
IRIS 2400 Turbo Option

The Turbo Option upgrade for the
IRIS 2400 provides a number of com-
puting, floating point, and graphics
performance enhancements:
• 68020 CPU
• Faster memory and memory access
• New floating-point processor board
• New Extent file system
• New optimized 68020 compilers
Upward compatibility
The IRIS 2400 Turbo Option software
is compatible with IRIS 2400 release
GL2-W2.3. Programs that run on an
IRIS 2400 need only be recompiled to
run on the Turbo.
New CPU and memory
The IRIS 2400 Turbo Option upgrade
replaces the 68010 CPU with a 68020
CPU. Faster memory boards are also
included. With the complimentary
software upgrade, this simple field
modification provides a two to three-
fold increase over the computing
performance of the IRIS 2400 work-
station.
New CPU features:
• 16 MHz Motorola 68020 CPU
• 64 Mbytes virtual address space

• Real-time clock with battery
backup
• Vectored interrupts
• Fast Geometry Engine1 (GE) port
(32-bit)
• Fast FPA interface (32-bit)
Fast memory features:
• 2 or 4 Mbyte boards, up to
16 Mbytes
• 250 ns cycle time
16 Mbyte/second bandwidth
• Full 32-bit data path
• Fast parity checking and error
reporting
Faster file system
In order to take advantage of our
new hardware features, new system
software has been developed. The
Extent file system offers a significant
improvement in file handling perfor-
mance over the System V file sys-
tem.
Under the System V file system, data
blocks are stored almost randomly
on the disk. In reading or writing a
file, the System V file system typi-
cally performs a seek for each block
of recorded data. In contrast to the
System V file system, the Extent file
system stores groups of blocks
(extents) contiguously, minimizing

Volume II, Number 1 Fall 1985

S I L I C O N G R A P H I C S

Page 2

Silicon Graphics Pipeline

the number of disk seeks required to
access a file.
While offering these increases in per-
formance, the Extent file system is
program-compatible with the System
V file system. The user interface is
identical, and existing programs will
work without change. Read/write
operations and the use of stdio are
identical. If you are using stdio, you
need only recompile your program to
improve performance. If you are
using read/write, you can take full
advantage of the new file system by
increasing your buffer size to at least
4K.
Optimized compilers
New FORTRAN and Pascal com-
pilers generate optimized 68020
instructions. Compile times are
approximately half of non-Turbo
compile times.
The new FORTRAN compiler gen-
erates object files compatible with
those produced by the C and Pascal
compilers. C, Pascal, and FOR-
TRAN can now use common
libraries.
In addition to these features, the
new compilers also generate in-line
code to support our new floating-
point accelerator. Overall FOR-
TRAN floating-point performance is
ten times faster with the new com-
piler than with the IRIS 2400
compiler.
Greater floating-point performance
The IRIS 2400 Turbo without the
floating-point accelerator option pro-
vides two to three times the
floating-point power of the 68010
processor. The new floating-point
accelerator has been designed to
boost IRIS floating-point perfor-

mance by a factor of 10. The
floating-point accelerator option con-
sists of a single field-installable
board. All that is needed to use the
floating-point accelerator is a com-
piler flag.
Floating-point accelerator features:
• 32-bit read/write operations
• Full 64-bit arithmetic
• Overlap and debugging modes
• Single- and double-precision to
integer conversions
Floating-point performance
Against standard Whetstone and
LINPACK benchmarks, the IRIS 2400
Turbo with the floating-point
accelerator out-performs a VAX2
11/780 with floating-point accelerator
by as much as 80%. With the
floating-point accelerator, the IRIS
2400 Turbo performs the Whetstone
benchmark at 2050K Whetstones.
The LINPACK (coded BLAS) exe-
cutes at .55 MFLOPS.
Turbo Option upgrade issues
• The non-Turbo floating-point board
is not compatible with an IRIS 2400
with the Turbo Option.
• The new floating-point accelerator
board is not compatible with an IRIS
2400 without the Turbo Option.
• Standard IRIS 2400 memory is not
compatible with the new Turbo
Option memory.
• Factory installation is available at
no charge. Field Installation is avail-
able for a charge, and can be per-
formed only by a Silicon Graphics
Representative. It takes about four
hours to install the upgrade, includ-
ing time to back up the user’s disk.

Page 3

However, it is recommended that us-
ers back up their own disk before the
installation.

1 Geometry Engine is a trademark of Silicon
Graphics, Inc.

2 VAX is a trademark of Digital Equipment
Corporation.

New Geometry Engines

8MHz Geometry Engines are stan-
dard on all IRIS 2300s, 2400s, and
2500s shipped after August 1, 1985.
On the IRIS 2400 Turbo, the new
Geometry Engines perform 85700 3D
32-bit floating-point or 101700 3D
16-bit integer transformations per
second. For the standard IRIS 2400,
the Geometry Engines perform 69000
3D 32-bit floating-point or 93000 3D
16-bit integer transformations per
second.
A simple hardware upgrade is avail-
able for series 2000 workstations
shipped before August 1. This
upgrade replaces the 6MHz
Geometry Engines with 8MHz
Geometry Engines. To order the
upgrade, contact your Sales
Representative.
Software Release 2.3
The main features of the latest
software release for IRIS 1000 and
2000 series workstations are sum-
marized here. This release is distri-
buted automatically to maintenance
customers, in-warranty customers,
OEM customers, Geometry Partners,
and those with a specific major need
for 2.3 functionality. Other custo-
mers who would like to order the
release should contact the Hotline.

Please note that this release is
required for source code compatibil-
ity with the Turbo Option.

IRIS 2000 series workstations
New peripheral options
• Stereo optic viewer
• Digitizer tablet
• Half-inch tape drives (PE 1600 bpi
or GCR 6250 bpi)
• Genlockable RS-170A or
Genlockable European Video
Standard
• IBM Geometry Link with
3270 Emulation
Graphics
• Expanded IRIS window
manager demos
• Faster algorithm for drawing
small polygons
• Graphics bug fixes
Systems and languages
• More reliable serial com-
munications resolving problems
with RS-232 printers, cu, and
connections to IRIS terminals
• Block mode serial driver allowing
communication rates up to
19200 baud
• Floppy formatter program for
workstations with floppy disks
• Enhanced and stable dbx
• Symbolic links from 4.2 BSD Unix1

• New calling convention allowing
FORTRAN to call C directly as well
as through wrappers
• FORTRAN character strings up to
4096 characters

Page 4

Silicon Graphics Pipeline

IRIS 1000 series workstations
• Graphics bug fixes
• More reliable serial com-
munications resolving problems
with RS-232 printers, cu, and
connections to IRIS terminals
• Block mode serial driver allowing
communication rates up to
19200 baud
• Floppy formatter program for
workstations with floppy disks
• Enhanced and stable dbx
• Symbolic links from 4.2 BSD Unix

• New calling convention allowing
FORTRAN to call C directly as well
as through wrappers
1 Unix is a trademark of Bell Laboratories.

Geometry Partners
Program
Silicon Graphics has established a
third-party software program called
the Geometry Partners Program. An
increasing number of software appli-
cations programs for the IRIS are
available through this program. To
date, over 30 vendors representing
more than 60 distinct application
programs are enrolled in this pro-
gram. The types of applications
available span Silicon Graphics’
major markets:
• Mechanical computer-aided
engineering
• Electrical computer-aided
engineering
• Molecular modeling
• Seismic and geophysical
modeling
• Graphic arts and animation
• Engineering support tools
• Simulation

Through the Geometry Partners Pro-
gram, Silicon Graphics provides sys-
tems and technical support to the
vendors to ensure that each program
in our catalog actually runs on our
equipment and can use the powerful
features of the IRIS.
A catalog describing each application
program is available from your Sili-
con Graphics Sales Representative.
The catalog includes a contact name,
configuration information, and data
on the unique capabilities of each
program.

Tips for speeding up IRIS
graphics programs in C

• Declare heavily used variables as
register variables.
• Arrays can be slow, especially 2D
arrays. Here are some general rules
for speeding them up:

• Use single-dimensional arrays
rather than multi-dimensional
arrays, (struct is more efficient
than arrays.)
• Use pointers instead of arrays
where possible.
• Use int instead of short
for array indexing.

For example, the classic 2D array can
be slow:
for (i = 0; i < 4; i++)
 for (j = 0; j < 4; j++)
 mat1[j][i] = mat2[i][j];

Using pointers is faster:
pl = mat1;
pl2 = mat2;

for (i = 0; i < 4; i++) {
 for(pl=mat1+i;j=0;j<4;j++){

Page 5

 *pl = *pl2++;
 pl += 4;

 }
}

Using hard-coded array indices is
even faster.
• Use integers instead of floats
whenever possible.
• Eliminate function calls within crit-
ical loops.
• Where possible, use shifts (<< or
>>) to handle divides or multiplies,
particularly in heavily used func-
tions.
• Use parallelism: start raster subsys-
tem processing, then start 68000 or
Geometry Engine processing. The
following code gives an 18-
millisecond window after the
clear() for the processor to perform
other tasks:
color(BLACK);
clear();
gflush();/*1000 series only*/
multmatrix or build object, etc.
• Use rectf to clear small areas.
• When editing, use objreplace
whenever possible, objinsert and
objdelete are much slower.
• Reserve bit planes for static objects
or background and paint only once
for a given buffer. For example, in
the flight program, the brown and
orange gauges are drawn only twice
(once for each buffer) during setup.
Those planes are then masked off
and “forgotten.”
• Don’t use lookat or polarview in
immediate mode. They require 20 to
30 floating operations per call. You
can often simulate the effect of mov-
ing the eye location by actually mov-

ing the world around it. (The arch
demo does this.) If you must use
lookat and polarview, put them
inside a viewing object and limit the
frequency of their execution.
• Immediate mode is several (two to
four) times slower than display list
mode. (See article below.) Any-
thing that doesn’t change, but is
called more than once, should be put
into a display list, e.g., perspective.
• Rather than using circles, which
are implemented as 80-point poly-
gons, use polys or polfs with fewer
than 80 points.
• Use pushattributes and popat-
tributes sparingly.

Fast immediate vs.
display list mode

The Graphics Library 2 (GL2) pro-
vides an additional access mode that
can improve performance in some
applications. In the Graphics Library
I (GL1), commands can be executed
in immediate mode or display list mode.
In immediate mode, direct calls are
made to the Graphics Library sub-
routines. In display list mode,
Graphics Library commands are
compiled into display lists and exe-
cuted as objects.
GL2 provides three modes for
accessing the Graphics Library:
immediate mode, display list mode, and
fast immediate mode. Immediate mode
in GL2 is ten times faster than it was
in GL1. The addition of fast immedi-
ate mode in GL2 makes simple graph-
ics commands even faster. Fast
immediate mode uses in-line C mac-
ros, eliminating subroutine call over-
head. In general, the simple com-

Page 6

Silicon Graphics Pipeline

mands (move, draw, poly, rect, pnt,
color, writemask, translate,
rotate, scale) have fast immediate
mode versions.
GL1 was designed to be used with
display lists, but because of
hardware improvements, display
lists are often not necessary in GL2.
In GL2, use fast immediate mode
when high performance is critical,
for example in inner loops of a pro-
gram. Fast immediate mode is also
useful for designing a customized
display list.
Fast immediate mode macros are
written in C and do not work in
FORTRAN or Pascal. However, C
routines can be called from FOR-
TRAN or Pascal to do fast drawing.
Here is a simple fast immediate
mode example. (Note: this is not
necessarily an advantageous use of
fast immediate mode, since registers
are set up for only one routine. A
more realistic example would call
several fast immediate mode rou-
tines, and would benefit more from
setting up registers only once.)
#include "fastimmed.h"
#include "gl.h"

main()
{
 ginit();
 fastrect();
 gexit();
}

fastrect()
{
 im_setup;
 /* to assure address */
 /* register assignment */
 color(BLACK);

 clear();
 color(RED);
 im_rects(100, 100, 300, 300);
 /*immediate mode version of*/
 /*"rects" command; actually*/
 /*draws the rectangle*/
}

Note that even this simple example
must call a subroutine. This is
because ginit() must appear first in
a graphics program, and im_setup
should appear first in every routine
that uses fast immediate mode.
im_setup initializes two address
registers in the 68010, leaving two
for the user. Check assembler list-
ings to make sure address registers
have been assigned.
Fast immediate mode macros are
accessible through the file
fastimmed.h, listed below. All the
include files are in /usr/include/gl2.
#define UNIX
#define PM2
#define DC4
#define UC4
#include "gl2/globals.h"
#include "gl2/gltypes.h"
#include "gl2/immed.h"
#include "gl2/imsetup.h"

Fast immediate mode macros work
differently from subroutines in C.
The expressions are evaluated in
order left to right. Thus, if array[]
is a list of short integer coordinates
ordered x, y, z, the routine:
imsetup; /* here to be sure */
 /* it gets registers */
register int ptr = 0;

while(ptr<3000)
 im_pnts(array[ptr++],
 array[ptr++],array[ptr++]);

Page 7

draws 1000 points correctly in fast
immediate mode.
In some cases, it is not advantageous
to use fast immediate mode:
• Since performance would not
improve when subroutine call time is
small compared to command execu-
tion time, some commands have no
fast immediate mode equivalents.
There are no fast immediate mode
equivalents for clear, circle, arc,
ortho, polarview, and lookat. To see
which commands have fast
immediate mode versions, check the
file fastimmed.h.
• It is probably not worthwhile to
use fast immediate mode for menus
and backgrounds, because back-
grounds take a long time to draw,
and menus have to react at only
human speeds.
Display lists can still be used in GL2.
They run at almost the same speed
as fast immediate mode, since the
overhead is only two machine
language instructions per graphics
command. The code executed dur-
ing display list traversal is generated
by the same immediate mode mac-
ros, plus two extra instructions to
get to the next display list command.
Registers are set up only once.
If code developed under GL1 is
already structured to use display
lists, it may be easier to continue
using them under GL2. The GL1
and GL2 display list formats are
nearly compatible. Some points to
consider when using display lists:
• The standard display list format is
not always the best one for a particu-
lar application. The memory
management scheme is only an aver-
age strategy that works well for

some applications and less well for
others. The standard format stores
only geometric information. Extra
data, such as electrical information
in a circuit design system or type of
material in a mechanical CAD sys-
tem, must be stored in a second
display list. However, you can
design your own display list format.
Use fast immediate mode in the rou-
tines that traverse the display list.
• Display lists can be slow to edit.
• During development, it is easy to
use immediate mode to get a pro-
gram running correctly and then
convert the time-critical parts to fast
immediate mode.

VMS XNS and graphics
software available

Distribution of the VMS XNS N2.3
release started in early fall.1 N2.3 is
the XNS communications software
for VAX/VMS 4.0. Both terminals
and workstations are supported.
The N2.3 release supports file
transfer and remote login, and has
an applications library callable from
C. If you ordered XNS but haven’t
received your copy, contact the
Geometry Hotline.
The GL2 Remote FORTRAN Graph-
ics Library for VMS is also available.
The release is shipped automatically
to customers who have already
ordered it. If you have not ordered
it but would like to, please contact
your Sales Representative.

1 VMS is a trademark of Digital Equipment
Corporation. XNS is a trademark of
Xerox Corporation.

Page 8

Silicon Graphics Pipeline

Exploring Julia sets:
floating point performance,
z-buffering, depth cueing

Julia sets, and the Mandelbrot set in
particular, have received attention in
The Fractal Geometry of Nature by
Mandelbrot, Frontiers of Chaos by
Peitgen and Richter, and the Com-
puter Recreations column of the
August 1985 issue of Scientific Ameri-
can. The Mandelbrot set shown in
Plate 1 and discussed here is based
on iterating xk + 1 = xk

2 + c in the
complex plane. By choosing different
values of c and iterating the function
until xk begins to diverge, the
number of iterations, k, may be used
to color or give height to the starting
points creal, cimaginary. The C program
shown below prints 1600 points of a
Mandelbrot set. Plate 1 was created
by displaying a Mandelbrot subset
using creal, and cimaginary as x and y
coordinates and coloring pixelxy
black if kdiverge was odd and white if
even. Plate 2 was created by using
kdiverge to control altitude and gray
scale color.
Floating-point performance
The evaluation of points in the Man-
delbrot set is floating-point inten-

Julia set timings
processor hardware

floating point
user system wall clock

IRIS 2400 no 41.4u 2.9s 0:44
IRIS 2400 yes 12.8u 0.1s 0:13
IRIS 2400 Turbo no 16.5u 0.4s 0:18
IRIS 2400 Turbo yes 1.8u 0.1s 0:02
VAX 11/780 yes 1.8u 0.1s 0:02
VAX 11/750 yes 9.5u 0.7s 0:20

sive. Calculating a large number of
points in the Mandelbrot set may be
used to compare the floating-point
performance of various processors.
The following program was run on
several different processors; the rela-
tive performances are noted in the
table below.
#define D 0.1
#define C 4.0
main ()
{
register long float z, zi;
register long float c, ci;
register long float temp, z2, zi2;
register int i;

for (c=-2.0; c<=2.0; c+=D)
 for (ci=-2.0; ci<=2.0; ci+=D){
 z = 0;
 zi = 0;
 for (i = 0; i < 200; i++) {
 z2 = z*z;
 zi2 = zi*zi;
 if (z2 + zi2 > C) break;
 temp = z2 - zi2 + c;
 zi = 2.0*z*zi + ci;
 z = temp;
 }
#ifndef TIMING
 printf("%lg %lg %d\n", c, ci, i);
#endif
 }
}

Page 9

Plate 1

Figure 1a: Profile view

Enclosing sphere and viewing frustum

Plate 2

Figure 1b: Perspective view

Page 10

Silicon Graphics Pipeline

Z-buffering and depth-cueing
The problem of effectively displaying
a data set is common to all of com-
puter graphics. The three dimen-
sional Mandelbrot set shown in Plate
2 was displayed using depth-cued
points to interactively orient the data
set and z-buffered polygons to pro-
duce the final image.
Because depth-cueing and z-
buffering use 16-bit screen space z
values, the view of the data set must
be carefully defined in order to get
the most effective final image. The
best use of the 16 bits of z value is
made by choosing a view that tightly
sandwiches the object to be viewed
between the near and far clipping
planes. In specifying an orthographic
or perspective projection, a set of
view parameters must be calculated
or chosen to satisfy viewing require-
ments:

• static vs. dynamic
• clipped
• region occupied by data set
• aspect ratio
• field of view

For example, if the desired view is to
be an orthographic projection of the
data set with no portions clipped, no
specific aspect ratio, and no move-
ment or reorientation, the appropri-
ate ortho is trivial to calculate. The
ortho should define a volume that
just encloses the data set. The data
may be thought of as being enclosed
in a box whose corners are the
min/max values of the points defining
the object. The following function
finds a set of max/min values in an
array of points.

#define MAX(x,y) (x>y?x:y)
#define MIN(x,y) (x<y?x:y)
find_maxmin(points,n,max,min)
float points[][3];
int n;
float max[3], min[3];
{
int i, j;
/* initialize max min values */
for (i = 0; i < 3; i++)
 min[i] = max[i] = points[0][i];
for (j = 1; j < n; j++)
 for (i = 0; i < 3; i++) {
 max[i] = MAX(max[i],
 points[j][i]);
 min[i] = MIN(min[i],
 points[j][i]);
 }
}

Given the min/max values of a data
set, the command
ortho(min[0],max[0],
 min[1],max[l],
 min[2],max[2]);

sets up the appropriate static ortho-
graphic view. If an aspect ratio of 1.0
is desired, the following code seg-
ment sets up the correct ortho-
graphic projection:
minval = MIN(min[0], min[1]);
maxval = MAX(max[0], max[1]);
ortho(minval, maxval,
 minval, maxval,
 min[2], max[2]);

As a second example, a perspective
view of the data allows a user to
interactively rotate the data set about
its center. The desired view should
never clip, should have an aspect
ratio of 1.0, and should have a 90°
field of view. To prevent clipping,
the object to be viewed must be cen-
tered in the field of view at a dis-

Page 11

tance from the view point such that
it is not clipped in any rotational
orientation. The distance is calcu-
lated from the radius of the sphere
that completely encloses the object,
and the field of view. The sphere
diameter may be calculated by com-
puting the maximum of all point-to-
point distances in the object. For effi-
ciency reasons, the diagonal of the
bounding box is used as an approxi-
mation. The following function sets
up and draws the object in the
appropriate view:
#include "math.h"
#define FOV 90
#define ASPECT 1.0
#define PI 3.14159265
#define RADCONV (PI/180.0)
#define DEPTHCUE 0
#define ZBUFFER 1
#define SQ(x) ((x)*(x))

displayobj(points,n,max,min)
float points[][3];
int n;
float max[3], min[3];
{
float center[3],
 distance, radius;
int i;
short drawmode;
drawmode = DEPTHCUE;
depthcue(1);
shaderange(128,255,
 0xc000,0x3fff);
radius = SQ(max[0]-min[0]);
radius += SQ(max[1]-min[1]);
radius += SQ(max[2]-min[2]);
radius = sqrt(radius)/2.0;
distance = radius/
 (sin((F0V/2.0)*RADC0NV));
perspective(FOV*10,
 ASPECT,
 distance-radius,

 distance+radius);
translate(0.0, 0.0, -distance);
for (i = 0; i < 3; i++)
 center[i]=
 (max[i]+min[i])/2.0;
pushmatrix();
translate(center[0],
 center[1],
 -center[2]);
color(BLACK);
clear();
drawpoints(points,n);
popmatrix();
while(1) {
 pushmatrix();
 /* do Q handling: rotations,
 z-buffer/depth cueing mode
 select, and redraw
 interaction */
 drawmode =
 dointeraction(drawmode);
 translate(center[0],
 center[1],
 -center[2]);
 color(BLACK);
 clear();
 if (drawmode == ZBUFFER) {
 zclear ();
 drawpolys (points,n);
 } else
 drawpoints(points,n);
 popmatrix();
}
}

The value of distance is calculated
from the geometric relationship illus-
trated in Figure 1. The perspective
command positions the near and far
clipping planes tangent to the front
and back sides of the enclosing
sphere, maximizing the range of
screen space z values.
The following main program initial-
izes the graphics system by request-
ing a port from the window

Page 12

Silicon Graphics Pipeline

manager, sets the z scalars, queues
the desired input devices, and calls
displayobj to display the object.
The z scalars are set to range from
0xc000 to 0x3fff to avoid possible
overflows that can occur in 16-bit
arithmetic. The function dointerac-
tion reads the input queue until it is
empty, taking action corresponding
to each input event.
#include "gl.h"
#include "device.h"
extern float points[][3];
extern int n;
main()
{
float max[3],min[3];
getport("julia");
setdepth(0xc000, 0x3fff);
find_maxmin(points,n,
 max,min);
qdevice(REDRAW);
qdevice(M0USE3);
qdevice(MOUSEX);
qdevice(MOUSEY);
displayobj(points,n,max,min);
gexit();
}

dointeraction(drawmode)
short drawmode;
{
short val, dev;
static short xrot=0,yrot=0;
do
 switch (dev=qread(&val)){
 case REDRAW:
 reshapeviewport();
 break;
 case M0USE3:
 if (!val) break;
 drawmode = !drawmode;
 if (drawmode == DEPTHCUE) {
 zbuffer(O);
 depthcue(1);
 shaderange(128,255,

 0xc000,0x3fff);
 } else {
 depthcue(0);
 zbuffer(1);
 }
 break;
 case MOUSEX:
 xrot = val;
 break;
 case MOUSEY:
 yrot = val;
 break;
 }
while (qtest());
rotate(xrot, 'x');
rotate(yrot, 'y');
return(drawmode);
}

Double buffered window
manager programs

Programs written for the window
manager in double buffer mode must
handle situations that are not
encountered in single buffer pro-
grams. This article first reviews gen-
eral window manager programming,
and then discusses special issues
raised by double buffered window
manager programs.
Reviewing window manager
programming
A window manager program has an
initialization stage. During this
stage, the characteristics of the win-
dow, such as aspect ratio and size
limits, are defined. The event queue
is initialized to recognize tokens
REDRAW and INPUTCHANGE that will be
encountered while running in the
window manager. For a double
buffer program, the display is set to
double buffer mode during the ini-
tialization stage. This code shows a

Page 13

sample initialization sequence:
#include "gl.h"
#include "device.h"

main()
{
 keepaspect(3,2);
 getport("sample");

 qdevice(INPUTCHANGE);
 qdevice(REDRAW);
 qdevice(ESCKEY);

 doublebuffer();
 gconfig();

The main section of the program,
which follows initialization, is a loop
that continually processes devices.
Each pass through the main loop has
two parts. The first part of the main
section is itself a loop that processes
the event queue. Tokens in the
event queue are read and processed
until the event queue is emptied.
The second part of the main section
handles input from polled (not
queued) devices. A sample main
loop is shown below:
while(TRUE) {
 while (qtest()) {
 /* process queued tokens */
 dev = qread(&val);
 switch(dev) {
 case ESCKEY:
 /* exit program with ESC */
 exit(0);
 break;
 case INPUTCHANGE:
 attached = val;
 if (!attached) {
/* be sure both buffers have */
/* same scene when unattached */
 frontbuffer(TRUE);
 drawscene(dx, dy);
 frontbuffer(FALSE);

 {
 break;
 case REDRAW:
 reshapeviewport();
 frontbuffer(TRUE);
 drawscene(dx, dy);
 frontbuffer(FALSE);
 break;
 default:
 break;
 } /* end switch (dev) */
 if (!attached)
/* swap buffers if not attached*/
 while (!qtest())
 swapbuffers();
 } /* end while (qtest()) */

 if (attached) {
 /* process polled devices */
 oldx = x; oldy = y;
 x = getvaluator(MOUSEX);
 y = getvaluator(MOUSEY);
 /* redraw scene if LEFTMOUSE */
 /* button is pressed */
 if (getbutton(LEFTMOUSE)) {
 dx = dx + (x - oldx);
 dy = dy + (y - oldy);
 drawscene(dx, dy);
 }
 } /* end if (attached) */
 swapbuffers();
} /* end while (TRUE) */

The double buffer difference
Special situations are encountered in
double buffer window manager pro-
grams that are not encountered in
single buffer mode. Every double
buffer program must continually
issue swapbuffers() calls. If the
program blocks for input without
constantly swapping buffers, buffer
swapping does not take place in
other windows. The swapbuffers()
call is made each time through the
main loop. Most important, even
when the double buffered graphics

Page 14

Silicon Graphics Pipeline

program is detached and merely
idling, buffers must be swapped.
(When the user cannot interact
directly with a program, the program
is said to be detached.) The code
below, taken from the larger code
sample shown previously, shows
proper handling of an unattached
program:
if (!attached)
/* swap buffers if not attached */
 while (!qtest())
 swapbuffers();

Since the program is swapping
buffers when idle, the information in
both buffers must be the same. To
ensure this, whenever the program
becomes detached, both buffers
should be updated with the same
image. When the INPUTCHANGE
token is received with a data value
of 0, the graphics program is
detached. Both buffers can be
enabled for writing with the graphics
library call, frontbuffer(TRUE).
Then the scene should be drawn into
both buffers. The code below, also
taken from the earlier code sample,
shows how to detach gracefully from
a double buffered program:
case INPUTCHANGE:
 attached = val;
 if ((attached) {
/* be sure both buffers have */
/* same scene when unattached */
 frontbuffer(TRUE);
 drawscene(dx, dy);
 frontbuffer(FALSE);
 }
 break;

Release 2.3 bugs
and fixes

shaderange
shaderange has two more parame-
ters in release 2.3, but its FORTRAN
wrapper has not been updated.
Until it is fixed in the next release,
shaderange should not be called
from FORTRAN. An interim solu-
tion is to write your own wrapper,
as documented in Appendix C, Gen-
erating C/FORTRAN Interface Routines,
in the IRIS Workstation Guide, Series
2000.
Note that the lint program cannot
accommodate shaderange’s four
parameters.

linewidth and depth-cueing
Depth-cue mode is supported only
for lines of line width 1. Fat lines
are’ not supported in depth-cue
mode.

gclear
The program gclear does not work
correctly in the window manager. It
initializes a textport that is in conflict
with the mex console textport. In
mex, use the mouse to change the
size and shape of the textport. Exit
the window manager before execut-
ing gclear, or run a program that
executes ginit with noport set.
gclear resets colors to their original
values, clears the screen to black,
and resets the textport to the middle
of the screen. Using ginit and
noport resets the colors to their ori-
ginal values. The following program
can also be used to clear the screen
to black within the window
manager:

Page 15

 main() {
 ginit();
 color(BLACK);
 clear();
 }

Stereo viewing
For stereo viewing, when the left
image is shown on the screen, the
left eye should be open. However,
the stereo viewer box has only one
input. The only command that can
be given is to change eyes, but there
is no way to query the hardware
about which eye is open. The solu-
tion to this is to toggle the switch on
the stereo viewer box to change eyes.
Another possibility is to write
software to check whether an image
looks right in the viewer and to tog-
gle the switch if not; once the switch
is set correctly, it will stay in sync
for the rest of the session.

FORTRAN local variables
With the 2.3 release of FORTRAN,
local variables in subroutines and
functions are allocated on the stack,
rather than statically, enabling recur-
sion. This means that local data that
remain valid between calls to a sub-
routine in release 2.2 are not valid
between calls in the 2.3 release.
Data can be declared as ‘static’ by
use of the SAVE statement (see the
FORTRAN Reference Manual in the
Unix Programmer’s Manual, Volume
2B). Data declared with the SAVE
statement remain valid between calls
to the routine.

Hardware floating point
The following program behaves
incorrectly when it is compiled for
the non-Turbo floating-point
hardware:

main() {

 float *rf0,*rf1;
 *rf0++ += *rf1++;

}

This will be fixed in Release 2.4.

We’ve moved

On September 27, Silicon Graphics
moved to a larger facility at Shore-
line Park in Mountain View. Our
new address is:
2011 Stierlin Road
Mountain View, CA 94043
Our phone number remains the
same: 415/960-1980.

Silicon Graphics Pipeline
Editor: Marcia Allen
Technical illustrator: Anna Szabados
Masthead designer: Hulda Nelson
Production assistant: Ken Allen
Photographer: Henry Moreton
Contributors:
Chris Blumenthal Susan Luttner
Greg Boyd Zsuzsanna Molnar
Tom Davis Henry Moreton
Susan Ellis Bob Pearson
Robin Florentine Pramod Rustagi
Paul Haeberli Diane Wilford
Steve Johnston Mason Woo
Mark Libby
The Silicon Graphics Pipeline is published by Silicon Graphics,
Inc. as a service to our customers. Please circulate it only
within your site. For additional copies, write: Silicon Graph-
ics, Inc., 2011 Stierlin Road, Mountain View, CA 94043. Attn:
Marketing Communications.

Copyright© 1985 Silicon Graphics, Inc.

This document contains proprietary information of Silicon
Graphics, Inc., and is protected by Federal copyright law.
The information may not be disclosed to third parties or
copied or duplicated in any form, in whole or in part,
without prior written consent of Silicon Graphics. Inc.

Document number: 500l-094-003-1

Page 16

Silicon Graphics Pipeline

Geometry Hotline and
customer training classes

The purpose of the Geometry Hot-
line is to improve your productivity
as you use Silicon Graphics pro-
ducts. Our staff answers technical
questions about the functionality of
the system software and hardware,
handles hardware failure reports,
and dispatches Field Service
Representatives. Sales calls are
referred to a local Sales Representa-
tive; application-oriented questions
are referred to local Systems
Engineers for follow-up.
A Silicon Graphics technical
representative is available on the
Geometry Hotline Monday through
Friday from 7 a.m. to 5:30 p.m. and
Saturday and Sunday from 9 a.m. to
5 p.m. Pacific Standard Time. Out-
side these hours and on holidays,
the Hotline uses an answering ser-
vice to take messages, which are
answered at the beginning of the
next working day.
To help our representative serve you
better when you call the Hotline,
please have the following informa-
tion ready:

• your system’s serial number
• your name
• your phone number

It is especially important to
remember your serial number; we
need it to log your call. We have a
computerized call log system that is
connected to our customer database.
This provides us with complete
information about your system and
configuration.
Your call is best handled if you can
tell us:

• what you are trying to do
• how you attempted to do it
• the results you got, including
complete error messages.

Call the Hotline when you are hav-
ing a problem getting something to
work. Have your serial number
ready. After hours and on holidays
leave a message with the Hotline
answering service. Your call will be
answered early the next working
day. On weekends, a technical
representative will respond as soon
as possible.
If you are new to graphics, or if you
have just purchased your first Silicon
Graphics product, we recommend
our training classes, listed below.
For Unix training, we recommend
AT&T’s Unix System V classes. Call
AT&T at 800/221-1647 for informa-
tion.
Training classes
Silicon Graphics offers two customer
training classes, Graphics I and
Maintenance I.
• Graphics I, 5 days
This course is designed to raise
applications programmers to a com-
fortable level of proficiency with the
IRIS graphics system through exten-
sive classroom instruction and
hands-on training. The entire
Graphics Library command structure
is presented in the context of practi-
cal application.
• Maintenance I, 5 days
This technical course offers hands-on
training in the installation and
maintenance of IRIS 2000 series ter-
minals and workstations. The course
provides the knowledge required to
install and maintain IRIS products.

