
IRIS Workstation Guide

Version 1.0

Silicon Graphics, Inc.
Mountain View
California 94043



Documentation: 
Daniel Sears 
Marcia Allen 
Robin Bristow 
Diane Wilford
Drawings: 
Annette Whelan

 

© Copyright 1984, Silicon Graphics, Inc.
This document contains proprietary information of  
Silicon Graphics, Inc., and is protected by Federal 
copyright law. The information may not be 
disclosed to third parties or copied or duplicated in 
any form, in whole or in part, without prior written 
consent of Silicon Graphics, Inc.

IRIS Workstation Guide Version 1.0
Document Number: 5001-092-001-0



CONTENTS
1. Introduction 1
2. Unpacking the IRIS Workstation Components 3
3. IRIS Workstation Specifications 5
 3.1 Hardware Components 5
 3.2 Ethernet Equipment 5
 3.3 Cables 7
 3.4 Monitor 7
  IRIS Control Panel 7
  Monitor Control Panel 9
  Monitor Back Panel 9
 3.5 Cabinet 11
  Power Switch 11
  Cabinet I/O Panel 11
  Cabinet Power Panel 13
  Power Switch 13
 3.6 Documentation 13
4. Hardware Installation 15
 4.1 Keyboard to Monitor Connection 15
 4.2 Mouse to Monitor Connection 15
 4.3 Monitor to Cabinet Video Connections 15
 4.4 Monitor to Cabinet Control Cable Connection 17
 4.5 Monitor to Cabinet AC Power Cable Connection 17
 4.6 IRIS Workstation to Serial Line Connection 17
  Terminal Connection 17
  Modem Connection 18
  Printer Connection 18
 4.7 IRIS Workstation to Ethernet Connection 18
 4.8 Cabinet AC Power Connection 19
 4.9 Cabinet to Dial and Switch Box Connection 19
5. Operation 21
 5.1 Boot 21
 5.2 Demonstration Programs 22
 5.3 Monitor Adjustment 23
 5.4 Network Software 24
 5.6 Shutdown 25
6. System Administration 27
 6.1 Startup 27
  Automatic Disk Drive Boot 27
  Automatic Tape Drive Boot 28
  PROM Monitor 28
 6.2 Boot Checkout Information 29

 
 

- i -



 6.3 UNIX Single-User Mode 29
  File Systems and fsck(1M) 32
 6.4 Configuring UNIX on an IRIS Workstation 32
 6.5 Configuration Files 32
 6.6 Naming an IRIS Workstation 34
 6.7 Adding a New Account 34
 6.8 Connecting an ASCII Terminal to the IRIS Workstation 36
 6.9 Connecting a Modem to the IRIS Workstation 38
 6.10 Connecting a Printer to the IRIS Workstation 39
 6.11 Enabling a Network Connection to the IRIS Workstation 40
 6.12 Tape Drive 41
 6.13 Shutdown 41
 6.14 Crash Recovery 42

 Appendix A: Configuration Switches 45
 Appendix B: Fsck- The Unix File System Check Program 1 47
 Appendix C: Diagnostics 71
 Appendix D: The C/FORTRAN Interface 75
 Appendix E: IRIS Floating Point 89
 Appendix F: Manual Pages 99
 Appendix H: IRIS Workstation RS-232 Interface 127
 Appendix I: UUCP Administration 131
 Appendix J: OEM Kernel Generation for the IRIS Workstation 141
 Appendix K: The IRIS Terminal Programming Environment 147
 Appendix L: GL 1 and GL 1.9 Software Differences 155

 

 
- ii -



1. Introduction

This document explains how to install, test and operate an IRIS Workstation. 
It contains step-by-step procedures for installing the components that make up 
an IRIS Workstation. This document should be read carefully before installing 
an IRIS Workstation.
The IRIS Workstation components are delivered assembled and ready for 
connection with cables provided in the delivery cartons. The basic outline of 
the installation is as follows:

•	Planning	and	Site	Selection
•	Unpacking	the	IRIS	Workstation	Components	
•	Hardware	Installation
•	Operation	and	Testing

Silicon Graphics provides a comprehensive product support and maintenance 
program for the IRIS Workstation. For further information, the toll-free 
Geometry Hotline numbers for Silicon Graphics Customer Service are:

Silicon Graphics Customer Service

(800) 252-0222 North America (except California)
(800) 345-0222 California

Version 1.0



2    IRIS WORKSTATION GUIDE 

Version 1.0

Introduction



2. Unpacking the IRIS Workstation Components

The IRIS Workstation system is shipped in two reinforced cardboard cartons. 
One contains the Electronics Cabinet and the other contains the Monitor and 
other components. Each component is delivered assembled and ready for 
connection with the cables provided in the IRIS Workstation delivery cartons. 
If additional equipment or spare parts are ordered, they will be shipped in 
additional cartons.
Before installation, the delivery cartons should be inspected for damage. If any 
of the cartons or their contents appear damaged, contact the carrier and Silicon 
Graphics Customer Service (see Section 1). After inspection, move the cartons 
to the installation site. See Table 2-1 for a list of guidelines for site selection. 
Although site selection is the customer’s responsibility, Silicon Graphics 
representatives will provide consulting services upon request.

1. Inspect the delivery cartons for damage.
 WARNING: The delivery cartons should be moved on a pallet jack 

or cart capable of supporting 200 lbs. If they must be lifted, two 
strong people are needed.

 WARNING: Do not turn the delivery cartons on edge.
2. Move the cartons to the installation site.
3. Cut the plastic straps on the brown carton.
4. Cut the tape that seals the top of the carton, open the carton and 

remove the tray containing the Keyboard, Mouse, cables and other 
equipment.

5. Remove the foam spacers covering the Monitor.
6. Remove the carton by lifting it up and off the base pallet.
7. The Monitor is shipped inside a large plastic bag. Remove the  

Monitor from the bag and place it on the table where it will be used.
 WARNING: Do not attempt to pick up the Monitor by the white 

plastic inserts on the sides.
8. Check for damage to the Monitor.

Version 1.0



4    IRIS WORKSTATION GUIDE 

Version 1.0

Unpacking the IRIS Workstation Components

Category IRIS 1400

Temperature 50 — 86F° (operating)
40 — 176F° (non-operating)

Relative humidity 40 — 80%
Minimum clearance 3” all sides
Monitor desk space 36” width

30” length
Cabinet floor space 24” width

33” length
29” height

Power 115 volts
15 amps
60 hertz
single phase
two wires + ground

Power consumption 883 watts
1240 KVA

Heat dissipation 3012 BTU/hour
Card slots 20

Table 2-1: IRIS Workstation Environmental Specifications

9. Compare the equipment included in the tray with the list in Section  
3. If any parts appear to be missing, contact Silicon Graphics 
Customer Service (see Section 1).

10. Cut the plastic straps on the white carton.
11. Open the top of the carton and remove the foam cap. 
12. Lift the carton off of the Cabinet.
13. Lift the Cabinet off the base pallet and set it on the floor. 
14. Remove the foam spacers.
15. The Cabinet is shipped inside a large plastic bag. Remove the  

Cabinet from the bag.
16. Check for damage to the Cabinet.
17. Remove the front panel from the Cabinet and check that the boards 

inside are firmly attached.
18. The Cabinet has four castors on its base that allow it to be rolled 

across a surface. Roll it to the location where it will be used.



3. IRIS Workstation Specifications

Component Height Width Length Weight

IRIS 1400 Cabinet
Monitor
Keyboard
Mouse
Transceiver

29.0”
18.0”
1.5”
1.0”
2.0”

18.0”
20.0”
19.0”
2.0”
7.0”

27.0”
21.0”
8.5”
3.0”
4.0”

200.0 lbs
97.0 lbs
5.0 lbs
0.5 lbs
0.8 lbs

Table 3-1: IRIS Workstation Component Specifications

3.1 Hardware Components
Each IRIS Workstation system has four hardware components (see Figure 3-1).

•	The	Electronics Cabinet is a floor-standing unit with a 20-slot backplane 
and a power supply. The Cabinet uses forced air cooling and is 
mounted on casters.

•	The	Monitor is a high-resolution 19-inch color monitor. 
•	The	Keyboard is an 83-key up-down encoded keyboard. 
•	The	Mouse is a 3-button mouse.
•	The	Switch Box has 32 independently programmable switches and 32 

independently programmable LED indicator lights. An 8 character 
LED display gives status information for the Dial Box and the  
Switch Box.

•	The	Dial Box (optional) has 8 independently programmable valuators 
for sending analog information to an application program for the 
IRIS Terminal.

3.2 Ethernet Equipment
The IRIS Workstation can be connected to an Ethernet local area network with 
an Ethernet transceiver and drop cable.

•	The	 Ethernet Transceiver connects the IRIS Workstation to the 
Ethernet.

Version 1.0



6    IRIS WORKSTATION GUIDE 

Version 1.0

IRIS Workstation Specifications

 

 
 

Figure 3-1: IRIS Workstation System



Version 1.0

IRIS WORKSTATION GUIDE    7 IRIS Workstation Specifications

•	1	 15-conductor	 drop	 cable	 connects	 the	 Cabinet	 to	 an	 Ethernet	
transceiver.

3.3 Cables
Each IRIS Workstation is supplied with a cable set for connecting the IRIS  
Workstation components.

•	4	 bundled,	 color-coded,	 coaxial	 video	 cables	 connect	 the	 video	 
output of the Cabinet to the Monitor.

•	1	 25-conductor	 control	 cable	 connects	 the	 Cabinet	 to	 the	Monitor.	
This cable sends and receives signals between the Cabinet and the 
Mouse, Keyboard and Reset  button on the IRIS Control Panel.

•	2	10-foot,	3-wire,	grounded	AC	power	cables	provide	power	for	the	
Monitor and Cabinet.

•	1	37-pin	flat	cable	connects	the	Dial	Box	to	the	Switch	Box.
•	1	9-pin	cable	connects	the	Switch	Box	to	 Port 4  on the Cabinet I/O 

Panel.
•	1	 3-wire	AC	power	 cable	provides	power	 for	 the	Dial	Box	 and	 the	

Switch Box.

3.4 Monitor
The Monitor has two control panels, the IRIS Control Panel on the front left 
and the Monitor Control Panel on the front right. On the back of the Monitor 
are several ports for receiving video signals, a power socket and a control cable 
port.

IRIS Control Panel
The IRIS Control Panel has two ports for connecting the Keyboard and Mouse 
to the Monitor, a Reset  button and two indicator lights (see Figure 3-2).

•	1	DIN	socket	labeled	 Keyboard  is a port for connecting the Keyboard  
to the Monitor.

•	1	 slide-locking	D	socket	 labeled	 Mouse  is a port for connecting the 
Mouse to the Monitor.

•	1	LED	labeled	 Power  indicates that power for the Cabinet is switched 
on.

•	1	LED	labeled	 Halt  indicates that the processor is stopped.
•	1	 Reset  button is located on the IRIS Control Panel. Pressing this 

button resets the processor which in turn resets the rest of the  
system. After the Reset  button has been pressed, the IRIS



8    IRIS WORKSTATION GUIDE 

Version 1.0

IRIS Workstation Specifications

Figure 3-2: IRIS Control Panel and Monitor Control Panel



Version 1.0

IRIS WORKSTATION GUIDE    9 IRIS Workstation Specifications

 Workstation must be rebooted. This switch and the Halt  light 
correspond to the Reset  button and Halt  light on the I/O Control  
Panel on the Cabinet. Either button may be used.

WARNING: Do not press the Reset  button 
while the IRIS Workstation is running UNIX.  
If the IRIS Workstation is not running UNIX 
and is under control of the PROM Monitor,  
then the Reset  buttons or the Power  switches  
may be used. See the discussion on Crash 
Recovery in Section 6.14.

Monitor Control Panel
The Monitor Control Panel has several features for adjusting the Monitor (see 
Section 5.3) and a Power  switch for the Monitor (see Figure 3-2).

•	1	knob	labeled	 Brightness  adjusts the white and black levels equally. 
Turning this knob clockwise increases the Monitor’s brightness.

•	1	knob	labeled	 Contrast  adjusts the white levels. Turning this knob 
clockwise increases the Monitor’s contrast.

•	1	button	labeled	 Degauss  demagnetizes the Monitor screen.
•	1	 light	 labeled	 Health  indicates that power for the Monitor is  

switched on and most of the Monitor is operating properly.
•	1	switch	labeled	 Power  controls power for the Monitor.

Monitor Back Panel
The Monitor Back Panel has several ports that connect the Monitor to the 
Cabinet (see Figure 3-3).

•	2	 BNC	 sockets	 labeled	 Ext Sync  are used for the video sync  
connection from the Cabinet.

•	2	BNC	sockets	labeled	 V D  are not used.
•	2	 BNC	 sockets	 labeled	 R  receive the red video signal from the 

Cabinet.
•	2	 BNC	 sockets	 labeled	 G  receive the green video signal from the 

Cabinet.
•	2	 BNC	 sockets	 labeled	 B  receive the blue video signal from the 

Cabinet.
•	1	5-amp	fuse.
•	1	10-amp	100/120	volt	power	plug	provides	power	for	the	Monitor	

from the Cabinet.



10    IRIS WORKSTATION GUIDE 

Version 1.0

IRIS Workstation Specifications

Figure 3-3: Monitor Back Panel



Version 1.0

IRIS WORKSTATION GUIDE    11 IRIS Workstation Specifications

•	1	25-pin	plug	for	connecting	a	control	cable	from	the	Cabinet	to	the	
Monitor.

3.5 Cabinet
There are two control panels on the back of the IRIS 1400 Cabinet: an I/O Panel 
and a Power Panel. A Power  switch controls power for the IRIS Workstation  
system.

Power Switch
The Power  switch for the IRIS 1400 Workstation is located beside the tape drive 
slot on the front upper-left corner of the Cabinet.

Cabinet I/O Panel
The Cabinet I/O Panel has ports for connecting the Cabinet to the Monitor and 
a host computer (see Figure 3-4) and several control and indicator features.

•	 Port 1  is the receptacle for the control cable that is connected  
between the Monitor Back Panel and the Cabinet I/O Panel.

•	 Port 2 , Port 3  and Port 4  are available for RS-232 or RS-423 serial 
lines.

•	1	15-pin	D	socket	labeled	 Ethernet  connects the IRIS Workstation to  
an Ethernet drop cable.

•	1	 BNC	 socket	 labeled	 Sync  is a port for the video sync cable  
connecting the Cabinet and the Monitor.

•	1	BNC	 socket	 labeled	 Red  is a port for transmitting the red video 
signal from the Cabinet to the Monitor through a coaxial cable.

•	1	BNC	socket	labeled	 Green  is a port for transmitting the green video 
signal from the Cabinet to the Monitor through a coaxial cable.

•	1	BNC	socket	labeled	 Blue  is a port for transmitting the blue video 
signal from the Cabinet to the Monitor through a coaxial cable.

•	1	 Reset  button is located on the Cabinet I/O Panel. Pressing this 
button resets the processor which in turn resets the rest of the  
system. After the Reset  button has been pressed, the IRIS  
Workstation must be rebooted. This switch and the Halt  light 
correspond to the Reset  button and Halt  light on the IRIS Control 
Panel on the Monitor. Either button may be used.



12    IRIS WORKSTATION GUIDE 

Version 1.0

IRIS Workstation Specifications

Figure 3-4: IRIS 1400 Cabinet Back Panel



Version 1.0

IRIS WORKSTATION GUIDE    13 IRIS Workstation Specifications

WARNING: Do not press the Reset  button 
while the IRIS Workstation is running UNIX.  
If the IRIS Workstation is not running UNIX 
and is under control of the PROM Monitor,  
then the Reset  buttons or the Power  switches 
may be used. See the discussion on Crash 
Recovery in Section 6.14.

•	1	 Halt  LED indicates that the processor is stopped.
•	1	alphanumeric	diagnostic	LED	 labeled	 Status  on the Cabinet I/O 

Panel indicates system status and displays startup diagnostics.
•	A	 series	 of	 nine	 DIP	 switches	 labeled	 Configuration  is located on 

the Cabinet I/O Panel. These switches control the IRIS Workstation’s 
host serial line baud rate, startup diagnostics and boot environment 
(see Appendix A).

Cabinet Power Panel
The Cabinet Power Panel has two power outlets and a power plug (see Figure 
3-4).

•	1	male	3-pin	input	power	plug	labeled	 Power  provides power for the 
IRIS Workstation system.

•	1	switched	2-amp	power	outlet	labeled	 Monitor  provides power for 
the Monitor.

•	1	 unswitched	 3-amp	 convenience	 outlet	 labeled	 3A Max  provides 
power for  peripheral equipment.

•	1	15-amp	circuit	protector	(IRIS	1400).

Power Switch
The Power  switch located on the front of the Cabinet controls power for the 
Cabinet and the Monitor. It does not control the power for any auxiliary 
equipment connected to the Cabinet through the convenience outlet located on 
the Cabinet Power Panel.

3.6 Documentation
The IRIS Workstation is delivered with a complete set of documentation.

•	The	IRIS Workstation Guide (this booklet) explains how to install, test 
and operate an IRIS Workstation. 

•	The	IRIS User’s Guide describes the IRIS Graphics Library and how to  
write application programs for the IRIS Workstation and IRIS 
Terminal.



14    IRIS WORKSTATION GUIDE 

Version 1.0

IRIS Workstation Specifications

•	The	C	and	FORTRAN	editions	of	 the	 IRIS Graphics Library are quick  
reference cards with overviews of each command in the IRIS  
Graphics Library.

•	The	 UNIX Programmer’s Manual is a set of reference manuals and 
tutorials for the UNIX System.



4. Hardware Installation

This section describes how to install and connect the components that make up  
an IRIS Workstation system (see Figure 4-1). Prior to installation, each 
component should be unpacked and placed near its final location. Since the 
IRIS Workstation components are delivered assembled, they only need to be 
connected with the cables provided in the delivery cartons.

WARNING: Do not connect the IRIS Workstation to an  
external power source until each cable has been  
connected and checked.

4.1 Keyboard to Monitor Connection
The Keyboard cable is connected to the IRIS Control Panel located on the lower 
left front of the Monitor (see Figure 3-2).

1. Connect the DIN plug on the Keyboard cable to the DIN socket 
labeled Keyboard  on the IRIS Control Panel.

4.2 Mouse to Monitor Connection
The Mouse cable is connected to the IRIS Control Panel located on the lower  
left front of the Monitor (see Figure 3-2).

1. Connect the slide-locking D socket on the Mouse cable to the D plug 
labeled Mouse  on the IRIS Control Panel.

4.3 Monitor to Cabinet Video Connections
The color-coded bundle of coaxial video cables is connected between the  
Cabinet I/O Panel and the Monitor Back Panel (see Figures 3-3, 3-4 and 4-1).

1. For single Monitor operation, set all of the input impedance switches 
to the 75 Ω  position.

 If several Monitors are connected in a series (daisy chain), set the 
input impedance switches to the High  position for all but the last 
Monitor, which should be set to the 75 Ω  position.

2. Connect each cable end to an input socket on the Monitor Back  
Panel. Since they are identical, either socket can be used.

Version 1.0



16    IRIS WORKSTATION GUIDE 

Version 1.0

Hardware Installation

Figure 4-1: IRIS 1400 Monitor to Cabinet Connections



Version 1.0

IRIS WORKSTATION GUIDE    17 Hardware Installation

3. Push each cable into its connector and rotate its lock into place.
4. Connect the other end of each color-coded cable to the corresponding 

output socket on the Cabinet I/O Panel.
5. Push the cable into the connector and rotate the lock into place.

4.4 Monitor to Cabinet Control Cable Connection 
The Control Cable connects the Cabinet and the Monitor.

1. Connect the female end of the Control Cable to the 25-pin socket on 
the Monitor Back Panel.

2. Connect the male end of the Control Cable to Port 1  on the Cabinet 
I/O Panel.

3. Fix the Control Cable into place by tightening the captive screws on 
each side of both plugs.

4.5 Monitor to Cabinet AC Power Cable Connection
The Monitor power outlet is located on the Cabinet Power Panel (see Figure 34). 
This switched AC outlet is controlled by the Cabinet Power  switch.

1. Connect the female end of the AC power cable to the Input  power 
socket on the Monitor Back Panel.

2. Connect the male end of the Monitor power cable to the AC outlet 
labeled Monitor  on the Cabinet Power Panel.

4.6 IRIS Workstation to Serial Line Connection
The IRIS Workstation can be connected to a modem, a terminal or a printer 
through a serial line attached to Port 2 , Port 3  or Port 4  on the Cabinet I/O  
Panel. The connection for each of these devices are slightly different. Each  
physical device connection also has a corresponding UNIX software 
configuration procedure. Sections 6.8, 6.9 and 6.10 describe these procedures.
Terminal Connection

1. Attach an RS-232 cable from the ASCII terminal to Port 2 , Port 3  or 
Port 4  on the Cabinet I/O Panel. Appendix H has a description of  

the RS-232 interface for the IRIS Workstation serial ports. These are  
Data Terminal Equipment (DTE) type RS-232 ports. If the ASCII 
terminal is also DTE type, then a null modem is required for the 
connection. If the terminal is Data Communication/Circuit Terminating 
Equipment (DCE) type, then a simple connection can be made  
without a null modem. The manual for the ASCII terminal should 
have a specification of its RS-232 interface.



18    IRIS WORKSTATION GUIDE 

Version 1.0

Hardware Installation

2. Turn on the power for the ASCII terminal.
3. See Section 6.8 for instructions on how to enable a serial port for 

a terminal. This involves editing system configuration files and 
resetting the software that enables the serial port on the IRIS 
Workstation.

Modem Connection
1. Attach an RS-232 cable from the modem to Port 2 , Port 3  or Port 4  

on the Cabinet I/O Panel. Appendix H has a description of the RS-
232 interface for the IRIS Workstation serial ports.

2. Turn on the power for the modem.
3. See Section 6.9 for instructions on how to enable a serial port for 

a modem. This involves editing system configuration files and  
resetting the software that enables the serial port on the IRIS 
Workstation.

Printer Connection
1. Attach an RS-232 cable from the printer to Port 2 , Port 3  or Port 4   

on the Cabinet I/O Panel. Appendix H has a description of the RS-
232 interface for the IRIS Workstation serial ports. The manual for 
the printer should have a specification for its RS-232 interface.

2. Turn on the power for the printer.
3. See Section 6.10 for instructions on how to enable a serial port 

for a printer. This involves editing system configuration files and  
resetting the software that enables the serial port on the IRIS 
Workstation.

4.7 IRIS Workstation to Ethernet Connection
The IRIS Workstation can communicate with other hosts and terminals through 
an Ethernet local area network. The IRIS Workstation can be connected to an 
Ethernet local area network while the network is operating.

1. Select an appropriate tap point on the Ethernet coaxial cable.
 NOTE: Approved Ethernet coaxial cable is marked with rings at 8.2  

foot intervals. Transceivers should be placed at these rings to 
minimize the chance of transceiver reflections with phase angles that 
add and cause transmission errors.

2. Tap into the Ethernet cable (instructions are included with each 
transceiver).



Version 1.0

IRIS WORKSTATION GUIDE    19 Hardware Installation

3. Connect the transceiver to the Ethernet cable.
4. Connect the male end of the drop cable to the Ethernet port on the 

Cabinet I/O Panel.
5. Connect the female end of the drop cable to the transceiver.

4.8 Cabinet AC Power Connection
The Cabinet power socket is located on the Cabinet Power Panel.

CAUTION: Do not connect the IRIS Workstation to a 
switched power outlet.

1. Connect the female end of the AC power cable to the power socket 
on the Cabinet Power Panel (see Figure 3-4).

2. Connect the male end of the Cabinet power cable to an appropriate 
outlet. See Table 2-1 for a specification of the power requirements  
of the IRIS Workstation.

4.9 Cabinet to Dial and Switch Box Connection
The IRIS Workstation can be connected to an optional Dial and Switch Box for 
sending information to an application program on the IRIS Workstation.

1. Connect the 37-pin flat cable from the port on the Dial Box to the 
bottom left port on the Switch Box.

2. Connect the 9-pin cable from the top left port on the Switch Box to  
Port 4  on the Cabinet I/O Panel. This RS-232 cable should be  

enabled in the following way. Edit the file /etc/inittab. Each line 
corresponds to a device file in /dev and contains four fields separated 
by colons. Find the line for port d3 and put a x in the second field. 
This prevents a getty process from being run on the port.

3. Plug the 3-wire AC power cable on the Switch Box into the 3A Max  
convenience outlet on the Cabinet Power Panel.



20    IRIS WORKSTATION GUIDE 

Version 1.0

Hardware Installation



5. Operation

The IRIS Workstation is a graphics-oriented micro-computer. To the user, it  
looks like a standard System V UNIX computer. The sections that follow  
outline the normal operation procedures used with the IRIS Workstation.  
These include a simple boot procedure, login, compiling and running 
demonstration programs, adjusting the Monitor, using the network software 
and shutdown. Normally, the boot and shutdown procedures are handled by 
the system administrator. They are covered here in outline form only.
The IRIS Workstation can be configured by the customer in many ways. These 
include adding new accounts, new terminals and printers and connecting it to 
a local area network. See Section 6 for an explanation of system administration 
for the IRIS Workstation.

NOTE: The sections that follow assume that the reader 
has some experience with the UNIX system as a user.

5.1 Boot
The IRIS Workstation can be booted in many different ways but the simplest 
and most common is to boot off of a disk.

NOTE: UNIX single-user mode should be used only for 
system maintenance. Normal operation should occur only 
in multi-user mode.

1. Check the configuration switches on the I/O Panel on the rear of the  
Cabinet (see Figure 3-4). Switches 4 through 7 should be in the  
Closed  position. Switch 8 should be in the Open  position.

2. Turn on the power for the IRIS Workstation.
3. These steps will boot the IRIS Workstation in single-user mode. A 

UNIX prompt will appear.
#

4. The file system will be checked automatically during the boot  
process to insure their integrity. fsck is mostly automatic. If fsck  
finds anything out of the ordinary, it will prompt the user for a 
decision. See Section 6 and Appendix B or consult with the system 
administrator.

Version 1.0



22    IRIS WORKSTATION GUIDE 

Version 1.0

Operation

5. Start multi-user mode with the multi command.
# multi
...

6. Set the date.
CAUTION: It is important to accurately set  
the date since many system programs depend 
on the time. Also, several user programs like 
make determine their actions based on the 
relative dates of files. Accurate system time is 
even more important for program development 
distributed across a network.

 The input format of the date command is “mmddhhmmyy” [month-
day-hour-minute-year(optional)]. For example,

Is the date Wed Mar 21 14:16:42 PST 1984? (y or n) n
Enter the correct date: 0322091484
Is the date Thu Mar 22 09:14:01 PST 1984? (y or n) y
...

 If the time zone appears to be incorrect, see Section 6.5 and TZ(4).
 A UNIX login prompt should then appear.
7. Log into a UNIX account. The IRIS Workstation is shipped with 

three user accounts: rootcsh, root and guest. The rootcsh account is a  
privileged account with a C Shell environment. The root account is  
a privileged account with a Bourne Shell environment. The guest 
account is a sample user account with a C Shell environment. New  
accounts can be added by the system administrator (see Section 6.7).

login: guest

8. Accounts frequently have passwords for protection. Enter the 
password.

password:
...

 The password’s characters will not be echoed onto the terminal 
screen. Note that the guest does not have a password. See passwd(1) 
and Section 6.7 for information on how to add or change a password 
for an account.

5.2 Demonstration Programs
After the IRIS Workstation has been booted, it can be tested by running the 
demonstration programs included in the directory /usr/demos. These include 
some simple programs like particles and some more sophisticated programs like 
flight. To run any of these programs, simply type its name. For example,



Version 1.0

IRIS WORKSTATION GUIDE    23 Operation

$ cd /usr/demos
$ particles 15
...

runs the particles program. In this demonstration program, 15 particles are set in 
random motion in a cube. When one of the particles touches a boundary of the 
cube, it emits a square bubble that inflates to a certain size and then pops.
Generally, these demonstration programs can be exited by typing CONTROL -c. To 
clear the screen of graphics “leftovers”, type the command gclear.
The IRIS User’s Guide documents the IRIS Graphics Library, the software that a 
programmer uses to write applications for the IRIS Workstation. In the second 
section of that manual, the IRIS Graphics Library, there are a few sample 
programs that illustrate how the graphics software is used. On page 2-57 of 
that manual, there is a program listing for a program called track. This program 
can be compiled and run on the IRIS Workstation. For example,

$ cc track.c -o track -Zg

See cc(1) for information on the C and FORTRAN compilers for the IRIS 
Workstation.
After track has been compiled, it can be run.

$ track

A blue box will appear on the screen which can be moved around with the 
Mouse. To exit track, press all three Mouse buttons or CONTROL -c.

5.3 Monitor Adjustment
The Monitor Control Panel on the right side of the Monitor has several knobs  
for adjusting the brightness and contrast of the Monitor.

 NOTE: Color rendering and stability may drift for the 
first 45 minutes after startup.

1. After the Monitor has warmed up, adjust the Brightness  control  
knob until the gray raster is barely brighter than the black areas on 
the edge of the screen. Lighter brightness settings will impair image 
sharpness and color fidelity.

2. For optimum clarity, turn the Contrast  control knob to the maximum 
(clockwise) setting and then turn it back slightly.

3. If the color purity or convergence appear to be out of adjustment, 
hold down the Degauss  button on the Monitor Control Panel for  
about 10 seconds and then release it. The image should then  
improve noticeably.



24    IRIS WORKSTATION GUIDE 

Version 1.0

Operation

5.4 Network Software
The IRIS Workstation has three programs for using an Ethernet local area 
network: xcp, xx and xlogin. These simple commands allow the user to copy 
files from one host to another, run commands on a remote host and log into a 
remote host.
Here is a brief explanation of certain terms associated with networks.

•	A	network is a collection of computers and terminals connected by 
some means.

•	A	host is a computer on a network.
•	A	local host is the host that a person is using.
•	A	remote host is the opposite of a local host. That is, it is a machine  

on a network that a person is not using. The difference between a 
local and a remote host is the frame of reference one uses. The local 
host is where the user is and remote host is “where” the user isn’t.

xcp copies file from one host (either local or remote) to another (also either local 
or remote). Here are some examples:

$ xcp sqiral.c olympus:/oh4/doc/install/sqiral.c
$ xcp sting:/usr/include/stdio.h te
$ xcp puppy:temp_vi sting:temp_vi

NOTE: In each example, the user must have an account 
with the same user name on each host.

The first example copies a file in the current directory of the remote machine 
to the file sqiral.c in the directory /oh4/doc/install on the host named olympus. The 
second example copies a file from the host olympus to the local machine. The 
third example copies a file from one remote machine named puppy to another 
named sting.
The second command xx is useful for running short commands on a remote 
host. Again, this command assumes that the user has an account on the  
remote machine with the same user name as on the local machine. For  
example, it may be useful to find what the load average is on another 
machine:

$ xx olympus uptime
1:51pm up 21:14. 30 users. load average: 12.14 11.34 10.25

The third command xlogin allows the user to login across a network on a remote 
host. All that is needed is a host name. For example,

$ xlogin olympus
login:
...

For more information about the network software for the IRIS Workstation, see 
the manual entries in Appendix F.



Version 1.0

IRIS WORKSTATION GUIDE    25 Operation

5.5 Shutdown
The IRIS Workstation should not be left on indefinitely. However, since the 
Monitor has a long warmup period, the IRIS Workstation should be left on 
continuously during work hours.

WARNING: Do not press either Reset  button or the  
Power  switch while the IRIS Workstation is running 

UNIX without first using the /etc/reboot -q command listed  
below. If the IRIS Workstation is under the control of the  
PROM Monitor, then the Reset  buttons and the Power   
switch may be safely used.

1. To shut down UNIX, type the /etc/reboot -q command.
$ /etc/reboot -q

NOTE: /etc/reboot -q is a privileged command, 
requiring super-user permission.

2. Set the Power  switch on the Cabinet to the Off  position.



26    IRIS WORKSTATION GUIDE 

Version 1.0

Operation



6. System Administration

The system administrator is responsible for configuring the IRIS Workstation to 
meet local requirements. The sections that follow explain how to boot the IRIS 
Workstation, check the file system, configure UNIX, add new accounts, add 
ASCII terminals and modems, make backups, shutdown the IRIS Workstation 
and recover from a crash.
This document uses the standard UNIX convention for refering to entries in the 
UNIX reference manual. The entry name is followed with a section number in 
parentheses. For example, cc(1) refers to the cc manual entry in Section 1 in the 
UNIX Programmer’s Manual.

6.1 Startup
Startup options can be selected by setting certain configuration switches on the  
Cabinet Back Panel. These switches control the environment the IRIS  
Workstation will be booted from and the display of checkout information about 
the boot state (see Appendix A).
The IRIS Workstation can be booted from either a disk drive or a tape drive. 
These devices can be used automatically or explicitly through the PROM 
Monitor. Automatic boot procedures involve setting configuration switches 
and turning on the system power. The PROM Monitor is a simple command 
interpreter through which all boot environments can be accessed. The user 
gives a PROM Monitor command that specifies the boot device.

NOTE: If a non-existent device is specified as a boot 
environment, then the IRIS Workstation will ignore the request 
and wait to be reset.

Automatic Disk Drive Boot
If the Boot Environment  configuration switches are set to “00001”, the IRIS 
Workstation will search for and read a boot file named defaultboot in the root file  
system after the system power is turned on.

1. Set the Boot Environment  configuration switches (switches 4 through  
8) to “00001” where “0” means Closed  and “1” means Open . See 
Appendix A.

Version 1.0



28    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

2. Set the Power  switch on the Cabinet to the On  position.
A variation of this boot procedure can be used explicitly through the PROM 
Monitor. See the entries for the PROM Monitor d command in Table 6-1.

Automatic Tape Drive Boot
If the Boot Environment  configuration switches are set to “10000”, the IRIS 
Workstation will search for and read a boot file named defaultboot from the tape  
drive. The IRIS Workstation will be booted automatically after the system 
power is turned on.

NOTE: If the IRIS Workstation is to be booted from a  
tape drive, the tape must be in cpio(1) format.

1. Set the Boot Environment  configuration switches (switches 4 through 
8) to “10000” where “0” means Closed  and “1” means Open . See 
Appendix A.

2. Set the Power  switch on the Cabinet to the On  position.
A variation of this boot procedure can be used explicitly through the PROM 
Monitor. See the entries for the PROM Monitor tb command in Table 6-1.

PROM Monitor
The PROM Monitor is a simple command interpreter through which each IRIS  
Workstation boot environment can be accessed. If the Boot Environment  
configuration switches are set to “01000”, the IRIS Workstation will be under 
the control of the PROM Monitor when the system power is turned on.

1. Set the Boot Environment  configuration switches (switches 4 through  
8) to “01000” where “0” means Closed  and “1” means Open . See 
Appendix A.

2. Set the Power  switch on the Cabinet to the On  position.
3. The PROM Monitor prompt should appear on the IRIS Monitor 

screen. If it doesn’t, press the Halt  button on either the IRIS  
Control Panel on the front of the Monitor or the I/O Panel on the 
back of the Cabinet. 

iris>

4. Boot the UNIX kernel.
iris> d
...

 This command causes the IRIS Workstation to search for and read a 
boot file named defaultboot in the root file system.



Version 1.0

IRIS WORKSTATION GUIDE    29 System Administration
Since the IRIS Workstation can be booted from different environments (hard 
disks, tape drives, etc.) it may be useful to find the names of the files on a tape 
or disk before booting the IRIS Workstation. This information can be found 
with the PROM Monitor. For example,

iris> d *
bin  etc  stand  unix1
defaultboot lib  tmp  usr
dev  lost+found unix  version
iris>

searches the root file system and lists its contents. After locating a file, it can be 
booted explicitly with the d command. For example,

iris> d unix
...

See Table 6-1 for a list of the commands available through the PROM Monitor.

6.2 Boot Checkout Information
If the Checkout  configuration switch (switch 3) is set to the Open  position, the  
IRIS Workstation will display additional information during system startup.

•	Scan	processor	memory.	An	“X”	is	displayed	for	each	half	megabyte	
of memory and a “.” is displayed for each non-existent half megabyte 
of memory.

•	Clear	processor	memory.
•	Map	processor	memory.
•	Display	configuration	switch	values.

This information is intended for diagnostic purposes only. Normally the 
Checkout  configuration switch should be set to the Closed  position.

6.3 UNIX Single-User Mode
After the IRIS Workstation has been booted, it will display some system 
information. See Figure 6-1 for an example. This includes information about the 
software release, memory size, hardware configuration and the file system.

NOTE: UNIX single-user mode should be used only for 
system maintenance. Normal operation should occur  
only in multi-user mode.

Initially the IRIS Workstation is booted in UNIX single-user mode. The 
following procedure starts multi-user mode and sets the date. The important 
file for starting multi-user mode is /etc/rc. It contains commands for starting 
daemons and mounting file systems. See brc(1).



30    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

Command Description
h Display a list of PROM Monitor commands.
t Enter serial interface to host.
n [file] Boot file over a network.
d Boot defaultboot from a disk. Similar to the Disk Drive 

Boot procedure.
d [file] Boot file from a disk.
d [pathname]/* List the contents of directory pathname.
tb Boot defaultboot from a tape drive. The file must be in cpio 

format. Similar to the Tape Drive Boot procedure.
tb [file] Boot file from a tape drive. The file must be in cpio 

format.
tb * List the contents of a tape in cpio format.
r Restart the PROM Monitor.

Table 6-1: PROM Monitor Commands

1. Start multi-user mode.
# multi

2. Set the date. The input format of the date command is  
“mmddhhmmyy” [month-day-hour-minute-year(optional)]. For 
example,

Is the date Wed Mar 21 14:16:42 PST 1984? (y or n) n 
Enter the correct date: 0322091484
Is the date Thu Mar 22 09:14:01 PST 1984? (y or n) y
...

 A UNIX login prompt will then appear.
3. Log into a UNIX account. The IRIS Workstation is shipped with 

three user accounts: rootcsh, root and guest. The rootcsh account is a  
privileged account with a C Shell environment. The root account is 
a privileged account with a Bourne Shell environment. The guest 
account is a sample user account with a C Shell environment. New 
accounts may be added by the system administrator (see Section 
6.7).

login:
...



Version 1.0

IRIS WORKSTATION GUIDE    31 System Administration

Kernel Number:
SYSTEM 5 UNIX #135: [Fri May 4 11:15:09 PST 1984]

Release ID:
Release: Beta-1.5
(C) Copyright 1983 - UniSoft Corporation
(C) Copyright 1983 - Silicon Graphics Inc.

Kernel Size:
kmem = 290816

Approximate Available Memory:
avail = 1282048

Hardware Configuration:
dsd at mbio 0x1f00 ipl 1
qic0 (QIC Quarter Inch Cartridge Tape) slave 0
md0 (Vertex V170 Name: XORN drive 0) slave 0
md1 (Vertex V170 Name: Beta Version 1.2 (4/10/84) slave 1 
mf0 not installed
nx0 at mbio 0x0010 ipl 2
ge0 at mbio 0x1400 ipl 4
fbc0 at mbio 0x1c00 ipl 3

Root File System Device Name:
root on md0a

Swap Space Device Name and Size:
swap on md0b (8865K of swap space)

Single-User Mode Banner:
INIT: SINGLE USER MODE
Silicon Graphics Inc.
IRIS 1400 Workstation

Single-User Prompt:
#

Figure 6-1: IRIS Workstation Boot Information



32    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

File Systems and fsck(1M)
The disk drive on an IRIS Workstation has several partitions that are  
represented by device files in the /dev directory. Three of them are of interest  
to the user: the root file system (/dev/md0a), the swap space (/dev/swap) and the  
/usr file system (/dev/md0c). The root file system is always mounted when  
UNIX is running. The /usr file system is unmounted in single-user mode.
These file systems should be checked with fsck before multi-user mode is  
started and the other file systems are mounted. fsck is an interactive file system  
check and repair program. Generally, fsck prompts for a yes or a no reply 
before altering a corrupted file system. The most common problem that fsck 
discovers is a bad i-node count resulting from an improper shutdown. For  
more information on fsck, see Appendix B.
The files /.login and /.profile contain a command line for running fsck during 
system startup. The file /etc/rc contains a command line for mounting the /usr 
file system.

6.4 Configuring UNIX on an IRIS Workstation
One of the strengths of the UNIX operating system is its flexibility. A given 
UNIX system can be configured in a variety of ways. Choices include  
hardware configurations, like the amount of memory a system has, and  
software configurations, like where a program is located and who has  
permission to use it.
On the user level, there are even more choices. For example, each user can 
choose how the system finds commands, whether other people can use his or 
her files and whether or not to override certain system defaults. Each user can 
establish an environment that he or she feels comfortable with.
The IRIS Workstation is shipped with a minimum set of non-standard system 
defaults. Each system administrator can then configure the IRIS Workstation to 
suit the needs of the local user community and each user can then fine tune his 
or her personal environment.

NOTE: The discussion that follows assumes that the 
reader understands UNIX system administration. For 
more information, see the UNIX Programmer’s Manual.

The sections that follow contain instructions for common system administration 
tasks for the IRIS Workstation.

6.5 Configuration Files
There are several files in the directories /etc and /usr that may or should be 
edited by the IRIS Workstation system administrator.



Version 1.0

IRIS WORKSTATION GUIDE    33 System Administration

/etc/TZ This file contains an entry for the time zone. Several 
different utilities determine their time zone from this 
file. There are three fields in /etc/TZ:

1) standard heading for time zone,
2) offset from Greenwich Mean Time,
3) optional daylight savings time zone.

 For example, the IRIS Workstation is shipped with the 
time zone set for Pacific Standard Time.

 PST8PDT

 For more information, see TZ(4).
/etc/checklist	 This	file	contains	a	list	of	file	systems	processed	by	fsck
/etc/cshrc This file is read at login by accounts that specify the C 

Shell as the login shell. See csh(1).
/etc/gettydefs This file contains entries for line speeds and terminal 

settings used by getty(1M) when it initializes a device. 
In addition, each line has a field that is displayed 
when its corresponding port is used to login. See 
Sections 6.8 and gettydefs(4).

/etc/group This file contains information about groups. See 
Section 6.7 and group(4).

/etc/inittab This file contains an entry for each device that init(1)  
will initialize. See Sections 6.8, 6.9, 6.10, 6.11,  
inittab(4) and telinit(1M).

/etc/motd This file contains the message of the day. It is  
displayed each time a user logs into an IRIS 
Workstation.

/etc/passwd This file contains information about people who have 
accounts on an IRIS Workstation. See Section 6.7 and 
passwd(4).

/etc/profile This file is read at login by accounts that specify the 
Bourne Shell as the login shell. See sh(1).

/etc/rc This command file is read by init(1) at the  
start of multi-user mode. Typically, it is used to start  
daemons and run other commands at system startup. 
See brc(1).

/etc/sys_id This file contains the name of the system. See Section 
6.6, hostname(1) and sys_id(4).

/etc/termcap This file contains entries for different terminal types. 
See Section 6.8 and termcap(4).



34    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

/etc/ttytype This file maps terminal types to devices attached to an  
IRIS Workstation. See Sections 6.8, 6.11, tset(1) and  
ttytype(4).

/usr/lib/crontab This file contains entries for commands to be run at  
fixed	intervals	by	the	cron(1M) daemon. See cron(1M).

/usr/lib/uucp/L-devices This file contains line speed entries for each port used 
by uucp(1). See Section 6.9.

/usr/lib/uucp/L.sys This file contains information about sites that uucp(1) 
can communicate with. See Section 6.9.

6.6 Naming an IRIS Workstation
Each IRIS Workstation is shipped with the name IRIS. To change this, edit the 
file /etc/sys_id, insert a new name and reboot the system. Be sure that there are 
no blanks in the name and that it is fewer than 14 characters long.

6.7 Adding a New Account
New accounts can be created on the IRIS Workstation by adding a line to the  
file /etc/passwd. Additionally, the system administrator can set up the new user’s 
environment with startup files, home directories, etc. These are largely matters 
of personal taste and will not be covered here except in outline form.

1. Edit the file /etc/passwd. This file contains a line for each account on a 
UNIX system. Each line has seven fields separated by colons (:). See 
passwd(4).

1) Account Name
2) Encrypted User Password
3) User Number
4) Group Number
5) Name
6) Home Directory (default /)
7) Login Shell (default /bin/sh)

 Figure 6-2 contains an example /etc/passwd file.
 Add a line for the new account. Be sure that it contains a group 

number and a unique account name and user number. The home 
directory should be specified in the sixth field. The login shell  
should be specified in the seventh field. For example, to add an 
account for a user named peter the following line might be inserted:

peter::10:20:Peter Broadwell:/usr/staff/peter:/bin/csh

2. Edit the file /etc/group to include the new user in any additional 
groups. Entries to this file are optional. See group(4). Figure 6-3 
contains an example /etc/group file. Each line corresponds to a



Version 1.0

IRIS WORKSTATION GUIDE    35 System Administration

root::0:0:Superuser:/:/bin/csh
rootcsh::0:0:Superuser:/:/bin/csh
rootsh::0:0:Superuser:/:/bin/sh
daemon:*:1:1::/:
bin:*:2:2:Binary Files:/:
uucp:*:3:5:UUCP Login Account:/usr/spool/uucpPublic:/usr/lib/uucp/uucico 
adm:*:5:3:Administration:/usr/adm:
uucpadm:*:8:8:UUCP Administration:/usr/lib/uucp:
lp:*:9:9:Line Printer:/:
guest::998:998::/usr/people/guest:/bin/csh

Figure 6-2: Sample /etc/passwd File

 group. There are four fields to a line. The asterisk in the second  
field indicates that there is no group password. 

1) Group Name
2) Encrypted Group Password
3) Group Number
4) Group Members

 If the new user wishes to be included in the group adm, then the 
system administrator can append the user’s name to the line for the 
group adm. User names in this field are separated by commas.

adm:*:3:henry,peter

3. Make a home directory for the new user. The ownership, file and group 
protections should also be set for the new directory. For example,

$ mkdir /usr/staff/peter
$ chgrp user /usr/staff/peter 
$ chmod 755 /usr/staff/peter
$ chown peter /usr/staff/peter

 mkdir(1) makes the home directory for the new user. chgrp(1)  
changes the group of the new directory. The chmod(1) command is 
used to set the protection parameters on a file or directory. These 
parameters can also be set by the owner of the file or directory. 
chown(1) is a privileged command that changes the ownership of the 
directory.

4. The new user can create a password with the passwd command  
when he or she first logs in.

$ passwd
New password:
Re-enter new password:
$

5. The final step is to add startup files like .cshrc, .login and .profile in 
the new user’s home directory. This is largely a matter of personal



36    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

sys:*:0: 
system:*:0: 
daemon:*:1: 
bin:*:2: 
adm:*:3: 
sgi_use:*:4: 
uucp:*:5:uucp 
sgi_use:*:6: 
sgi_use:*:1: 
uucpadm:*:8:uucp 
lp:*:9:
sgi_use:*:10: 
sgi_use:*:11: 
sgi_use:*:12: 
sgi_use:*:13: 
sgi_use:*:14: 
sgi_use:*:15: 
sgi_use:*:16: 
sgi_use:*:11: 
sgi_use:*:18: 
sgi_use:*:19:
guest:*:998: 
games:*:999: 
user:*:20:

Figure 6-3: Sample /etc/group File

 taste. For examples, see the files in /usr/guest. Copy these files into the 
new home directory and edit them to suit the needs of the new user. 
See csh(1) and sh(1).

6.8 Connecting an ASCII Terminal to the IRIS Workstation
ASCII terminals can be connected to the IRIS Workstation through Port 2 , 
Port 3  or Port 4  on the Cabinet I/O Panel (see Figure 3-4).

1. Connect a serial line to Port 2 , Port 3  or Port 4 . See Section 4.6 for 
instructions on how to physically connect the IRIS Workstation to a 
terminal with an RS-232 serial line.

2. Edit the file /etc/inittab. Each line corresponds to a device file in /dev 
and contains four fields separated by colons. See Table 6-2 for a list  
of the correspondences between device files and physical ports on  
the Cabinet I/O Panel. Find the line in /etc/inittab for the selected  
port and delete the x in the second field. Figure 6-4 contains an 
example /etc/inittab file. See inittab(4) for more information.

3. init must be informed of the change to the /etc/inittab file.
$ /etc/telinit -q

 This causes init to read /etc/inittab and start getty processes on each



Version 1.0

IRIS WORKSTATION GUIDE    37 System Administration

File Description
console
floppy
kmem
md0a
md0c
md1a
md1c
mem
mt1
nrtape
null

rmd0a
rmd0c
rmd1a
rmd1c
rmt1
rqic
swap
syscon
systty
tty

ttyd1
ttyd2
ttyd3
ttyn*
EXOS/*

Console terminal.
Optional floppy disk drive.
Kernel memory (used by ps(1)). See mem(7).
Disk zero root (/) file system.
Disk zero usr (/usr) file system.
Optional disk one first file system.
Optional disk one second file system.
Memory (used by ps(1)). See mem(7).
Cartridge magnetic tape.
Cartridge magnetic tape (no rewind on open or close).
Null device (zero length on input, data sink on output). 
See null(7).
Disk zero root (/) file system (raw device).
Disk zero usr (/usr) file system (raw device).
Optional disk one first file system (raw device).
Optional disk one second file system (raw device).
Cartridge magnetic tape (treated as a blocked device).
Cartridge magnetic tape (treated as a blocked device).
Swap device (used by ps(l)).
System console (linked to /dev/console).
System console (linked to /dev/console).
A synonym for the tty device associated with a process. 
See termio(7) and tty(7).
Port 2 on Cabinet I/O Panel.
Port 3 on Cabinet I/O Panel
Port 4 on Cabinet I/O Panel.
Network ports.
IP/TCP for future releases.

Table 6-2: Special Device Files in /dev

 port selected in /etc/inittab.
4. If the default speed set in /etc/inittab is incorrect, the user can select 

another speed by pressing the BREAK  key. The line speed choices for 
each port are set in the file /etc/gettydefs. See gettydefs(4). Figure 6-5 
contains an example /etc/gettydefs file.

5. Edit the file /etc/ttytype. This file maps a terminal type to each  
device. Figure 6-6 contains an example /etc/ttytype file. Each port is 
mapped to a device as in Table 6-2.

 Each user’s Shell startup file should have tset commands that read 
/etc/ttytype and set the terminal type. See Table 6-3 for example 
commands. These should be included in each C Shell (csh (1)) user’s 
.login file and each Bourne Shell (sh (1)) user’s .profile file. See



38    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

is:s:initdefault:
fp::sysinit:/etc/fload >/dev/console 2>&1
bl::bootwait:/etc/bcheckrc </dev/console >/dev/console 2>&1 #bootlog 
bc::bootwait:/etc/brc 1>/dev/console 2>&1 #bootrun command
sl::wait:(rm -f /dev/syscon;ln /dev/systty /dev/syscon;) 1>/dev/console 2>&1
rc::wait:/etc/rc 1>/dev/console 2>&1 #run com
pf::powerfail:/etc/powerfail 1>/dev/console 2>&1 #power fail routines 
co::respawn:/etc/getty console co_9600
d1:x:respawn:/etc/getty ttyd1 dx_9600 
d2:x:respawn:/etc/getty ttyd2 dx_9600 
d3:x:respawn:/etc/getty ttyd3 dx_9600 
n1:x:respawn:/etc/getty ttyn1 dx_9600 
n2:x:respawn:/etc/getty ttyn2 dx_9600

Figure 6-4: Sample /etc/inittab File

 tset(1) and ttytype(4). 
6. If necessary, edit the file /etc/termcap to contain entries for terminals 

not described there. See termcap(4).
7. Login on the ASCII Terminal.

6.9 Connecting a Modem to the IRIS Workstation
A modem can be connected to the IRIS Workstation through Port 2 , Port 3  or 
Port 4  on the Cabinet I/O Panel. This modem can then be used by the UNIX  

utilities cu and uucp. Port 3  should be used first since the serial line  
configuration files are prepared for it. To attach a modem to any of the other 
ports requires modification of the serial line configuration files.

1. See Section 4.6 for instructions on how to physically connect the  
IRIS Workstation to a modem with an RS-232 serial line.

2. Edit the file /etc/inittab. Each line corresponds to a device file in /dev 
and contains four fields separated by colons. See Table 6-2 for a list 
of the correspondences between device files and physical ports. 
Find the line for the selected port and put an x in the second field. 
This prevents a getty process from being started on the port. See 
inittab(4).

3. init must be informed of the change to the /etc/inittab file.
$ /etc/telinit -q

 This causes init to read /etc/inittab and enable ports for modem use.
4. Edit the file /usr/lib/uucp/L-devices. This file contains line speed entries 

for each port. See Section 1.3 for a description of the fields in each 
line of /usr/lib/uucp/L-devices.

5. Edit the file /usr/lib/uucp/L.sys. This file contains information about  
sites that uucp can communicate with. See Section 1.3 for a



Version 1.0

IRIS WORKSTATION GUIDE    39 System Administration

co_9600# B9600 # B9600 SANE TAB3 #\r\n\nIRIS login: #co_4800 

co_4800# B4800 # B4800 SANE TAB3 #\r\n\nIRIS login: #co_2400 

co_2400# B2400 # B2400 SANE TAB3 #\r\n\nIRIS login: #co_1200 

co_1200# B1200 # B1200 SANE TAB3 #\r\n\nIRIS login: #co_300

co_300# B300 # B300 SANE TAB3 #\r\n\nIRIS login: #co_9600

dx_9600# B9600 # B9600 SANE TAB3 #\r\n\nIRIS login: #dx_9600 

dx_4800# B4800 # B4800 SANE TAB3 #\r\n\nIRIS login: #dx_4800 

dx_1200# B1200 # B1200 SANE TAB3 #\r\n\nIRIS login: #dx_1200 

du_1200# B1200 # B1200 SANE TAB3 #\r\n\nIRIS login: #du_300

du_300# B300 # B300 SANE TAB3 #\r\n\nIRIS login: #du_1200

Figure 6-5: Sample /etc/gettydefs File

 description of the fields in each line of /usr/lib/uucp/L.sys.
6. Test the serial line with cu(1C), the UNIX terminal emulator.

$ cu -s1200 -lttyd3 9603515

7. Test the serial line with uucp(1C), the UNIX serial line file transfer 
program. See Appendix I for an explanation of UUCP system 
administration.

The procedure above is intended for a dial-out modem. To connect a modem  
to the IRIS Workstation for dial-in use, a getty must be started on the  
appropriate port. To do this, edit /etc/inittab and delete the x in the second  
field of the line corresponding to the selected port. Then run telinit -q to have 
init reread /etc/inittab.

6.10 Connecting a Printer to the IRIS Workstation
A printer can be connected to the IRIS Workstation through Port 2 , Port 3  or 
Port 4  on the Cabinet I/O Panel.

1. See Section 4.6 for instructions on how to physically connect the  
IRIS Workstation to a printer with an RS-232 serial line.

2. Edit the file /etc/inittab. Each line corresponds to a device file in /dev 
and contains four fields separated by colons. See Table 6-2 for a list 
of the correspondences between device files and physical ports.  
Find the line for the selected port and put an x in the second field.  
This prevents a getty process from being run on the port. See 
inittab(4).



40    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

iris systty 
iris console 
iris syscon
v50am ttyd2 
du ttyd3 
du ttyd4
v50am ttyn1
v50am ttyn2

Figure 6-6: Sample /etc/ttytype File

3. Link the device file for the printer port to /dev/lp. For example, to  
link the device file for Port 3 ,

# ln /dev/ttyd3 /dev/lp

4. Make the printer port writable to every user.
# chmod 666 /dev/lp

5. If the printer has XON/XOFF capabilities, initialize the port with 
stty. See stty(1). For example,

# (stty -ixon ; sleep 100000) < /dev/lp

 This line should then be added to the system startup file /etc/rc.
6. init must be informed of the change to the /etc/inittab file.

$ /etc/telinit -q

 This causes init to read /etc/inittab and enable a port for the line 
printer.

7. Test the line printer.
# cat /etc/passwd > /dev/lp 
# lpr /etc/passwd
# pr -f -l66 /etc/rc | lpr

6.11 Enabling a Network Connection to the IRIS Workstation
The IRIS Workstation can be connected to an Ethernet local area network.

1. See Section 4.7 for instructions on how to physically connect the  
IRIS Workstation to an Ethernet local area network network.

2. Edit the file /etc/inittab. Each line corresponds to a device file in /dev 
and contains four fields separated by colons. See Table 6-2 for a list 
of the correspondences between device files and physical ports.  
Find the line for the selected port and delete the x in the second  
field. See inittab(4) for more information.

3. init must be informed of the change to the /etc/inittab file.



Version 1.0

IRIS WORKSTATION GUIDE    41 System Administration

C Shell (.login) Bourne Shell (.profile)
set noglob
set temp=(‘tset -Q -S’)
setenv TERM $temp[1]
setenv TERMCAP “$temp[2]”
unset temp
unset noglob

eval ‘tset -Q -s’

Table 6-3: tset Commands for Startup Files

 $ /etc/telinit -q

 This causes init to read /etc/inittab and enable ports for network 
login.

4. Edit the file /etc/ttytype. This file maps each device to a terminal type. 
See Figure 6-6 for an example /etc/ttytype file. Each network port is 
mapped to a device as in Table 6-2.

 Each user’s Shell startup file should have tset commands that read 
/etc/ttytype and set the terminal type. See Table 6-3 for example 
commands. These should be included in each C Shell (csh (1)) user’s  
.login file and each Bourne Shell (sh (1)) user’s .profile file. See  
tset(1) and ttytype(4).

5. Login through the network to another host.

6.12 Tape Drive
The IRIS Workstation has an optional tape drive for backing up file systems on  
the disks and for reading new software distributions. See Table 6-4 for a list of  
tape drive specifications. In addition, the IRIS Workstation can be booted from  
the tape drive in case the root file system is damaged beyond repair (see  
Section 6.1).
The tape drive can be used with either tar(1) or cpio(1), the standard UNIX 
archiving tools. cpio is slightly favored. The tape boot procedure mentioned in 
Section 6.1 requires a tape in cpio format. Keep a copy of the root file system  
on tape to ensure that there is a reliable copy in the event of a bad crash. See 
Table 6-5 for some UNIX commands for using the tape drive. See tar(1) and 
cpio(1).

6.13 Shutdown
The IRIS Workstation should not be left on indefinitely. However, since the 
Monitor has a long warmup period, the IRIS Workstation should be left on 
continuously during work hours.



42    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration

Tape Drive Specifications

Device Name:
Density:

Speed:
Tape Lengths:
Suppliers:

/dev/rmt1
10,000 flux changes per inch
l00K per foot
90 inches per second
300 and 450 feet
3M/Scotch
Data Electronics, Inc.

Table 6-4: Tape Drive Specifications

WARNING: Do not press either Reset  button or the  
Power  switch while UNIX is running without first using  

the /etc/reboot -q command. If the IRIS Workstation is  
under the control of the PROM Monitor, then the Reset  
buttons and the Power  switch may be safely used.

1. To shut down UNIX, type /etc/reboot -q. 
$ /etc/reboot -q

 NOTE: /etc/reboot -q is a privileged command 
requiring super-user permission.

2. Set the Power  switch on the Cabinet to the Off  position.

6.14 Crash Recovery
This section is necessarily incomplete. See Appendix C for a list of error 
messages and probable causes. If the IRIS Workstation stops running for some  
reason, first try to reboot it without hitting the Reset  button. Use the  
/etc/reboot -q command.

$ /etc/reboot -q

If keystrokes are not echoed, or for some other reason it is not possible to shut 
down the system gently, press the Reset  button and hope that the file systems 
aren’t damaged.
The next step is to boot the system with the normal boot procedure. During 
the boot procedure, the file check program fsck will be run and will display 
information about the state of the file system. (Appendix B explains how to use 
fsck; crash(8) is a manual entry with advice on recovering from a crash.)



Version 1.0

IRIS WORKSTATION GUIDE    43 System Administration

Tape Drive Procedures

Backup
$ cpio -oha1 .
$ tar -cv .

Incremental Backup
$ find . -mtime -7 -print | cpio -oha1
$ find . -mtime -7 -print | tar -cv -

Read Tape
$ cpio -ihum1
$ tar -xv

List Tape Contents
$ cpio -iht1
$ cpio -ihtv1
$ tar -tv

Table 6-5: Tape Drive Procedures



44    IRIS WORKSTATION GUIDE 

Version 1.0

System Administration



Appendix A: Configuration Switches

Switch Name Position Meaning

1-2 Serial line 001

01
10
11

300 baud
19,200 baud
1200 baud
9600 baud

3 Checkout 0
1

No additional testing.
Additional testing (time-consuming).

4-8 Boot environment 00000
00001
00100
01000
01100
10000

all others

Floppy disk boot.
Disk boot.
Network boot.
PROM Monitor.
Serial line boot.
Tape boot.
Undefined.

Table A-1: IRIS Workstation Configuration Switches

1.  0 means Closed  and 1 means Open .

Version 1.0



46    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix A:



Appendix B: Fsck-The Unix File System Check Program1

B.1 Introduction
When a Unix operating system is brought up, a consistency check of the file 
systems should always be performed. This precautionary measure helps to 
insure a reliable environment for file storage on disk. If an inconsistency is 
discovered, corrective action must be taken. No changes are made to any file 
system by fsck without prior operator approval.
The purpose of this memo is to dispel the mystique surrounding file system 
inconsistencies. It first describes the updating of the file system (the calm  
before the storm) and then describes file system corruption (the storm).  
Finally, the set of heuristically sound corrective actions used by fsck (the Coast 
Guard to the rescue) is presented.

B.2 Update of the File System
Every working day hundreds of files are created, modified, and removed. 
Every time a file is modified, the Unix operating system performs a series of 
file system updates. These updates, when written on disk, yield a consistent  
file system. To understand what happens in the event of a permanent 
interruption in this sequence, it is important to understand the order in which 
the update requests were probably being honored. Knowing which pieces of 
information were probably written to the file system first, heuristic procedures 
can be developed to repair a corrupted file system.
There are five types of file system updates. These involve the super-block, 
inodes, indirect blocks, data blocks (directories and files), and free-list blocks.

Super-Block
The super-block contains information about the size of the file system, the size 
of the inode list, part of the free-block list, the count of free blocks, the count

1.	This	appendix	is	modified	from	a	paper	with	the	same	name	by	T.	J.	Kowalski.

Version 1.0



48    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

of free inodes, and part of the free-inode list.
The super-block of a mounted file system (the root file system is always 
mounted) is written to the file system whenever the file system is unmounted 
or a sync command is issued.

Inodes
An inode contains information about the type of inode (directory, data, or 
special), the number of directory entries linked to the inode, the list of blocks 
claimed by the inode, and the size of the inode.
An inode is written to the file system upon closure1 of the file associated with 
the inode.

Indirect Blocks
There are three types of indirect blocks: single-indirect, double-indirect and 
triple-indirect. A single-indirect block contains a list of some of the block 
numbers claimed by an inode. Each one of the 256 entries in an indirect block 
is a data-block number. A double-indirect block contains a list of single- 
indirect block numbers. A triple-indirect block contains a list of double-indirect 
block numbers.
Indirect blocks are written to the file system whenever they have been  
modified and released2 by the operating system.

Data Blocks
A data block may contain file information or directory entries. Each directory 
entry consists of a file name and an inode number.
Data blocks are written to the file system whenever they have been modified 
and released by the operating system.

First Free-List Block
The super-block contains the first free-list block. The free-list blocks are a list 
of all blocks that are not allocated to the super-block, inodes, indirect blocks, or  
data blocks. Each free-list block contains a count of the number of entries in 
this free-list block, a pointer to the next free-list block, and a partial list of free 
blocks in the file system.

1. All	in	core	blocks	are	also	written	to	the	file	system	upon	issue	of	a	sync system call.

2. More precisely, they are queued for eventual writing. Physical I/O is deferred until the 
buffer is needed by UNIX or a sync command is issued.



Version 1.0

IRIS WORKSTATION GUIDE    49 Appendix B:

Free-list blocks are written to the file system whenever they have been  
modified and released by the operating system.

B.3 Corruption of the File System
A file system can become corrupted in a variety of ways. The most common of 
these ways are improper shutdown procedures and hardware failures.

Improper System Shutdown and Startup
File systems may become cormpted when proper shutdown procedures are not  
observed, e.g., forgetting to sync the system prior to halting the CPU, not  
using the /etc/reboot -q command, physically write-protecting a mounted file 
system, or taking a mounted file system off-line.
File systems may become further corrupted if proper startup procedures are not 
observed, e.g., not checking a file system for inconsistencies, and not repairing 
inconsistencies. Allowing a corrupted file system to be used (and, thus, to be 
modified further) can be disastrous.

Hardware Failure
Any piece of hardware can fail at any time. Failures can be as subtle as a bad 
block on a disk pack, or as blatant as a non-functional disk-controller.

B.4 Detection and Correction of Corruption
A quiescent3 file system may be checked for structural integrity by performing 
consistency checks on the redundant data intrinsic to a file system. The  
redundant data is either read from the file system or computed from other 
known values. A quiescent state is important during the checking of a file 
system because of the multi-pass nature of the fsck program.
When an inconsistency is discovered fsck reports the inconsistency for the 
operator to choose a corrective action.
This section tells how to discover inconsistencies and possible corrective actions 
for the super-block, the inodes, the indirect blocks, the data blocks containing 
directory entries, and the free-list blocks. These corrective actions can be 
performed interactively by the fsck command under control of the operator.

3.   i.e., unmounted and not being written on.



50    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

Super-Block
One of the most common corrupted items is the super-block. The super-block  
is prone to corruption because every change to the file system’s blocks or  
inodes modifies the super-block.
The super-block and its associated parts are most often corrupted when the 
computer is halted and the last command involving output to the file system 
was not a sync command.
The super-block can be checked for inconsistencies involving file-system size, 
inode-list size, free-block list, free-block count, and the free-inode count.

File-System Size and Inode-List Size.
The file-system size must be larger than the number of blocks used by the  
super-block and the number of blocks used by the list of inodes. The number 
of inodes must be less than 65,535. The file-system size and inode-list size are  
critical pieces of information to the fsck program. While there is no way to 
actually check these sizes, fsck can check for them being within reasonable 
bounds. All other checks of the file system depend on the correctness of these 
sizes.

Free-Block List.
The free-block list starts in the super-block and continues through the free-list 
blocks of the file system. Each free-list block can be checked for a list count out  
of range, for block numbers out of range, and for blocks already allocated  
within the file system. A check is made to see that all the blocks in the file 
system were found.
The first free-block list is in the super-block. Fsck checks the list count for a 
value of less than zero or greater than fifty. It also checks each block number  
for a value of less than the first data block in the file system or greater than the  
last block in the file system. Then it compares each block number to a list of 
already allocated blocks. If the free-list block pointer is non-zero, the next  
free-list block is read in and the process is repeated.
When all the blocks have been accounted for, a check is made to see if the 
number of blocks used by the free-block list plus the number of blocks claimed 
by the inodes equals the total number of blocks in the file system.
If anything is wrong with the free-block list, then fsck may rebuild it, excluding 
all blocks in the list of allocated blocks.

Free-Block Count.
The super-block contains a count of the total number of free blocks within 
the file system. Fsck compares this count to the number of blocks it found free



Version 1.0

IRIS WORKSTATION GUIDE    51 Appendix B:

within the file system. If they don’t agree, then fsck may replace the count in  
the super-block by the actual free-block count.

Free-Inode Count.
The super-block contains a count of the total number of free inodes within 
the file system. Fsck compares this count to the number of inodes it found free 
within the file system. If they don’t agree, then fsck may replace the count in  
the super-block by the actual free-inode count.

Inodes
An individual inode is not as likely to be corrupted as the super-block.  
However, because of the great number of active inodes, there is almost as  
likely a chance for corruption in the inode list as in the super-block.
The list of inodes is checked sequentially starting with inode 1 (there is no  
inode 0) and going to the last inode in the file system. Each inode can be  
checked for inconsistencies involving format and type, link count, duplicate 
blocks, bad blocks, and inode size.

Format and Type.
Each inode contains a mode word. This mode word describes the type and  
state of the inode. Inodes may be one of four types: regular inode, directory 
inode, special block inode, and special character inode. If an inode is not one 
of these types, then the inode has an illegal type. Inodes may be found in one 
of three states: unallocated, allocated, and neither unallocated nor allocated. 
This last state indicates an incorrectly formatted inode. An inode can get in  
this state if bad data is written into the inode list through, for example, a 
hardware failure. The only possible corrective action is for fsck is to clear the 
inode.

Link Count.
Contained in each inode is a count of the total number of directory entries 
linked to the inode.
Fsck verifies the link count of each inode by traversing down the total directory 
structure, starting from the root directory, calculating an actual link count for 
each inode.
If the stored link count is non-zero and the actual link count is zero, it means 
that no directory entry appears for the inode. If the stored and actual link  
counts are non-zero and unequal, a directory entry may have been added or 
removed without the inode being updated.



52    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

If the stored link count is non-zero and the actual link count is zero, fsck may 
link the disconnected file to the lost+found directory. If the stored and actual link 
counts are non-zero and unequal, fsck may replace the stored link count by the 
actual link count.

Duplicate Blocks.
Contained in each inode is a list or pointers to lists (indirect blocks) of all the 
blocks claimed by the inode.
Fsck compares each block number claimed by an inode to a list of already 
allocated blocks. If a block number is already claimed by another inode, the  
block number is added to a list of duplicate blocks. Otherwise, the list of  
allocated blocks is updated to include the block number. If there are any 
duplicate blocks, fsck will make a partial second pass of the inode list to find  
the inode of the duplicated block, because without examining the files  
associated with these inodes for correct content, there is not enough  
information available to decide which inode is corrupted and should be  
cleared. Most times, the inode with the earliest modify time is incorrect, and 
should be cleared.
This condition can occur by using a file system with blocks claimed by both the 
free-block list and by other parts of the file system.
If there is a large number of duplicate blocks in an inode, this may be due to  
an indirect block not being written to the file system.
Fsck will prompt the operator to clear both inodes.

Bad Blocks.
Contained in each inode is a list or pointer to lists of all the blocks claimed by 
the inode.
Fsck checks each block number claimed by an inode for a value lower than that 
of the first data block, or greater than the last block in the file system. If the 
block number is outside this range, the block number is a bad block number.
If there is a large number of bad blocks in an inode, this may be due to an 
indirect block not being written to the file system.
Fsck will prompt the operator to clear both inodes.

Size Checks.
Each inode contains a thirty-two bit (four-byte) size field. This size indicates 
the number of characters in. the file associated with the inode. This size can 
be checked for inconsistencies, e.g., directory sizes that are not a multiple of 
sixteen characters, or the number of blocks actually used not matching that 
indicated by the inode size.



Version 1.0

IRIS WORKSTATION GUIDE    53 Appendix B:

A directory inode within the Unix file system has the directory bit on in the 
inode mode word. The directory size must be a multiple of sixteen because a 
directory entry contains sixteen bytes of information (two bytes for the inode 
number and fourteen bytes for the file or directory name).
Fsck will warn of such directory misalignment. This is only a warning because 
not enough information can be gathered to correct the misalignment.
A rough check of the consistency of the size field of an inode can be performed 
by computing from the size field the number of blocks that should be  
associated with the inode and comparing it to the actual number of blocks 
claimed by the inode.
Fsck calculates the number of blocks that there should be in an inode by  
dividing the number of characters in a inode by the number of characters 
per block (1024) and rounding up. Fsck adds one block for each indirect block 
associated with the inode. If the actual number of blocks does not match the 
computed number of blocks, fsck will warn of a possible file-size error. This is 
only a warning because Unix does not fill in blocks in files created in random 
order.

Indirect Blocks
Indirect blocks are owned by an inode. Therefore, inconsistencies in indirect 
blocks directly affect the inode that owns it.
Inconsistencies that can be checked are blocks already claimed by another  
inode and block numbers outside the range of the file system.
For a discussion of detection and correction of the inconsistencies associated 
with indirect blocks, apply iteratively Sections 4.2.3 and 4.2.4 to each level of 
indirect blocks.

Data Blocks
The two types of data blocks are plain data blocks and directory data blocks. 
Plain data blocks contain the information stored in a file. Directory data blocks 
contain directory entries. Fsck does not attempt to check the validity of the 
contents of a plain data block.
Each directory data block can be checked for inconsistencies involving directory 
inode numbers pointing to unallocated inodes, directory inode numbers greater 
than the number of inodes in the file system, incorrect directory inode numbers 
for “.” and “..”, and directories which are disconnected from the file system.
If a directory entry inode number points to an unallocated inode, then fsck may 
remove that directory entry. This condition probably occurred because the data 
blocks containing the directory entries were modified and written to the file 
system while the inode was not yet written out.



54    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

If a directory entry inode number is pointing beyond the end of the inode list, 
 fsck may remove that directory entry. This condition occurs if bad data is  
written into a directory data block.
The directory inode number entry for “.” should be the first entry in the 
directory data block. Its value should be equal to the inode number for the 
directory data block.
The directory inode number entry for “..” should be the second entry in the 
directory data block. Its value should be equal to the inode number for the 
parent of the directory entry (or the inode number of the directory data block if 
the directory is the root directory).
If the directory inode numbers are incorrect, fsck may replace them by the 
correct values.
Fsck checks the general connectivity of the file system. If directories are found 
not to be linked into the file system, fsck will link the directory back into the 
file system in the lost+found directory. This condition can be caused by inodes 
being written to the file system with the corresponding directory data blocks 
not being written to the file system.

Free-List Blocks
Free-list blocks are owned by the super-block. Therefore, inconsistencies in 
free-list blocks directly affect the super-block.
Inconsistencies that can be checked are a list count outside of range, block 
numbers outside of range, and blocks already associated with the file system.
For a discussion of detection and correction of the inconsistencies associated 
with free-list blocks see Section 4.1.2.

B.5 FSCK Error Conditions

Conventions
Fsck is a multi-pass file system check program. Each file system pass invokes a  
different Phase of the fsck program. After the initial setup, fsck performs 
successive Phases over each file system, checking blocks and sizes, path-names, 
connectivity, reference counts, and the free-block list (possibly rebuilding it), 
and performs some cleanup.
When an inconsistency is detected, fsck reports the error condition to the 
operator. If a response is required, fsck prints a prompt message and waits for 
a response. This appendix explains the meaning of each error condition, the 
possible responses, and the related error conditions.
The error conditions are organized by the Phase of the fsck program in which they  
can occur. The error conditions that may occur in more than one Phase  



Version 1.0

IRIS WORKSTATION GUIDE    55 Appendix B:

will be discussed in initialization.

Initialization

Before a file system check can be performed, certain tables have to be set up 
and certain files opened. This section concerns itself with the opening of files 
and the initialization of tables. This section lists error conditions resulting from 
command line options, memory requests, opening of files, status of files, file 
system size checks, and creation of the scratch file.

C option?

C is not a legal option to fsck; legal options are -y, -n, -s, -S, and -t. Fsck  
terminates on this error condition. See the fsck(1M) manual entry for further 
detail.

Bad -t option

The -t option is not followed by a file name. Fsck terminates on this error 
condition. See the fsck(1M) manual entry for further detail.

Invalid -s argument, defaults assumed

The -s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to-skip. Fsck 
assumes a default value of 400 blocks-per-cylinder and 9 blocks-to-skip. See  
the fsck(1M) manual entry for more details.

Incompatible options: -n and -s

It is not possible to salvage the free-block list without modifying the file system. 
Fsck terminates on this error condition. See the fsck(1M) manual entry for further 
detail.

Can’t get memory

Fsck’s request for memory for its virtual memory tables failed. This should 
never happen. Fsck terminates on this error condition. See a guru.

Can’t open checklist file: F



56    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

The default file system checklist file F (usually /etc/checklist) can not be opened 
for reading. Fsck terminates on this error condition. Check access modes of F.

Can’t stat root

Fsck’s request for statistics about the root directory “/” failed. This should never 
happen. Fsck terminates on this error condition. See a guru.

Can’t stat F

Fsck’s request for statistics about the file system F failed. It ignores this file 
system and continues checking the next file system given. Check access modes 
of F.

F is not a block or character device

You have given fsck a regular file name by mistake. It ignores this file system 
and continues checking the next file system given. Check file type of F.

Can’t open F

The file system F can not be opened for reading. It ignores this file system and 
continues checking the next file system given. Check access modes of F.

Size check: fsize X isize Y

More blocks are used for the inode list Y than there are blocks in the file  
system X, or there are more than 65,535 inodes in the file system. It ignores 
this file system and continues checking the next file system given. See Section 
4.1.1.

Can’t create F

Fsck’s request to create a scratch file F failed. It ignores this file system and 
continues checking the next file system given. Check access modes of F.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck’s request for moving to a specified block number B in the file system 



Version 1.0

IRIS WORKSTATION GUIDE    57 Appendix B:

failed. This should never happen. See a guru. 
Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however  
the problem will persist. This error condition will not allow a 
complete check of the file system. A second run of fsck should be 
made to re-check this file system. If the block was part of the virtual 
memory buffer cache, fsck will terminate with the message “Fatal I/O  
error” .

NO terminate the program.

CAN NOT READ: BLK B (CONTINUE)

Fsck’s request for reading a specified block number B in the file system failed. 
This should never happen. See a guru.
Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however  
the problem will persist. This error condition will not allow a 
complete check of the file system. A second run of fsck should be 
made to re-check this file system. If the block was part of the virtual 
memory buffer cache, fsck will terminate with the message “Fatal I/O  
error” .

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)

Fsck’s request for writing a specified block number B in the file system failed. 
The disk is write-protected. See a guru.
Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however  
the problem will persist. This error condition will not allow a 
complete check of the file system. A second run of fsck should be 
made to re-check this file system. If the block was part of the virtual 
memory buffer cache, fsck will terminate with the message “Fatal I/O  
error” .

NO terminate the program.

Phase 1: Check Blocks and Sizes
This phase concerns itself with the inode list. This section lists error conditions 
resulting from checking inode types, setting up the zero-link-count table, 
examining inode block numbers for bad or duplicate blocks, checking inode



58    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

size, and checking inode format.

UNKNOWN FILE TYPE I=I (CLEAR)

The mode word of the inode I indicates that the inode is not a special character 
inode, special character inode, regular inode, or directory inode. See Section 
4.2.1.
Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke 
the UNALLOCATED error condition in Phase 2 for each directory 
entry pointing to this inode.

NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a link count of zero 
has no more room. Recompile fsck with a larger value of MAXLNCNT.
Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a 
complete check of the file system. A second run of fsck should be 
made to re-check this file system. If another allocated inode with a 
zero link count is found, this error condition is repeated.

NO terminate the program.

B BAD I=I

Inode I contains block number B with a number lower than the number of the 
first data block in the file system or greater than the number of the last block in  
the file system. This error condition may invoke the EXCESSIVE BAD BLKS 
error condition in Phase 1 if inode I has too many block numbers outside the 
file system range. This error condition will always invoke the BAD/DUP error 
condition in Phase 2 and Phase 4. See Section 4.2.4.

EXCESSIVE BAD BLKS I=I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number 
lower than the number of the first data block in the file system or greater than 
the number of the last block in the file system associated with inode I. See 
Section 4.2.4.



Version 1.0

IRIS WORKSTATION GUIDE    59 Appendix B:

Possible responses to the CONTINUE prompt are:
YES ignore the rest of the blocks in this inode and continue checking with 

the next inode in the file system. This error condition will not allow 
a complete check of the file system. A second run of fsck should be 
made to re-check this file system.

NO terminate the program.

B DUP I=I

Inode I contains block number B which is already claimed by another inode. 
This error condition may invoke the EXCESSIVE DUP BLKS error condition in 
Phase 1 if inode I has too many block numbers claimed by other inodes. This 
error condition will always invoke Phase 1b and the BAD/DUP error condition 
in Phase 2 and Phase 4. See Section 4.2.3.

EXCESSIVE DUP BLKS I=I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed by other 
inodes. See Section 4.2.3.
Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking  
with the next inode in the file system. This error condition will not  
allow a complete check of the file system. A second run of fsck  
should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no more room. 
Recompile fsck with a larger value of DUPTBLSIZE.
Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a 
complete check of the file system. A second run of fsck should be 
made to re-check this file system. If another duplicate block is  
found, this error condition will repeat.

NO terminate the program.

POSSIBLE FILE SIZE ERROR I=I
The inode I size does not match the actual number of blocks used by the 



60    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

inode. This is only a warning. See Section 4.2.5.

DIRECTORY MISALIGNED I=I

The size of a directory inode is not a multiple of the size of a directory entry 
(usually 16). This is only a warning. See Section 4.2.5.

PARTIALLY ALLOCATED INODE I=I (CLEAR)

Inode I is neither allocated nor unallocated. See Section 4.2.1. 
Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

Phase 1B: Rescan for More DUPS
When a duplicate block is found in the file system, the file system is rescanned 
to find the inode which previously claimed that block. This section lists the 
error condition when the duplicate block is found.

B DUP I=I

Inode I contains block number B which is already claimed by another inode. 
This error condition will always invoke the BAD/DUP error condition in Phase 
2. You can determine which inodes have overlapping blocks by examining this 
error condition and the DUP error condition in Phase 1. See Section 4.2.3.

Phase 2: Check Pathnames
This phase concerns itself with removing directory entries pointing to error 
conditioned inodes from Phase 1 and Phase 1b. This section lists error  
conditions resulting from root inode mode and status, directory inode pointers 
in range, and directory entries pointing to bad inodes.

ROOT INODE UNALLOCATED. TERMINATING.

The root inode (usually inode number 2) has no allocate mode bits. This  
should never happen. The program will terminate. See Section 4.2.1.

ROOT INODE NOT DIRECTORY (FIX)



Version 1.0

IRIS WORKSTATION GUIDE    61 Appendix B:

The root inode (usually inode number 2) is not directory inode type. See  
Section 4.2.1.
Possible responses to the FIX prompt are:

YES replace the root inode’s type to be a directory. If the root inode’s 
data blocks are not directory blocks, a VERY large number of error 
conditions will be produced.

NO terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks in the root  
inode (usually inode number 2) for the file system. See Section 4.2.3 and 4.2.4.
Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt 
to continue to run the file system check. If the root inode is not  
correct, then this may result in a large number of other error 
conditions.

NO terminate the program.

I OUT OF RANGE I=I NAME=F (REMOVE)

A directory entry F has an inode number I which is greater than the end of the 
inode list. See Section 4.4.
Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

UNALLOCATED I=I OWNER=O MODE=M SIZE=S MTIME=T  
NAME=F (REMOVE)
A directory entry F has an inode I without allocate mode bits. The owner O, 
mode M, size S, modify time T, and file name F are printed. See Section 4.4.
Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T DlR=F  
(REMOVE)



62    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with 
directory entry F, directory inode I. The owner O, mode M, size S, modify  
time T, and directory name F are printed. See Section 4.2.3 and 4.2.4.
Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T FILE=F  
(REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with 
directory entry F, inode I. The owner O, mode M, size S, modify time T, and  
file name F are printed. See Section 4.2.3 and 4.2.4.
Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

Phase 3: Check Connectivity
This phase concerns itself with the directory connectivity seen in Phase 2. This  
section lists error conditions resulting from unreferenced directories, and 
missing or full lost+found directories.

UNREF DIR I=I OWNER=O MODE=M SIZE=S MTIME=T  
(RECONNECT)

The directory inode I was not connected to a directory entry when the file 
system was traversed. The owner O, mode M, size S, and modify time T of 
directory inode I are printed. See Section 4.4 and 4.2.2.
Possible responses to the RECONNECT prompt are: .

YES reconnect directory inode I to the file system in the directory for lost  
files (usually lost+found). This may invoke the lost+found error 
condition in Phase  3 if there are problems connecting directory 
inode I to lost+found. This may also invoke the CONNECTED error 
condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF  
error condition in Phase 4.

SORRY. NO lost+found DIRECTORY



Version 1.0

IRIS WORKSTATION GUIDE    63 Appendix B:

There is no lost+found directory in the root directory of the file system; fsck 
ignores the request to link a directory in lost+found. This will always invoke 
the UNREF error condition in Phase 4. Check access modes of lost+found. See 
fsck(1M) manual entry for further detail.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root  
directory of the file system; fsck ignores the request to link a directory in 
lost+found. This will always invoke the UNREF error condition in Phase 4.  
Clean out unnecessary entries in lost+found or make lost+found larger. See fsck(1M) 
manual entry for further detail.

DIR I=I1 CONNECTED. PARENT WAS I=I2

This is an advisory message indicating a directory inode I1 was successfully 
connected to the lost+found directory. The parent inode I2 of the directory  
inode I1 is replaced by the inode number of the lost+found directory. See  
Section 4.4 and 4.2.2.

Phase 4: Check Reference Counts
This phase concerns itself with the link count information seen in Phase 2 and 
Phase 3. This section lists error conditions resulting from unreferenced files, 
missing or full lost+found directory, incorrect link counts for files, directories, or 
special files, unreferenced files and directories, bad and duplicate blocks in files 
and directories, and incorrect total free-inode counts.

UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME=T  
(RECONNECT)

Inode I was not connected to a directory entry when the file system was 
traversed. The owner O, mode M, size S, and modify time T of inode I are 
printed. See Section 4.2.2.
Possible responses to the RECONNECT prompt are:

YES reconnect inode I to the file system in the directory for lost files  
(usually lost+found). This may invoke the lost+found error  
condition in Phase 4 if there are problems connecting inode I to 
lost+found.

NO ignore this error condition. This will always invoke the CLEAR  
error condition in Phase 4.



64    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores 
the request to link a file in lost+found. This will always invoke the CLEAR error 
condition in Phase 4. Check access modes of lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root 
directory of the file system; fsck ignores the request to link a file in lost+found. 
This will alwavs invoke the CLEAR error condition in Phase 4. Check size and 
contents of lost+found.

(CLEAR)

The inode mentioned in the immediately previous error condition can not be 
reconnected. See Section 4.2.2.
Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error 
condition by zeroing its contents.

NO ignore this error condition.

LINK COUNT FILE I=I OWNER=O MODE=M SIZE=S MTIME=T  
COUNT=X SHOULD BE Y (ADJUST)

The link count for inode I which is a file, is X but should be Y. The owner O, 
mode M, size S, and modify time T are printed. See Section 4.2.2.
Possible responses to the ADJUST prompt are:

YES replace the link count of file inode I with Y.
NO ignore this error condition.

LINK COUNT DIR I=I OWNER=O MODE=M SIZE=S MTIME=T  
COUNT=X SHOULD BE Y (ADJUST)

The link count for inode I which is a directory, is X but should be Y. The owner 
O, mode M, size S, and modify time T of directory inode I are printed. See 
Section 4.2.2.
Possible responses to the ADJUST prompt are:

YES replace the link count of directory inode I with Y.



Version 1.0

IRIS WORKSTATION GUIDE    65 Appendix B:

NO ignore this error condition.

LINK COUNT F I=I OWNER=O MODE=M SIZE=S MTIME=T  
COUNT=X SHOULD BE Y (ADJUST)

The link count for F inode I is X but should be Y. The name F, owner O,  
mode M, size S, and modify time T are printed. See Section 4.2.2.
Possible responses to the ADJUST prompt are:

YES replace the link count of inode I with Y. 
NO ignore this error condition.

UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME= T (CLEAR)

Inode I which is a file, was not connected to a directory entry when the file 
system was traversed. The owner O, mode M, size S, and modify time T of 
inode I are printed. See Section 4.2.2 and 4.4.
Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

UNREF DIR I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)

Inode I which is a directory, was not connected to a directory entry when the 
file system was traversed. The owner O, mode M, size S, and modify time T  
of inode I are printed. See Section 4.2.2 and 4.4.
Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. 
NO ignore this error condition.

BAD/DUP FILE I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with 
file inode I. The owner O, mode M, size S, and modify time T of inode I are 
printed. See Section 4.2.3 and 4.2.4.
Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. 
NO ignore this error condition.



66    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

BAD/DUP DIR I=I OWNER=O MODE=M SIZE=S MTIME= T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with 
directory inode I. The owner O, mode M, size S, and modify time T of inode I 
are printed. See Section 4.2.3 and 4.2.4.
Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the super-block 
of the file system. See Section 4.1.4.
Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.
NO ignore this error condition.

Phase 5: Check Free List
This phase concerns itself with the free-block list. This section lists error 
conditions resulting from bad blocks in the free-block list, bad free-blocks  
count, duplicate blocks in the free-block list, unused blocks from the file system 
not in the free-block list, and the total free-block count incorrect.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks 
with a value less than the first data block in the file system or greater than the 
last block in the file system. See Section 4.1.2 and 4.2.4.
Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution 
of fsck. This error condition will alwavs invoke the BAD BLKS IN  
FREE LIST error condition in Phase 5.

NO terminate the program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks 
claimed by inodes or earlier parts of the free-block list. See Section 4.1.2 and 
4.2.3.



Version 1.0

IRIS WORKSTATION GUIDE    67 Appendix B:

Possible responses to the CONTINUE prompt are:
YES ignore the rest of the free-block list and continue the execution of  

fsck. This error condition will always invoke the DUP BLKS IN  
FREE LIST error condition in Phase 5.

NO terminate the program.

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater than 50 or less than zero. 
This error condition will always invoke the BAD FREE LIST condition in Phase 
5. See Section 4.1.2.

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower than the first data 
block in the file system or greater than the last block in the file system. This 
error condition will always invoke the BAD FREE LIST condition in Phase 5. 
See Section 4.1.2 and 4.2.4.

X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block were found in 
the free-block list. This error condition will always invoke the BAD FREE LIST 
condition in Phase 5. See Section.4.1.2 and 4.2.3.

X BLK(S) MISSING

X blocks unused by the file system were not found in the free-block list. This 
error condition will always invoke the BAD FREE LIST condition in Phase 5. 
See Section 4.1.2.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the super-block of 
the file system. See Section 4.1.3.
Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count. 
NO ignore this error condition.



68    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:

BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate blocks in the  
free-block list, or blocks missing from the file system. See Section 4.1.2, 4.2.3, 
and 4.2.4.
Possible responses to the SALVAGE prompt are:

YES replace the actual free-block list with a new free-block list. The new  
free-block list will be ordered to reduce time spent by the disk 
waiting for the disk to rotate into position.

NO ignore this error condition.

Phase 6: Salvage Free List
This phase concerns itself with the free-block list reconstruction. This section 
lists error conditions resulting from the blocks-to-skip and blocks-per-cylinder 
values.

Default free-block list spacing assumed

This is an advisory message indicating the blocks-to-skip is greater than the  
blocks-per-cylinder, the blocks-to-skip is less than one, the blocks-per-cylinder  
is less than one, or the blocks-per-cylinder is greater than 500. The default 
yalues of 9 blocks-to-skip and 400 blocks-per-cylinder are used. See the  
fsck(1M) manual entry for further detail.

Cleanup
Once a file system has been checked, a few cleanup functions are performed. 
This section lists advisory messages about the file system and modify status of 
the file system.

X files Y blocks Z free

This is an advisory message indicating that the file system checked contained X 
files using Y blocks leaving Z blocks free in the file system.

***** REBOOTING UNIX . . . *****

This is an advisory message indicating that a mounted file system or the root 
file system has been modified by fsck. UNIX will be rebooted automatically.



Version 1.0

IRIS WORKSTATION GUIDE    69 Appendix B:

***** FILE SYSTEM WAS MODIFIED *****

This is an advisory message indicating that the current file system was  
modified by fsck. If this file system is mounted or is the current root file  
system, fsck should be halted and UNIX rebooted. If UNIX is not rebooted 
immediately, the work done by fsck may be undone by the in-core copies of 
tables UNIX keeps.

B.6 References
[1] Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System, 

The Bell System Technical Journal 57, 6 (July-August 1978, Part 2), pp. 
1905-29.

[2] Dolotta, T. A., and Olsson, S. B. eds., UNIX User’s Manual, Edition  
1.1 (January 1978).

[3] Thompson, K., UNIX Implementation, The Bell System Technical Journal 
57, 6 (July-August 1978, Part 2), pp. 1931-46.



70    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix B:



Appendix C: Diagnostics

I. HARDWARE DIAGNOSTICS
A. default_intr. An interrupt has occurred for which there is no  

device driver.
B. I/O err in swap. While swapping a user process, a hard error  

occurred on the swap disk.
C. parity error. A parity error occurred somewhere in the onboard 

memory. A message will precede this diagnostic to indicate where 
in physical memory the error occurred. Unfortunately, UNIX can’t 
diagnose the memory failure. If the error persists, the memory 
diagnostic should be used.

D. iinit. The system was not able to read the root file system. This  
could either be a hardware or a software problem, but it most likely 
means that either the disk drive is damaged or the root file system 
on the disk drive is damaged.

E. The following diagnostics indicate that something is wrong with the 
disk controller:

a. dsd: couldn’t start!
b. qicstart: couldn’t start!
c. dsd: no status posted
d. dsdstatus
e. dsdstart unknown type

II. SYSTEM SOFTWARE DIAGNOSTICS
A. getmajor. While attempting to boot, the system configured a disk 

drive which had no entry in the bdevsw[] array (the array of block 
devices). The system was incorrectly configured.

B. out of memory during boot. The system is too large to run in the 
given memory.

C. The following diagnostics indicate that something is wrong with the 
buffer cache / inode tables:

Version 1.0



72    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix C:

a. devtab
b. bflush: bad free list
c. no fs
d. no imt
e. dsdattach: geteblk() failed

D. swap error: swapping beyond process. Something is wrong with  
the user memory management code.

E. timeout table overflow. The system attempted to put a time driven 
event on a queue, and there was no room in the queue. If this  
happens often, then the system has been incorrectly configured.

F. no procs. The system decided that it had a process slot available  
for a fork, and then redecided that it didn’t. If this happens often, 
then the system has been incorrectly configured.

G. init died!. The init process was killed. If done with a user program 
or the Shell kill command, then nothing is wrong. If this happens 
during the boot procedure, then something is wrong with the root 
file system.

H. out of swap space. Too many processes for the given swap space.  
Try running a more modest number of processes.

I. The following diagnostics indicate problems with the kernel:
a. trap
b. kernel address error
c. kernel bus error

J. The following diagnostics indicate problems with the Ethernet 
hardware or software:

a. nxpresent: cleared
b. xns_ttstart

K. panic recursion. The system got a panic message while trying to 
inform the console of a panic.

L. The following diagnostics indicate problems with the graphics 
hardware or software:

a. grkillproc: wacko graphics 
b. grkillproc: SIGKILL failed 
c. kernel gr reset failed
d. kernel gr error



Version 1.0

IRIS WORKSTATION GUIDE    73 Appendix C:

e. random gr error 
f. wnrepaint



74    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix C:



Appendix D: The C/FORTRAN Interface

The FORTRAN 77 compiler on the IRIS Workstation uses a procedure calling 
convention that is incompatible with C. To intermix C and FORTRAN  
routines, special interface modules (called wrappers) are used to transform calling 
sequences. The first section of this appendix outlines the differences between 
C and FORTRAN. The second section describes a set of programs and shell 
scripts that automate the generation of wrappers. The third section defines the 
interface between FORTRAN and the IRIS Graphics Library. The fourth section 
contains advice about FORTRAN types. The last section has a brief description 
of Hollerith for FORTRAN 77.

D.1 Noteworthy Differences Between C and FORTRAN 77
There are significant differences between the type conventions of C and 
FORTRAN 77.

•	As	described	in	the	IRIS User’s Guide, arrays in C are stored in row-
major order (last subscript varies fastest) while FORTRAN stores 
them in column-major order.

•	Arrays	 in	 C	 are	 zero-based.	 Arrays	 in	 FORTRAN	 can	 have	 their	
subscript base specified, but default to one.

•	When	an	integer	expression	is	passed	as	a	parameter	in	C,	the	result	
is always a 32-bit object. This is the case with the FORTRAN 77 
compiler unless the $INT2 option is used. Using this option, integer 
expressions are evaluated into 16-bit objects. Use of the $INT2  
option is not recommended when interfacing FORTRAN to C.

•	A	string	(character	variable)	in	FORTRAN	77	has	an	associated	static	 
length that accompanies it when it is passed as a parameter. Strings  
in C are null-terminated to determine the length. There are two 
syntax constructs used during wrapper generation that specify how 
to pass strings from FORTRAN to C. The first specifies that the 
FORTRAN string being passed should be copied and null-terminated. 
The second specifies that the wrapper should pass the address of  
the (non-null-terminated) FORTRAN string.

•	Routine	names	in	C	are	preceded	by	an	underscore	and	are	of	mixed	
case and arbitrary length. Routine names in FORTRAN are not 

Version 1.0



76    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix D:

 preceded by an underscore, are entirely in upper case, and are a 
maximum of six characters. FORTRAN does not allow underscores in  
identifiers! This is important to note when porting C routines  
written to interface to VAX FORTRAN 77 programs. The VAX 
FORTRAN 77 compiler appends an underscore to external function 
names it generates to distinguish them from C function entry points. 
C routines that expect to be called from the FORTRAN 77 compiler 
on the VAX will often have this underscore affixed.

In addition to the problem discussed above with passing strings, there are 
differences between the parameter passing conventions of C and FORTRAN 77. 
These include:

•	a	different	order	of	placing	parameters	on	the	stack,
•	a	different	set	of	registers	saved	across	calls,
•	whether	caller or callee removes the parameters from the stack,
•	 the	 FORTRAN	 77	 limitation	 to	 passing	 parameters	 by reference 

(address). Parameters in C may be passed either by value or by 
address.

For the applications programmer, this last difference is the most important. 
FORTRAN does not have value parameters. Any time a FORTRAN subroutine 
alters one of its parameters, the alteration affects the caller. This may not be  
the case when the interface has been modified by a wrapper. Both caller and 
callee must agree on that data objects are common.
Wrappers help alleviate these system-level differences by relying on the more 
flexible type specifications available in C. By using procedure headers coded in 
C, greater semantic meaning can be specified than is possible with FORTRAN 
types.

D.2 Generating C/FORTRAN Interface Routines
Assembly-language wrapper files are generated by giving a copy of a C  
function to one of the programs mkf2c or mkc2f. Both programs use C type 
declarations for the parameters to generate the correct assembly-language 
interface. To generate a FORTRAN entry point for an existing C function, the 
function is simply passed through mkf2c. To generate a C entry point for an 
existing FORTRAN routine, the FORTRAN routine declaration and parameter 
list must be coded as if it were a C function and passed through mkc2f.
Each function given to mkf2c or mkc2f must have the standard C function syntax. 
The function body must exist but may be empty. Function names will be 
transformed as necessary in the output.
The simplest case of a function used as input to mkf2c or mkc2f would be



Version 1.0

IRIS WORKSTATION GUIDE    77 Appendix D:

Func() 
{}

Here, the function Func has no parameters. If mkf2c is used to produce a 
FORTRAN-to-C wrapper, the FORTRAN entry would be FUNC. FUNC would 
transform the stack for C and call the C routine Func(). If mkc2f is used to 
produce a C-to-FORTRAN wrapper, the entry would be _Func, that would call 
the FORTRAN entry FUNC.

simplefunc(a)
int a;
{}

In this example, the function simplefunc has one argument, a, that is of type int. 
mkf2c would produce a FORTRAN entry SIMPLE for this function, that would 
call the C routine simplefunc(). mkc2f would produce a C entry _simplefunc, that 
would call the FORTRAN routine SIMPLE().

NOTE: Underscores are valid characters in C function  
names. This is not true in FORTRAN. The wrapper 
generators mkc2f and mkf2c will remove such characters  
from the FORTRAN entry points they generate, with a 
warning message. The use of underscores in function  
names is not advised when generating FORTRAN entry 
points.

FORTRAN Character Variables as Parameters
The user may specify the length of a character variable passed as a parameter 
to FORTRAN either at compilation or at run time. This is determined by the 
declaration of the parameter in the FORTRAN routine. If the declaration 
contains a length, as in

character*10 string

the passed length must match the declaration1. If, however, the declaration is
character*(*) string

the passed length will be used when performing operations on the variable 
inside the routine. This length can be retrieved by use of the FORTRAN  
intrinsic function LEN. Substring operations may cause FORTRAN run time 
errors if they do not check this passed length.

1.	 It	 is	 defined	 as	 an	 error	 condition	 by	 the	ANSI	 standard	 if	 the	 passed	 length	 and	 the	 
declared length of a character variable parameter do not agree. The supported FORTRAN  
compiler will resolve this condition by ignoring the passed length.



78    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix D:

Arrays of character variables are treated by FORTRAN as simple byte-arrays, 
with no alignment of elements. If the array sarray() is declared as

character*(*) sarray()

the length of the individual elements will be determined by the length passed  
at run time. This length is important for doing indexing into the array.
mkf2c and mkc2f have special constructs for dealing with the lengths of FORTRAN 
character variables.

Parameter Reductions
mkf2c and mkc2f reduce each parameter to one of the following simple objects:

•	32-bit value. When C is calling FORTRAN, mkc2f will pass  
FORTRAN the address of the data value on the stack. When  
FORTRAN is calling C, mkf2c will use the address on the stack to 
retrieve a 32-bit data value. This data value is passed to C. The 
C types int, float, double and long are reduced to 32-bit values. Any 
parameter whose type is unspecified is assumed to be int.

•	64-bit value. The quantity is loaded indirectly from the address on  
the stack and passed when calling C from FORTRAN. The address 
of the value on the stack is passed when calling FORTRAN from C. 
Only the C type long float is reduced to a 64-bit data value.

•	16-bit value. When calling FORTRAN from C, the address of 
the value found on the stack is passed. When calling C from  
FORTRAN, a 16-bit value is loaded using the address on the stack. 
The value is either extended or masked depending on whether its 
type in the function parameter list is specified as signed or unsigned, 
and passed to C. The C type short is reduced to a 16-bit value.

•	8-bit data. The char type in C corresponds to the character*1 type in 
FORTRAN 77, and the parameter is altered accordingly. There is 
no way to have a small integer value in FORTRAN 77 (i.e. integer*1) 
passed as a value to C. A pointer to the value can be passed by 
declaring the parameter as int *.

•	character string. When calling C from FORTRAN, a COPY is made of  
the string, is null-terminated, and passed as a character pointer to  
C. Any modifications that C makes to the string will not affect 
FORTRAN. When calling FORTRAN from C, the length of the  
string. (as determined by strlen) and its address is passed to 
FORTRAN. Any modifications that FORTRAN makes to the string 
will affect C. The C type char * is reduced to this type.

•	character array. When calling C from FORTRAN, the address of the 
character variable is passed. This character array can be modified 
by C. It is not guaranteed to be null-terminated. The length of the



Version 1.0

IRIS WORKSTATION GUIDE    79 Appendix D:

 FORTRAN character variable is treated specially (as discussed in 
the next section). When calling FORTRAN from C, the address of 
the string and a length is passed. The length defaults to one. In this 
case, the FORTRAN declaration for the parameter carray[] will be 
effectively

character*1 carray()

 and the FORTRAN routine must access characters of the array 
individually. If an array length is given in the parameter list, mkc2f 
will pass this length to FORTRAN. If the parameter list entry for 
carray above is

char carray[20];

 FORTRAN will treat the passed character array as if its individual 
elements were of the FORTRAN type

character*20

 The C type char array is treated in this fashion.
•	pointer. The value found on the stack is treated as a pointer, and is 

passed without alteration. Any array or pointer that is not of char 
type, any multiply indirect object, or any indirect array is assumed 
to be of pointer type. If the type of a parameter is specified, but is 
not one of the standard C types, mkf2c and mkc2f assume it to be a 
pointer.

test(i,s,c,ptr1,ptr2,ar1,u,f,d,d1,str1,str2,str3)
short s;
unsigned char c;
int *ptr1;
char *ptr2[];
short ar1[];
sometype u;
float f;
long float d,*d1;
char *str1;
char str2[],str3[30];
{
        /* The C function body may go here. Nothing
           except the opening and closing braces are necessary.
         */
}

The above would be an example of a C specification for a function. If this were 
a function passed to mkf2c, the parameters would be transformed as follows:

•	ptrl, ptr2, arl, d1 and u would be passed as simple pointers. mkf2c  
will complain about not understanding the type sometype, but will 
use its default rule of reducing unknown types to pointers.

•	s, f, d, and c would be passed as values of length 16, 32, 64, and 8,  
respectively. Since the type of i is not specified, it is assumed to be 



80    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix D:

 int and will also be passed as a 32-bit value. Storing into any of these 
parameters will not have any effect on the original FORTRAN data.

•	A	 copy	 of	 the	 character	 string	 whose	 address	 is	 str1 would be 
passed. C may store into this freely without affecting FORTRAN. 
The character string will be null-terminated.

•	A	pointer	to	each	of	the	character	arrays	str2 and str3 will be passed 
to C. These character arrays will not be null-terminated, and storing 
into them will affect the original FORTRAN data.

If this was a function passed to mkc2f, calling FORTRAN from C would cause 
all of the parameters to be transformed to reference parameters but storing into 
the parameters s, c, f, or d would not affect the original C variables. FORTRAN 
would be passed one as the length of elements of the array str2, and thirty as the 
length of elements of the array str3.

Lengths of FORTRAN Character Arrays
When FORTRAN is calling C, a character string that is specified as char * in the  
C parameter list is copied and null-terminated. C may thus determine the  
length of the string by use of the standard C function strlen. If a character  
variable is specified as a character array in the C parameter list, it may be 
impossible for C to determine its length, as it is not null-terminated. When the 
call occurs, the wrapper code receives this length from FORTRAN. For those C 
functions that need this information, the wrapper will pass it by extending the 
C parameter list. For example, if the C function header is specified as:

func1(str1,i,cptr,j,str2)
char str1[],*cptr,str2[];
int i,j;
{}

mkf2c will pass a total of seven parameters to C. The sixth parameter will be the  
length of the FORTRAN character variable corresponding to str1, and the 
seventh will be the length str2. The C function func1() must index off of the 
stack to retrieve these hidden parameters. In the case above, the length of strl as 
passed by FORTRAN could be copied into str1_len by

char **s;
int str1_1en;
s = &(char *)str2; str1_1en = (int)(*(s+1))

Similarly, the length of the array str2 can be accessed by
(int)(*(s+2))



Version 1.0

IRIS WORKSTATION GUIDE    81 Appendix D:

Invoking mkf2c and mkc2f
mkc2f and mkf2c are invoked by a command line as

mkc2f <input file> <output file>

The output file contains assembly language routines that must be assembled 
and linked with the FORTRAN and C routines.

Input for mkf2c and mkc2f
mkf2c and mkc2f understand common C syntax for function entry points, will 
ignore C style comments, and will pass over function bodies. They cannot 
understand constructs such as typedefs or external function definitions. It is 
necessary to exclude these constructs from the wrapper input. This can be 
accomplished by placing special comments in the code to designate those 
functions for which FORTRAN-to-C wrappers are to be generated. The code is  
then passed through the program extcentry(1). extcentry will place in its output file 
only those portions of its input that are surrounded by the special C comments 
/* CENTRY */ and /* ENDCENTRY */.
extcentry is invoked simply by typing

extcentry <input file> <output file>

The following C file foo.c contains the function foo that is to be made  
FORTRAN-callable.

typedef unsigned short grunt[4];
struct {
 long l,l1;
 char *str;
} bar;

main ()
{
 int kappa=7;

 foo(kappa,bar,str);

}

/* CENTRY */

foo (integer,cstring)
int integer;
char *cstring;
{
 if (integer == 1) printf(“%s”,cstring); 
}

/* ENDCENTRY */



82    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix D:

To generate the assembly-language wrapper foowrp.s from the above file foo.c, 
the following set of commands should be used:

extcentry foo.c foowrp.fc
mkf2c foowrp.fc foowrp.s

C-to-FORTRAN wrappers must be generated by coding a dummy C function 
to describe the interface. This dummy function is then run through mkc2f to 
generate the assembly language wrapper.
The following FORTRAN subroutine is to be made C-callable:

subroutine doit(i,j,c,str,a)
integer i,j
character*(*) c
character*(*) str
real a()

....

This is done by coding a dummy C function (doit.c) as follows:
doit(i,j,c,str,a) 
char *str;
char c;
float a[] ;
{}

The command
mkc2f doit.c doitwrp.s 

would then create the assembly-language wrapper. 
Several things should be noted in the example above:

•	C	will	pass	the	character	c to FORTRAN. This character value will be 
transformed to a character*1 by the wrapper. If FORTRAN modifies 
this variable, the C routine will be unaffected. This is not the case 
with the string str.

•	Note	that	the	braces	for	a	function	body	must	be	included	in	the	input	
to mkc2f. mkc2f will ignore anything found between these braces.

Makefile Considerations
It is relatively simple to add automatic control of wrappers to a general makefile.
The makefile below contains the rules necessary for creating an executable from  
the files main.f (a FORTRAN main program), callf.f, and callc.c. In this  
program, main calls a C routine in callc.c, that calls a FORTRAN routine in 
callf.f. The extensions .cf and .fc have been adopted for C-to-call-FORTRAN 
wrappers and FORTRAN-to-call-C wrappers, respectively. As the creation of 
the C-to-call-FORTRAN wrappers cannot be automated, dummy C entries for 
the routines in callf.f have been coded and placed in callf.cf. The FORTRAN-to-



Version 1.0

IRIS WORKSTATION GUIDE    83 Appendix D: 

call-C wrapper callc.fc is automatically created from callc.c when the C source file 
changes. This is caused by the dependency of callc.o on callc.fc. (The programmer is 
responsible for placing the special comments for extcentry(1) in the C source.)

.SUFFIXES :

.SUFFIXES: .o .j .fc .cf .f .c

test: main.j callf.o callf.j callc.o
 cc -o test main.j callf.o callf.j callc.o

callc.o: callc.fc

.c.fc:
 extcentry $*.c $*.fc

.cf.o:
 mkc2f $< $*.s
 as -o $*.o $*.s

.fc.o:
 cc $(CFLAGS) -c $*.c
 mkf2c $< $*.s
 as -o $*.wo $*.s
 ld -r $*.o $*.wo
 mv a.out $*.o

.f.j:
 f77 -c *<

clean:
 rm -f *.[osj] test *.fc *.wo

Using a makefile like this one, additional modules may be added to the  
executable by one of the following steps:

1. If the file is a native C file whose routines are only to be called by  
other C routines, simply add the .o to the specification of the final 
make target.

2. If the file is a native FORTRAN file whose routines are only to be  
called by other FORTRAN routines, simply add the .j to the 
specification of the final make target.

3. If the file is a FORTRAN file containing routines that must be called 
from C, dummy entries for those routines must be hand-coded in C  
into a file with the extension .cf. In this case, a .o and a .j  
specification must be added to the make target. (Thus, if the file 
is newf.f, the entries must be coded and placed in newf.cf, and both  
newf.o and newf.j must be added to lines four and five of the makefile.)



84    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix D:

4. If the file is a C file containing routines to be called from FORTRAN, 
the comments for extcentry(1) must be placed in the C source, and  
the .o file placed in the target list. In addition, the dependency of  
the .o file on the .fc file must be placed in the makefile in the same 
way as callf.o depends on callf.fc in the example above (line seven).

The programs mkc2f, mkf2c, and extcentry are found in the directory /usr/bin on 
the IRIS Workstation.

D.3 Interfacing to the IRIS Graphics Library
The IRIS Graphics Library is written in C. As described in the previous  
sections, its routines cannot be called directly from FORTRAN. The wrappers  
for these routines have been written, and are contained in the library  
/usr/lib/libfgl.a. This library is searched automatically by f77(1) if the -Zg switch 
(discussed below) is used.
In addition, the FORTRAN equivalent of the standard graphics include files  
have been written. The first, /usr/lib/include/fgl.h is the equivalent of the C include  
file gl.h. It contains the types and declarations of the graphics routines for 
FORTRAN, and the declaration of a common block named GL containing the 
most commonly used constants in the IRIS Graphics Library.

NOTE: This include file must be included by each  
FORTRAN routine that must use the IRIS Graphics Library.

The second include file, /usr/include/fdevice.h, is the equivalent of device.h for  
FORTRAN routines. It contains the definition of a common block named 
DEVICE, that contains such constants as colors, mouse buttons, etc. It must be  
included by each FORTRAN routine that needs these constants. As an  
example, a FORTRAN routine that is to use the IRIS Graphics Library would 
contain the line

$INCLUDE /usr/include/fgl.h

in its declaration section. The ‘$’ of $INCLUDE is in column 1.
The FORTRAN 77 compiler on the IRIS Workstation supports the special  
switch -Zg, that should be used whenever an executable file using graphics is 
created. This switch causes the program to be loaded with the IRIS Graphics 
Library -lgl, the graphics FORTRAN interface library -lfgl, and the math library, 
-lm. Additionally, the program is loaded with the essential FORTRAN binary  
/usr/bin/fgldat.j, which is a block data routine (named GLDATA) that initializes 
the common blocks GL and DEVICE. (The -Zg switch also does the appropriate 
things for C programs that use the IRIS Graphics Library. In this case, only the 
C version of the IRIS Graphics Library (libgl.a) and the math library (libm.a) are 
searched.)
FORTRAN binary files (referred to as files in the FORTRAN Reference Manual), 
are named with .j suffixes on the IRIS Workstation. If you expect to make these files and



Version 1.0

IRIS WORKSTATION GUIDE    85 Appendix D:

keep them around (rather than compiling source directly to an executable each time), you  
must add rules to your makefile’s to treat them correctly. The makefile example in Section D.2 
contains the correct rules. Note also that the .j suffix must be included on the” .SUFFIXES:” 
line.

D.4 Warnings on Using FORTRAN Types
Calls to the IRIS Graphics Library often use small numbers as parameters (i.e., 
one- or two-byte integers). When calling the IRIS Graphics Library from C,  
such parameters are converted automatically when the call is made. This is not  
true in FORTRAN, as the data is passed as a pointer (reference parameter),  
rather than as a value. Thus, it is imperative that the caller specify the correct 
type for each parameter in each call to a graphics routine from FORTRAN. 
Commonly used constants have been placed in the common blocks GL and 
DEVICE in the include files described previously, and initialized correctly (in the  
block data routine GLDATA in the file fgldat.j) for convenience. Care must be 
exercised when using user-defined variables as parameters to graphics routines, 
so that the parameter types are correct.
A particularly troublesome case is the use of numeric constants as parameters. 
For example, it is tempting to call a routine such as curveit (CURVEI in FORTRAN) 
with a numeric constant:

call curvei (4)

This will not produce the desired result. The definition for CURVEI in  
FORTRAN is

subroutine curvei(count)
integer*2 count

The numeric constant ’4’ will be passed by FORTRAN as an integer*4 , and the 
IRIS Graphics Library will receive the constant zero (0), not 4. In cases like this, 
the user must place the constant 4 in a variable of type integer*2. The following 
code sequence gives the desired result:

integer*2 s4
data s4/4/
...
call curvei (s4)
...

One further confusing situation occurs when using the type logical. The IRIS 
Graphics Library expects this type to occupy a single byte of storage, and when 
it returns such a value, only the least significant byte of the result is valid. The  
FORTRAN compiler expects a function of type logical to return a four-byte 
quantity. The definitions of graphics routines of type logical have been altered  
in the include file /usr/include/fgl.h to be of type logical*1 to alleviate this  
problem. So long as this include file is used, the problem should not occur.



86    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix D:

NOTE: It is tempting to use the PARAMETER statement 
in FORTRAN to define constants for passing to the IRIS  
Graphics Library. The user is forewarned that any 
constants defined in a FORTRAN PARAMETER statement 
are of type integer*4. Specifically declaring these  
constants to be of another type has no effect!

This set of problems changes if the $INT2 option to the FORTRAN compiler is  
used. Refer to this option in the FORTRAN Reference manual for more 
information.

D.5 FORTRAN 77 Revision Notes
In order to ease the task of porting FORTRAN 66 programs to FORTRAN 77, 
Hollerith is now supported in the following contexts.

•	Hollerith	 in	 DATA	 Statement	 -	 Values	 may	 now	 be	 expressed	 in	
Hollerith notation (nHxxxx). Each Hollerith value initializes a single  
data item. If the number of bytes required to fill the data item  
exceeds the number of characters in the Hollerith data value, the 
lengths are matched by padding the Hollerith value with blanks on 
the right. If the Hollerith value is longer that the required number of 
bytes, trailing bytes of the value are discarded. If non-character data 
items are initialized using Hollerith notation, the $CHAREQU option 
must be set.

•	Hollerith	in	SUBROUTINE and FUNCTION calls - Actual arguments 
may be expressed in Hollerith for user subroutine and function calls. 
The address of a “read only” temporary that is initialized to an array 
of characters as specified in the actual argument is passed to the 
subprogram. Hollerith actual parameters are considered numeric or 
logical, corresponding to formal parameters typed INTEGER, REAL, 
DOUBLE PRECISION, COMPLEX, or LOGICAL (any length, array 
or non-array). Formal parameters that are of a CHARACTER type 
should not be used with actual parameters expressed in Hollerith. 
The $CHAREQU option must be set in order to use Hollerith in  
actual argument lists.

•	Hollerith	 in	 Assignment	 Statements	 -	 Assignment	 statements	 in	
which the expression on the right hand side is a Hollerith value are 
accepted. If the type of the left hand side is CHARACTER, the Hollerith 
notation is considered the same as a quoted character string. In all 
other cases, the $CHAREQU option must be set and assignment uses 
the same conventions as data initialization (as described above).

•	Using	 arrays	 as	FORMAT specifiers - The system accepts an array 
name as a format specifier. Thus, the following example



Version 1.0

IRIS WORKSTATION GUIDE    87 Appendix D:

$CHAREQU
        INTEGER IA (4)
        DATA IA/4H(2F1, 4H2.4,, 4H3X, I, 4H8)  / 
        WRITE(*,IA) iolist

 is equivalent to
WRITE(*,’(2F12.4,3X,I8)’) iolist

 This corresponds to conventions commonly used in FORTRAN 66 
dialects.

NOTE: The use of Hollerith strings in new 
programs is strongly discouraged since it is not 
part of the FORTRAN 77 standard.



88    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix D:



Appendix E: IRIS Floating Point

E.1 Introduction
This paper outlines the implementation of floating point in the C language on  
the IRIS Workstation. Floating point formats, precision conventions, exception  
handling, non-standard, language semantics, and internal compiler 
enhancements are discussed.

E.2 Floating Point Formats
The IRIS Workstation uses the IEEE floating point format. The IRIS 
implementation offers single- and double-precision floating point in the basic 
format as outlined in the draft standard.1

The IEEE standard is considerably more complex and more precise than most 
other floating point standards because of the way the standard deals with 
boundary conditions:

•	In	most	 floating	 point	 formats,	when	 the	 exponent	 of	 the	 number	
decreases to zero, the number itself becomes zero or a trap  
specifying underflow is signaled. In the IEEE format, the number 
remains valid and is termed denormalized. Denormalized number 
arithmetic proceeds by expanding the exponent and normalizing the  
number. Underflow is signaled only when the result of the  
operation cannot be represented even by denormalizing.

•	In	most	 floating	 point	 formats,	when	 the	 exponent	 of	 the	 number	
increases past its maximum, a fairly simple trap occurs. In the IEEE  
standard, however. a number with its exponent equal to the maximum 
may either be (signed) infinity (if the mantissa is zero) or a special 
encoding called not-a-number (NaN). The standard provides for several 
user-selectable modes of operation to deal with these numbers.

1. “A Proposed Standard for Binary Floating Point Arithmetic”, Computer, March. 1981.

Version 1.0



90    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix E:

In addition, the standard specifies that the user should have control over how 
rounding is to occur. The user may opt to round toward nearest, toward zero, 
toward	+∞	or	toward	-∞.
Because of the user-control provided, the IEEE standard is quite difficult to  
implement and can suffer from unnecessary inefficiency due to the large 
number of special cases. The IRIS implementation provides user-control only 
over exception conditions. The other modes specified as user-selectable are 
implemented as follows:

•	Affine	 mapping	 for	 infinities	 is	 used.	 In	 this	 mode,	 -∞	 <	 any	 
number	 <	 +∞.	 (The	 default	 specified	 in	 the	 standard	 is	 projective, 
in which infinities compare equal regardless of sign, and do not 
compare to other numbers.)

•	Normalizing mode is used for arithmetic. In this mode,  
denormalized numbers are normalized (in extended precision) before  
operations are performed on them. The default specified in the 
IEEE standard is warning mode, in which NaN is generated when a  
denormalized number is used in an arithmetic operation. Warning 
mode is not implemented.

•	Rounding to nearest is implemented using at least seven guard bits.  
No sticky bit is used. Directed rounding modes are not 
implemented.

The implementation of exception handling is treated in Section E.3.

E.3 The C Floating Point Implementation

IRIS Floating Point Types
The C language specification2 includes two types for floating point - float 
(single-precision floating point) and double. It specifies that both of these types 
must be implemented, although they may be synonymous. In some floating 
point formats (notably IEEE), conversion between these types is simple, 
involving only the addition or removal of mantissa bits. Such conversion can 
easily be done in software with in-line code. In the IEEE floating point format, 
however, conversion between these types is expensive, as their formats differ 
considerably.
Numbers of type float in C are perhaps best thought of as abbreviated forms of 
the true floating point format—double. This is seen in the following two rules:

2. Kernighan, B. W. and Ritchie. D.M. The C Programming Language, Prentice-Hall, 1978.



Version 1.0

IRIS WORKSTATION GUIDE    91 Appendix E:

•	When	 a	 float	 is	 passed	 as	 an	 argument	 to	 a	 function,	 it	 must	 be	
extended to double.

•	An	 arithmetic	 operation	 performed	 on	 float’s is done by first 
extending the operands to double’s. After the operation is  
performed, the result is truncated to float.

The implementation of floating point in C on the IRIS Workstation defines the 
C types double and float to be the same precision - that of single precision. This 
decision was made on the following basis:

•	Many	of	the	operations	performed	on	the	IRIS	Workstation	provide	
results destined for the Geometry Engine pipeline. Since the  
precision of Geometry Engine format floating point is somewhat less 
than that of IEEE floating point single precision, it is inefficient to 
perform all floating point operations in double precision.

•	There	 are	 many	 calculations	 in	 which	 double	 precision	 is	 not	
needed.

•	Since	conversion	between	single	and	double	precision	 is	expensive	
in IEEE format, passing float’s between routines is inefficient if they 
must be extended to double precision. This problem is amplified 
when the receiving routine does not want the added precision and 
converts the incoming value back to float.

All floating point numbers that are declared as either double or float will be 
single precision on the IRIS Workstation. All operations on them will also be 
single precision. This includes most calls to the standard set of math routines -  
sin, cos, sqrt, etc. See Section 3 of the UNIX Programmer’s Manual for an exact list.
The special type combination long float can be used to specify double precision 
where it is needed. This implementation differs from the C standard since the 
types long float and double are not synonymous.
NOTE: to write portable code with double-precision floating point, use the  
type long float instead of double.
This implementation has several nice properties:

•	Current	C	programs	that	use	float’s and double’s will compile without 
alteration, although double will be single precision.

•	C	 programs	 will	 execute	 correctly	 under	 other	 implementations,	
since long float is usually synonymous with double, so long as double’s 
and long float’s are not intermixed.

•	Single-precision	 math	 routines	 (exp, sin, etc.) can now be used.  
These offer significant speed improvements over the double-
precision versions for those applications that do not require the extra 
precision.



92    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix E:

•	When	parameters	are	passed	or	expressions	are	calculated,	float’s do 
not require a conversion. It is the user’s responsibility to guarantee 
that the caller and callee agree when intermixing float (or double) and 
long float.

Long floats should be used only in instances needing the extra precision.
To aid in the transition from double to long float, the verbose switch (-v) may be  
used with cc. When this switch is used, the C compiler gives a diagnostic 
message when it sees the type double.

Function Return Values
Functions in the C language specification always return their declared type. 
This is the case in the current implementation. The user should exercise  
caution when using functions returning floating point values. When IEEE format 
is used, mismatching float and long float between external and actual declarations 
will cause an incorrect result. This mismatch may have gone undetected if a 
floating point format was previously used in which the two precisions differed 
only in the size of the mantissa (as in IEEE format).

Standard C Library Floating Point Routines
Additions have been provided to some standard C library routines to support 
this implementation:

•	The	usual	formats,	%f, %g, and %e, assume single-precision floating 
point. The additional formats %lf, %lg, and %le have been added  
for use with long float quantities.

•	The	usual	set	of	math	routines	expect	 (and	return)	single-precision	
floating point quantities. There is an additional set of math routines 
that expects double-precision floating point quantities. In most 
instances, these routines are named by prefixing the name of the  
standard routine with _l. Thus, _lsin is the double-precision 
counterpart of sin, etc. The user is urged to include the definitions 
file math.h in any C program that must use these routines.

Floating Point Exception Handling
With respect to the draft standard, this implementation has the following 
characteristics:

•	All	not-a-numbers	are	trapping not-a-numbers.
•	All	 exceptions	 as	 outlined	 in	 section	 8	 of	 the	 draft	 standard	 are	

implemented for single-precision floating point numbers. None of 
these exceptions are currently implemented for double-precision 
floating point numbers.



Version 1.0

IRIS WORKSTATION GUIDE    93 Appendix E:

•	A	 set	 of	 facilities	 is	 outlined	 below	 which	 provide	 the	 user	 with	
control over floating point exception handling.

•	An	exception	is	triggered	in	either	precision	if	an	attempt	is	made	to	
print a not-a-number or infinity.

•	The	default	handling	of	all	floating	point	exceptions	is	to	abort	with	
a core dump.

User control over floating point exceptions is provided by the C library 
routine fpsigset(), and the global exception data structure _fperror. This structure  
contains a floating point value and information about the circumstances 
surrounding the exception. When a floating point exception is triggered, the 
following events occur:

•	The	 global	 structure	 is	 filled	 in	 with	 the	 exception	 type,	 the	 
operation in progress, and the precision of the operation. Unless  
the operation is MATH, the data value in _fperror is set to zero.

•	The	standard	UNIX	exception	SIGFPE is raised. This will abort with 
a core dump unless a call has been made to fpsigset() (see below), or 
the user has otherwise arranged for catching the signal.

•	If	the	SIGFPE is caught and the exception is returned from, the data 
value found in _fperror is returned to the routine which raised the 
exception. In the case of floating point compare, this value replaces 
the erroneous operand and the comparison is retried. In all other 
cases (such as add, subtract, etc.), this value will become the result 
of the operation, if one is needed.

User control over floating point exception processing consists of calling fpsigset(). 
fpsigset() takes two arguments. The first is a pointer to a user handler function, 
or NULL if none. The second is a flag word in which individual bits indicate:

•	whether	 an	 error	message	 should	 be	 printed	 on	 stderr	 concerning	
the exception.

•	whether	 the	 process	 should	 abort	 at	 the	 end	 of	 processing	 the	
exception.

•	 if	 the	 process	 is	 to	 abort,	 whether	 or	 not	 it	 should	 make	 a	 core	
dump.

The file /usr/include/fperr.h contains the definitions for the various bits in this flag 
word, as well as the definition for the _fperror structure.
fpsigset() sets a routine to catch the SIGFPE signal. When this routine gains 
control, it will do the following:

•	If	a	user	handler	was	specified	in	the	last	call	to	 fpsigset(), it will be 
called. The user routine may diagnose the error by examining the 
structure _fperror and alter the value for the result, if so desired. If



94    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix E:

 no handler is specified, the data value in _fperror is set to zero except  
in the special case of the operation MATH and the type  
PARTIAL_SLOSS.

•	If	error	message	printing	has	not	been	disabled	by	a	call	to	fpsigset(), an  
error message concerning the exception will be printed on stderr. In  
the case of exceptions arising from the math routines, this error 
message may contain the erroneous operand. In the case of  
PARTIAL_SLOSS, it will contain the possibly erroneous result.

•	Unless	 the	 call	 to	 fpsigset() has opted to continue after exceptions,  
the program will abort, taking the optional (again specified by the 
call to fpsigset()) core dump.

The following example is a call to fpsigset() that will disable error messages, 
continue after exceptions, and not specify a user exception handler. The result 
of any operation triggering an exception will be set to zero.

fpsigset(0,INHIBIT_FPMESSAGE|CONTINUE_AFTER_FPERROR);

To abort on a signal with a message and no core dump, INHIBIT_DUMP could be 
used as the second argument in the above call to fpsigset.
As mentioned previously, the circumstances surrounding a floating point 
exception are recorded in the global data structure _fperror. This structure 
definition is contained in /usr/include/fperr.h:

struct {
        union {
                float fval;
                long float dval;
                } val;
        unsigned char operation,precision;
        unsigned short type;
        } _fperror;

A description of the information contained in these fields is given below. The 
definitions are contained in fperr.h.

•	The	precision field contains SINGLE, DOUBLE, or UNKNOWN as the  
precision of the operation causing the error. This field is used to 
decide whether the dval or fval field must be used to set the result.

•	The	 operation field contains the operation code. This is one of 
ADD, SUB, MUL, DIV, FIX, PRECISION, MOD, CMP, CONVERT, or  
MATH. This operation was in progress when the error occurred:

a. FIX denotes float to integer conversion. The source precision is 
given in the precision field.

b. PRECISION denotes a precision change. The source precision is 
given in the precision field,



Version 1.0

IRIS WORKSTATION GUIDE    95 Appendix E:

c. CONVERT denotes an interpretation of a floating point 
number was in progress. This occurs when a number is 
being printed, when an ascii string is being interpreted 
as a floating point number (using atof or _latof), or when a 
floating point number is being assembled or disassembled 
(ldexp, _lldexp, frexp, _lfrexp).

d. MATH indicates that the error originated in the math  
library. The global _mathfunc_id is set to indicate the  
routine causing the error.3 In this case, the data value of  
_fperror is set to the argument that caused the problem  
unless the type of the exception _fperror.type) is  
PARTIAL_SLOSS. In this case, a result has been  
calculated, but has probably suffered from a partial loss  
of significance. This result is left in the _fperror structure  
and will eventually become the result of the operation 
unless altered.

•	The	 type field indicates the exact nature of the error. The following 
exception types are listed in the draft standard. Type codes with 
alphanumeric suffixes correspond to the exception number provided 
in that document.

a. INVALID_OP_A. An operand was a NaN, and no other 
exception was raised.

b. INVALID_OP_B2. Magnitude subtraction of infinities 
(+∞	+	-∞).

c. INVALID_OP_C.	Multiplication	0	×	∞.
d. Division. One of:

1. INVALID_OP_D1. (0/0).
2. INVALID_OP_D2.	(∞	/	∞).

e. Taking a remainder. Two errors can occur during x REM y: 
a. INVALID_OP_E1. y is zero.
b. INVALID_OP_E2.	x	is	∞.

f. INVALID_OP_F2.	The	operand	was	∞,	which	is	illegal	in	the	
indicated context.

g. INVALID_OP_G. Conversion of a floating point number 
when	the	number	is	∞,	NaN	or	too	large	to	be

3. The possible values are contained in fperr.h.



96    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix E:

 represented.
h. INVALID_OP_H. A comparison was performed when  

one of the operands was NaN.
i. OVERFL. The operation did or will overflow.
j. DIVZERO. Division by zero has occurred (not 0/0).
k. UNDERFLOW_A. After the operation was performed, 

the result could not be represented in the target format  
except by denormalizing.

l. CONVERT_INFINITY.	An	attempt	was	made	to	print	∞,	or	to	
disassemble it using frexp().

	 The	following	type	codes	are	for	use	specifically	by	the	math	library:
1. UNDERFL. The operands provided for the operation will 

cause underflow.
2. DOMAIN_ERROR. The operands provided were illegal. (e.g., 

sqrt(-1))
3. CANT_REDUCE_RANGE. In a call to a transcendental 

function, the argument was so large as to lose  
significance upon range reduction.

4. PARTIAL_SLOSS. The algorithm used for the function does 
not behave nicely in the range of the argument, although the 
result will not overflow or underflow.

 A code is placed in the global int _mathfunc_id to indicate the math 
function that raised the exception. This code is valid whenever  
_fperror.type is MATH. The possible codes are SIN, COS, TAN, 
LOG, EXP, SQRT, POW, ASIN, ACOS, SINH, COSH, ATAN2, ATAN, 
UP_I, GAMMA, HYPOT, J0, J1, Y0, Y1, YN, LOG10, TANH, and JN.  
Examination of this code together with the precision found in  
_fperror completely identify the function raising the exception.

E.4 Compiler Enhancements
The IRIS Workstation contains a hardware floating point option. This option 
currently uses a multibus board from Sky Computer. The C compiler on the 
IRIS Workstation has been quite heavily optimized for floating point operations 
in both hardware and software floating point mode.4

4. Hardware or software	floating	point	mode	is	determined	at	compile	time	by	use	of	the	-Zf 
switch to cc.



Version 1.0

IRIS WORKSTATION GUIDE    97 Appendix E:

Software Floating Point Enhancements
The 68000 C compiler and the floating point library on the IRIS Workstation 
have been modified to expect parameters in volatile registers whenever  
possible. These are the same registers used for function return values. This  
reduces the overhead of floating point operations considerably. When  
operations are cascaded, return values of an operation may be used as a 
parameter of the next without being moved. Additionally, compiler-generated 
calls to integer long multiplication, division, and remainder routines have been 
modified to pass operands in registers.
Timings indicate that these modifications have produced a run time 
improvement of 15% in cascaded floating point operations, and a slight code 
density improvement.

Hardware Floating Point Enhancements
On IRIS Workstations which have hardware floating point capability, the C  
compiler may be told to generate instructions for the Sky floating point  
processor. Additionally, at load time, a special version of the math library is  
loaded which uses the floating point processor whenever possible. The 
compiler uses in-line code to invoke the Sky floating point processor for simple 
operations such as add, subtract, multiply and divide. Additionally, long 
integer multiply, divide, and remainder, both signed and unsigned, use the  
Sky floating point processor with in-line code. Single-precision simple  
operations are approximately a factor of three faster in hardware than in 
software. When double-precision operands are used, the speed improvement  
is approximately a factor of five. Math library routines using hardware in  
single precision are approximately an order of magnitude faster than their 
software counterparts.



98    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix E:



Appendix F: Manual Pages





October 1984 - 1 - Version 1.0

CC(1) Silicon Graphics CC(1)
NAME

cc, pc, f77 - C. Pascal and FORTRAN compilers for the 68000
SYNOPSIS

cc [ options ] files...
pc [ options ] files...
f77 [ options ] files...

DESCRIPTION
cc is the UNIX C, Pascal and Fortran compiler for the 68000. It is also avail- 
able under the names f77 and pc. The names are synonymous except during 
the linking phase, when it is used to create the appropriate run time 
environment. cc accepts many types of input files, determined by the file’s 
suffix. The highest form of input is language source - C (.c), Pascal (.p) or 
FORTRAN (.f). These are translated to the language’s intermediate format 
(68000 assembler (.s), in the case of C, and a special binary format (.j), in the 
case of FORTRAN and Pascal), then to UNIX object files (.o), and finally to 
an executable file called a.out. Input to cc may consist of any of these types  
of files and translation may be stopped at any point.
Translation proceeds as follows:
a) Each .c. .p and .f input is run through the C macro preprocessor  

cpp. In the case of Pascal source, cpp is given the -p switch. This 
switch tells cpp to ignore Pascal-style comments and do the correct 
things with preprocessor control lines so that the line numbers in  
the resultant Pascal file will be the same as the original.

b) The preprocessed C files are then run through the C compiler ccom 
and, if specified, the C optimizer c2. The resulting .s files are then 
assembled, producing UNIX binaries (.o).

c) Preprocessed FORTRAN (.f) and Pascal (.p) files are run through  
the appropriate SVS front end, fortran or pascal, then through the code 
generator code, producing special binary files (.f). All special binary 
files are combined with the FORTRAN/Pascal library and passed to 
an object file formatter ulinker, producing a single UNIX object file 
(.o).

d) Finally, all UNIX object files are passed to ld(1), along with the  
UNIX startup file /lib/crt0.o. to produce a single executable named 
a.out.

Preprocessed source files and assembler files are usually removed. All C 
binaries (.o) and special binary files (.f) are preserved, unless there was only 
a single input .c file.
If C and FORTRAN files are mixed in a single executable, special interface 
routines must be generated as described in Appendix D of the IRIS Worksta-
tion Guide. If C and Pascal procedures are mixed, the user should consult  
the SVS Pascal reference manual for instructions on altering the external pro-
cedure declarations in Pascal.

OPTIONS
The following options are interpreted by cc (f77,pc). Some options have
 meaning for only one of these languages. (see ld(1) for load-time options):



Version 1.0 - 2 - October 1984

CC(1) Silicon Graphics CC(1)
-c Suppress the loading phase of the compilation, and force an object 

file to be produced even if only one source file is given.
-g Generate debugging information. Currently, this does not have 

meaning when C is intermixed with another language. For FOR-
TRAN and Pascal files, the appropriate compiler will be called with 
the +d switch and the symbol table produced by the pre-linker will 
be placed in x.dbg, where x is the name of the final program. For  
pure C programs, additional symbol table information will be gen-
erated for dbx(1).

-l x Include libx.a as a library ld should search for undefined references. 
ld will look for the library first in the directory /lib, then in /usr/lib,  
and finally in /usr/local/lib. The string x may be more than one  
letter.

-n Normally, cc passes the -n switch to ld, which causes it to load the 
program with shared text. The -n switch suppresses the passing of  
-n to ld.

-o output Name the final output file output.
-p Tell ccom to generate code to count subroutine calls for use with  

prof. Neither FORTRAN nor Pascal support profiling.
-x By default, cc passes a -x flag to ld. in order to suppress local sym-

bols from the final symbol table. The -x flag inhibits this default.
-C prevent the macro preprocessor from removing C style comments 

found in the source. Such comments are always removed from Pas- 
cal programs.

-D name=def 
-D name  

Define the name to the preprocessor, as if by #define. (There should 
be no blanks between the D and the symbol to be defined.) If no 
definition is given, the name is defined as “1”.

-E Run only the macro preprocessor on the named C, Pascal and FOR-
TRAN source, and send the result to the standard output.

-I dir Look in directory dir for missing #include files. Include files whose 
names are surrounded by double quotes and do not begin with ‘/’ 
are always sought first in the directory of the input file, then in 
directories named in -I options, then in /usr/include, and finally in 
/usr/local/include. Include files names beginning with ’/’, are treated 
as absolute paths. Include files whose names are surrounded by 
pointed brackets are not looked for in the directory of the input file.

-L Produce an assembly listing for each C or assembler source file, and 
a FORTRAN listing of cach FORTRAN source file. Assembler list-
ings have the suffix .lst and FORTRAN listings have the suffix .l.

-O xx Invoke an object-code improver on each C file. xx are options to c2.  
Possible options are S (perform stack optimizations), P (remove 
stackprobes), K (omit kernel optimizations). Use of these options is 
not recommended for the standard compilation environment.



October 1984 - 3 - Version 1.0

CC(1) Silicon Graphics CC(1)
-P Run only the macro preprocessor on the named C, FORTRAN, and 

Pascal files, and place the results on file.i.
-S Compile the named files, leaving the C assembly language output 

in files suffixed .s, and the FORTRAN and Pascal binaries in files 
suffixed .j.

-U name  
Remove any initial definition of name. (There should be no blanks 
between U and the name to be undefined).

-Zf Cause instructions for the Sky floating point processor to be gen-
erated. When this switch is used. the Sky math library -lmsky will  
be substituted for the standard math library -lm if it is specified.  
Use of this switch on systems which do NOT have the floating  
point unit installed will cause a run time abort.

-Zg Load the program with the special files and libraries necessary for 
IRIS graphics programs. When this switch is used, the graphics 
library -lg and the math library -lm (or -lmsky if the -Zf flag has also 
been specified) is given by default. Special files must be loaded for 
using graphics with each source language. Hence, cc must be able  
to determine the combination of languages involved in the link  
step. If the compilation line specified f77, a FORTRAN source file 
(with the extension .f) OR the switch -ZF is given, cc assumes that 
FORTRAN routines are present. In this case, the program is also 
loaded with the FORTRAN graphics interface library -lfgl and the 
FORTRAN object file containing the block data initialization of the 
common areas DEVICE and GL (/usr/bin/fgldat.j). If the compilation 
line specified pc, a Pascal source file (with the extension .p) OR the 
switch -ZP is given, cc assumes that Pascal routines are present.  
The program is loaded with the special Pascal jump table  
(/usr/lib/pjmptbl.o), and ld is told to make only eight characters signi-
ficant in function names during calls to the graphics library.

-Zi filename
 Use the file named filename as the run time startup, rather than the 

standard C run time startup. This may be useful for generating 
standalone programs.

-Zq Time all subprocesses, and report these times on stdout at the end of 
the compilation.

-Zv Turn on verbose mode. In verbose mode, the C compiler ccom will 
give additional diagnostics. This includes such things as flagging  
any use of the C type double, and complaining about too many register 
declarations.

-Zz Print a trace of all exec() calls.
-ZA pass the remainder of the string to as. Thus, the cc switch -ZA-q  

will pass as the switch -q.
-ZC pass the remainder of the string to ccom. Thus, the cc switch -ZC-p 

will pass ccom the switch -v.



Version 1.0 - 4 - October 1984

CC(1) Silicon Graphics CC(1)
-ZF pass the remainder of the string to the FORTRAN compiler front-

end fortran. Thus, the cc switch -ZF+d will pass fortran the switch 
+d. This switch (with or without a switch to pass to the FOR- 
TRAN front-end) also informs cc that FORTRAN files were present 
in the compilation.

-ZM Cause the FORTRAN pre-linker to generate a load map of the FOR-
TRAN program. This will be placed in a file by the same name as  
the executable file with the added extension .fmap.

-ZP Pascal files are present in this compilation. cc cannot determine this 
unless it sees a .p file or the name pc is used.

-ZZ Load the program for the standalone environment. This causes 
substitutions to be made for the C library and the C run time 
startup.

Other flags are passed to ld. The files may consist of any mix of C, object, 
FORTRAN, assembler, binary or library files. The files are passed to ld, if 
opted, in the order given, to produce an executable program named a.out or 
that specified by the -o option.

FILES
file.c C source file
file.f FORTRAN source file
file.p Pascal source file
file.j Pascal and FORTRAN binary files
file.o binary (relocatable) file
file.s assembly file
a.out executable file
/lib/ccom C compiler
/lib/cpp C preprocessor
/lib/crt0.o run time startup
/lib/libc.a C library
/usr/lib/paslib.obj FORTRAN library
/usr/bin/fortran FORTRAN front-end
/usr/bin/pascal Pascal front-end
/usr/bin/code FORTRAN code-generator
/usr/bin/ulinker FORTRAN pre-linker
/bin/as 68000 assembler
/bin/ld linking loader
/usr/include default include directory
/usr/bin/fgldat.j block data routine for graphics commons
/usr/bin/pjmptbl.o Pascal graphics jump table and C string converter

SEE ALSO
IRIS Workstation Guide Appendices D and E.
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 
1978
B. W. Kernighan, Programming in C—a Tutorial
D. M. Ritchie, C Reference Manual
SVS FORTRAN Reference Manual
SVS Pascal Reference Manual
as(1), ccom(1), cpp(1), ld(1), extcentry(1), mkf2c(1), a.out(5)



October 1984 - 5 - Version 1.0

CC(1) Silicon Graphics CC(1)
BUGS

The additional symbol table information optionally produced by ccom for 
dbx(1) is not supported as of IRIS Workstation release 1.7.

DIAGNOSTICS
The diagnostics produced by C, FORTRAN, and Pascal are intended to be 
self-explanatory. Occasional messages may be produced by the assembler or 
loader.



Version 1.0 - 1 - October 1984

CPIO(1) Silicon Graphics CPIO(1)
NAME

cpio - copy file archives in and out
SYNOPSIS

cpio -o [ #aBchv ] [ name-list ]
cpio -i [ #BcdhmrtuvfsSb6 ] [ patterns ]
cpio -p [ adlmruv ] directory

DESCRIPTION
Cpio -o (copy out) uses the name-list arguments, or reads the standard input  
to obtain a list of path names and copies those files onto the standard output  
(or to the device /dev/rmt#) together with path name and status informa-
tion.
Cpio -i (copy in) extracts files from the standard input (or from the device 
/dev/rmt#) which is assumed to be the product of a previous cpio -o. 
Only files with names that match patterns are selected. Patterns are given in 
the name-generating notation of sh(1). In patterns, meta-characters ?, *, and  
[...] match the slash / character. Multiple patterns may be specified and if  
no patterns are specified, the default for patterns is * (i.e., select all files).  
The extracted files are conditionally created and copied into the current 
directory tree based upon the options described below.
Cpio -p (pass) reads the standard input to obtain a list of path names of files 
that are conditionally created and copied into the destination directory tree 
based upon the options described below.
The meanings of the available options are:
# Use /dev/rmt# as input (for -i) or output (for -o). Note: 6 has another 

meaning described below.
a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply 

to the pass option; meaningful only with data directed to or from /dev/
rmt?).

c Write header information in ASCII character form for portability.
d Directories are to be created as needed.
h Similar to B option, but block input/output to 250K bytes. This option is 

only useful for streaming tape drive operation.
r Interactively rename files. If the user types a null line, the file is skipped.
t Print a table of contents of the input. No files are created.
u Copy unconditionally (normally, an older file will not replace a newer file  

with the same name).
v Verbose: causes a list of file names to be printed. When used with the t 

option, the table of contents looks like the output of an ls -l command 
(see ls(1)).

l Whenever possible, link files rather than copying them. Usable only with 
the -p option.

m Retain previous file modification time. This option is ineffective on 
directories that are being copied.

f Copy in all files except those in pattems.
s Swap bytes. Use only with the -i option.
S Swap halfwords. Use only with the -i option.



October 1984 - 2 - Version 1.0

CPIO(1) Silicon Graphics CPIO(1)

b Swap both bytes and halfwords. Use only with the -i option.
6 Process an old (i.e. UNIX System Sixth Edition format) file. Only useful 

with -i (copy in).
EXAMPLE

ls | cpio -o >/dev/mt0
or
cpio -o0 .

copies the contents of a directory into an archive;
cd olddir
find . -depth -print | cpio -pdl newdir

duplicates a directory hierarchy.
The trivial case “find . -depth -print | cpio -oB >/dev/rmt0” can be han-dled 
more efficiently by:

find . -cpio /dev/rmt0
SEE ALSO

ar(1), find(1), cpio(4).
BUGS

Path names are restricted to 128 characters. If there are too many unique 
linked files, the program runs out of memory to keep track of them and, 
thereafter, linking information is lost. Only the super-user can copy special 
files. The -B and -h options do not work with certain magnetic tape drives.



Version 1.0 - 1 - October 1984

EXTCENTRY(1) Silicon Graphics EXTCENTRY(1)
NAME

extcentry - extract FORTRAN-callable entry points from a C file
SYNOPSIS

extcentry infile outfile
DESCRIPTION

extcentry is used to extract C functions for which FORTRAN-callable interface 
routines (wrappers) are to be generated by the program mkf2c. extcentry 
accepts as input any C file (infile), and outputs (to outfile) only those portions 
which are surrounded by the special comments /* CENTRY */ and /* END- 
CENTRY */.
The first step in generating a FORTRAN-to-C interface routine is to surround 
only those C functions for which entry points are to be generated by these 
special comments and to run the file through extcentry. The FORTRAN-to-C 
intertace generator program mkf2c(1) can then be invoked on the resultant  
file to generate the assembly language wrapper. This is necessary since  
mkf2c(1) understands only a limited subset of the C grammar, and cannot 
parse such constructs as external declarations, typedefs, and C-preprocessor 
directives.

FILES
/usr/bin/extcentry C-shell script

SEE ALSO
FORTRAN REFERENCE MANUAL
mkf2c(1)



October 1984 - 1 - Version 1.0

FSCK(1M) Silicon Graphics FSCK(1M)
NAME

fsck, dfsck - file system consistency check and interactive repair
SYNOPSIS

/etc/fsck [-y] [-n] [-sX] [-SX] [-t file] [-q] [-D] [-f] [ file-systems ]
/etc/dfsck [ options1 | filsys1 ... - [ options2 | filsys2 ...

DESCRIPTION 
Fsck

Fsck audits and interactively repairs inconsistent conditions for UNIX System 
files. If the file system is consistent then the number of files, number of  
blocks used, and number of blocks free are reported. If the file system is 
inconsistent the operator is prompted for concurrence before each correction 
is attempted. It should be noted that most corrective actions will result in 
some loss of data. The amount and severity of data lost may be determined 
from the diagnostic output. The default action for each consistency correc-
tion is to wait for the operator to respond yes or no. If the operator does  
not have write permission fsck will default to a -n action.
Fsck has more consistency checks than its predecessors check, dcheck, fcheck, and 
icheck combined.
The following options are interpreted by fsck.
-y Assume a yes response to all questions asked by fsck.
-n Assume a no response to all questions asked by fsck; do not open the 

file system for writing.
-sX Ignore the actual free list and (unconditionally) reconstruct a new one 

by rewriting the super-block of the file system. The file system should 
be unmounted while this is done; if this is not possible, care should  
be taken that the system is quiescent and that it is rebooted immedi-
ately afterwards. This precaution is necessary so that the old, bad,  
in-core copy of the superblock will not continue to be used, or written 
on the file system.

 The -sX option allows for creating an optimal free-list organization. 
The following forms of X are supported for the following devices:

-s3 (RP03)
-s4 (RP04, RP05, RP06)
-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

 If X is not given, the values used when the file system was created  
are used. If these values were not specified, then the value 400:7 is 
used.

-SX Conditionally reconstruct the free list. This option is like -sX above 
except that the free list is rebuilt only if there were no discrepancies 
discovered in the file system. Using -S will force a no response to all  
questions asked by fsck. This option is useful for forcing free list reor-
ganization on uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its tables, it uses a  
scratch file. If the -t option is specified, the file named in the next 



Version 1.0 - 2 - October 1984

FSCK(1M) Silicon Graphics FSCK(1M)
 argument is used as the scratch file, if needed. Without the -t flag, 

fsck will prompt the operator for the name of the scratch file. The file 
chosen should not be on the file system being checked, and if it is not  
a special file or did not already exist, it is removed when fsck com- 
pletes.

-q Quiet fsck. Do not print size-check messages in Phase 1. Unrefer-
enced fifos will silently be removed. If fsck requires it, counts in the 
superblock will be automatically fixed and the free list salvaged.

-D Directories are checked for bad blocks. Useful after system crashes.
-f Fast check. Check block and sizes (Phase 1) and check the free list  

(Phase 5). The free list will be reconstructed (Phase 6) if it is neces-
sary.

If no file-systems are specified, fsck will read a list of default file systems from 
the file /etc/checklist.
Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of the 

file system.
3. incorrect link counts.
4. Size checks:
  Incorrect number of blocks.
  Directory size not 16-byte aligned.
5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:
  File pointing to unallocated inode.
  inode number out of range.
8. Super Block checks:
  More than 65536 inodes.
  More blocks for inodes than there are in the file system.
9. Bad free block list tormat.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the 
operator’s concurrence, reconnected by placing them in the lost+found 
directory, if the files are nonempty. The user will be notified if the file or 
directory is empty or not. If it is empty, fsck will silently remove them. Fsck 
will force the reconnection of nonempty directories. The name assigned is  
the inode number. The only restriction is that the directory lost+found  
must preexist in the root of the file system being checked and must have 
empty slots in which entries can be made. This is accomplished by making 
lost+found, copying a number of files to the directory, and then removing 
them (before fsck is executed).
Checking the raw device is almost always faster and should be used with 
everything but the root file system.

Dfsck
Dfsck allows two file system checks on two different drives simultaneously, 
(options1 and options2 are used to pass options to fsck for the two sets of file



October 1984 - 3 - Version 1.0

FSCK(1M) Silicon Graphics FSCK(1M)
systems. A - is the separator between the file system groups.
The dfsck program permits an operator to interact with two fsck(1M) programs 
at once. To aid in this, dfsck will print the file system name for each message to 
the operator. When answering a question from dfsck, the operator must prefix 
the response with a 1 or a 2 (indicating that the answer refers to the first or 
second file system group).
Do not use dfsck to check the root file system.

EXAMPLE
fsck /dev/rdisk0

checks the consistency of device rdisk0.
FILES

/etc/checklist contains default list of file systems to check.
SEE ALSO

clri(1M), ncheck(1M), checklist(4), fs(4), crash(8).
Setting up the UNIX System

BUGS
inode numbers for . and .. in each directory should be checked for validity.

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.



Version 1.0 - 1 - October 1984

MKF2C(1) Silicon Graphics MKF2C(1)
NAME

mkf2c, mkc2f - generate C-FORTRAN interface routines
SYNOPSIS

mkc2f dummyfortran.cf dummyfortran.s
mkf2c cprog.tc cprog.s

DESCRIPTION
mkf2c and mkc2f are used to generate assembly-language routines to interface 
C functions to FORTRAN routines. mkc2f generates an interface for C func-
tions to call FORTRAN routines. mkf2c generates an interface for FORTRAN 
routines to call C functions.
Both programs accept as input a set of C functions, and produce an  
assembly-language interface routine in the output file. In the case ot mkc2f; 
the input may be a copy of the actual C file being interfaced, perhaps fil- 
tered by the program extcentry(1). In the case of mkf2c, the FORTRAN rou-tines 
must have their parameter lists coded in C for input to the program. (This 
must be done manually. Refer to Appendix D of the IRIS Workstation Guide.) In 
all cases, mkf2c and mkc2f generate a .s file that must be assembled with as(1), 
and loaded with the FORTRAN and C routines that are to be interfaced.
mkc2f and mkf2c use the parameter declarations in the C function headers to  
transform each parameter of the calling language to that of the receiving 
language. The standard basic C types attached to the parameters are used to 
determine the object each parameter represents - i.e., whether it is a value or 
pointer, its size, whether it is unsigned, etc. (Character strings are handled 
specially - the reader is referred to the paper on the programs.) Only the 
opening and closing brace of the function body must be present. Informa-
tion in the body of the function is ignored. fhe programs cannot understand 
C constructs other than functions and comments (e.g., external declarations, 
typedefs, C preprocessor constructs, etc.). Such unrecognized constructs  
must be eliminated from the input (this is the purpose of extcentry(1)).

EXAMPLE
A sample C function given to the programs as input might be

test(i,s,c,ptr1,ptr2,ar1,f,d,d1,str1,str2,str3,u)
short s;
unsigned char c;
int *ptr1;
char *ptr2[];
short ar1[];
float f;
long float d,*d1;
char *str1;
char str2[],str3[30];



October 1984 - 2 - Version 1.0

MKF2C(1) Silicon Graphics MKF2C(1)

sometype u;
{
 /*
 The C function body may go here. Nothing except
 the opening and closing braces are necessary.
 */
}

A complaint will be given about not understanding the type of parameter u. 
It will be assumed to be a simple pointer.

FILES
/usr/bin/mkc2f C-to-FORTRAN interface generator
/usr/bin/mkf2c FORTRAN-to-C interface generator

SEE ALSO
IRIS Workstation Guide, Appendices D and E, Silicon Graphics, Inc. 
extcentry(1), cc(1)

DIAGNOSTICS
Mkf2c and mkc2f are very simple-minded about diagnosing syntax errors.  
They can detect such things as a formal parameter having its type declared 
when it is not in the formal parameter list. A few such cases give intellig-
able error messages. The programs will complain about types they do not 
understand. The default type assigned in such cases is simple pointer. Mkf2c 
and mkc2f will also delete characters from FORTRAN entry names which are  
illegal (e.g., underscores). The user will be warned in such instances. Most  
errors that the programs detect are indicated only by the source line number.
If mkf2c or mkc2f encounter an error which they cannot remedy, they will abort, 
giving the line number on which the error occurred. The resultant .s file will 
be removed, and an error exit will be taken.
Because of their limited error diagnostic ability, it is advisable to use cc(1) to 
determine whether the input syntax is correct before passing it to mkc2f or 
mkf2c.

BUGS
mkf2c and mkc2f cannot understand the standard C type unsigned long. Since 
the effect of this type combination, so far as the programs are concerned, is 
the same as the C types int, long and unsigned int, one of these types should be 
substituted.



Version 1.0 - 1 - October 1984

SGBOOT(1M) Silicon Graphics SGBOOT(1M)
NAME

sgboot - provide network boot service
SYNOPSIS

sgboot [system name] [boot directory]
DESCRIPTION

sgboot is a daemon that provides XNS boot service to IRIS Terminals on an 
Ethernet local area network. This service is provided on the socket BOOT- 
SOCKET defined in /usr/include/xns/Xns.h. After the client obtains a connec-
tion, sgboot expects the client to supply the name of the boot file to send. 
sgboot then transmits the file and closes the connection. The pathname of  
the boot file may be absolute or relative to the boot directory specified on the 
command line.
The system name on the command line should be identical to the kernel’s 
idea of the host name (i.e. /bin/hostname). This daemon is normally run in  
the background. For example,

# sgboot `/bin/hostname` /usr/iris/boot &
sgboot can be started by hand, as shown above, but should normally be  
started in the file /etc/rc.local.

NOTE
Multiple copies of sgboot may be running at a given time. The total number  
of instances of sgboot equals the number of IRIS Terminals that may be  
booted in parallel.

SEE ALSO
Silicon Graphics, lnc., IRIS Terminal Guide, Appendix B
sgbounce(1M)



October 1984 - 1 - Version 1.0

SGBOUNCE(1M) Silicon Graphics SGBOUNCE(1M)
NAME

sgbounce - provide network name service
SYNOPSIS

sgbounce [system name] [boot directory]
DESCRIPTION

sgbounce is a daemon that provides name service to IRIS Terminals on an 
Ethernet local area network. The system name on the command line should 
be identical to the kernel’s idea of the host name (i.e. /bin/hostname). sgbounce is 
normally run in the background. For example,

 # sgbounce `/bin/hostname` /usr/iris/boot &
Sgbounce can be started by hand, as shown above, but should normally be 
started in the file /etc/rc.local.

NOTE
Only one copy of sgbounce may be running at one time.

SEE ALSO
Silicon Graphics, Inc., IRIS Terminal Guide, Appendix B
sgboot(1M)



Version 1.0 - 1 - October 1984

SMT(1) Silicon Graphics SMT(1)
NAME

smt - streaming magnetic tape manipulating program
SYNOPSIS

smt [ -t /dev/tapename ] command [ count ]
DESCRIPTION

Smt is used to give commands to a Quarter Inch streaming magnetic tape 
drive. If a tape name is not specified, the default tape drive is used. Smt  
uses the default tape device /dev/rmtioctl. By default smt performs the 
requested operation once. Operations may be performed multiple times by 
specifying count.
The tape default device has the ioctl minor to facilitate the use of opening  
and reading the tape when either using a no rewind device or a standard 
rewind and write file mark on close of the tape device.
The available commands are listed below. Only as many characters as are 
required to uniquely identify a command need be specified.

eof  
Write count end-of-file marks at the current position on the tape.

fsf Forward space count files.
fsr Forward space count records.
rewind  

Rewind the tape (Count is ignored.)
status  

Print status intormation about the tape unit. (Count is ignored.)
help  

Print command usage information about the command. (Count is 
ignored. )

Smt returns a 0 exit status when the operation(s) were successful, smt will 
return a 1 if the command was unrecognized, and 2 if an operation failed. 
Smt without any arguments will print the help command.

FILES
/dev/rqic Raw magnetic Quarter Inch Cartridge Tape drive
/dev/nrqic No rewind Quarter Inch Cartridge Tape drive
/dev/nrmt* No rewind Quarter Inch Cartridge Tape drive
/dev/rmtioctl Default Raw magnetic Quarter Inch Cartridge Tape drive

BUGS
Smt will sleep when accessing the tape it tape is busy and will awaken only  
after the tape is closed from a previous operation. Smt will do some very 
standard things to the tape when using the standard devices such as  
/dev/rqic or /dev/rmt* and might do some very nasty things not intended by 
the user, unless very careful when using smt.

SEE ALSO
smtio(4).



October 1984 - 1 - Version 1.0

TAR(1) Silicon Graphics TAR(1)
NAME

tar - tape archiver
SYNOPSIS

tar key [ name ... ]
DESCRIPTION

Tar saves and restores multiple files on a single file (usually a magnetic tape, 
but it can be any file). Tar’s actions are controlled by the key argument. The 
key is a string of characters containing at most one function letter and possi-
bly one or more function modifiers. Other arguments to tar are file or direc-
tory names specifying which files to dump or restore. In all cases, appear - 
ance of a directory name refers to the files and (recursively) subdirectories of 
that directory. These files are dumped to tape in alphabetical order.
A tar archive is a stream of 512-byte header structures which may be fol-
 lowed by file data rounded up to the next 512-byte boundary. The end of  
the archive is signaled by two header structures beginning with null bytes. 
The function portion of the key is specified by one of the following letters:
r The named files are written on the end of the tape. The c function 

implies this.
x The named files are extracted from the tape. If the named file  

matches a directory whose contents had been written onto the tape,  
this directory is  recursively) extracted. The owner, modification  
time, and mode are restored (if possible). If no file argument is  
given, the entire content of the tape is extracted. Note that it multi - 
ple entries specifying the same file are on the tape, the last one 
overwrites all earlier.

X Like x but also takes the next argument as the root of a directory  
tree for comparison. For each file to be extracted, if it is identical to  
the file in the corresponding position in the comparison tree, the  
existing file is linked to the new file. Otherwise, the new file is  
extracted as a separate new file as usual.

t The names of the specified files are listed each time they occur on 
the tape. If no file argument is given, all of the names on the tape  
are listed.

u The named files are added to the tape if either they are not already 
there or have been modified since last put on the tape.

c Create a new tape; writing begins on the beginning of the tape  
instead of after the last file. This command implies r.

C Compare files on tape against existing files. For each specified file, 
print a line with a key character followed by the file name.

L linked to an earlier file on the tape
S symbolic link
B block special file
C character special file
P named pipe
? can’t read the disk file, so can’t compare
> disk file doesn’t exist



Version 1.0 - 2 - October 1984

TAR(1) Silicon Graphics TAR(1)
= files compare
! files don’t compare

The following characters may be used in addition to the letter which selects 
the function desired.
d On output, tar normally places information specifying owner and modes 

of directories in the archive. Former versions of tar, when encountering 
this information will give error message of the form 

	 	 	 “<name>/:	cannot	create”.
 This option will suppress the directory information. This option  

implies -D.
D On output, tar normally places information specifying owner,  

modes, and device numbers of character, block, and named pipe  
(fifo) special files and named pipes in the archive. Former versions  
of tar, when encountering this information will create an ordinary  
file of the same name whose contents is the device number, in  
binary.

 This option will suppress the special file information.
p This option says to restore files to their original modes, ignoring the  

present umask(2). Setuid and sticky information will also be  
restored to the super-user.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 This modifier selects an alternate drive on which the tape is  

mounted. The default is /dev/rmt1.
v Normally tar does its work silently. The v (verbose) option make  

tar type the name of each file it treats preceded by the function  
letter. With the t function, the verbose option gives more infor - 
mation about the tape entries than just their names.

w Tar prints the action to be taken followed by file name, then waits  
for user confirmation. If a word beginning with ‘y’ is given, the  
action is done. Any other input means don’t do it.

f Tar uses the next argument as the name of the archive instead of  
/dev/rmt1. If the name of the file is ‘-’, tar writes to standard out- 
 put or reads from standard input, whichever is appropriate.  
Thus, tar can be used as the head or tail of a filter chain. Tar can  
also be used to move hierarchies with the command

   cd fromdir; tar cf - . | (cd todir; tar xf -)
b Tar uses the next argument as the blocking factor for tape records.
 The default is 400 for the cartridge tape, 1 for standard input and  

standard output, and 20 otherwise. The block size is usually  
determined automatically when reading tapes if the tape was  
written with a blocking factor that does not exceed the default for  
that device (20 or 400). The default blocking factor should be  
used for cartridge tape. A tar tape created by writing to the stan - 
dard output should be read from standard input.

l tells tar to complain if it cannot resolve all of the links to the files 
dumped. If this is not specified, no error messages are printed.



October 1984 - 3 - Version 1.0

TAR(1) Silicon Graphics TAR(1)
m tells tar not to restore the modification times. The modification  

time will be the time of extraction.
e Force tar to continue reading past tape errors.
h Force tar to follow symbolic links as if they were normal files or 

directories.
B Forces input and output blocking to 20 blocks per record. This  

option is so that tar can work across a communications channel  
where the blocking may not be maintained.

R When extracting from tape, ignore leading slashes on file names,  
i.e. extract all files relative to the current directory.

U For each file extracted. unlink existing file, if any.
o Don’t chown (or chgrp) files.
q Turn on debugging and extra error diagnostics. Supplying this  

flag multiple times increases debugging level.
If a file name is preceded by -C, then tar will perform a chdir(2) to that file  
name. This allows multiple directories not related by a close common parent  
to be archived using short relative path names. For example, to archive files  
from /usr/include and from /etc, one might use
  tar c -C /usr include -C /etc
If a file name of - is given on the command line when making an archive 
then tar will read its standard input for a list of files to back up, one per line; 
the list is terminated by an EOF. For example, to back up all files that have 
changed in the last week, one might use
  find / -mtime -7 -print | tar -c  -

FILES
/dev/rmt?
/tmp/tar*

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
File name length is limited to 100 characters.
The data for a file with multiple links is output to tape with the first link 
encountered. Thus, an attempt to extract a subsequent link by itself will  
not have the desired result.
The cartridge tape drive always reads and writes 512-byte records.



Version 1.0 - 1 - October 1984

XCP(1) Silicon Graphics XCP(1)
NAME

xcp - remote file copy
SYNOPSIS

xcp file1 file2
xcp [ -r ] file... directory

DESCRIPTION
xcp copies files between machines. file1 is copied to file2 or file is copied to 
directory/file.
Each file or directory argument is either a remote file name of the form rhost:path, 
or a local file name (with a ‘/’ inserted before any ‘:’s). The login name of 
the user sending a file over the network must be recognized by the remote 
machine or rhost may take the form rhost.rname to use rname rather than the 
current login name on the remote host. xcp does not prompt for passwords; 
your current local login name must exist on rhost and allow remote command 
execution via xlogin(l). If path is not a full path name, it is interpreted relative 
to your login directory on rhost. A path on a remote host may be quoted (using 
\, ", or ') so that the metacharacters are interpreted remotely. xcp handles 
third party copies, where neither source nor target files are on the current 
machine.
If the argument -r is specified and any of the source files are directories, xcp 
copies each subtree rooted at that name; in this case the destination must be 
a directory.

SEE ALSO
xlogin(1), xx(1)

BUGS
Doesn’t detect all cases where the target of a copy might be a file in cases 
where only a directory should be legal.
Is confused by any output generated by commands in a .login, .profile, or .cshrc 
file on the remote host.



October 1984 - 1 - Version 1.0

XX(1) Silicon Graphics XX(1)
NAME

xx - remote shell
SYNOPSIS

xx host command
DESCRIPTION

xx connects to the specified host and executes the specified command. xx 
copies its standard input to the remote command, the standard output of 
the remote command to its standard output, and the standard error of the 
remote command to its standard error. Interrupt, quit and terminate signals 
are propagated to the remote command; xx normally terminates when the 
remote command does.
The remote login name must be equivalent (in the sense of sh(1)) to the ori-
ginating account; no provision is made for specifying a password with a 
command.
If you omit comand, then instead of executing a single command, you will be 
logged in on the remote host using xx(1).
Shell metacharacters which are not quoted are interpreted on the local 
machine, while quoted metacharacters are interpreted on the remote machine. 
Thus the command

  $ xx otherhost cat remotefile > > localfile

appends the remote file remotefile to the local file localfile, while

  $ xx otherhost cat remotefile “>>” otherremotefile

appends remotefile to otherremotefile.
SEE ALSO

xlogin(1), xcp(1)
BUGS

If you are using csh(1) and put an xx(1) in the background without redirect- ing 
its input away from the terminal, it will block even if no reads are posted by 
the remote command.
You cannot run an interactive command (like vi(1)); use xlogin(1).
Stop signals stop the local xx process only; this is arguably wrong, but 
currently hard to fix tor reasons too complicated to explain here.



Version 1.0 - 1 - October 1984

XLOGIN(1) Silicon Graphics XLOGIN(1)
NAME

xlogin - remote login
SYNOPSIS

xlogin rhost
DESCRIPTION

xlogin connects your terminal on the current local host system to the remote 
host system rhost.
All echoing takes place at the remote site, so that (except for delays) xlogin is  
transparent. Flow control via ^S and ^Q and flushing of input and output on 
interrupts are handled properly. A line of the form ”~.” disconnects from the 
remote host.
xlogin times out after 60 seconds if no login is attempted.

SEE ALSO
xcp(1), xx(1)

BUGS
More terminal characteristics should be propagated.



October 1984 - 1 - Version 1.0

MT(4) Silicon Graphics MT(4)
NAME

mt - TM78/TU-78 MASSBUS magtape interface
SYNOPSIS

master mt0 at mba? drive ?
tape mu0 at mt0 slave 0

DESCRIPTION
The tm78/tu-78 combination provides a standard tape drive interface as 
described in smtio(4). Only 1600 and 6250 bpi are supported; the TU-78 runs 
at 125 ips and autoloads tapes.

SEE ALSO
mt(1), tar(1), tp(1)

DIAGNOSTICS
mu%d: no write ring. An attempt was made to write on the tape drive  
when no write ring was present; this message is written on the terminal of  
the user who tried to access the tape.
mu%d: not online. An attempt was made to access the tape while it was 
offline; this message is written on the terminal of the user who tried to  
access the tape.
mu%d: can’t switch density in mid-tape. An attempt was made to write on  
a tape at a different density than is already recorded on the tape. This mes-
sage is written on the terminal of the user who tried to switch the density.
mu%d: hard error bn%d mbsr=%b er=%x ds=%b. A tape error occurred  
at block bn; the mt error register and drive status register are printed in octal  
with the bits symbolically decoded. Any error is fatal on non-raw tape.  
When possible the driver will retry the operation which failed several times 
before reporting the error.
mu%d: blank tape. An attempt was made to read a blank tape (a tape  
without even end-of-file marks).
mu%d: offline. During an I/O operation the device was set offline. If a  
non-raw tape was used in the access it is closed.

BUGS
If any non-data error is encountered on non-raw tape, it refuses to do any-
thing more until closed.



Version 1.0 - 1 - October 1984

SMTIO(4) Silicon Graphics SMTIO(4)
NAME

smtio - UNIX streaming magtape interface
DESCRIPTION

The special file /dev/rmt1 refers to the UNIX streaming magtape drive, which 
is on the MULTIBUS using the DSD-5217 controller. The following descrip - 
tion applies to any of the transport/controller pairs. The special files  
/dev/rmt1, /dev/rqic, /dev/mt1, are 10000fci, 450ft, 45ips, 45MByte Quarter Inch  
Tape streaming drives, eg. Archive, Wangtek or Cipher.  
/dev/nrqic, /dev/nrmt1, /dev/nmt1 are no rewind devices with the same specifica- 
 tions as above. /dev/nrmt1 is the special file meant as the default to smt com-
mands. Refer to smt(1) for the specifications of ioctl commands to manipu-
late the tape drives. The files /dev/rqic, /dev/rmt1, /dev/mt1 are rewound when 
closed; the others are not. These files will also close by writing a file mark. 
The other files will not rewind upon close. They will also write a file mark 
but will be positioned at the file mark for additional files to be added to the 
tape cartridge.
A standard tape consists of a series of 512 byte records terminated by an 
end-of-file. The system makes it possible to treat the tape like any other file.  
Seeks do not have their usual meaning and it is not possible to read or write 
a byte at a time. Writing in very small units 512, ...,5120 bytes, is inadvis - 
able because this tends to create large record gaps and causes the tape to dis-
continue streaming. The tape drive must then reposition the tape cartridge 
for the next write or read. This causes a great delay with the tape moving 
backwards and forwards.
The smt(1) manipulation program discussed above is useful when it is  
desired to. access the tape in a way compatible with ordinary files. When 
foreign tapes are to be dealt with, and especially when long records are to be 
read or written, the ‘raw’ interface is appropriate. The standard format for 
referring to the ‘blocked’ device is /dev/mt1, but the ‘raw’ and the ‘blocked’ 
devices are the same for the Quarter Inch Streaming tape drive. The associ - 
ated files are named /dev/rmt1, /dev/rqic, but the same minor-device con-
siderations as for the regular files still apply. A number of ioctl operations  
are available on raw magnetic tape. Refer to smt(1) for additional informa- 
 tion for use with /dev/nrmt1. The following definitions are from  
<sys/mtio.h>:
/*
 * Structures and definitions for mag tape io control commands
 */

/* structure for MTIOCTOP - mag tape op command */
struct mtop {
 short mt_op; /* operations defined below */
 daddr_t mt_count; /* how many of them */
};

/* operations */
#define MTWEOF 0 /* write an end-of-file record */
#define MTFSF 1 /* forward space file */



October 1984 - 2 - Version 1.0

SMTIO(4) Silicon Graphics SMTIO(4)

#define MTFSR 3 /* forward space record */
#define MTREW 5 /* rewind */
#define MTNOP 7 /* no operation, sets status only */

/* structure for MTIOCGET - mag tape get status command */

struct mtget {
 short mt_type; /* type of magtape device */
/* the following six registers are grossly device dependent */
 short mt_hard_error0;  /* hard error byte 0 of status from DSD */
 short mt_hard_error1;  /* hard error byte 1 of status from DSD */
 short mt_soft_error0; /* soft error byte of status from DSD */
 short mt_at_bot; /* byte 0xff when tape at bot */
 short mt_retries; /* byte number of retries by tape drive */
 short mt_file_mark; /* byte 0xff when file mark encountered */
/* end device-dependent registers */
 daddr_tmt_fileno; /* file number of current position */
 daddr_tmt_blkno; /* block number of current position */
};

/*
  * Constants for mt_type byte
  */
#define MT_ISTS 0x01 /* Streaming Quarter Inch Tape Drive */

/* mag tape io control commands */
#define	 MTIOCTOP	 ((‘m’	<<8)|1)	 /*	do	a	mag	tape	op	*/
#define	 MTIOCGET	 ((‘m’	<<8)|2)	 /*	get	tape	status	*/

#ifndef KERNEL
#define DEFTAPE  “/dev/rmtioctl” /* IOCTL device */
#endif
Each read or write call reads or writes the next record on the tape. In the 
write case the record has the same length as the buffer given, except when 
using tar(1) with the V option. Each tape write will write one file mark on 
dose and will either rewind or position itself at the file mark. Addition  
writes will be positioned after the file mark and can be accessed by using the 
smt(1) streaming tape manipulating program.

FILES 
/dev/rmt1
/dev/rqic
/dev/rmtioctl
/dev/mt1
The minors for each of the above devices to build special files using  
mknod(1) is that the standard default minor is 0x00. The minor for the  
/dev/nrmt*, /dev/nrqic is 0x01. The above minors refer to tape drive 0 of the  
DSD controller and at present the hardware only supports this one tape 
drive.



Version 1.0 - 3 - October 1984

SMTIO(4) Silicon Graphics SMTIO(4)
SEE ALSO

smt(1), tar(1), cpio(1)
BUGS

The status should be returned in a device independent format, but the status 
returned is very device independent.



Version 1.0

126    IRIS WORKSTATION GUIDE    Appendix F:





Appendix H: IRIS Workstation RS-232 Interface

An IRIS Workstation can be connected to a serial line through Port 2 , Port 3  or 
Port 4  on the Cabinet I/O Panel. These serial ports can be used with terminals 

(see Sections 4.6 and 6.8), modems (see Sections 4.6 and 6.9) and printers (see 
Sections 4.6 and 6.10).

RS-232 Pin Definitions

1
2
3
4
5
6
7
8
20
22

Protective Ground (PG)
Transmit Data (TD)
Receive Data (RD)
Request To Send (RTS)
Clear to Send (CTS)
Data Set Ready (DSR)
Signal Ground (SG)
Data Carrier Detect (DCD)
Data Terminal Ready (DTR)
Ring Indicator (RI)

Table H-1: RS-232 Pin Definitions

The serial ports on the Cabinet I/O Panel are Data Terminal Equipment (DTE) 
type RS-232 ports. The IRIS Workstation asserts the Data Terminal Ready (DTR) 
signal on pin 20. This is provided for hosts that expect to see Data Carrier  
Detect (DCD) on pin 8 and/or Data Set Ready (DSR) on pin 6. DCD or DSR  
signals are not required for a serial line connection.
Figure H-1 shows a three-wire connection for the IRIS Workstation: Transmit 
Data on pin 2, Receive Data on pin 3 and Signal Ground on pin 7.
Figure H-2 shows a five-wire connection that can be enabled by connecting pin  
20 (Data Terminal Ready) from the IRIS Workstation port to pin 8 (Data Carrier 
Detect) on the modem. Then connect pin 20 on the modem to pin 8 on the IRIS 
Workstation port.
A full modem can be connected to the IRIS Workstation by connecting each pin  
on the modem side to its partner on the IRIS Workstation port. Note that lines  
6 (Data Set Ready) and 22 (Ring Indicator) are not required for the IRIS 
Workstation.

Version 1.0



128    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix H:

A full modem connection with Request to Send (RTS) and Clear to Send (CTS) can  
be made by connecting pin 2 on the IRIS Workstation port to pin 3 on the 
modem.

Figure H-l: 3-Pin Connection

Figure H-2: 5-Pin Connection



Version 1.0

IRIS WORKSTATION GUIDE    129 Appendix H:

Figure H-3: Full Modem Connection

Figure H-4: Full Modem Connection with RTS and CTS



130    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix H:



Version 1.0

IRIS WORKSTATION GUIDE    131 Appendix I:

Appendix I: UUCP Administration

I.1 Introduction
This appendix1 describes how a uucp network is set up, the format of control 
files, and administrative procedures. Administrators should be familiar with 
the manual pages for each of the uucp related commands.

I.2 Planning
In setting up a network of UNIX systems, there are several considerations that 
should be taken into account before configuring each system on the network.  
The following parts attempt to outline the most important considerations.

Extent of the Network
Some basic decisions about access to processors in the network must be made 
before attempting to set up the configuration files. If an administrator has 
control over only one processor and an existing network is being joined, then 
the administrator must decide what level of access should be granted to other 
systems. The other members of the network must make a similar decision for  
the new system. The UNIX system password mechanism is used to grant  
access to other systems. The file /usr/lib/uucp/USERFILE restricts access by other 
systems to parts of the file system tree, and the file /usr/lib/uucp/L.sys on the  
local processor determines how many other systems on the network can be 
reached.
When setting up more than one processor, the administrator has control of a 
larger portion of the network and can make more decisions about the setup. 
For example, the network can be set up as a private network where only those 
machines under the direct control of the administrator can access each other. 
Granting no access to machines outside the network can be done if security 
is paramount; however, this is usually impractical. Very limited access can be 

1.	This	appendix	is	modified	from	Chapter	10	of	UNIX System V Administrator’s Guide.



132    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix I:

granted to outside machines by each of the systems on the private network. 
Alternatively, access to/from the outside world can be confined to only one 
processor. This is frequently done to minimize the effort in keeping access 
information (passwords, phone numbers, login sequences, etc.) updated and to 
minimize the number of security holes for the private network.

Hardware and Line Speeds
There are three supported means of interconnection by uucp(1),

1. Direct connection using a null modem.
2. Connection over the Direct Distance Dialing (DDD) network.
3. Ethernet with XNS protocols.

In choosing hardware, the equipment used by other processors on the network 
must be considered. For example, if some systems on the network have only 
102-type (300-baud) data sets, then communication with them is not possible 
unless the local system has a 300-baud data set connected to a calling unit. 
(Most data sets available on systems are 1200-baud.) If hard-wired connections 
are to be used between systems, then the distance between systems must be 
considered since a null modem cannot be used when the systems are separated 
by more than several hundred feet. The limit for communication at 9600-baud 
is about 800 to 1000 feet. However, the RS232 specification and Western  
Electric Support Groups only allow for less than 50 feet. Limited distance 
modems must be used beyond 50 feet as noise on the lines becomes a problem.

Maintenance and Administration
There is a minimum amount of maintenance that must be provided on each 
system to keep the access files updated, to ensure that the network is running 
properly, and to track down line problems. When more than one system is 
involved, the job becomes more difficult because there are more files to update 
and because users are much less patient when failures occur between machines 
that are under local control.

I.3 UUCP Software
The uucp(1) or uux(1) command queues user’s requests and spawns the uucico 
daemon to call another system. Uucico initiates the call to another system and 
performs the file transfer. On the receiving side, uucico is invoked to receive  
the transfer. Remote execution jobs are actually done by transferring a 
command file to the remote system and invoking a daemon (uuxqt) to execute 
that command file and return the results.



Version 1.0

IRIS WORKSTATION GUIDE    133 Appendix I:

Password File
To allow remote systems to call the local system, password entries must be 
made for any uucp logins. For example,

uucp:zaaAA:3:5:UUCP Login Account:/usr/spool/uucppublic:/usr/lib/uucp/uucico 
Note that the uucico daemon is used for the shell, and the spool directory is used 
as the working directory.
There must also be an entry in the passwd file for a uucp administrative login. 
This login is the owner of all the uucp object and spooled data files and is 
usually “uucpadm”. For example, the following is an entry in /etc/passwd for 
this administrative login:

uucpadm:zAvLCKp:8:8:UUCP Administration:/usr/lib/uucp:

Note that the standard shell is used instead of uucico.

Lines File
The file /usr/lib/uucp/L-devices contains the list of all lines that are directly 
connected to other systems or are available for calling other systems. The file 
contains the attributes of the lines and whether the line is a direct connection or 
can call via a dialer. The format of the file is

type line call-device speed protocol
where each field is
type Two keywords are used to describe whether a line is directly 

connected to another system (DIR) or uses an automatic calling 
unit (ACU)d. An Ethernet/XNS connection would use the DIR 
keyword.

line This is the device name for the line (e.g., ttyd2 for a direct line,  
cu10 for a line connected to an ACU and xns for  
Ethernet/XNS).

call-device If the ACU keyword is specified, this field contains the device 
name of the ACU. Use xns for Ethemet/XNS. Otherwise, the 
field is ignored; however, a  placeholder must be used in this 
field so that the protocol field can be interpreted.

speed The line speed that the connection is to run at. Use xns for 
Ethernet/XNS.

protocol This is an optional field that needs only be filled in if the 
connection is for a protocol other than the default terminal 
protocol. Use xns for Ethernet/XNS.

The following entries illustrate various types of connections:



134    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix I:

DIR ttyd2 0 4800
ACU ttyd3 cua0 1200
DIR xns xns xns

The first entry is for a hard-wired line running at 4800-baud between two 
systems. Note that the acu-device field is zero. The second entry is for a line  
with a 1200-baud ACU. The last entry is for an Ethernet/XNS connection.

Naming Conventions
It is often useful when naming lines that are directly connected between  
systems or which are dedicated to calling other systems to choose a naming 
scheme that conveys the use of the line. In the earlier examples, the name  
ttyd2 is used.

System File
Each entry in /usr/lib/uucp/L.sys represents a system that can be called by the  
local uucp programs. More than one line may be present for a particular  
system. In this case, the additional lines represent alternative communication 
paths that will be tried in sequential order. The fields are described below:
system name Name of the remote system.
time This is a string that indicates the days-of-week and times-of - 

day when the system should be called (e.g., MoTuTh0800- 
 1730).

 The day portion may be a list containing Su, Mo, Tu, We, Th, 
Fr, Sa; or it may be Wk for any week-day or Any for any day. 
The time should be a range of times (e.g., 0800-1230). If no 
time portion is specified, any time of day is assumed to be 
allowed for the call. Note that a time range that spans 0000 is 
permitted; 0800-0600 means all times are allowed other than 
times between 6 and 8 am. An optional sub field is available to 
specify the minimum time (minutes) before a retry following a  
failed attempt. The subfield separator is a “,” (e.g. Any,9  
means call any time but wait at least 9 minutes before retrying 
the call after a failure has occurred).

device This is either ACU or the hard-wired device name to be used  
for the call. For the hard-wired case, the last part of the  
special file name is used (e.g., ttyd2).

class This is usually the line speed for the call (e.g., 1200 or xns for 
Ethernet/XNS).

phone The phone number is made up of an optional alphabetic 
abbreviation (dialing prefix) and a numeric part. The 
abbreviation should be one that appears in the L-dialcodes file



Version 1.0

IRIS WORKSTATION GUIDE    135 Appendix I:

  (e.g., mh1212,boston5551212). For the hard-wired devices, this 
field contains the same string as used for the device field.

login The login information is given as a series of fields and  
subfields in the format

[expect send]
 where expect is the string expected to be read and send is the 

string to be sent when the expect string is received.
 The expect field may be made up of subfields of the form

expect [-send-expect]...
 where the send is sent if the prior expect is not successfully 

read and the expect following the send is the next expected 
string. (For example, login--login will expect login; if it gets it, 
the program will go on to the next field; if it does not get login, 
it will send nothing followed by a new line, then expect login 
again.) If no characters are initially expected from the remote 
machine, the string “” (a null string) should be used in the first 
expect field.

 There are two special names available to be sent during the 
login sequence. The string EOT will send an EOT character, 
and the string BREAK will try to send a BREAK character. 
(The BREAK character is simulated using line speed changes 
and null characters and may not work on all devices and/or 
systems.) A number from 1 to 9 may follow the BREAK (e.g., 
BREAK1, will send 1 null character instead of the default of 3).  
Note that BREAK1 usually works best for 300/1200-baud 
lines.

There are several character strings that cause specific actions when they are a 
part of a string sent during the login sequence.

\s Send a space character.
\d Delay one second before sending or reading more characters.
\c If at the end of a string, suppress the new-line that is normally 

sent. Ignored otherwise.
\N Send a null character.

These character strings are useful for making uucp communicate via direct lines 
to data switches.
A typical entry in the L.sys file would be

sauron Any xns  xns  xns  "" ^M\c ogin:--ogin: uucp assword: censored

The expect algorithm matches all or part of the input string as illustrated in the 
password field above.



136    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix I:

Dialing Prefixes
This file contains the dial-code abbreviations used in the L.sys file (e.g., py, mh, 
boston). The entry format is

abb dial-seq
where abb is the abbreviation and dial-seq is the dial sequence to call that 
location.
The line

py 165

would be set up so that entry py7777 would send 1657777 to the dial unit.

Userfile
This file contains user accessibility information. It specifies four types of 
constraints:

1. Files that can be accessed by a normal user of the local machine.
2. Files that can be accessed from a remote computer. 
3. Login name used by a particular remote computer.
4. Whether a remote computer should be called back in order to confirm 

its identify.
Each line in the file has the format

login,sys [c] pathname [pathname] .../
where

login is the login name for a user or the remote computer.
sys is the system name for a remote computer.
c is the optional call-back required flag.
pathname is a pathname prefix that is acceptable for sys.

The constraints are implemented as follows:
1. When the program is obeying a command stored on the local 

machine, the pathnames allowed are those given on the first line in 
the USERFILE that has the login name of the user who entered the 
command. If no such line is found, the first line with a null login is 
used.

2. When the program is responding to a command from a remote 
machine, the pathnames allowed are those given on the first line in 
the file that has the system name that matches the remote machine. 
If no such line is found, the first one with a null system is used.



Version 1.0

IRIS WORKSTATION GUIDE    137 Appendix I:

3. When a remote computer logs in, the login name that it uses must 
appear in the USERFILE. There may be several lines with the same 
login name but one of them must either have the name of the  
remote system or must contain a null system name.

4. If the line matched (3.) contains a “c”, the remote machine is called 
back before any transactions take place.

The line
u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose 
names start with /usr/xyz. The line

you, /usr/you

allows the ordinary user you to issue commands for files whose name starts 
with /usr/you. (This type restriction is seldom used.) The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u. If its system name is not m,  
it can only ask to transfer files whose names start with /usr/spool. If it is system 
m, it can send files from paths /usr/xyz as well as /usr/spool. The lines

root, /
, /usr

allow any user to transfer files beginning with /usr but the user with login root  
can transfer any file. (Note that any file that is to be transferred must be  
readable by anybody.)

Forwarding File
There are two files that allow restrictions to be placed on the forwarding 
mechanism. The format of the entries in each file is the same,

system
or

system,user,user2,...
The file ORIGFILE (/usr/lib/uucp/ORIGFILE) restricts the access of systems that 
are attempting to forward through the local system. The file contains the list of  
systems (and users) for whom the local system is willing to forward. Each  
entry refers to the system that was the source of the original job and not the  
name of the last system to forward the file. The second file, FWDFILE  
(/usr/lib/uucp/FWDFILE), is a list of valid systems that a job can be forwarded to.  
(It is not necessarily the name of the destination of a job, but merely the next  
valid node.) This file will be a subset of the L.sys file and can be used to  
prevent forwarding to systems that are very expensive to reach but to which



138    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix I:

access by local users is allowed (e.g., links to overseas universities). If neither 
of these files exist, uucp will be perfectly happy to forward for any system. As 
an example, if the entry for system australia were in the ORIGFILE but not in  
the FWDFILE on system mhtsa, it would mean that system australia would be 
capable of forwarding jobs into the network via system mhtsa. However, no 
system in the network could forward a job to australia via system mhtsa.

I.4 Administration
The role of the uucp administrator depends heavily on the amount of traffic  
that enters or leaves a system and the quality of the connections that can be 
made to and from that system. For the average system, only a modest amount 
of traffic (100 to 200 files per day) pass through the system and little if any 
intervention with the uucp automatic cleanup functions is necessary. Systems 
that pass large numbers of files (200 to 10,000) may require more attention  
when problems occur. The following parts describe the routine administrative 
tasks that must be performed by the administrator or are automatically 
performed by the uucp package. The section on problems describes the most 
frequent problems and how to effectively deal with them.

Cleanup
The biggest problem in a dialup network like uucp is dealing with the backlog 
of jobs that cannot be transmitted to other systems. The following cleanup 
activities should be routinely perfonned by shell scripts started from cron(1).

Cleanup of Undeliverable Jobs
The uudemon.day procedure usually contains an invocation of the uuclean 
command to purge any jobs that are older than some fixed time (usually 72 
hours). A similar procedure is usually used to purge any lock or status files.  
An example invocation of uuclean(1M) to remove both job files and old status 
files every 48 hours is: 

/usr/lib/uucp/uuclean -pST -pC -n48

Cleanup of the Public Area
In order to keep the local file system from overflowing when files are sent to  
the public area, the uudemon.day procedure is usually set up with a find  
command to remove any files that are older than 7 days. This interval may  
need to be shortened if there is not sufficient space to devote to the public 
area.



Version 1.0

IRIS WORKSTATION GUIDE    139 Appendix I:

Compaction of Log Files
The files SYSLOG and LOGFILE that contain logging information are compacted 
daily (using the pack command from the shell script uudemon.day) and should be 
kept for 1 week before being overwritten.

Polling Other Systems
Systems that are passive members of the network must be polled by other 
systems in order for their files to be sent. This can be arranged by using the 
uusub(1) command as follows:

uusub -cmhtsd

which will call mhtsd when it is invoked.

Problems
The following sections list the most frequent problems that appear on systems 
that make heavy use of uucp(1).

Out of Space
The file system used to spool incoming or outgoing jobs can run out of space 
and prevent jobs from being spawned or received from remote systems. The 
inability to receive jobs is the worse of the two conditions. When file space  
does become available, the system will be flooded with the backlog of traffic.

Bad ACU and Modems
The ACU and incoming modems occasionally cause problems that make it 
difficult to contact other systems or to receive files. These problems are usually 
readily identifiable since LOGFILE entries will usually point to the bad line. If  
a bad line is suspected, it is useful to use the cu(1) command to try calling 
another system using the suspected line.

Administrative Problems
Some uucp networks have so many members that it is difficult to keep track of 
changing passwords, changing phone numbers, or changing logins on remote 
systems. This can be a very costly problem since ACU’s will be tied up calling 
a system that cannot be reached.

I.5 Debugging
In order to verify that a system on the network can be contacted, the uucico 
daemon can be invoked from a user’s terminal directly. For example, to verify 
that mhtsd can be contacted, a job would be queued for that system as follows:



140    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix I:

uucp -r file mhtsd!/tom

The -r option forces the job to be queued but does not invoke the daemon to 
process the job. The uucico command can then be invoked directly:

/usr/lib/uucp/uucico -r1 -x4 -smhtsd

the -r1 option is necessary to indicate that the daemon is to start up in master 
mode (i.e., it is the calling system). The -x4 specifies the level of debugging  
that is to be printed. Higher levels of debugging can be printed (greater than  
4) but requires familiarity with the internals of uucico. If several jobs are  
queued for the remote system, it is not possible to force uucico to send one 
particular job first. The contents of LOGFILE should also be monitored for any  
error indications that it posts. Frequently, problems can be isolated by  
examining the entries in LOGFILE associated with a particular system. The file 
ERRLOG also contains error indications.



Appendix J: OEM Kernel Generation for the IRIS 
Workstation

J.1 Introduction
The purpose of this document is to describe the method for generating a kernel  
which includes OEM device drivers. Towards this goal, some of the 
differences between the Silicon Graphics System V and the standard System V 
implementations will be discussed. However, this document does not attempt 
to teach device driver writing.

J.2 Device Drivers
Changes in the device driver interface occur in several areas: device addressing, 
interrupt levels, the physical (raw) I/O interface and the addition of the auto-
configuration process. Only the modifications to the physical I/O interface will  
be discussed here. Refer to the document Building 4.2BSD UNIX Systems with 
Config for a discussion of the auto-configuration additions.

Device Addressing
All devices are addressed through the Multibus I/O space. The OEM customer 
is restricted to the Multibus addresses within the range: 0xF000 to 0xFFFF. 
Silicon Graphics has reserved the remainder of the Multibus I/O space for its  
own use. The constant MBIOBASE, defined in ../pmII/cpureg.h, is used as the  
base address for the Multibus I/O space. The actual device address, in the 
kernel virtual space, is the sum of the MBIOBASE constant and the device’s 
assigned Multibus I/O address.
A second restriction for OEM Multibus devices is that they decode full 16-bit 
I/O addresses. Older 8-bit decoding I/O devices will not function correctly. 
They may also damage themselves and any other device on the bus. This 
damage can also occur when configuring two devices at the same address. It is 
strongly recommended that you verify your device addresses to make sure it is 
within the allowed address range.

Version 1.0



142    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix J:

Interrupt Levels
Currently the only interrupt level available for OEM use is level 5 and is further 
restricted to the IRIS Workstation. Development is in progress to allow shared 
interrupt levels.

Physical I/O Interface
The physical I/O interface under the IRIS system is different from the standard 
System V interface in a few important ways. First, the physio procedure now 
takes the following arguments:

physio(strategy, tab, dev. rdwri, min)
int (*strategy)();
struct buf *tab;
dev_t dev;
int rdwri;
int (*min)();

strategy is the address of the device driver strategy routine.
tab points to the head of the devices active queue.
dev is the argument given to the devread or devwrite 

routine.
rdwri is either B_READ or B_WRITE as defined in  

../h/buf.h.
min is the address of a routine use to bound the amount  

of physio done for the current request.
The physio routine uses minphys to bound a given request, but will continue to  
loop until u.u_count is zero, or an error occurs. The standard minimum routine 
for DMA drivers is called minphys and is defined in ../h/system.h. In the case 
where a driver needs its own minphys routine, it is recommended that the  
system minphys routine be called prior to the bounding done by the device 
driver. This will account for hardware limitations on virtual I/O.

J.3 Kernel Generation
The Silicon Graphics configuration system is based on the Berkeley auto-
configuration mechanism provided by 4.2BSD. Its purpose is to ease the task 
of system construction and to automate as much of the kernel generation as 
seems reasonable. What config(8) provides is the ability to generate a makefile to 
construct the system, as well as a configuration file describing the devices to be 
used by the system.
First we will give the step by step procedure for generating a kernel with OEM 
supplied device drivers. An example follows the procedure.



Version 1.0

IRIS WORKSTATION GUIDE    143 Appendix J:

Procedue for Kernel generation
1. Change your directory to the standard kernel configuration area.

% cd /usr/sys/conf

2. Choose a template file based on your IRIS Workstation model and 
its options. Currently, the following kinds of configurations are 
available:

1400 The standard 1400 system.
1400gpib The standard 1400 system, with a GPIB 

interface.
1400tcp The standard 1400 system, with TCP.
1500 The standard 1500 system.
1500gpib The standard 1500 system, with a GPIB 

interface.
1500tcp The standard 1500 system, with TCP.

3. Choose a system name. This name binds together the configuration 
operation.

4. Copy the template file onto an OEM-specific configuration file.
% cp [system-name] [system-name]

5. Create a directory to build your kernel in.
% mkdir ../[system-name]

6. Edit the configuration file created in step 3 and modify the ident line 
to reflect the system name you have chosen.

7. Add your device driver specifications to your configuration file (as 
created from the template file in step 3).

8. Create the file files.[system-name] to contain the necessary  
information describing each of the OEM device drivers. See the 
document Building 4.2BSD UNIX Systems with Config for further  
details of the format for this file.

9. Create the makefile to generate your kernel.
% config -b [system-name]

10. Update the makefile to contain the current dependency information 
regarding your device drivers.

% cd ../[system-name]
% make depend

11. Compile and load your kernel. The resulting kernel is named 
bvmunix.



144    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix J:

% make binary

Normally, a new kernel is tested before it is installed for general use. This test 
usually takes the form of booting the new kernel while keeping a backup copy 
of the old kernel. The following steps copy your kernel into the root file system 
and reboot the system:

1. Login as the super-user (via login(1) or su(1)), and change the correct 
directory, if necessary.

# cd /usr/sys/ [system-name].

2. Copy your kernel to the root directory.
# cp bvmunix /testvmunix

3. Start single-user mode.
# /etc/single

4. Flush the in core buffer information out to disk.
# sync

5. Reboot the machine.
# reboot -q

6. When the reboot -q command finishes, the system will be under the 
control of the PROM Monitor. Boot the new kernel.

iris> b testvmunix

Example
This example illustrates the generation of a kernel with one OEM supplied 
device driver. We assume the following:
a. We are configuring for the IRIS 1400 Workstation.
b. We have chosen OEM for our system name. This name is very important 
because it binds the configuration process together.
c. Existence of a mythical disk controller, the Wahoo 727. This device 
is addressed at Multibus I/O address 0xFEDC (in the OEM range 0xF000 to 
0xFFFF). The interrupt level of this controller must be level 5.
This device is an smd disk controller which drives at most 4 disks in a standard 
smd manner. We will give the device the name wa. This name is used in /dev for the 
device nodes, and by config(8) for auto configuring and diagnostic purposes.
Based on this information, the necessary specifications for the configuration 
file are:



Version 1.0

IRIS WORKSTATION GUIDE    145 Appendix J:

# Wahoo 727 smd disk controller
controller    wah0      at mbO csr 0xFEDC priority 5 vector waintr
disk          wa0       at wah0 drive 0
disk          wa1       at wah0 drive 1
disk          wa2       at wah0 drive 2
disk          wa3       at wah0 drive 3

d. The source for the Wahoo 727 driver lives in /usr/sys/OEM/wahoo.c.
To generate the kernel the necessary steps are:

1. Change the directory to the kernel configuration directory.
% cd /usr/sys/conf

2. Choose a configuration template file and copy it.
% cp 1400 OEM

3. Edit the file OEM and modify the ident line to reflect the new system 
name:

ident PMII       ---->       ident OEM

4. Add the wahoo configuration specifications to the file OEM:
# Wahoo 727 smd disk controller
controller      wah0    at mb0 csr 0xFEDC priority 5 vector waintr
disk            wa0     at wah0 drive 0
disk            wa1     at wah0 drive 1
disk            wa2     at wah0 drive 2
disk            wa3     at wah0 drive 3

5. Place the following line in the file files.OEM:
OEM/wahoo.c      optional wa     device-driver

6. Configure a makefile for generating a kernel.
% config -b [system-name]

7. Update the makefile to contain the current dependency information 
about your device drivers.

% cd ../OEM
% make depend

8. Compile and load your kernel.
% make binary

9. Your kernel is complete and resides in the file bvmunix. It can be 
booted with the PROM Monitor. Reboot the system.

% reboot -q

10.  Boot the kernel.
iris> b bvmunix



146    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix J:



Appendix K: The IRIS Terminal Programming Environment

This document describes the construction of a custom IRIS terminal program  
and the corresponding remote graphics library. The programming  
environment is supported on an IRIS Workstation, and builds programs that 
run on an IRIS Terminal. In addition, programs can be compiled with the IRIS 
Terminal programming environment that can be downloaded into the IRIS 
Terminal and run independently of a host processor.
With the IRIS Terminal programming environment, you can add or delete 
routines from the IRIS Graphics Library. Added routines allow you to run 
complex, interactive code segments locally for faster response and no network 
or remote host delays. Unused routines can be removed from the standard 
library to save memory space on the IRIS Terminal.
The process of modifying the IRIS Graphics Library involves three steps. First,  
new routines are added and unused routines are deleted from the IRIS  
Graphics Library. The procedures for this are described in Section K.4 and K.5. 
Second, the remote graphics library (libgl.a) is compiled. Section K.6 describes 
the make procedure for compiling a new remote graphics library. Finally, the  
IRIS terminal program (iris) is reconfigured to contain or omit the routines. 
Section K.7 describes the make procedure for compiling a new IRIS terminal 
program. The new IRIS Graphics Library can be tested by compiling an 
application program with the new remote graphics library and running the 
application program on an IRIS Terminal that has been booted with the new 
IRIS terminal program.
The IRIS Terminal programming environment generates GL 1.9 code. There  
are a few incompatibilities between GL 1 and GL 1.9 that are described in GL 1  
and GL 1.9 Software Differences. Mostly they affect object editing, picking, and 
curves. There are some additional routines as well. When the programming 
environment is first shipped, these GL 1.9 routines may not yet have been  
ported to the IRIS Workstation, so programs written to run on the IRIS 
Workstation will use GL 1, and the IRIS Terminal programming environment 
will be GL 1.9. As soon as possible, GL 1.9 will be ported to the IRIS  
Workstation. If this has not yet been done, watch out for the differences 
mentioned in the document referred to above.

Version 1.0



148    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix K:

K.1 How the IRIS Terminal Program Works
The IRIS terminal program1 consists of three parts: a communication section, a 
terminal emulator, and a dispatch routine.
The communication section controls the network connection (where “network” is 
taken to mean RS-232, Ethernet (XNS or IP/TCP), or IEEE 488—any reliable 
byte-stream protocol). We call the computer on the other end of this network 
the remote host, and programs that run there control the IRIS terminal program.
The terminal emulator part behaves like a standard ASCII terminal. Characters 
sent to this routine are drawn on the textport, and certain escape characters 
have special interpretations (insert line, move cursor, clear textport, etc.).
The dispatch routine reads characters from the network, does the appropriate 
thing on the IRIS, and perhaps returns characters to the remote host. When 
graphics programs are not being run on the remote host, this usually amounts 
to sending every character to the terminal emulator part of the program. If the 
IRIS is not in graphics mode, the dispatch routine also sends keystrokes from 
the keyboard to the remote host. If the graphical escape character is sent by  
the remote host, the dispatch routine will go into graphics mode and will 
interpret the next few characters as a graphics command.
The graphical part of the dispatch routine is completely table-driven. The 
format of the table below is artificially simple—the exact details appear later in 
this document—but we will use it to show how the dispatch routine works.

Token Command Parameters
1 move “fff”
2 move2i “ll”
3 clear “”
4 color “s”
5 isobj “lB”
6 getmatrix “F:16”

All of the routines in the IRIS Graphics Library (as well as a few others) appear  
in this table. The characters in the parameters column indicate the types of 
arguments the commands take. “fff” means that the move command takes 3 
floating-point numbers; “ll” means two longs (32-bit integers); “” means that 
the clear command has no parameters; “s” means a short (a 16-bit integer);  
“lB” means that the isobj command is sent a long and returns a byte (boolean 
values are returned as bytes). The last example, getmatrix, requires no input 
parameters and returns 16 floating-point numbers.

1. See also, IRIS Terminal Guide; Appendix F.



Version 1.0

IRIS WORKSTATION GUIDE    149 Appendix K:

Every graphics command from the remote host is preceded by a graphics  
escape	 character,	 indicated	 here	 by	 <GESC>.2 The command token is sent 
encoded as two bytes, and is followed by byte-encoded versions of all the 
other input parameters. The dispatch routine decodes the command and its 
parameters, and calls the command on the IRIS. If any values are returned,  
they are sent by the dispatch routine to the remote host.

K.2 Software Installation
The IRIS Terminal programming environment can be installed anywhere in the 
UNIX file system.

1. Make a directory to hold your IRIS Terminal programming 
environment. This document assumes that this directory is called  
/usr/progenv.

% mkdir /usr/progenv

2. Change the current directory to /usr/progenv.
% cd /usr/progenv

3. Read the contents of the distribution tape into the new directory.
% tar -x

 You should now have subdirectories doc, dllib, engr, host, internet,  
and term.

4. The libraries contained in the IRIS Terminal programming 
environment should be ranlib-ed. The most important are those 
libraries in $IRIS/lib. A version of ranlib is contained in $BIN.

% cd $IRIS/lib
% $BIN/ranlib68 libgl.a
% $BIN/ranlib68 libV.a

K.3 Environment Variables
All the makefile’s refer to their targets relative to environment variables. Before 
using any of the makefile’s, your environment must be properly set up.

1. The $BOOT variable should be set to an appropriate directory for 
storing IRIS terminal programs and other files for downloading into 
the IRIS Terminal. The IRIS Terminal programming environment 
makefile’s install IRIS terminal programs in $BOOT.

2.	<GESC> is currently ASCII 16, or CONTROL -P, but that may change.



150    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix K:
 

% ls $BOOT
...

2. Create a sub-directory to test IRIS terminal programs generated with 
the IRIS Terminal programming environment.

% mkdir $BOOT/test

 The IRIS Terminal programming environment makefile’s install IRIS 
terminal programs in $BOOT/test. After testing these IRIS terminal 
programs, they should be moved to $BOOT.

3. The following csh commands define the environment variables for 
the IRIS Terminal programming environment:

% setenv BASE /usr/progenv/engr
% setenv DESTDIR /usr/progenv/engr
% setenv MACHINE MC68000
% setenv SYSTEM SYSTEM5

4. Next, source the file env.csh (if you are using csh — the C shell) or  
env.sh (if you use sh — the Bourne shell).

% source env.csh

K.4 Adding Commands to the IRIS Graphics Library
To add a new command to the IRIS Graphics Library, you need to:

•	Write	and	 test	 (on	 the	 IRIS	Workstation,	 if	possible),	 the	routine	 to	 
be added.

•	Add	this	routine	to	the	$IRIS/srclterm/local.c file.
•	Make	 an	 appropriate	 entry	 into	 the	 command	 table	 

($IRIS/lib/lib.prim). Section W.5 describes the entry format of the  
$IRIS/lib/lib.prim file.

•	Run	makefile’s that automatically generate a new version of the IRIS 
terminal program and of the remote graphics library.

As an example, suppose you wish to make an IRIS Graphics Library command 
that clears the screen to a given color, and then returns the number of bitplanes 
on the system. The following routine on the IRIS Workstation does this: 

short funnycolor(col)
Colorindex col;
{
    color(col);
    clear 0 ;
    return getplanes();
}

If you call x = funnycolor(BLACK) on the remote host, the screen will clear to  
BLACK, and the number of available bitplanes will be returned in x.



Version 1.0

IRIS WORKSTATION GUIDE    151 Appendix K:

The IRIS Terminal programming environment makefile’s are set up so that 
simplest change — adding a single routine to the remote graphics library —   
requires changing only two files. These are $IRIS/lib/lib.prim and  
$IRIS/src/term/local.c. local.c contains the source code for all the additional 
routines, and lib.prim describes the parameters and return values of each of the 
IRIS Graphics Library routines.
lib.prim is used by awk scripts to generate both the dispatch table in the IRIS 
terminal program and the remote graphics library for C and FORTRAN. The 
first part of the file contains documentation for the table entries, and serves as 
a good source of examples. Most routines can be added to the list by following 
the pattern of a similar existing entry. Details of the lib.prim entry format are 
provided in the next section.
The position of an entry in the lib.prim file determines its dispatch number. 
New routines should therefore be added to the end of the list, or all previously 
compiled programs may become incompatible. Additions or deletions from the  
middle of the list will cause this problem. To delete a routine from the  
standard library, replace the entry with:

V:V:bogus( )

Note that there are already some bogus entries in the list. They hold places for 
commands from older versions of the IRIS Graphics Library that have changed 
or disappeared. At the end of the list is another special entry called lastone.  
New entries to lib.prim should be made just before this special entry.
The makefile in the $IRIS/src/term directory assumes that all additional source 
code for the IRIS terminal program appears in the file local.c. If the IRIS  
terminal program additions are extensive, you can add files to this makefile.

K.5 lib.prim Entries
This section describes the entries in the lib.prim file. It is much easier to follow 
the discussion below with a copy of lib.prim in front of you. For most routines,  
a complete understanding of this section is unnecessary.
Each entry in the lib.prim file has the following general form:

<returntype>:<procedurename>( <parameterdescription> )

The	<procedurename> is the name of the routine, and should be unique in the  
first	six	characters.	The	<parameterdescription> is a list of entries from the table 
of defined types in the comment at the beginning of the lib.prim file. The 
<returntype> is slightly different and will be described later.
Each	 entry	 in	 the	 <parameterdescription> is either a pair or a triplet separated 
by colons. The first letter in each pair or triplet describes the type that will 
be generated by the awk script. In the C version, for example, a generates type  
char, k generates type Colorindex, and so on.



152    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix K:

The second part of each entry (also a letter) is somewhat redundant  
information that tells the physical type of the entry. This could be looked up 
in a table, but it is included so that the awk scripts will run faster. Lower-case 
letters are used if the parameter is sent by the remote host; upper-case is used 
for parameters received. For example, in the entry k:s, the k means that the 
logical type is Colorindex, and the s means that a Colorindex is actually a 16-bit 
short. Since s is lower-case, this means that a short is transmitted from the host 
to the IRIS Terminal.
The third part of triplet entries is used for lengths of arrays of items. It can  
be a constant or have the form arg<m> or <n>*arg<m>, where <n> and  
<m> are constants (arg5 or 3*arg4, for example). If it is a constant, then it is  
the absolute size of the array. Arrays whose size depends on other parameters 
to the function are described with the other form. For example, the actual  
entry for poly is:

V:V:poly( u:l L:f:3*arg1 )

The first entry is u:l, meaning that the first parameter from the poly routine is  
of type integer, and is transmitted as a 32-bit long. The second entry,  
L:f:3*arg1, means that the next parameter is of type Coord _[][], the data to be 
transmitted is of type float, and the number of floats to be transmitted is 3  
times the value of the first argument to the routine.
Some of the entries in the table have the following form: I:f:len,F:len,F. This 
means that any of these forms are legal: I:f:len, I:F:len, I:F.
<returntype>	 is	 similar	 to	 the	 entries	 in	 the	 <parameterdescription>. Note that 
entries	with	 a	 non-void	 <returntype> always return values to the host—so in 
all cases, the second part of the entry is in upper-case. To return a short, use 
the entry e:S. The e tells the awk script to use the type short, and that the value 
is sent as a 16-bit short. It might seem that f:S should be used as listed in the 
defined types in the comment in lib.prim, but this would cause the awk scripts 
to generate:

short *foo();

instead of:
short foo();

Basically, the problem is the difference between variables appearing on the left-  
and right-hand side of an assignment. The assignment a = b takes the value of  
b and stuffs it into the location of a.

K.6 Generating a Remote Graphics Library
A remote graphics library (libgl.a) can be compiled with a single make 
procedure.

1. Change the current directory to /usr/progenv/host/c/src/gl.



Version 1.0

IRIS WORKSTATION GUIDE    153 Appendix K:

% cd /usr/progenv/host/c/src/gl

2. Compile the remote graphics library.
% make install

The new remote graphics library is in the directory /usr/progenv/engr/c/lib. It can 
be copied (and ranlib-ed) to some other directory.

K.7 Generating an IRIS Terminal Program
An IRIS terminal program (iris) can be compiled with a single make procedure.

1. Change the current directory to /usr/progenv/term.
% cd /usr/progenv/term

2. Compile the IRIS terminal program.
% make install

The new IRIS terminal programs will be generated in $BOOT/test.
This make command generates three IRIS terminal programs: iris, tcpiris, and  
iris488. iris is for serial or XNS connections, tcpiris is for serial or TCP  
connections, and iris488 is for IEEE 488 connections. To save time. you can 
simply issue a make iris command to compile a single IRIS terminal program  
for serial and XNS connections.

K.8 Compiling a Downloadable Application Program
The procedure for compiling an application program for downloading into the  
IRIS Terminal is similar to the procedure for compiling an IRIS terminal 
program. It involves a single make procedure. A template makefile is included  
in /usr/progenv/track. It can be modified for other applications.

1. Change the current directory to /usr/progenv/track.
% cd /usr/progenv/track

2. Compile the IRIS terminal program.
% make track.dsk

A downloadable file called track.dsk will be generated in the current directory .

K.9 IRIS Terminal Program Routines
There are some restrictions on the routines that run on the IRIS.
Your new routines can call any commands in the IRIS Graphics Library and can 
contain arbitrary stand-alone code. UNIX does not run on the IRIS Terminal, 
however, so do not make any UNIX system calls. In particular, there is no 
file system. If you need to transfer files to and from the IRIS Terminal, they 



154    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix K:

should be sent and returned as arrays.
In general, do not use any of the I/O routines from the standard C library, or  
you will interfere with the operation of the IRIS terminal program. To do 
I/O, use IRIS Graphics Library commands (getvaluator(), getbutton(), etc.).  
WARNING: the libraries that you load do contain many of the standard C I/O 
routines. The IRIS terminal program uses them for its I/O (to deal with the 
physical keyboard, etc.). If you call them, you will get unpredictable (and 
possibly catastrophic) results. Since you are building the whole IRIS terminal 
program, these routines must appear in the library. It may be possible to re-
arrange these libraries in such a way that there is less danger, but this has not 
been done so far.
You may use the standard storage management routines — malloc(), free(),  
and friends—and the math routines. In fact, routines that are usually  
considered to be part of the I/O library that are not related to physical I/O can 
also be used. sprintf(), for example, can be used.
All the routines in the IRIS Graphics Library that are not exported have names 
beginning with gl_. If you avoid these names, names in the IRIS terminal 
program itself, and the C I/O routines mentioned above, you should not have 
any problems with name conflicts.
Some other warnings are in order, and although they may seem obvious, they are 
worth stating. The list below is not complete, but gives a flavor of the dangers:

•	Infinite	 loops	will	 cause	 the	 IRIS	 terminal	 program	 to	 hang,	 since	 
the dispatch routine just waits for the local routine to return before  
it continues with the next command.

•	Your	new	routine	runs	 in	 the	same	address	space	as	 the	rest	of	 the	
graphics library, and there is no array-bounds checking, etc. Bad 
code can write over the entire IRIS terminal program. malloc() and 
free() use the same free list as the rest of the IRIS Graphics Library, 
so errors in storage allocation can crash the IRIS Terminal.

•	If	 you	 call	 makeobj() but not closeobj(), and then call a custom  
routine that calls makeobj(), you will get the same result as you  
would by calling makeobj() twice in a row from the remote host —  
 i.e., probably not exactly what you want.



Appendix L: GL 1 and GL 1.9 Software Differences

This document describes the differences between release 1 of the graphics 
library (the standard release) and the version that is used in the IRIS terminal 
programming environment. The programming environment is a small part of 
GL 2 -- a project involving major hardware and software enhancements. Much 
of the GL 2 software will run on old hardware, and we provide a subset of that  
new software as the preliminary programming environment. GL 1 and GL 2  
are not completely compatible, but are nearly so. When it is important to 
distinguish between the terminal programming environment and the full GL 2, 
we will call the terminal programming environment GL 1.9; otherwise, we call 
them both GL 2.

L.1 Miscellaneous Changes
•	bbox() and bboxi() are not available.
•	Object	fonts	are	not	available.
•	curve() accepts only a geometry matrix. The basis and precision 

matrices are specified separately (see curve section).
•	modify() is not available.
•	The	name	of	sync() has changed to gsync(). sync() conflicts with a UNIX 

system call.
•	The	 type	 definition	 for	 RGBvalue is now unsigned char (instead of 

short).
•	swapbuffers() can be put into a display list.

L.2 Display List Editing

Internal Format
Display list internal format has changed to make insertion/deletion more 
efficient. Graphical objects now use a linked structure that is occasionally 
compacted. This makes better use of memory—even if the IRIS’ main memory 
is badly fragmented, it will all be available for display list space, since even 
a long display list can be kept in pieces. When an object is closed, it may be 

Version 1.0



156    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix L:

compacted, depending on how much space can be recovered. The new routine 
compactify(object) gives users explicit control of the compactification.
With the ability to program the terminal, display list editing becomes much less 
important. With the GL 2 hardware, it will become even less so. In principle, 
terminal programmers can develop their own display list structure and 
interpreters.

Tag handling
GL 2 will make the following changes to object editing:

1. Every object automatically has two tags marking the beginning and  
end of the object STARTTAG and ENDTAG. These tags cannot be 
deleted, and no items can be added before the first nor after the last  
tag. One can begin an insertion following ENDTAG, but as each  
item is added, ENDTAG moves to the end of the object.

2. There are no offsets in object editing commands. All deletions are  
tag-to-tag. All insertions and replacements begin immediately 
following a tag. The delete command is now: delete(tag1, tag2);  
the replace and insert commands become: replace(tag) and  
insert(tag).

3. To edit between two tags, we provide the command newtag(newtag,  
oldtag, offset) that makes a new tag offset commands ahead of  
oldtag.

4. Tags retain their ordering. In GL 1, if tag1 and tag2 point to the  
same place within a display list, it is impossible to insert items after 
tag1 but before tag2. In GL 2, even if there are no items between  
tag1 and tag2, but tag1 is before tag2, insert (tag1) will add items  
between the two tags. In GL 2, tags can be thought of as being 
physically in the display list.

5. There is a deletetag(tag) routine.

L.3 Picking
Picking has changed considerably. You now have explicit control of a name 
stack with pushname(name), loadname(name), and popname(). Names are 16 bits  
long; if you need more than 16 bits, call pushname() more than once. A hit in  
pick/select mode returns the entire name stack.
The buffers for endpick(buffer) and endselect(buffer) consist of name-lists of  
16-bit names each corresponding to a single hit. The first number in each  
name-list is the length of the name-list. The endpick() and endselect()  
routines return the number of name-lists. If it returns a positive number, then 
all the hit data is in the buffer; if it is negative, its magnitude is the number of  
valid name-lists in the buffer—there was not enough room in the buffer to 



Version 1.0

IRIS WORKSTATION GUIDE    157 Appendix L:

hold all the hit data.
For example, suppose that the following sequence of events occurs:

pick(100);
pushname(10);
<hit>;
pushname(20);
<hit>;
<hit>;
popname();
pushname(30);
pushname(65);
<hit>;
popname();
popname();
popname() ;
endpick(foo);

Each <hit> above stands for a graphics library command that would have 
caused something to be drawn on the screen. Other drawing commands that 
would cause no hits could be arbitrarily interspersed among the commands 
above with no effect on the final contents of the array foo[].
In the example above, endpick() would return 4: (the number of hits). 4 is  
positive, so all hits that occurred are recorded in the buffer. If the result of 
endpick() were negative, some unknown amount of information would be 
missing. If there is missing data, then the recorded hits are the first ones that 
occurred after pick() / select() was called.
After endpick(), the array foo[] contains 12 16-bit numbers:

1 10  -- first hit; one name; stack = [10]
2 10 20 -- second hit; two names; stack = [10 20]
2 10 20 -- third hit; two names; stack = [10 20]
3 10 30 65 -- fourth hit; three names; stack = [10 30 65]

L.4 Programming the IRIS
This section is primarily of interest those wishing to program the IRIS terminal. 
The callfunc() command is, however, available on both the workstation and  
the terminal.
The easiest way to program the terminal is to write a routine in C, add it to a 
dispatch table (see the document on programming the IRIS terminal), and then 
make the program and remote host stubs. Such a routine will be part of the 
terminal program, but cannot be compiled into a display list.
callfunc(procname, nargs, arg1, arg2, ..., argn) lets you call an arbitrary  
routine from within a display list. procname is the name of the procedure to be 
called; nargs is the number of arguments; and the arguments are arg1, ..., argn. If 
procname returns a value, it is ignored. All arguments are called by value.



158    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix L:

L.5 Changes to existing commands
width, in linewidth(width), can be arbitrary (in GL 1 it had to be 1 or 2).
The matrix stack depth is no longer limited to 8. There is a hardware stack 
limit of 8, but on overflow the extra matrices are stored in software.  
Obviously, pushing and popping matrices is faster if the stack is shorter than 
8.

L.6 Additional commands
blankscreen(on/off) -- turns off the display. This is useful during massive  
color map changes -- garbage does not appear on the screen.
getcpos(&ix, %iy) -- get the current character position, and returns it in the 
variables ix and iy.
getgpos(&fx, %fy, &fz) -- get the current graphics position, and returns it in  
fx, fy, and fz.
getopenobj() -- returns the object identifier of the object currently open for  
editing. If there is no open object, it returns -1.
getmcolor(color, &r, &g, &b) -- given a colormap index, return its red, green,  
and blue components.
pmov(), pmovi(), pmov2(), pmov2i() -- polygon move. With these, you can use  
your own data structures for polygons. Polygons must still be convex or the 
result of drawing them is undefined.
pdrw()], pdrwi()], prw2()], pdrw2i() -- polygon draw.
pclose() -- polygon close.
rmov(), rmovi(), rmov2(), rmov2i() -- relative move.
rdrw(), rdrwi(), rdrw2(), rdrw2i() -- relative draw.
rpmv(), rpmvi(), rpmv2(), rpmv2i() -- relative polygon move.
rpdr(), rpdri(), rpdr2(), rpdr2i() -- relative polygon draw.

L.7 Feedback
GL 1.9 still supports the old GL 1 versions of the feedback routines. The  
feedback routines. include transform(), clippnt(), clipline(), clippoly(),  
and screenpnt(). In GL 2, these routines will be replaced by a much more  
general feedback() command. To simplify conversion to GL 2, keep references  
to the GL 1 versions of the above commands localized.



Version 1.0

IRIS WORKSTATION GUIDE    159 Appendix L:

L.8 Input/Output
The GL 1 commands qvaluator(), qbutton(), and qkeyboard() have been  
replaced by the single command qdevice(). Similarly, the commands  
unqvaluator(), unqbutton(), and unqkeyboard() have been replaced by  
unqdevice(). A new device that can be queued or unqueued is KEYBOARD.  
Thus qdevice(KEYBOARD) is equivalent to the old GL 1 command qkeyboard().
GL 2 supports a logical ERROR device, and if the errors are queued, run-time 
errors will cause event queue entries rather than causing an error to be printed 
on the screen. The event will be of type ERROR, and the value will be an error 
number.
Here is a list of the possible error values and their numerical values.

Error Error number Description

ERR_SINGMATRIX 1 You tried to invert a 
singular matrix in one of 
the mapw commands.

ERR_OUTMEM 2 Out of memory. This can 
occur for many reasons.

ERR_NEGSIDES 3 You tried to specify a 
polygon with a negative 
number of sides.

ERR_BADWINDOW 4 You gave impossible 
data to the window() 
command.

ERR_NOOPENOBJ 5 You issued a display list 
editing command, and 
there was no object open 
for editing.

ERR_NOFONTRAM 6 You have run out of 
space in the font ram. 
You were probably trying 
to define a new raster 
font, texture, or cursor.



160    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix L:

Error Error number Description

ERR_FOV 7 The field of view for the 
viewing command is 
illegal (probably zero).

ERR_BASISID 8 The basis identifier you  
have tried to use is 
undefined.

ERR_NEGINDEX 9 You have used a negative 
index in a routine such as  
linestyle() or  
texture().

ERR_NOCLIPPERS 10 In a clippoly()  
command, you didn’t 
specify any clippers. If 
this is what vou really 
want, use transform() 
instead.

ERR_STRINGBUG 11 This should not happen. 
Please report it to your  
Silicon Graphics 
representative.

ERR_NOCURVBASIS 12 You tried to issue a 
curve() command, and 
there is no current basis 
matrix.

ERR_BADCURVID 13 In defbasis(), that 
identifier is already 
defined.

ERR_NOPTCHBASIS 14 This is not implemented 
yet. It cannot happen.

ERR_FEEDPICK 15 Feedback is not allowed 
in picking (or selecting) 
mode.



Version 1.0

IRIS WORKSTATION GUIDE    161 Appendix L:

Error Error number Description

ERR_INPICK 16 You tried to do 
something that is illegal 
in picking mode.

ERR_NOTINPICK 17 You tried to do 
something that is illegal 
except in picking mode.

ERR_ZEROPICK 18 You have specified 
a zero-size picking 
window.

ERR_FONTBUG 19 This should never 
happen. Please report it 
to your Silicon Graphics 
representative.

ERR_INRGB 20 You are in RGB mode, 
and tried to issue a 
command that deals 
with the color map.

ERR_NOTINRGB 21 You are not in RGB 
mode, and tried to issue 
an RGB command.

ERR_BADINDEX 22 You used an illegal 
index in some color 
command.

ERR_BADVALUATOR 23 You tried to use an 
invalid valuator 
number.

ERR_BADBUTTON 24 You tried to use an 
illegal button number.

ERR_NOTDBMODE 25 You tried to issue a 
command that is legal 
only in double buffer 
mode.



162    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix L:

Error Error number Description

ERR_BADINDEXBUG 26 This should not happen. 
Please report it to your  
Silicon Graphics 
representative.

ERR_ZEROVIEWPORT 27 One of your viewport’s 
dimensions is zero.

ERR_DIALBUG 28 This should not happen. 
Please report it to your  
Silicon Graphics 
representative.

ERR_MOUSEBUG 29 This should not happen. 
Please report it to your  
Silicon Graphics 
representative.

ERR_RETRACEBUG 30 This should not happen. 
Please report it to your  
Silicon Graphics 
representative.

ERR_MAXRETRACE 31 There can be at most 20 
retrace events (probably 
blink commands) active 
at one time.

ERR_NOSUCHTAG 32 The tag you specified 
does not exist.

ERR_DELBUG 33 This should not happen. 
Please report it to your  
Silicon Graphics 
representative.

ERR_DELTAG 34 This should not happen. 
Please report it to your  
Silicon Graphics 
representative.

ERR_NEGTAG 35 You specified a negative 
tag number.



Version 1.0

IRIS WORKSTATION GUIDE    163 Appendix L:

Error Error number Description

ERR_ TAGEXISTS 36 The tag you are trying to 
create already exists.

ERR_OFFTOOBIG 37 The offset you specified 
is too big. Your object 
does not contain that 
many entries.

ERR_ILLEGALID 38 You have given an illegal 
object identifier in  
makeobj().

ERR_GECONVERT 39 The IEEE -  GE conversion 
routines got an illegal 
number.

ERR_BADAXIS 40 You can only rotate about  
the x, y, and z axes in the 
rotate command.

ERR_BADTIMER 41 This is not implemented 
yet. It cannot happen.

ERR_BADDEVICE 42 You specified an illegal 
device number.

ERR_BADSCRBUTTON 43 This is not implemented 
yet. It cannot happen.

ERR_PATCURVES 44 This is not implemented 
yet. It cannot happen.

ERR_PATPREC 45 This is not implemented 
yet. It cannot happen.

ERR_CURVPREC 46 The curve precision must  
be	≥	1.

ERR_PUSHATTR 47 Attribute stack overflow

ERR_POPATTR 48 Attribute	stack	underflow

ERR_PUSHMATRIX 49 Matrix stack overflow



164    IRIS WORKSTATION GUIDE 

Version 1.0

Appendix L:

Error Error number Description

ERR_POPMATRIX 50 Matrix stack underflow

ERR_PUSHVIEWPORT 51 Viewport	stack	overflow

ERR_POPVIEWPORT 52 Viewport	stack	underflow

L.9 Curves
The curve() routine specifies only a geometry matrix. The precision and basis 
matrices are set up in separate calls. The curvs() routine creates a different 
interface to the curve routines, allowing multiple splines to be drawn with one 
call. Instead of only 4 control points, it specifies an arbitrary number n	≥4.

defbasis(id, basis)
long id;
Matrix basis;

Defines a basis matrix and associates an id with it. In this way, one can have 
predefined bases for B spline, Cardinal spline, etc.

curvbasis (basisid)
long basisid;

Sets the current basis matrix.
curvprecision(nsegments)
short nsegments;

Explicitly sets the number of segments used to approximate the curve.
curve(geom)
Coord geom[4][3];

curvs(n, geom)
long n;
Coord geom[][3];


