
VMS XNS Series 2000/3000
Software Guide

Description

This package contains the documentation needed to install and use XNS
software on a VAX running the VMS operating system. It is comprised of:

VMS XNS Software Notes, part number 5001-002-001-0

Although VMS XNS software release contains all the capabilities of the stan-
dard workstation release, some features have not been fully implemented, it
requires certain workarounds. These notes document workarounds associated
with the release and minor bugs not mentioned in the list of known problems in
the documentation.

VMS XNS Software Installation Series 2000, part number 5001-004-001-0

This document discusses the XNS software Revision N2.3 for VAX/VMS. It
contains software installation and testing procedures, file descriptions, and di-
agnostic procedures.

VMS XNS User’s Guide, part number 5001-003-001-0

This document describes XNS software library and utilities programs for VMS.
It discusses procedural interface, usage, problems, and restrictions and contains
descriptions of the XNS library routines and the three client application pro-
grams: xx, xlogin, and xcp.

Silicon Graphics, Inc.
2011 Stierlin Road

Mountain View, CA 94043

Document Number 007-0302-010

Document Number 5001-002-001-0

VMS XNS Software Notes
August 1985

Although this release contains all the capabilities of the standard workstation
release, some features have not yet been fully implemented (these features will be
implemented soon); it requires the workarounds mentioned below. This page also
includes a discussion of some minor bugs not mentioned in the list of known
problems in the documentation.

Utilities
Running on VMS Communicating with a workstation

xx

Since XNSEOF transmits 2 garbage characters in addition to the EOF, (see the
description of xnseof in the following Libraries section) the following
problem occurs:

$ xx sgi_workstation cat > /tmp/foo
hello sailor
^Z
$

If you check the file /tmp/foo on sgi_workstation, it has 2 extra characters at
the end.

xcp

A lost connection error will occur if the following conditions are ALL met:

1. Transferring multiple files from VMS to the workstation (via
wildcards or using a list of input files on the command line)

2. At least one of the files to be transferred has the following
format:

A. Fixed length records

B. Truncated last record

The suggested workaround is to transfer the file(s) with the fixed length
records with individual xcp commands.

Document Number 5001-002-001-0

Running on a Workstation Communicating with VMS

xlogin

If you xlogin to VMS, you will not return control to the workstation when
logging out. To do this, you must enter " ." as the first two characters on a
line (they will not echo). You may do this either before or after entering
"logout".

If you xlogin to your VMS host from a workstation, then xlogin back to your
workstation, either the connection will fail or you will be logged off VMS.
You will need to use " ." as described in the previous paragraph to return
control to your workstation.

xx

If you xlogin to your VMS host from a workstation, then use xx to login back
to your workstation, either the connection will fail or you will be logged off
VMS. You will need to use " ." to return control on your workstation (see
xlogin above).

Xx is not available for talking to VMS from the workstation yet. If you need
information from your VMS host, you must use xlogin for now.

xcp

xcp cannot be used directly from the workstation. Instead, xlogin to your VMS
host, and run xcp from there, xcp on VMS will transfer tiles to/from your
workstation.

Libraries
xnslib.olb modules

xnseof

XNSEOF transmits 2 garbage characters in addition to the EOF.

xclose

If a workstation sends information (using xwrite or xnswrite) then closes the
connection, the VMS host reading (using xread or xnsread) from the
connection will not receive all the data that was sent, and may cause an error.

VMS XNS Software Installation
Series 2000

Release N2.3

Silicon Graphics, Inc.
630 Clyde Court

Mountain View, CA 94043

Document Number 5001-004-001-0

Technical Publications:

Marcia Allen
Robin E. Florentine
Steven A. Locke
Susan Luttner
Celia Szente
Diane M. Wilford
Glen Williams

© Copyright 1985, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of
Silicon Graphics, Inc., and is protected by Federal
copyright law. The information may not be
disclosed to third parties or copied or duplicated in
any form, in whole or in part, without prior written
consent of Silicon Graphics, Inc.

The information in this document is subject to
change without notice.

VMS XNS Software Installation Series 2000
Document number: 5001-004-001-0

Ethernet and VMS are trademarks of Xerox Corporation.
VMS is a trademark of Digital Equipment Corporation.

CONTENTS

 1. Introduction . 1

 2. VMS XNS Installation . 3
 2.1 Reading the Tape . 3
 2.2 Installing the Software 4

 3. Verification . 5
 3.1 Terminal . 5
 3.2 Workstation . 7

 Appendix A: File Descriptions. 9

 Appendix B: Terminal Diagnostics . 11

Release N2.3 Series 2000

1. Introduction

This document discusses the XNS software Revision N2.3 for VAX/VMS. Read
this document thoroughly before proceeding.

There are three chapters and two appendices in this document.

•	 Chapter	1	contains	this	introduction.

•	 Chapter	2	covers	reading	the	tape.

•	 Chapter	3	contains	information	on	testing	the	software.

•	 Appendix	A	contains	the	file	descriptions.

•	 Appendix	B	covers	diagnostics.

Silicon Graphics provides a comprehensive product support and maintenance
program for IRIS Series 2000 Products. For further information, contact
Customer Service through the Geometry Hotline.

Silicon Graphics Geometry Hotline

(800) 252-0222

(800) 345-0222

(415) 962-0606

U.S. except California (toll-free)

California (toll-free)

Worldwide (collect)

Release N2.3 Series 2000

2. VMS XNS Installation

2.1 Reading the Tape
The installation tape is a standard VAX/VMS backup tape, written at a density
of 1600 BPI. Be sure to remove the write ring before mounting the tape, if one
is present. If you also ordered the FORTRAN remote graphics library, install it
AFTER installing this package. When this package is successfully installed, you
can delete any previous versions of this software.

1. Login as the system manager, and type the following:
$ ASSIGN _MTA0: XNSTAPE ! Substitute your tape drive for _MTA0:
$ MOUNT/F0REIGN/N0WRITE/DENSITY=1600 XNSTAPE
 ! For binaries only
$ BACKUP/VERIFY/LOG XNSTAPE:XBN23.BCK SYS$SYSDEVICE:[IRIS.XNSN23]
 ! For binaries and sources
$ BACKUP/VERIFY/LOG XNSTAPE:XSN23.BCK SYS$SYSDEVICE:[IRIS.XNSN23]
$!Be sure to use SYS$SYSDEVICE.

2. If there are any problems reading in the distribution tape:

•	 Check	the	density	settings	on	the	drive.

•	 Clean	the	tape	heads.

•	 Try	another	drive,	if	you	have	one.

•	 Call	your	Silicon	Graphics	representative	for	a	replacement	tape.

Series 2000 Release N2.3

4 VMS XNS S/W Installation VMS XNS Installation

2.2 Installing the Software

CAUTION:

Since it is possible the system may crash when installing the
software, you should install the software when it is safe to crash
the system.

1. Use a hard-copy terminal tor your installation.

2. Set your default to the device and directory containing the XNS
software:

$ SET DEFAULT SYS$SYSDEVICE:[IRIS.XNSN23]

3. Silicon Graphics provides a command file that automatically updates
the software. To execute this file, type:

$ @XNSINSTAL

Release N2.3 Series 2000

3. Verification

This chapter provides procedures tor verifying that the XNS communications
software functions properly.

3.1 Terminal
1. Go to an IRIS terminal that has the Ethernet cable attached.

 Push the button labelled RESET . The following prompt will appear
on the top left part of the monitor screen:

iris >

 If you do not get the prompt, you may have a hardware problem.
Check the following:

a. Configuration switches (see IRIS Terminal Guide, Series
2000 and appropriate Software Distribution documents).

b. If you’re upgrading your IRIS, make sure the upgrade
was completed (that is, the Ethernet tap is secure, etc.).

2. To download the IRIS terminal with the graphics monitor, enter the
following:

iris> n yourhostname:filename

 In the above command, yourhostname is the exact name you’ve given
your host, and filename is GL2T22. This file is included as part of
the Remote FORTRAN Software Distribution.

 When downloading the GL2T22 file, the following message appears:
Downloading......................:

 Next, the screen clears, and the following prompt appears:
Network iris terminal GL2 ...
Connect to what host?

 If you make any typing errors, use backspace, not erase, to delete
characters.

Series 2000 Release N2.3

6 VMS XNS S/W Installation Verification

 Downloading Problems

•	 If	the	“Downloading	...”	message	does	not	appear:

a. Check that the Unibus adapter, base CSR, and
interrupt vector addresses on the Interlan board agree
with the numbers in the XNSLOAD.COM file.

b. Make sure that the NPR jumper has been removed
from the Unibus. (CA1 to CB1 on the backplane).

c. See Appendix B, Terminal Diagnostics.

•	 If	the	“Downloading	...”	message	appears,	but	the	colon	doesn’t	
appear:

a. Push the RESET button, and try again.

b. Check the SYSGEN parameter BUFIO, and make sure
the value is greater than 512 (decimal).

•	 If	the	error	message	“no	boot	server	responding”	appears:

a. Double check that you spelled the hostname exactly as
found in the XNSLOAD.COM file.

b. See Appendix B, Terminal Diagnostics.

•	 If	the	error	message	“open	file	connection	error”	appears:

a. Double check your spelling of GL2T22 or dbiris.

b. See Appendix B, Terminal Diagnostics.

3. The following prompt appears:
Network iris terminal GL2 ...
Connect to what host?

 Enter:
yourhostname

 The screen clears, and you will have the standard login from VMS.
You should now be successfully logged on. (The delete character is
now your standard delete character.)

 The terminal is set up to emulate a VT52; you should enter:
$ SET TERMINAL/DEVICE_TYPE=VT52

Release N2.3 Series 2000

Verification VMS XNS S/W Installation 7

NOTE: The emulation has a few
characteristics	 above	 and	 beyond	 the	 “usual”	
VT52, see the IRIS Terminal Guide, Series 2000
for more information.

 If you incorrectly enter your password, or somehow manage to get
the	“User	authorization	failure”	message,	you	will	have	to	reboot	the	
terminal with the RESET button.

4. If you have the Silicon Graphics Remote FORTRAN Software
Distribution, set your default to that of the remote demo programs,
and try running the remote demos (SQIRAL, STAR, and FLOATS).
See the FORTRAN distribution file FRTINSTAL.TXT on how to run
these programs.

3.2 Workstation
To test the software on the IRIS Workstation, try some of the utilities, such as
xcp and xlogin. You must use level GL2-W2.3 or greater software.

1. On the IRIS workstation, enter the following:

xx host command !eg: xx olympus date
xcp file host:filename
xcp host:file filename
xlogin host

2.	 Repeat	 the	 above	 steps	 on	 the	 “host”	 communicating	 to	 the	 IRIS	
workstation. If the files are copied correctly, XNS is working.

Release N2.3 Series 2000

Appendix A: File Descriptions

These files are contained on the host machine (e.g., VAX) software distribution
tape.

BRCV.EXE Tests whether any broadcast messages are being received
from the IRIS. This image will not boot the IRIS
terminal.

BROADECHO.EXE Tests whether the broadcast message that it sends out to
the net makes it back in.

ECHO.EXE Tests to see if the echo packet it sends out addressed to
itself makes it back. (Loop around test).

SETHOST.EXE Process that starts up the xns server processes for the
IRIS terminal, and sets the hostname.

SGB00T.EXE Creates a detached process that boots IRIS terminals.

SGBOUNCE.EXE Creates a detached process that handles bounce packets.

SGEXEC.EXE Creates a detached process that handles connections on
the EXEC socket.

STARTXNS.COM Command file to (re)start the XNS server processes.

STOPXNS.COM Command file to stop the XNS server processes.

XCP.EXE File transfer utility.

XNSD.EXE XNS detached process.

XNSDRIVER.EXE XNS driver that does the I/O to the Interlan board.

XNSINSTAL.COM Command file for installing the XNS software. See
Section 2 in this manual.

XNSINSTAL.TXT This file.

XTDRIVER.EXE The	“terminal”	driver	associated	with	the	XNS	driver	that	
queues requests to the XNS driver.

Release N2.3 Series 2000

Appendix B: Terminal Diagnostics

Run this software only if you install the XNS software and determine that you
cannot boot an IRIS terminal. These diagnostics do not apply to the IRIS
workstation.

If ail these diagnostics work, the IRIS is able to transmit broadcast packets, and
the VAX can transmit and receive packets. The diagnostics do not determine
whether the IRIS can receive packets.

First remove the bootserver processes that are running on the system, by
entering the following:

$ SET DEFAULT XNS$DIR
$ @STOPXNS

You are now ready to run the diagnostics. Run the diagnostics in the
following order: BROADECHO, ECHO, and BRCV.

To restart the bootserver processes, enter:

$ SET DEFAULT XNS$DIR
$ @STARTXNS

Series 2000 Release N2.3

12 VMS XNS S/W Installation Terminal Diagnostics

B.1 BROADECHO
This program writes a broadcast packet out the net, and then attempts to read
that packet back in. To run the diagnostic, enter:

$ RUN BROADECHO

The following output is what shows up on the screen if broadecho has run
successfully:

This program is a loop-around test to find out if we can send bounce
packets out to the Ethernet and retrieve them. Only broadcast
is used.

ALL NUMBERS WILL BE REPORTED IN HEX

Test pattern is abcdefghijklmnopqrstuvwxyz0123456789
Opening channel to XNS
Channel successfully opened, using 50
Setting physical address on net
VMS net address is 2 7 1 0 7 9d

Establishing self as local bounce server

Now the official bounce server

Now we’re about to send out a bounce packet

Immediate destination:

ff ff ff ff ff ff

Immediate source:

2 7 1 0 7 9d

Internet packet type should be 80 16

Internet packet type:

80 16

Data in packet:

Release N2.3 Series 2000

Terminal Diagnostics VMS XNS S/W Installation 13

a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Posting a read for a bounce packet

We got a packet!

The following is a bounce packet description:

The number of characters read is 80

Immediate destination:

ff ff ff ff ff ff

Immediate source:

2 7 1 0 7 9d

Internet packet type should be 16 80

Internet packet type:

16 80

Data in packet:

 a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4
5 6 7 8 9

Error Descriptions

Establishing self as local bounce server
Now the official bounce server

If	 the	 above	messages	 do	 not	 appear,	 but	 instead	 “Can’t	 become	 the	 bounce	
server...”	 appears,	 stop	 the	 xns server processes. To do this, enter the
following commands:

$ SET DEFAULT XNS$DIR
$ @STOPXNS

If	the	line	“Posting	a	read	for	a	bounce	packet”	appears,	but	the	line	“We	got	a	
packet!”	doesn’t	 appear,	 the	VAX	Ethernet	board	 is	 either	not	broadcasting	or	
receiving broadcast packets correctly.

Series 2000 Release N2.3

14 VMS XNS S/W Installation Terminal Diagnostics

B.2 ECHO
This program writes a packet addressed to itself out to the net, then attempts to
read it back in. To run the diagnostic, enter the following:

$ RUN ECHO

The following output is what shows up on the screen if echo has run successfully:

This program attempts to find out if we can send bounce packets out to the
Ethernet and grab them back again - four basic loop around test, broadcast
is not used - only the host machine is addressed

ALL NUMBERS WILL BE REPORTED IN HEX

Test pattern is abcdefghijklmnopqrstuvwxyz0123456789

Opening channel to XNS

Channel successfully opened, using 50

Getting physical address on net

VMS net address is 2 7 1 0 7 9d

Establishing self as local bounce server

Now the official bounce server

Now we’re about to send out a bounce packet

Immediate destination:

2 7 1 0 7 9d

Immediate source:

2 7 1 0 7 9d

Internet packet type should be 80 16

Internet packet type :

Release N2.3 Series 2000

Terminal Diagnostics VMS XNS S/W Installation 15

80 16

Data in packet:

a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Posting a read for a bounce packet

We got a packet back!

The following is a bounce packet description:

The number of characters read is 80

Immediate destination:

2 7 1 0 7 9d

Immediate source:

2 7 1 0 7 9d

Internet packet type should be 16 80

Internet packet type:

16 80

Data in packet:

 a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4
5 6 7 8 9

Series 2000 Release N2.3

16 VMS XNS S/W Installation Terminal Diagnostics

Error Descriptions

Establishing self as local bounce server
Now the official bounce server

If	 the	messages	above	do	not	appear,	and	 instead	 the	message	“Can’t	become	
the	 bounce	 server	 ...”	 appears,	 you	 should	 stop	 the	 xnsserver processes, by
entering the following commands:

$ SET DEFAULT XNS$DIR
$ @STOPXNS

If	the	line	“Posting	a	read	for	a	bounce	packet”	appears,	but	the	line	“We	got	a	
packet!”	doesn’t	appear,	 then	 the	VAX	Ethernet	board	 is	either	not	sending	or	
receiving packets correctly.

After you are finished running the diagnostics, enter:

$ SET DEFAULT XNS$DIR
$ @STARTXNS
$ SHOW SYSTEM

The SGBOOT, SGBOUNCE, and SGEXEC processes will return to the display.

Release N2.3 Series 2000

Terminal Diagnostics VMS XNS S/W Installation 17

B.3 BRCV
This	program	sets	up	a	“read”	on	the	net,	looking	tor	the	broadcast	packet	that	
is sent from the IRIS terminal when given the iris>n host:file command. The
IRIS terminal will not boot up, but BRCV should report that it received a
packet. To run the diagnostic, enter:

$ RUN BRCV

The following output is what shows up on the screen if brcv has run successfully:

This program checks for bounce packets on the Ethernet
but will not boot anything. It is strictly a test.

ALL NUMBERS WILL BE REPORTED IN HEX

Opening channel to XNS

Channel successfully opened, using 50

Getting physical address on net

VMS net address is 2 7 1 0 7 9d

Establishing self as local bounce server

Nov the official bounce server

Posting a read for a bounce packet

Please go to the IRIS and enter a boot command like:

iris> n aardvark:boink

Bounce packet received!

The following is the bounce packet description:

The number of characters read is 74

Immediate destination:

ff ff ff ff ff ff

Series 2000 Release N2.3

18 VMS XNS S/W Installation Terminal Diagnostics

Immediate source:

8 0 14 0 20 38

Internet packet type:

16 80

Data in packet:

C : a a r d v a r k : b o i n k

Error Descriptions

Establishing self as local bounce server No* the official bounce server

If	the	above	messages	do	not	appear,	and	instead	the	message	“Can’t	become	the	
bounce	server	...”,	appears,	you	should	stop	the	xnsserver	processes,	by	entering	
the following commands:

$ SET DEFAULT XNS$DIR
$ @STOPXNS

If the diagnostics ECHO and BROADECHO run successfully, but the message
“Bounce	packet	received!”	doesn’t	appear	after	entering	the	boot	command	on	
the IRIS terminal, then the IRIS terminal Ethernet board is not working
properly. It is either not broadcasting correctly, or is not responding to it’s
Ethernet address (found on the Ethernet board).

VMS XNS User’s Guide

Version 1.0

Silicon Graphics, Inc.
2011 Stierlin Rd.

Mountain View, CA 94043

Document Number 5001-003-001-0

Technical Publications:

Marcia Allen
Robin E. Florentine
Steven A. Locke
Susan Luttner
Celia Szente
Diane M. Wilford
Glen Williams

© Copyright 1985, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of
Silicon Graphics, Inc., and is protected by Federal
copyright law. The information may not be
disclosed to third parties or copied or duplicated in
any form, in whole or in part, without prior written
consent of Silicon Graphics, Inc.

The information in this document is subject to
change without notice.

VMS XNS User’s Guide
Document number: 5001-003-001-0

Ethernet and VMS are trademarks of Xerox Corporation.
VMS is a trademark ot Digital Equipment Corporation.

CONTENTS

 1. Introduction . 1

 2. Procedural Interface . 3
 2.1 Introduction . 3
 2.2 XNS Subroutine Library 3
 2.2 The QIO Interface . 4

 3. Examples . 7
 3.1 Introduction. 7

 Appendix A: Known Problems and Restrictions 15

 Appendix B: Manual Pages . 17

Version 1.0 VMS XNS

1. Introduction

Silicon Graphics Ethernet software for the VMS operating system consists of a
pair of device drivers, several application programs, and a software library.
The XNS device driver is written for an Interlan 1010 device. It provides a
VMS interface to the device and an implementation of the Xerox Sequenced
Packet Protocol (SPP). The XT device driver is used in conjunction with the
XNS device driver to provide remote terminal service on VMS. The XT driver
acts as a bridge between the SPP transport protocol and the VMS terminal class
driver.

Client application programs are provided to run commands on other computer
systems, transfer files between systems, and log onto other systems over the
Ethernet. These programs are xx, xlogin, and xcp; they are described in
Appendix B. Note that these programs must be defined as foreign commands.
Server application programs are provided on VMS that allow users on other
computer systems to run commands on VMS, transfer files, and to log into
VMS. In addition, server programs are provided to support the downloading
of Silicon Graphics diskless systems.

The software library contains C routines that provide access to the SPP
functions of the XNS driver. These functions include creating SPP connections
to other hosts, and listening for incoming connections as well as the expected
read-write I/O functions.

This document describes XNS software library and utilities programs for VMS.

There are three chapters and two appendices in this document.

•	 Chapter	1	contains	this	introduction.

•	 Chapter	2	contains	information	on	procedural	interface.

•	 Chapter	3	contains	information	on	usage.

•	 Appendix	A	describes	known	problems	and	restrictions.

•	 Appendix	B	contains	descriptions	of	the	XNS	library	routines	and	the	three	
client application programs xx, xlogin and xcp.

VMS XNS Version 1.0

2 VMS XNS User’s Guide Introduction

Silicon Graphics provides a comprehensive product support and maintenance
program for Silicon Graphics Products. For further information, contact
Customer Service through the Geometry Hotline.

Silicon Graphics Geometry Hotline

(800) 252-0222

(800) 345-0222

(415) 962-0606

U.S. except California (toll-free)

California (toll-free)

Worldwide (collect)

Version 1.0 VMS XNS

2. Procedural Interface

2.1 Introduction
The XNS library contains Ethernet driver access routines plus other functions
that are used in network utilities provided by Silicon Graphics. These routines
are documented by manual pages in Appendix B of this manual. The XNS
library routines access the device driver using sys$qio calls. If you need to
write your own access routines, refer to Section 3.3.

2.2 XNS Subroutine Library
All the routines are found in xnslib, described in Appendix B.

Two external variable declarations are needed in the application program when
using any of the following routines: gethostname, xclose, xnsconnect, xnseof,
xnsfile, xnslisten, xnsread, xnswrite, xread, or xwrite. They should look like this
in the user program:

int vmserrno, xns_efn;
main(argc, argv)
{
...
}

Vmserrno is the last status code passed back by a VMS system call in the XNS
library. You can show the error returned with the SYS$PUTMSG call, or by
way of DCL with the line,

exit(vmserrno);

Xns_efn is the event flag number you want the XNS routines to use. All the
XNS calls are synchronous, so you can set xns_efn to 0.

VMS XNS Version 1.0

4 VMS XNS User’s Guide Procedural Interface

2.3 The QIO Interface
This section describes the VMS C-language QIO interface to the SGI XNS
driver.

The following list contains the VAX11 C include files needed to define
structures and system constants:

descrip.h
iodef.h
psldef.h
signal.h
ssdef.h
stsdef.h

Function codes for the P1 parameter in IO$_ACCESS follow:

#define XNS_SET_HOST 1/* Set Host Name*/
#define XNS_LISTEN 2/* Listen for connection*/
#define XNS_TRACE_INFO 3/* Get trace info*/
#define XNS_BOUNCE_SERVER 4/* Register as the bounce server*/
#define XNS_GET_PHYSADDR 5/* Get physical Ethernet address*/
#define XNS_FAST_IO 6/* Set fast I/O mode*/
#define XNS_CONNECT 7/* Connect to foreign host*/
#define XNS_GET_HOST 8/* Put Host Name into str descr*/

The following are offsets into the VMS IOSTAT block (see below for the VMS
IOSTAT block):

#define IOSTAT 0
#define BYTECOUNT 1
#define DTYPE 2

Variables expected by some of the code below follow:

int vmserrno; /* VMS System service error return */
int xns_efn; /* io event flag used by vms*/
unsigned short iosb[4]; /* vms iostat (status block) */
unsigned short channel; /* vms io channel */
char buffer[]; /* user io buffer */
unsigned int chan; /* ins channel */
int size; /* io byte count */

For each of the calls below, success is indicated if (vmserrno&STS$M_SUCCESS) is set.
An error is indicated if the STS$M_SUCCESS bit is clear. In addition,
iosb[IOSTAT]&STS$M_SUCCESS should be checked as noted below.

Version 1.0 VMS XNS

Procedural Interface VMS XNS User’s Guide 5

Assigning an IO Channel

Use the following call to obtain a VMS IO channel for the XNS driver:

static $DESCRIPTOR(xns0_chan_desc, “XNS0:”);

vmserrno = sys$assign(&xns0.chan_desc,*channel,PSL$C_USER,0);

iosb[IOSTAT] & STS$M_SUCCESS

Making an XNS Connection

Connect to the host addressed by the xns_setup descriptor. Xns_setup is
described on the manual page for xnsphysconnect in Appendix B.

struct { int size; struct xns_setup *ptr; } descr;

descr_size = sizeof(descr);

vmserrno = sys$qiow(xns_efn,chan,I0$_ACCESS,iosb,0,0,
XNS_CONNECT,&descr,0.0.0.0);

Listening for an XNS Connection

Chan should be an active IO channel for the XNS driver. Success is returned
when the driver accepts an incoming connection request for the specified socket.

vmserrno = sys$qio*(xns_efn,chan,IO$_ACCESS,iosb,0,0,
XNS_LISTEN,socket,0,0,0,0);

Netread

Read SIZE bytes from the network into BUFFER.

The current XNS datastream type is returned in iosb[DTYPE]. The byte count
read from the driver is returned in iosb[BYTECOUNT]. The code below returns 0
on end of file, -1 on failure, and returns the transfer count on success.

vmserrno = sys$qiow(xns_efn,chan,IO$_READVBLK,iosb,0,0,
buffer,size,0,0,0,0);

if (!(iosb[IOSTAT] & STS$M_SUCCESS)) {
 if (iosb[IOSTAT] == SS$_ENDOFFILE)
 return(0);
 vmserrno = iosb[IOSTAT];
 return(-1);
}
return(iosb[BYTECOUNT]);

VMS XNS Version 1.0

6 VMS XNS User’s Guide Procedural Interface

Netwrite

Write SIZE bytes from IO BUFFER using datastream type DTYPE. The code below
returns -1 on failure and returns the byte count on success.

vmserrno = sys$qiow(xns_efn,chan,IO$_WRITEVBLK,iosb,0,0,
buffer,size,dtype,0,0,0);

if (!(vmserrno* STS$M_SUCCESS))
 return(-1);
if (!(iosb[IOSTAT] & STS$M_SUCCESS)) {
 vmserrno = iosb[IOSTAT];
 return(-1);
}
return(size);

Terminate Connection

Connections are terminated when a program exits or when it explicitly
deassigns the VMS channel.

vmserrno = sys$dassgn(chan);

Version 1.0 VMS XNS

3. Examples

3.1 Introduction
This section contains examples of using the XNS procedural interface in a
program that tests the flow control software for XNS. If the program is given
an argument, it becomes the sender of data. With no argument, it is the
receiver. The test should be run twice, once for each direction of data flow.

The routine xnsconnect is used by the sender to connect to a socket. The
routine xnslisten is used by the receiver to connect to a socket. The routines
xread and xwrite are used to read and write data, xclose is used to close the
socket connection. Note that under SYSTEM V, xread, xwrite, and xclose do not
exist and read, write, and close are used instead.

USAGE:

flow [-d] hostname

SWITCHES:

 -d turns on debugging mode, prints out packets as they are sent or
received.

NOTES:

To compile properly the following variables must be defined:

IRIS 2400 : MC68000 SYSTEMS
VAX UNIX : VAX UNIX4_2
VAX VMS : vms

When running Unix, environment variables MACHINE and SYSTEM are set to
the appropriate values and the Makefile uses them. When running VMS, the
compiler defines VMS, so it works by itself.

VMS XNS Version 1.0

8 VMS XNS User’s Guide Examples

/***
/* compile time defines
/***/
#include <stdio.h>
#include <errno.h>

#ifdef vms
#define errno vmserrno
#else
#define xread read
#define xwrite write
#define xclose close
#endif

#ifdef MC68000
#define byte_swap_long(i)
#else
#define byte_swap_long(i) {
 register char c,*cp;
 cp = (char *)&i;
 c = cp[0]; cp[0]=cp[3]; cp[3]=c;
 c = cp[1]; cp[1]=cp[2]; cp[2]=c:
}
#endif

#define MYSOCK 223

/***
/* global variables
/***/

short debug = 0; /* debug flag*/
short pause_flag = 0; /* pause flag*/
int COUNT = 120; /* number of packets to test*/
int error_count = 0; /* cumulative error count*/
extern int errno; /* external error number*/

Version 1.0 VMS XNS

Examples VMS XNS User’s Guide 9

/***
/* MAIN program
/***/

main (argc,argv)
 int argc;
 char **argv;
{
 register int i,j,f,sender;

 /***
 /* parse command line
 /***/
 while (—-argc >0 && **++argv == ’-’) {
 register char *token;

 for (token = argv[0] + 1; *token; token++)
 switch (*token) {
 case ’d’:
 debug = 1;
 break;
 default:
 fprintf (stderr, "illegal option %c\n", *token);
 break;
 }
 }
 if (argc > 1) {
 fprintf (stderr, "Usage: flow [-d] [hostname]\n");
 exit (0);
 }

VMS XNS Version 1.0

10 VMS XNS User’s Guide Examples

/***
/* establish network: connect or listen
/***/

if (sender = (argc > 0)) {
 begin_notice ("Performing ins connect operation");
 f = xnsconnect(*argv,MYS0CK);
 fprintf (stderr, "(%d) ",f);
 if (f >= 0) end_notice ();
 else {
 fail_notice ();
 goto end_of_test;
 }
}
else {
 begin_notice ("Performing ins listen operation");
 f = xnslisten(MYSOCK);
 fprintf (stderr,"(%d) ",f);
 if (f >= 0) end_notice ();
 else {
 fail_notice ();
 goto end_of_test;
 }
}

for (i=0; i<4; i++) {
 pause_flag = i & (sender ? 1:2);
 fprintf (stderr, "Performing flow control test #%d (%s)... ",
 i,pause_flag ? "PAUSING ON" : "pausing off");
 fflush (stderr);
 sender ? bench_write(f) : bench_read(f);
 end_notice ();
}

/***
/* close up the connection
/***/

begin_notice ("Performing close operation");
f = xclose(f);
fprintf (stderr, "(%d) ",f);
if (f >= 0) end_notice ();
else fail_notice ();

Version 1.0 VMS XNS

Examples VMS XNS User’s Guide 11

 /***
 /* count the number of errors and exit appropriately
 /***/

end_of_test:
 if (error_count > 0) {
 fprintf (stderr, "Test FAILED, %d errors encountered.\n",error_count);
 exit (1);
 }
 fprintf (stderr,"Test passed.\n");
}

bench_write (f)
 register int f;
{
 register long i,err;
 long j;

 for (i=0: i<COUNT; i++) {
 j = i;
 byte_swap_long(j);
 if ((err=xwrite(f,&j,4)) != 4) {
 fprintf (stderr,"\nERR0R: xns write failed (%d,%d)\n", err,errno);
 error_count++;
 return;
 }
 if (debug) {
 fprintf (stderr,"%d ",i);
 fflush (stderr);
 }
 pause (i);
 }

bench_read (f)
 register int f;
{
 register long i,err;
 long j;

 for (i=0; i<COUNT; i++) {
 if ((err=xread(f,&j,4)) != 4) {
 fprintf (stderr, "\nERR0R: xns read failed (%d,%d) \n" , err,errno);
 error_count++;
 return;
 }

VMS XNS Version 1.0

12 VMS XNS User’s Guide Examples

 byte_swap_long(j);
 if (debug) {
 fprintf (stderr,"%d ",i);
 fflush (stderr);
 }
 if (i != j) { /* compare data with expected result*/
 fprintf(stderr, "\nERR0R: xns data error (read %d should be %d)\n",
 j,i);
 error_count++;
 return;
 }
 pause (i+3);
 }
}

pause (j)
 register int j;
{
 register int i;

 if (!pause_flag) return;
 switch (j&7) { /* wait for a pseudo-random while*/
 case 1:
 sleep (1);
 break;
 case 2:
 sleep (2);
 break;
 case 4:
 for (i=0;i<5000;i"+);
 break;
 case 5:
 for (i=0;i<50000;i++);
 break;
 default:
 break;
 }
}

begin_notice (t)
 char *t;
{
 continue_notice (t);
 continue_notice (" ... ")s;
}

Version 1.0 VMS XNS

Examples VMS XNS User’s Guide 13

continue_notice (t)
 char *t;
{
 fprintf (stderr,t);
 fflush (stderr);
}

end_notice ()
{
 continue_notice ("done.\n");
}

fail_notice ()
{
 continue_notice ("FAILED.\n");
 error_count++;
}

Version 1.0 VMS XNS

Appendix A: Known Problems and Restrictions

If you have trouble downloading the software on your IRIS terminal, press the
RESET button.

All I/O requests are being tunneled through the terminal driver. This means
that if you are doing heavy I/O (especially with the graphics library) the system
response could become sluggish to the rest of the users. The remote graphics
library uses buffers which are almost always within the limits, but you may
want to monitor the BUFIO limit. To speed up the system response, use the
setfas subroutine.

This software release requires that the R1C or R1B prom sets are installed on
the IRIS GL1 terminal.

CAUTION

The driver is not reloadable. If you attempt to load the driver
again after it has been loaded, it may crash the system.

Version 1.0 VMS XNS

Appendix B: Manual Pages

- 1 -

BCMP(VMS) Silicon Graphics BCMP(VMS)

NAME
bcmp – bit and byte string operations

SYNOPSIS
bcmp(b1, b2, length)
char *b1, *b2;
int length;

DESCRIPTION
Bcmp compares byte string b1 against byte string b2, returning zero it they
are identical, non-zero otherwise. Both strings are assumed to be length
bytes long.

BUGS
The bcmp routine takes parameters backwards from strcmp.

- 1 -

BCOPY(VMS) Silicon Graphics BCOPY(VMS)

NAME
bcopy – copies ‘byte_count’ bytes from ‘source’ to ‘target’.

SYNOPSIS
void bcopy(source, target, byte_count)
char *source, *target;
int byte_count

DESCRIPTION
Return value: has no return value.

- 1 -

BYTESIZE(VMS) Silicon Graphics BYTESIZE(VMS)

NAME
bytesize – counts the number of bytes in a null terminated string, not including
the terminating null. (Same as the function strlen()).

SYNOPSIS
int bytesize (string_address)
char *string_address;

DESCRIPTION
Return value: returns the number of bytes in the string.

- 1 -

GETHOSTNAME(VMS) Silicon Graphics GETHOSTNAME(VMS)

NAME
gethostname – tills in the string descriptor with the current hostname. The
hostname has a maximum of 31 characters.

SYNOPSIS
int gethostname(string_descriptor)
struct {short len, type; char *ptr;} *string_descriptor;

DESCRIPTION
Return value: If successful, returns a 0. If not successful, returns -1.

- 1 -

INDEX(VMS) Silicon Graphics INDEX(VMS)

NAME
index – finds the first occurrence of a character in a null terminated string.

SYNOPSIS
char *index(string_ptr, search_char)
char *string_ptr;
char search_char;

DESCRIPTION
Return value: If the character is found, the address of the character is returned.
It the character is not found, a 0 is returned.

- 1 -

LOWERCASEIFY(VMS) Silicon Graphics LOWERCASEIFY(VMS)

NAME
lowercaseify – converts all uppercase characters A-Z in a null terminated
string to lowercase. All other characters are ignored.

SYNOPSIS
int lowercaseify(string_ptr)
char *string_ptr;

DESCRIPTION
Return value: The number of characters scanned, not including the ter-
minating null.

- 1 -

RINDEX(VMS) Silicon Graphics RINDEX(VMS)

NAME
rindex – finds the last occurrence of a character in a null terminated string.

SYNOPSIS
char *rindex(string_ptr, search_char)
char *string_ptr;
search_char;

DESCRIPTION
Return value: If the character is found, the address of the character is returned.
If no character is found, a 0 is returned.

- 1 -

UPPERCASEIFY(VMS) Silicon Graphics UPPERCASEIFY(VMS)

NAME
uppercaseify – converts all lowercase characters a-z in a null terminated
string to uppercase. All other characters are ignored.

SYNOPSIS
int uppercaseify(string_ptr)
char *string_ptr;

DESCRIPTION
Return value: The number of characters scanned is returned, not including
the terminating null.

- 1 -

XCLOSE(VMS) Silicon Graphics XCLOSE(VMS)

NAME
xclose – closes the channel/socket used tor XNS communications.

SYNOPSIS
int xclose(chan)
int chan;

DESCRIPTION
Return value: Returns a value of 0 if the channel is successfully closed.
Returns a value of –1 if there is an error closing the channel. The VMS
error return value is found in the external vmserrno.

- 1 -

XCMD(VMS) Silicon Graphics XCMD(VMS)

NAME
xcmd – execute a remote command via XNS.

SYNOPSIS
xcmd (host, command)
char *host, *command;

DESCRIPTION
Xcmd makes a network connection on socket EXECSOCKET, on host and
causes command to be executed remotely. It returns –1 if a connection can’t
be made. If the execution is successful, a channel is returned, to which
the remote process is attached. Reads and writes to this channel will
retrieve/send data from/to the remote process.

- 1 -

XCP(VMS) Silicon Graphics XCP(VMS)

NAME
xcp - transfers tiles between hosts via Ethernet XNS.

SYNOPSIS
$ XCP :== $DEVICE:[IRIS.XNSN23]XCP !install as a foreign command
$! VMS to UNIX copy
$ XCP {-dv} filespec1 filespec2 ... hostname::pathname
$! UNIX to VMS copy
$ XCP {-bv} {hostname1::}pathname {hostname2::}pathname ... filespec

where:

DEVICE:[IRIS.XNSN32]
is the directory tor the XNS software.

{}
enclose optional entries.

 pathname or filespec delimiters are spaces or tabs.

-b
is a flag that indicates a byte for byte copy from Unix to VMS.

-d
is a flag that indicates the Unix target pathname is a
directory on the remote host.

-v is a flag that means be verbose.

hostnamex
is the name of a remote host machine.

filespec
is a VMS file specification.

pathname
is a Unix pathname.

DESCRIPTION
The XCP utility is used to transfer tiles between hosts connected via Ether-
net using XNS protocols. It is supported tor both Unix and VMS systems,
though VMS to VMS transfers are not yet supported.

Flags

-b	 is	described	in	the	section	“VMS	output	files”,	

-d is useful only for transfers to Unix systems.

- 2 -

XCP(VMS) Silicon Graphics XCP(VMS)

-v	 names	the	currently	active	file,	and	prints	out	a	“.	“	for	every	20k	
bytes transferred.

Case

 Hostnames or Unix pathnames are case sensitive, and are limited
to 31 (decimal) alphanumeric characters or less. For example:
“hostname”,	“HOSTNAME”,	and	“Hostname”	name	3	different	
hosts,	“/foo”,	“/Foo”,	and	“/FOO”	are	3	different	Unix pathnames.

Because the XCP utility uses the VMS C compiler run-time library, all input
from the command line is lowercased unless enclosed in quotes. For exam-
ple:

$ XCP -V OLYMPUS::/USR/TMP/GARBAGE.TXT GARBAGE.TXT

$ xcp -v olympus::/usr/tmp/garbage.txt garbage.txt

will both copy the file /usr/tmp/garbage.txt from the remote host olympus to
the file GARBAGE.TXT in the current directory.

$	XCP	-V	“olympus::/usr/tmp/GARBAGE.TXT”	garbage.txt

will copy the file /usr/tmp/GARBAGE.TXT from the remote host olympus
to the file GARBAGE.TXT in the current directory.

Legal Hosts

Currently only Unix to VMS, or VMS to Unix transfers are supported,
hence, there must be one and only one hostname on the command line.

Wildcards

Wildcards in the filename, type, and version number are supported both
locally and remotely (as the hosts would normally interpret them), and related
input tile specifications are supported for VMS. Wildcards in the device or
directory specification are not supported. For example, if the current directory
holds A.MAR and B.MAR:

$ XCP -D *.MAR GINGER::/STAFF/ROGERS
$ XCP -D A.MAR B GINGER::/STAFF/ROGERS

will	 both	 copy	 A.MAR	 and	 B.MAR	 to	 the	 remote	 host	 “ginger”	
as /staff/rogers/a.mar and .staff/rogers/b.mar.

- 3 -

XCP(VMS) Silicon Graphics XCP(VMS)

$ XCP GINGER::./STAFF/ROGERS/*.MAR SYS$DISK:[FRED]*. MAR

assuming	“c.mar”	and	“d.mar”	are	in	the	directory	ginger::/staff/rogers,	this	
command will create the tiles SYS$DISK:[FRED]C.MAR and
SYS$DISK:[FRED]D.MAR (using the latest version numbers).

Version Numbers

Version numbers may be included either through wildcards or specifically
named. For example:

$ XCP -D BOGUS.DOC;1 FRED::/USR/TMP

will	copy	the	file	BOGUS.DOC;1to	the	UNIX	host	“fred”	with	a	pathname	of	
/usr/tmp/bogus.doc.1.

$ XCP -D *.MAR;* GINGER::/STAFF/ROGERS

Assuming the files A.MAR;2 and B.MAR;5 are in the current directory, this
command	will	copy	A.MAR;2	and	B.MAR;5	to	the	remote	host	“ginger”	as	
/staff/rogers/a.mar.2 and /staff/rogers/b.mar.5.

Filenames

Filenames are checked for correctness at their host. On VMS, related input
file specifications are supported. Spaces or tabs are legal filename delimiters.

VMS Input Files

Only sequential files are currently supported. XCP uses the VMS C run-time library
for emulating stream input from record files, of which the following is a summary
from the VAX-11 C programming manual:

If the record attributes are implied carriage control (RAT = CR), then a
newline is appended to the record.

If the record attributes are print carriage control (RAT = PRN), then the
prefix and postfix carriage controls are expanded and concatenated before
and after the record.

If the record attributes are FORTRAN carriage control (RAT = FTN), then
the first byte of the record is removed, and prefix and postfix characters
are concatenated to the record. The following rules describe the way the
character in the first byte maps onto the prefix and postfix bytes that

- 4 -

XCP(VMS) Silicon Graphics XCP(VMS)

appear in the emulated stream. <record> denotes the bytes contained in
the logical record exclusive ot the first carriage-control byte.

\n denotes the newline character;

\f denotes the form-feed character;

\r denotes the carriage-return character;

NUL -> <record>
0 -> \n\n<record>\r
1 -> \f<record>\r
+ -> <record>\r
$ -> \a<record>
all others -> <record>\r

CAUTION

An expanded record cannot exceed 512 bytes. Thus, the input
record generally must not exceed 510 bytes of actual data, since
up to two characters may be added in the expansion process.

VMS Output files:

Characteristics:
Sequential, contiguous best try
Extension quantity = default
Maximum version number

If the -b flag is used, then:
record format = fixed length (512 bytes)
record delimiter = none
record attributes = none

If the -b flag is NOT used, then:
record format = stream
record delimiter = line feed
record attributes = carriage return

Errors:

VMS gives up on the first error.

Bugs:

Transferring ASCII files from VMS to Unix and back may result in the two
files being a little different. Specifically, files are transferred over the network

- 5 -

XCP(VMS) Silicon Graphics XCP(VMS)

in stream format, with <lf> record terminators. If the original file was (for
example) an ASCII file using VFC records, then records could contain line
feeds as valid characters. When converted to stream format, that record
would then be converted to two records when sent over the net. They would
then return as two records as well.

Restrictions:

Record sizes should not exceed the maximum record size for VMS, which is
around 64K bytes. For ASCII file transfers, observe the 512 byte record size
limit mentioned above. This version of XCP should be used with the current
Silicon Graphics IRIS Workstation Software Distribution, GL2-W2.3 or IRIS
Workstation Software Distribution, GL1-W2.3.

- 1 -

XLOGIN(1C) Silicon Graphics XLOGIN(1C)

NAME
xlogin – remote login

SYNOPSIS
xlogin [-txz] rhost

DESCRIPTION
Xlogin connects your terminal on the current local host system to the remote
host system rhost. If no login is attempted within 60 seconds then xlogin
times out. All echoing takes place at the remote site, so that xlogin is tran-
sparent except for network delays. Unless otherwise specified, all characters
are immediately transmitted to the remote host system except ~. To disable
~ processing, use the -t flag.

If the -t flag is not specified and a ~ is typed immediately after a carriage
return, then the ~ is not sent to the remote host and the next character is
read. If the next character matches one of the following cases then the
described action is performed, else the two characters are sent to the remote
host:
~. Force xlogin to exit.
~% Xlogin reads another character. If the character is ‘X’ or Z’ then

local interpretation of special characters is toggled (see below).
Otherwise, all three characters are sent to the remote host.

~! Escape to an interactive shell on the local system. The value of the
environment variable SHELL determines which shell is executed. If
xlogin finds the environment variable CMDNAME set, this local shell
sets it to

xlogin:hostname
 This is useful for altering shell prompts so that you are aware that

you are in a sub-shell. Exiting the shell returns you to the remote
host.

~~ Send a single ‘~’.

For the flow control characters (CTRL/S and CTRL/Q) and flush (CTRL/O)
character to be interpreted locally on the calling machine, use the -x flag.
Within xlogin, you can use the command, ~%X , to toggle local and remote
interpretation. When interpretation is done locally, the response is immedi-
ate rather than delayed and these special characters are not transmitted to
the remote host. Note that programs which change the terminal characteristics
and expect to receive these special characters (EMACS, for example)
won’t receive them when they are interpreted locally.

For local interpretation (i.e., the calling machine) of miscellaneous special
characters, use the -z flag. The miscellaneous special characters currently
supported are CTRL/V, CTRL/Y, and CTRL/Z under UNIX 4.2 BSD. Within
xlogin, you can use the command, ~%Z , to toggle local interpretation. Note

- 2 -

XLOGIN(1C) Silicon Graphics XLOGIN(1C)

that programs which change the terminal characteristics and expect to
receive these special characters (EMACS, tor example) won’t receive them
when they are interpreted locally.

SEE ALSO
xcp(1C), xx(1C)

BUGS
You cannot redirect the standard input or output of xlogin.

CTRL/O cannot be interpreted locally on VMS.

Escaping to an interactive shell does not work on VMS.

- 1 -

XNSCONNECT(VMS) Silicon Graphics XNSCONNECT(VMS)

NAME
xnsconnect	 –	 creates	 a	 connection	 with	 “host”	 at	 the	 indicated	 socket	
number.

SYNOPSIS
int xnsconnect(host, socket)
char *host;
int socket;

DESCRIPTION
Xnsconnect returns a channel after making a Sequenced Packet Protocol (SPP)
connection to the indicated socket at host. A –1 is returned on failure.

If any errors occur, the VMS error return value is found in the external
vmserrno.

- 1 -

XNSEOF(VMS) Silicon Graphics XNSEOF(VMS)

NAME
xnseof – sends a data stream end of tile message.

SYNOPSIS
int xnseof(chan)
int chan;

DESCRIPTION
Xnseof returns a 0 if successful. A -1 is returned on failure, and the VMS
error code is left in the external vmserrno.

- 1 -

XNSFILE(VMS) Silicon Graphics XNSFILE(VMS)

NAME
xnsfile – find an available network channel.

SYNOPSIS
int xnsfile()

DESCRIPTION
If successful, xnsfile returns a channel number.

A –1 is returned on failure, and the VMS error code is left in the external
vmserrno.

- 1 -

XNSLISTEN(VMS) Silicon Graphics XNSLISTEN(VMS)

NAME
xnslisten – listens on a socket using socket number 100<’socket’<2999.

SYNOPSIS
int xnlisten(socket)
int socket;

DESCRIPTION
Returns control to the program when a socket is available for reading or
writing. Return value: If successful, returns the channel number. If not
successful, returns -1. The VMS error return value is found in the external
vmserrno.

- 1 -

XPHYSCONNECT(VMS) Silicon Graphics XPHYSCONNECT(VMS)

NAME
xnsphysconnect – creates an SSP connection to a binary network address.

SYNOPSIS
typedef struct {
 unsigned short high;
 unsigned short low;
} Xnet;

typedef struct {
 unsigned short high;
 unsigned short mid;
 unsigned short low;
} Xhost;

typedef unsigned short socket;

typedef struct {
 Xnet net;
 Xhost host;
 Xsocket socket;
} Xaddr;

struct xns_setup {
 Xhost physaddr;
 Xaddr internet;
 char name[NSIZE];

int xnsphysconnect(setup)
struct xns_setup *setup;

DESCRIPTION
Xnsphysconnect
returns a channel after making a Sequenced Packet Protocol (SPP) connec-
tion to the address indicated in the xns_setup structure. A -1 is returned on
failure. If any errors occur, the VMS error return value is found in the exter-
nal vmserrno.

- 1 -

XNSREAD(VMS) Silicon Graphics XNSREAD(VMS)

NAME
xnsread	–	reads	from	a	channel	“chan”	the	“size”	of	bytes	into	the	butter	
“buf”,	with	data	type	“dtype”.

SYNOPSIS
int xnsread(chan, buffer, size, dtype, control)
int chan, size;
char *buffer, *dtype, *control;

DESCRIPTION
Return value: If successful, returns the number of bytes read (0 to the end
of file). If not successful, returns - 1. The VMS error return value is found in
the external vmserrno.

- 1 -

XNSWRITE(VMS) Silicon Graphics XNSWRITE(VMS)

NAME
xnswrite – write to XNS connection.

SYNOPSIS
xnswrite (chan, buf, count, dtype, control)
int chan, count;
char *buf, dtype, control;

DESCRIPTION
Xnswrite allows you to write to an XNS channel while specifying a particular
data type and control bits. This data type can be recognized by the server,
and can be used to pass out-of-band information, for example. A count of
the number of bytes written is returned. The data type is reset to the
default after each write. The VMS error return value is found in the external
vmserrno.

- 1 -

XREAD(VMS) Silicon Graphics XREAD(VMS)

NAME
xread	–	reads	from	a	channel	“chan”	into	the	buffer	“buf”	the	“size”	ot	
bytes.

SYNOPSIS
int xread(chan, buf, size)
int chan, size;
char *buf;

DESCRIPTION
Return value: If successful, returns the number of bytes read (0 to the end
of file). If not successful, returns -1. The VMS error return value is found in
the external vmserrno.

- 1 -

XSH(VMS) Silicon Graphics XSH(VMS)

NAME
xsh – start a shell via XNS.

SYNOPSIS
xsh (host)
char *host;

DESCRIPTION
Xsh makes a network connection on socket XSHSOCKET on host and forks a
shell. It returns –1 if a connection can’t be made.

- 1 -

XWRITE(VMS) Silicon Graphics XWRITE(VMS)

NAME
xwrite	 –	writes	 the	 “size”	 of	 bytes	 to	 the	 channel	 “chan”	 from	 the	 buffer	
“buf”.

SYNOPSIS
int xwrite(chan, buf, size)
int chan, size;
char *buf;
char *host;

DESCRIPTION
Return value: If successful, returns the number of bytes written. It not suc-
cessful, returns -1. The VMS error return value is found in the external
vmserrno.

- 1 -

XX(1C) Silicon Graphics XX(1C)

NAME
xx – remote shell

SYNOPSIS
xx [-txz] host command

DESCRIPTION
Xx connects to the specified host, and executes the specified command. The
remote login name must be equivalent (in the sense of sh(1)) to the originat-
ing account; no provision is made for specifying a password with a com-
mand. If you omit command, xx logs you into the remote host. In this mode,
the switches [-txz] function the same as tor xlogin. See xlogin(1C) for
switch meanings and character processing information.

If you do specify a command, the switches [-txz] have no effect. Xx copies
its standard input to the remote command and the standard output and
error of the remote command to its standard output. All echoing and spe-
cial character handling takes place on the local machine. Thus, flow control
characters (CTRL/S and CTRL/Q), and interrupt characters affect the xx pro-
cess running on the local machine.

If xx is linked or copied to a file named host then executing host is the same
as xx host.

Shell metacharacters which are not quoted are interpreted on the local
machine, while quoted metacharacters are interpreted on the remote
machine. Thus, the command

$ xx otherhost cat remotefile > > localfile

appends the remote file remotefile to the local file localfile, while

$	xx	otherhost	cat	remotefile	“	>	>”	otherremotefile

appends remotefile to otherremotefile.

SEE ALSO
sgboot(1M), sgbounce(1M), xnsd(1M), utmp(3N), xcmd(3N), xconnect(3N),
xnsfile(3N), xnsioctl(3N), xnslib(3N), xnswrite(3N), xlogin(1C), xcp(1C)

BUGS
If you are using csh(1) and put xx in the background without redirecting its
input away from the terminal, it will block even if no reads are posted by
the remote command.

You cannot run an interactive command (like vi(1)); use xlogin.

UNIX 4.2 BSD stop signals stop the local xx processes only; this is arguably
wrong, but currently hard to fix for reasons too complicated to explain here.

