith, Alvy, “Plants, Fractals, and Formal
Languages,” Computer Graphics 18(3), pp. 1-10
(July 1984). SIGGRAPH ‘84 Proceedings.

2 Lindenmayer, Aristid, “Mathematical
Models for Cellular Interactions in Develop-
ment, Parts I and II,” Journal of Theoretical
Biology 18, pp. 280-315 (1968).

Curve and patch
subdivision

[Editor’s note: this article is reprinted from Pipe-
line I, 2 (Summer 1984), which is now out of
print. While most of that issue is now obsolete,
this article contains useful information of users of
GL2 systems. We hope you find it helpful.]

In applications requiring curve and
patch intersection, repeated subdivi-
sion is frequently used to reduce a
curve or patch to a collection of
linear approximations, line seg-
ments, or quadrilaterals. The inter-
section operation is then performed
on the linear approximations. Subdi-
vision is also useful for creating a
faceted rendering of a patch. By
breaking a patch into a collection of
small polygons and shading each
according to its orientation, a com-
putationally cheap, very effective
rendering may be produced.
The Geometry Engines may be used
to perform subdivision of parametric
cubic curves and patches. Subdivi-
sion is a technique for deriving the
set of four control points (p’i) defin-
ing a curve C’(s) from a parent
curve C(t) such that C’(s) = C(t)
where t = 2s, i.e., C’(s) is the first
half of the parent curve C(t). Equa-
tion 1 (see page 16) illustrates the
matrix form of a parametric cubic
curve. Equation 2 follows from the
definition of subdivision and equa-
tion 1. The relationship of the control
points p’i to the parent curve’s con-
trol points pi may be derived as
shown in equations 3 and 4.
The value of the three matrices on
the right side of equation 4 may be
precalculated for any curve basis and
subsequently used to do curve subdi-

Page 15

vision at the cost of a single matrix
multiplication. By reversing the
order of the original control points,
the parameterization of the parent
curve is reversed resulting in
C(0) = Creversed(1) and
C(1) = Creversed(0). If the
reparameterized curve is now subdi-
vided in the same fashion, the
second half of the original curve is
calculated. The following code seg-
ment subdivides a curve into its two
subcurves, using the reparameter-
ized version of the original curve to
calculate the second subcurve.
subdividecurve(parent_curve,
 first_half, second_half)
 Matrix parent_curve,
 /* the curve to
 subdivide */
 first_half,
 /* the new curve
 for 0 to 0.5 */
 second_half;
 /* the new curve
 for 0.5 to 1 */
 {
 Matrix reversed_parent;
 int i, j;

/* save the current matrix */
pushmatrix();
/* load the matrix of control
points */
loadmatrix(parent_curve);
/* multiply them by the precal-
culated subdivision matrix */
multmatrix(Subdivision_matrix);
/* retrieve the new control
points */
getmatrix(first_half);
/* reverse the order of the
points */
for (i = 0; i < 4; i++)
 (j = 0; j < 4; j++)
 reversed_parent[i][j] =
 parent_curve[3-i][j];
/* load the matrix of control
points */
loadmatrix(reversed_parent);
/* multiply them by the precal-
culated subdivision matrix */
multmatrix(Subdivision_matrix);
/* retrieve the new control
points */
getmatrix(second_half);
/* restore the matrix saved
on entry */
popmatrix();
}

Page 16

Silicon Graphics Pipeline
A patch P(u,v) may be subdivided
into subpatches in a similar fashion,
using the same routine. The matrix
of sixteen control points that define a
patch may be taken row-wise in
groups of four points forming four
control curves which when blended
form the patch. If each of these
curves is subdivided using the above
routine, the patch that results from
the blending of the first_half curves
represents the low half of the origi-
nal patch. Likewise, if the second_half
curves are blended, the resulting
patch will be the high half of the
parent patch. If both of these sub-
patches are subdivided in the other
parametric direction by taking the
control points column-wise, the
resulting four patches represent the
subpatches of the original parent
patch subdivided once in each
parametric direction. The halftone
image on page 15 was rendered by
recursively subdividing a set of 36
patches into 2304 patches which
were flat shaded as polygons.

() (1)

’

’

’

’

2 2 1 8 4 2 1 1

’

’

’

’

/

/

/

(2)

(3)

(4)

Basis Basis

Basis Basis

C t t t t

p
p
p
p

t t t

p
p
p
p

t t t

p
p
p
p

t t t t t t t t t

p
p
p
p

p
p
p
p

Basis1 1 2 2 2 1

2

1 8

0

0

0

0

1 4

0

0

0

0

1 2

0

0

0

0

1

8

0

0

0

0

4

0

0

0

0

2

0

0

0

0

1

3 3 3

0

3 2

0

1

2

3

3 2

0

1

2

3

3 2

0

1

2

3

2 2 2

0

1

2

3

1

2

3

1

= =

= =

=
-

]]

]]

g g

g g

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
SS

R

T

S
S
S
S
S

R

T

S
S
S
SS

R

T

S
S
S
S
S

6 5 6 5 6 5

6 6 6

5 5

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
WW

V

X

W
W
W
W
W

V

X

W
W
W
WW

V

X

W
W
W
W
W

@ ? @ ? @ ?

@ @ @

? ?

Page 17

Network connections from
within a program

The programs below allow you to
make an XNS1 or TCP/IP connection
between IRIS systems from within a
program. You can make either type
of connection with a makefile, a file
that makes the connection, and a file
that accepts the connection.

XNS
For an XNS connection, compile the
files xnscon.c and xnslis.c with the
makefile shown below. This builds
the executables xnscon and xnslis.
Run xnslis with a socket number
(numbers in the range 100-2000 are
recommended) on one machine.
Then run xnscon with a hostname
and a socket number on a second
machine. Once a connection is esta-
blished, everything typed on the
connect side appears on the listen
side. To terminate the session, type
EOF (CTRL-D).
For example, at site A, type:
xnslis 100

From site B, type:
xnscon siteA 100
this is a message

Back at site A,
this is a message

appears on your screen.

makefile
default: xnscon xnslis

xnscon: xnscon.c
 cc -o xnscon xnscon.c -lxns

xnslis: xnslis.c
 cc -o xnslis xnslis.c -lxns

xnscon.c
#include <stdio.h>
main(ac,av)
int ac;
char **av;
{
 int sockno,fd,rval,cnt;
 char *host;
 char line[80];
 ac--;

/* process arguments */
 if(ac == 0){
 printf("usage: %s ",*av);
 printf("host socket\n");
 exit(0);
 } else {
 *av++;
 host = *av;
 ac--; *av++;
 if(ac == 0)
 sockno = 100;
 else {
 sockno = atoi(*av);

/* these are good numbers to use */
 if((sockno < 100) ||
 (sockno > 2000)) {
 printf("socket(%d)", sockno);
 printf("out of range,");
 printf(" 100 used\n");
 sockno = 100;
 }
 }

/* connect to host */
 if((fd == xnsconnect
 (host,sockno)) == -1){
 printf("xnsconnect of %s ", host);
 printf(" on %d failed\n", sockno);
 exit(0);
 }

Page 18

Silicon Graphics Pipeline
/* now write to the socket */
 printf(" - connected -\n");

/* while there is input, read it */
 while((cnt = read(0,line,80))>0){

/* some data massaging */
 printf("sending <");
 fflush(stdout);
 write(1,line,cnt-1);
 printf("\\n>\n");
 tflush(stdout);

/* write to socket */
 if(write(fd,line,cnt)<0){
 perror("write");
 exit(0);
 }
 }
 printf("DONE\n");

/* clean up */
 close(fd);
 }
}

xnslis.c
main(ac,av)
int ac;
char **av;
{
 int sockno,fd,cnt;
 char buf[80];
 ac--;
 if(ac == 0){
 printf("usage:%s ",*av);
 printf("socket\n");
 exit(0);
 } else {
 *av++;
 sockno = atoi(*av);

/* these are good numbers to use */
 if((sockno < 100) ||
 (sockno > 2000)) {
 printf("socket(%d)", sockno);

 printf("out of range, 100 used\n");
 sockno = 100; >
 }
 }

/* listen till someone tries to connect */
 if((fd = xnslisten
 (sockno)) == -1){
 printf("xnslisten on ");
 printf("%d failed\n",sockno);
 exit(0);
 }

 printf(" - connection ");
 printf("established -\n");
/* now read from the socket */
 while((cnt = read(fd,buf,80))>0){
 write(1,buf,cnt);
 }
 printf("DONE\n");
/* clean up */
 close(fd);
}

TCP/IP
For a TCP/IP connection, compile
the files accept.c and connect.c with
the makefile shown below. This
builds the executables accept and
connect.
Run accept on one machine; then run
connect on another. Everything you
type on the connect side appears on
the accept side. To end the session,
type EOF (CTRL-D).
For example, at site A, type;
accept

At site B, type:
connect siteA
this is a message

Back at site A,
this is a message

appears on your screen.

Page 19

 printf("- connection ");
 printf("established -\n");

/* once done, while something */
/* to read, read it */
 while((cnt = read(fd,line,80))>0){

/* write what was read to stdout */
 write(1,line,cnt);
 }
 printf("DONE\n");

/* clean up */
 close(fd);
}

connect.c
#include <stdio.h>
#include <sys/types.h>
#include <EXOS/net/misc.h>
#include <EXOS/sys/socket.h>
#include <EXOS/net/in.h>
#include <errno.h>

struct sockaddr_in sinto =
 {AF_INET};
struct sockaddr_in sfrom =
 {AF_INET};

extern int errno;

main(ac,av)
int ac;
char **av;
{
 int fd;
 int cnt;
 char line[80];

 if(ac != 2){
 printf("usage:%s host\n",*av);
 exit(0);
 }
 else

/* make socket connection */
 {
 *av++;

makefile
default: accept connect
accept: accept.c
 cc -o accept accept.c -lsocket
connect: connect.c
 cc -o connect connect.c -lsocket

accept.c
#include <stdio.h>
#include <sys/types.h>
#include <EXOS/net/misc.h>
#include <EXOS/sys/socket.h>
#include <EXOS/net/in.h>
#include <errno.h>

struct sockaddr_in sin = {AF_INET};
struct sockaddr_in sfrom =
 {AF_INET};

extern int errno;
main(ac,av)

int ac;
char **av;
{
 int fd;
 int cnt;
 char line[80];

/* make socket connection */
/* use legal port */
 sin.sin_port =
 htons(IPPORT_RESERVED + 1);

/*create socket file descriptor*/
 if(!(fd=socket(SOCK_STREAM,
 0,&sin,SO_ACCEPTCONN|
 SO_KEEPALIVE))){
 perror("socket");
 exit(0);
 }

/* wait till someone tries to connect */
 if(accept(fd,&sfrom) < 0){
 perror("accept");
 exit(0);
 }

Page 20

Silicon Graphics Pipeline

/*get address of requested host*/
 if((sinto.sin_addr.s_addr =
 rhost(av)) < 0){
 perror("rhost");
 exit(0);
 }

/* reserve a legal port */
 sinto.sin_port =
 htons(IPPORT_RESERVED+1);

/* make a socket file descriptor*/
 if(!(fd = socket
 (SOCK_STREAM,0,&sfrom,0))){
 perror("socket");
 exit(0);
 }

/*connect to other host */
 if(connect(fd,&sinto) <0){
 perror("connect");
 exit(0);
 }
 printf(" - connected -\n");

/* while there is input, read it */
 while((cnt = read(0,line,80))>0){

/* some data massaging */
 printf("sending <");
 fflush(stdout);
 write(1,line,cnt-1);
 printf("\\n>\n");
 fflush(stdout);

/* write to socket */
 if(write(fd,line,cnt) < 0){
 perror("write");
 exit(0);
 }
 }
 printf("DONE\n");

/* clean up */
 close(fd);
 }
}

1 XNS is a trademark of Xerox Corporation.

Geometry Hotline

Customer calls during non-business
hours will soon be answered by an
automated voice storage system.
With this change, you will be able to
leave the serial number of your sys-
tem and a message of unlimited
length. Messages will be processed
on the next business day in the order
received.
We believe that this change will
improve the quality of the Hotline
service, since we will have a descrip-
tion of your request before we return
your call.
To contact the Geometry Hotline,
continue to use these numbers:
(800) 345-0222 California
(800) 252-0222 U.S. except California
(800) 443-0222 Canada

IRIS User Survey

Silicon Graphics is currently con-
ducting a survey of IRIS users. This
survey gives you the chance to
impact our product and services. If
you haven’t already done so, please
take the time to fill it out and return
it to us.
To thank you for your participation
in the survey, we will hold a draw-
ing for special prizes. To be eligible
for the drawing, your survey must
be received with a postmark of April
21, 1986 or before.
If you have not received a survey,
please contact Monica Schulze. Sur-
vey results will be shared with all
participants. We look forward to
hearing from you.

