
DEBUGGER MANUAL

Specifications Subject to Change.

Convergent Technologies, Convergent, CTOS, CT-BUS,
CT-DBMS, CT-MAIL, CT-Net, AWS, IWS, and NGEN are

trademarks of Convergent Technologies, Inc.

Third Edition (November 1983) A-09-00320-01-A

Copyright © 1983 by Convergent Technologies, Inc.

 Contents iii

CONTENTS

GUIDE TO TECHNICAL DOCUMENTATION............ vii

SUMMARY OF CHANGES.......................... xvii

1 OVERVIEW 1-1
INTRODUCTION 1-1
WHO SHOULD USE THIS MANUAL 1-1
HOW TO USE THIS MANUAL 1-2
CONVENTIONS USED IN THIS MANUAL 1-4

2 CONCEPTS 2-1
COMMAND PARAMETERS 2-1
CONSTANTS (NUMBERS, PORTS, AND TEXT) ... 2-3
Numbers 2-3
Ports 2-3
Text 2-4

SYMBOLS 2-4
ADDRESS EXPRESSIONS 2-5
SYMBOLIC INSTRUCTIONS 2-5
CURRENT VALUE 2-5
DEBUGGER MODES 2-6

3 GETTING STARTED WITH THE DEBUGGER 3-1
ENTERING THE DEBUGGER 3-1
Debugger Prompts 3-2
Debugger Displays 3-2

EXITING FROM THE DEBUGGER 3-2
USING THE DEBUGGER AS A CALCULATOR 3-3
CODE-F : OPENING A SYMBOL FILE 3-3
CODE-R: CHANGING THE BASE OF
THE NUMBER SYSTEM 3-5

4 EXAMINING AND CHANGING MEMORY CONTENTS . 4-1
LOOKING AT MEMORY 4-1
Using Pointers to Display
Memory Contents 4-2
Displaying Several Locations at Once .. 4-3
Debugger Prompts 4-3

CODE D: DISPLAYING THE CONTENTS
OF MEMORY 4-3
CHANGING THE CONTENTS OF A MEMORY
LOCATION 4-4
Changing Instructions 4-5

iv Debugger Manual

OPENING A NEW LOCATION 4-5
CODE-O: SEARCHING FOR A BYTE PATTERN
IN MEMORY 4-6

5 USING BREAKPOINTS 5-1
CODE-B: SETTING AND QUERYING
BREAKPOINTS 5-1
CODE-C: CLEARING BREAKPOINTS 5-2
CODE-A: SETTING CONDITIONAL BREAKPOINTS 5-2
CODE-P: PROCEEDING FROM A BREAKPOINT ... 5-4
CODE-G: STARTING A PROCESS
AT A SPECIFIED ADDRESS 5-5
CODE-X: EXECUTING INSTRUCTIONS
INDIVIDUALLY 5-5
CODE-E: BREAKING AFTER THE CURRENT
INSTRUCTION 5-6

6 WORKING WITH REGISTERS 6-1
THE PROCESS REGISTER 6-1
EXAMINING AND MODIFYING REGISTERS 6-1
USING REGISTER MNEMONICS 6-2

7 ELEMENTARY DISPLAY COMMANDS 7-1
CODE-T: DISPLAYING A TRACE OF THE STACK 7-1
CODE-U: DISPLAYING THE USER SCREEN 7-2
CODE-Z: DISPLAYING THE CONTENTS OF
THE 8087 REGISTERS 7-2

8 DEBUGGER MODES 8-1
SIMPLE MODE 8-1
MULTIPROCESS MODE 8-2
INTERRUPT MODE 8-3

9 USING MULTIPROCESS MODE 9-1
ENTERING MULTIPROCESS MODE VIA ACTION-B 9-1
PROCEEDING (CODE-P) AND EXITING 9-1
KEYBOARD AND VIDEO SWAPPING 9-1

10 SWAPPING, OVERLAYS, AND PORTS 10-1
DEBUGGER SWAPPING 10-1
EXAMINING CODE IN AN OVERLAY 10-2
READING AND WRITING TO PORTS 10-2

 Contents v

11 THE HISTOGRAM FACILITY.................. 11-1
CODE-H: INVOKING THE HISTOGRAM FACILITY 11-1
CODE-Q: QUERYING THE HISTOGRAM FACILITY 11-3
TURNING OFF THE HISTOGRAM FACILITY 11-4

12 BREAKPOINTS IN INTERRUPT HANDLERS....... 12-1
CODE-I: SETTING BREAKPOINTS IN INTERRUPT
HANDLERS 12-1
ASSEMBLY LANGUAGE CALLS:
THE INT 3 INSTRUCTION 12-2

13 ADVANCED DISPLAY COMMANDS 13-1
CODE-N: DISPLAYING LINKED-LIST
DATA STRUCTURES......................... 13-1
CODE-S: DISPLAYING THE STATUS
OF PROCESSES AND EXCHANGES.............. 13-2

14 OTHER ADVANCED COMMANDS 14-1
CODE-K: DEACTIVATING THE DEBUGGER
(KILLING THE DEBUGGER 14-1
CODE-L: TURN LINE PRINTER ECHO ON (OFF) 14-1

APPENDIXES

Appendix A: STATUS MESSAGES A-1

Appendix B: COMMAND SUMMARY B-1

Appendix C: ALPHABETICAL LIST OF
COMMANDS C-1

Appendix D: THE DEBUG FILE UTILITY D-1

Appendix E: OPERATING NOTES E-1

GLOSSARY Glossary-1

vi Debugger Manual

LIST OF FIGURES

Figure Page

1-1. The Debugger in Relation to Other Steps
in Executing a Program................ 1-3

1-2. The Debugger's Access to Other Software
and Files............................. 1-3

13-1. Example of Processes Displayed
by CODE-S............................. 13-2

13-2. Example of a Run Queue and
Exchanges Displayed by CODE-S......... 13-3

LIST OF TABLES

Table Page

4-1. Examples of Byte Patterns............. 4-7

 Documentation Guide vii

GUIDE TO TECHNICAL DOCUMENTATION

This manual is one of a set that documents the
Convergent™ Family of Information Processing
Systems. The set can be grouped as follows:

Introductory
Installation Guide
Operator's Guide
Executive Manual
Context Manager Manual Status Codes Manual
Installation Guide (NGEN) Operator's Guide
(NGEN)

Hardware
NGEN
Processor Manual: Model CP-001
Dual Floppy Disk Manual
Floppy/Hard Disk Manual
Diagnostics Manual
Keyboard Manual
Power System Manual
Monochrome Monitor Manual: Model VM-001
Color Monitor Manual

IWS
Workstation Hardware Manual
Peripherals Hardware Manual
IWS Peripherals Hardware Manual (SMD Version)

AWS
AWS-210 Hardware Manual
AWS-220, -230, -240 Hardware Manual
AWS Color Workstation Hardware Manual

Operating System
CTOS™ Operating System Manual
System Programmer's Guide

Guest Operating Systems
CP/M-86™
MS™-DOS (and GW™-BASIC)
XENIX™

Programming Languages
COBOL Manual
FORTRAN Manual
FORTRAN-86 Manual
BASIC Manual
BASIC Compiler Manual
Pascal Manual
Assembly Language Manual

viii Debugger Manual

Program Development Tools
COBOL Animator
Editor Manual
Debugger Manual
Linker/Librarian Manual

Data Management Facilities
CT-DBMS™ Manual
ISAM Manual Forms Manual
Sort/Merge Manual

Text Management Facilities
Word Processing User's Guide
Word Processing Reference Manual
Word Processing Quick Reference

Applications Facilities
Project Planner Manual
CT-MAIL™ User's Reference Manual
CT-MAIL™ Administrator's Reference Manual
Multiplan
Business Graphics User's Guide
Business Graphics Reference Manual
Graphics Programmer's Guide
Font Designer Manual

Communications
Asynchronous Terminal Emulator Manual
3270 Terminal Emulator Manual
2780/3780 RJE Terminal Emulator Manual
SNA Network Gateway Manual
SNA 3270 Emulator Manual
X.25 Network Gateway Manual
Multimode Terminal Emulator User's Guide
Multimode Terminal Emulator Reference Manual

This section outlines the contents of these
manuals.

INTRODUCTORY

The Installation Guide describes the procedure for
unpacking, cabling, and powering up a system.

The Operator's Guide addresses the needs of the
average user for operating instructions. It
describes the workstation switches and controls,
keyboard function, and floppy disk handling.

 Documentation Guide ix

The Executive Manual describes the command inter-
preter, the program that first interacts with the
user when the system is turned on. It describes
available commands and discusses command execu-
tion, file management, program invocation, and
system management. It also addresses status in-
quiry, volume management, the printer spooler, and
execution of batch jobs. This manual now incor-
porates the System Utilities and Batch Manuals.

The Context Manager Manual describes and teaches
the use of the Context Manager, which allows the
user to run applications concurrently and inter-
change them on the screen almost instantly.

The Status Codes Manual contains complete listings
of all status codes, bootstrap ROM error codes,
and CTOS initialization codes. The codes are
listed numerically along with any message and an
explanation.

The NGEN Installation Guide describes the
procedure for unpacking, assembling, cabling, and
powering up an NGEN workstation.

The NGEN Operator's Guide is a link between the
operator, the NGEN workstation, and the work-
station's documentation. The Operator's Guide
describes the operator controls and the use of the
floppy disk drives, as well as how to verify that
the workstation is operational and how to use
software release notices.

HARDWARE

NGEN

The Processor Manual: Model CP-001 describes the
Processor Module, which houses the Processor
board, Memory board, I/O board, Video/Keyboard
board, and Motherboard. It details the architec-
ture and theory of operations of the printed
circuit boards, external interfaces, and the
Memory Expansion Cartridge, as well as the X-Bus
specifications.

The Dual Floppy Disk Manual and the Floppy/Hard
Disk Manual describe the architecture and theory
of operation for the NGEN modules. They discuss
the respective disk drives and controllers, and
contain the applicable OEM disk drive manuals.

x Debugger Manual

The Diagnostics Manual describes the diagnostics
available for the NGEN workstation. It discusses
the Processor Module's bootstrap ROM program and
error codes, and individual software diagnostics
for modules in the workstation.

The Keyboard Manual describes the theory of
operation for the NGEN keyboard.

The Power System Manual describes the operation
and connections for the 36-Volt Power Supply and
the dc/dc converters used with the NGEN work-
station.

The Monochrome Monitor Manual: Model VM-001
describes the operation and connections of the 12-
inch Monochrome Monitor used with the NGEN
workstation.

The Color Monitor Manual describes the operation
and connections of the 15-inch Color Monitor used
with the NGEN workstation.

IWS

The Workstation Hardware Manual describes the
mainframe, keyboard, and video display for the IWS
family of workstations. It specifies system
architecture, printed circuit boards (Mother-
board, Processor, I/O Memory, Multiline Communi-
cations Processor, Video Control, Graphics Control
Board, ROM and RAM Expansions), keyboard, video
monitor, Multibus interface, communications inter-
faces, power supply, and environmental charac-
teristics of the workstation.

The Peripherals Hardware Manual describes the non-
SMD single-board Mass Storage Subsystem (MSS) and
Mass Storage Expansion (MSX) disk subsystems for
the IWS family of workstations. It contains
descriptions of the disk controller Motherboard,
the two controller boards for floppy and Win-
chester disks, power supplies, disk drives, and
environmental characteristics.

The IWS Peripherals Hardware Manual (SMD Version)
describes the SMD MSS and MSX disk subsystems
having one controller board.

 Documentation Guide xi

AWS

The AWS-210 Hardware Manual describes the main-
frame, keyboard, and video display of the AWS-210
workstation. It specifies architecture, theory of
operation of the printed circuit boards (Mother-
board, Deflection, and CPU), keyboard, video
monitor, expansion interface, cluster communica-
tions interface, power supply, and environmental
characteristics of the workstation.

The AWS-220, -230, -240 Hardware Manual describes
the mainframe, keyboard, disk controllers, and
video display of the AWS-220, -230, and -240
workstations. It specifies architecture, theory
of operation of the printed circuit boards
(Motherboard, Deflection, 8088 CPU, 8086 CPU,
Floppy Disk Controller, and Hard Disk Control-
ler), keyboard, video monitor, cluster communica-
tions interface, external interfaces, power
supply, and environmental characteristics of the
workstation.

The AWS Color Workstation Hardware Manual de-
scribes the mainframe, keyboard, and color video
display of the AWS Color Workstation. This manual
reports the architecture and theory of operation
of the printed circuit boards (Motherboard,
Graphics Control Board, Hard Disk Controller,
Color Video, Color Deflection, and CPU), keyboard,
color monitor, peripheral interfaces, cluster
communications interface, power supply, and
environmental characteristics of the workstation.
This manual also contains four OEM disk drive
manuals and a summary of adjustments for the color
monitor.

OPERATING SYSTEM

The CTOS™ Operating System Manual describes the
operating system. It specifies services for
managing processes, messages, memory, exchanges,
tasks, video, disk, keyboard, printer, timer,
communications, and files. In particular, it
specifies the standard file access methods: SAM,
the sequential access method; RSAM, the record
sequential access method; and DAM, the direct
access method.

The System Programmer's Guide addresses the needs
of the system programmer or system manager for

xii Debugger Manual

detailed information on operating system structure
and system operation. It describes (1) cluster
architecture and operation, (2) procedures for
building a customized operating system, and (3)
diagnostics.

GUEST OPERATING SYSTEMS

The CP/M-86™ and MS™-DOS Manuals describe the
single-user operating systems originally designed
for the 8086-based personal computer systems.

The GW™-BASIC Manuals describe the version of
BASIC that runs on the MS™-DOS Operating System.

The XENIX™ Manuals describe the 16-bit adaptation
of the UNIX system, including the XENIX envi-
ronment for software development and text
processing.

PROGRAMMING LANGUAGES

The COBOL, FORTRAN, FORTRAN-86, BASIC (Inter-
preter), BASIC Compiler, PASCAL, and Assembly
Language Manuals describe the system's program-
ming languages. Each manual specifies both the
language itself and also operating instructions
for that language.

The Pascal Manual is supplemented by a popular
text, Pascal User Manual and Report.

The Assembly Language Manual is supplemented by a
text, the Central Processing Unit, which de-
scribes the main processor, the 8086. It speci-
fies the machine architecture, instruction set,
and programming at the symbolic instruction level.

PROGRAM DEVELOPMENT TOOLS

The COBOL Animator describes the COBOL Animator, a
debugger that allows the user to interact directly
with the COBOL source code during program
execution.

The Editor Manual describes the text editor.

The Debugger Manual describes the Debugger, which
is designed for use at the symbolic instruction

 Documentation Guide xiii

level. It can be used in debugging FORTRAN,
Pascal, and assembly-language programs. (COBOL
and BASIC, in contrast, are more conveniently
debugged using special facilities described in
their respective manuals.)

The Linker/Librarian Manual describes the Linker,
which links together separately compiled object
files, and the Librarian, which builds and manages
libraries of object modules.

DATA MANAGEMENT FACILITIES

The CT-DBMS™ Manual describes Convergent's data
base management system (CT-DBMS), which consists
of (1) a data manipulation language for accessing
and manipulating the data base and (2) utilities
for administering the data base activities such
as maintenance, backup and recovery, and status
reporting.

The ISAM Manual describes both the single- and the
multiuser indexed sequential access method. It
specifies the procedural interfaces (and how to
call them from various languages) and the
utilities.

The Forms Manual describes the Forms facility that
includes (1) the Forms Editor, which is used to
interactively design and edit forms, and (2) the
Forms run time, which is called from an
application program to display forms and accept
user input.

The Sort/Merge Manual describes (1) the Sort and
Merge utilities that run as a subsystem invoked at
the Executive command level, and (2) the
Sort/Merge object modules that can be called from
an application program.

TEXT MANAGEMENT FACILITIES

The Word Processing User's Guide introduces the
Word Processor to the first-time user. It
provides step-by-step lessons that describe basic
word processing operations. The lessons show how
to execute operations and apply them to sample
text.

xiv Debugger Manual

The Word Processing Reference Manual is a reference
tool for users already familiar with the Word
Processor. It describes the Word Processor
keyboard and screen; basic, advanced, and
programmer-specific operations; list processing;
printer and print wheel configurations; and
hardware considerations.

The Word Processing Quick Reference provides a
concise summary of all word processing operations
and briefly describes the keyboard and commands.

APPLICATIONS FACILITIES

The Project Planner schedules and analyzes tasks,
milestones, and the allocation of resources in a
project. By means of diagrams and several kinds
of bar charts, Project Planner presents time and
resource allocation results and shows the
occurrence of project milestones. The Project
Planner Manual explains the use of the program and
also serves as a reference once the user is
familiar with it.

The CT-MAIL™ User's Reference Manual introduces
the first-time user to the CT-MAIL electronic mail
system. It provides step-by-step instructions
for using the basic CT-MAIL operations to create,
send, and receive mail.

The CT-MAIL™ Administrator's Reference Manual
provides the System Administrator with instruc-
tions for installing, configuring, and maintain-
ing the CT-MAIL electronic mail system; setting up
communication lines; creating and maintaining mail
centers; adding mail users; creating distribution
lists; and troubleshooting.

Multiplan is a financial modeling package designed
for business planning, analysis, budgeting, and
forecasting.

The Business Graphics User's Guide introduces
Business Graphics to the first-time user. It
provides step-by-step lessons that describe basic
Business Graphics operations. The lessons show
how to execute operations and apply them to sample
charts.

The Business Graphics Reference Manual is a
reference tool for users already familiar with

 Documentation Guide xv

Business Graphics. It describes the Business
Graphics keyboard and screen; box and arrow cursor
movement; obtaining information from Multiplan;
operations; and plotter configurations.

The Graphics Programmer's Guide is a reference for
applications and systems programmers. It
describes the graphics library procedures that can
be called from application systems to generate
graphic representations of data, and it includes a
section on accessing Business Graphics from an
application system.

The Font Designer Manual describes the inter-
active utility for designing new fonts (character
sets) for the video display.

COMMUNICATIONS

The Asynchronous Terminal Emulator Manual de-
scribes the asynchronous terminal emulator.

The 3270 Terminal Emulator Manual describes the
3270 emulator package.

The 2780/3780 RJE Terminal Emulator Manual de-
scribes the 2780/3780 emulator package.

The SNA Network Gateway Manual describes the SNA
Network Gateway, which supports data communica-
tions over an SNA network. The SNA Network
Gateway comprises the Transport Service and Status
Monitor. The Transport Service allows a
Convergent workstation to function as cluster
controller and forms the foundation for Conver-
gent SNA products.

The SNA 3270 Emulator Manual describes the SNA
3270 emulator package. The SNA 3270 emulator
provides CRT and printer subsystems in addition to
a Virtual Terminal Interface for use in appli-
cation programs.

The X.25 Network Gateway Manual describes the X.25
Network Gateway, which supports CCITT
Recommendation X.25 communications over a public
data network. There are three levels of access to
the network: packet, X.25 sequential access
method, and the Multimode Terminal Emulator X.25
communications option.

xvi Debugger Manual

The Multimode Terminal Emulator User's Guide
introduces the Multimode Terminal Emulator to
the first-time user. It describes the MTE video
display, keyboard, display memory, and advanced
operations for the X.25 communications option.

The Multimode Terminal Emulator Reference Manual
is a reference tool for sophisticated users of the
Multimode Terminal Emulator. It describes the MTE
escape sequences and field verification program.

CP/M-86 is a trademark of Digital Research.

MS, GW and XENIX are trademarks of Microsoft Corp.

UNIX is a trademark of Bell Laboratories.

 Summary of Changes xvii

SUMMARY OF CHANGES

This third edition (A-09-00320-01-A) of the
Debugger Manual documents release 9.0 of the
Debugger and replaces the second edition (A-09-
00011-01-C). The major changes to the content and
organization of the Debugger Manual are described
below.

A new command, CODE-O, enables you to search for a
byte pattern in memory. This new feature is
described in Section 4, "Examining and Changing
Memory Contents."

A histogram facility has been added to the
Debugger. By using CODE-H and CODE-Q commands,
you can record how many times specified sections
of code are entered and display this information.
Section 11, "The Histogram Facility" describes
this new feature in detail.

Besides documenting these new features, this
edition of the Debugger Manual is organized to
provide easy access to the different Debugger
commands. The commands are described functionally
in the main sections of the manual. The functions
are arranged in order of complexity and frequency
of use. Examples of command entries and
interpreted Debugger displays are included in the
command descriptions.

In addition, Appendix B, "Command Summary", gives
a functional summary of each command. Appendix C,
"Alphabetical List of Commands", lists the
commands alphabetically and provides page number
references to the sections of the manual where
each command is explained in detail.

A glossary has been included at the end of this
edition.

 Overview 1-1

1 OVERVIEW

INTRODUCTION

The Debugger is a software tool that works in real
time and lets users perform the following tasks:

o examine and change data stored in memory or in
registers

o set and clear absolute breakpoints and condi-
tional breakpoints

o produce formatted displays of memory contents

o search memory for a pattern of bytes

o read and write to I/O ports

o execute program instructions one at a time
(single step)

o assemble symbolic user input into binary ma-
chine instructions

o disassemble the contents of memory into
assembly language source instructions

You perform these tasks by entering commands,
sometimes accompanied by parameters. This manual
describes all of the Debugger commands and
explains how to use them.

The Debugger runs concurrently with other user and
system processes, and responds to commands as you
type them. The parameters of Debugger commands
can include numeric literals and fundamental
8086/80186 symbols, and also symbols defined in
the program being debugged.

You can use the Debugger with programs written in
assembly language, compiled BASIC, FORTRAN,
FORTRAN-86, Pascal, and PL/M.

WHO SHOULD USE THIS MANUAL

This manual is intended for programmers who are
familiar with assembly language, and who have some
experience in debugging software.

1-2 Debugger Manual

Because the Debugger displays instructions of the
Intel 8086/80186 microprocessor, users should be
familiar with the 8086/80186 instruction set.

HOW TO USE THIS MANUAL

The sections in this manual fall roughly into two
groups. Sections 1 through 7 describe elementary
debugging procedures, such as working with memory
contents, using breakpoints, working with
registers, and using fundamental display commands.
These are the procedures used most often in
debugging.

Sections 8 through 14 describe more advanced
features of the Debugger, including its three
modes of operation, how it manages memory, working
with overlays and ports, the histogramming
facility, the use of breakpoints in interrupt
handlers, and several infrequently used display
commands.

If you are new to debugging, we recommend that you
practice using the procedures explained in the
first half of this manual, possibly in the
presence of someone who is familiar with
debugging. (Although reading this manual cover-
to-cover before you start debugging a program may
be useful, you will probably find that you learn
more quickly by using the manual during actual
debugging sessions.)

If you are familiar with general debugging
procedures, you can use this manual as a reference
guide. In particular, the appendixes provide a
further distillation of the information in this
manual, including a list of error messages, an
explanation of the Debug File utility, a summary
and an alphabetical list of all commands, and
operating notes for using the Debugger with
cluster systems and with dual floppy-disk systems.
Appendix C also refers you to the page on which
each command is described in detail.

Figures 1-1 and 1-2 illustrate the relationship
between the Debugger and other elements of your
system. Specific information about the Debugger
begins in Section 2, "Concepts."

 Overview 1-3

Figure 1-1. The Debugger in Relation to Other
Steps in Executing a Program.

Figure 1-2. The Debugger's Access to Other
Software and Files.

1-4 Debugger Manual

CONVENTIONS USED IN THIS MANUAL

o Commands that consist of arrows (up, down,
right, and left) are shown in the text of this
manual in the following way:

 ↑

 ↓

 →

 ←

o Commands that use the CODE key together with
another key are shown in the following way:

 CODE-[the name of the key]

o Memory addresses are indicated in the follow-
ing way:

 addr

o Names of files are indicated in the following
way:

 'filename'

o The solid right triangle (which appears on the
video screen after the user enters a command)
is indicated in the following way:

 ◣

 Concepts 2-1

2 CONCEPTS

This section describes the concepts and
terminology that are fundamental to understanding
how the Debugger functions.

COMMAND PARAMETERS

All Debugger commands have the same format: from
zero to three typed-in parameters, followed by one
command keystroke. Some commands are entered by
holding down the CODE key and pressing another key
at the same time. These commands are represented
in the format CODE-X, where X is the value of the
second key. The following examples illustrate the
different command formats:

→ a command with no
parameters

CODE-R a command with no
parameters

38DD CODE-B a command with one
parameter

@10, @100 CODE-H a command with two
parameters

112A, 2F20, "'ABC'" CODE-O
a command with three
parameters

The command keys are listed below:

o the up arrow ↑

o the down arrow ↓

o the left arrow ← or CODE-←

o the right arrow → or CODE-→

o MARK or CODE-MARK

o RETURN

o the equals sign (=)

2-2 Debugger Manual

o CODE-[an alphabetic key]
 such as CODE-C

The Debugger accepts parameters similar to the
parameters permitted in assembly language. The
acceptable Debugger parameters are indicated
below:

o constants (numbers, ports, and text)

o symbols

o composite parameters formed using parentheses

o the minus sign (-)

o the PTR (pointer) operator, which indicates
the type of operand you are dealing with, as
shown in the following examples:

 MOV BYTE PTR [14],2
MOV WORD PTR [14],2

 In these examples, BYTE PTR points to a byte
and WORD PTR points to a word. If the type of
the operand is not implied, you must use the
PTR operator. Never use PTR alone, but always
with BYTE or WORD.

o the following binary operators:

 + (addition)

 - (subtraction)

 * (multiplication)

 / (division)

o address expressions, such as those shown
below:

 [BX]
[BP][DI+3]

o symbolic instructions, such as those shown
below:

 PUSH BP
MOV BP,SP
SUB SP,4

 Concepts 2-3

CONSTANTS (NUMBERS, PORTS, AND TEXT)

NUMBERS

A number, or numeric constant, consists of digits
belonging to the set of hexadecimal digits (0
through 9 and A through F) . The number can end
with a decimal point (.) or with an "h".

A number that ends with a decimal point is a
decimal number. A number that ends with an "h",
or that omits both the decimal point and the "h",
is a hexadecimal number.

A number that begins with the characters A through
F must have a leading zero (0) preceding the
character. Examples of numbers appear below:

123h is a hexadecimal number

123 is a hexadecimal number

123. is a decimal number

0AF is a hexadecimal number

AF is not a valid number

PORTS

A port constant is a number followed by the
character "i" or "o". An "i" indicates that the
port is an 8086/80186 hardware input port. An "o"
indicates that the port is an output port.
Examples of port constants appear below:

12i is the input port that has port
address 12

0A2o is the output port that has port
address 0A2

The Debugger can both read and write an input port
constant. However, the Debugger never reads an
output port constant. The ← and → commands open
output ports for modification without reading
them.

2-4 Debugger Manual

TEXT

A text constant is a sequence of characters en-
closed by single quotation marks. To include a
single quotation mark in a text constant, you
should type another single quotation mark in front
of the mark to be enclosed. For example,

'abed' is the four-character text constant
"abed"

''a' is the two-character text constant
"'a" (consisting of a single
quotation mark and the letter "a")

Text constants consisting of one or two charac-
ters can be used wherever a number (a numeric
constant) can be used. However, text constants
consisting of more than two characters can be used
only with the CODE-F and CODE-O commands
(described in sections 3 and 4, respectively).

SYMBOLS

A symbol is a sequence of alphanumeric and special
characters. A symbol must begin with an
alphabetical character; it cannot begin with a
digit.

The special characters are the underscore (_) , the
period (.), the dollar sign ($), the percent sign
(%), the pound sign (#), and the exclamation mark
(!).

The Debugger recognizes the following four types
of symbols:

o User-defined public symbols, such as those in
a symbol file produced by the linker from
a source program. (See the Linker/Librarian
Manual.)

o Standard 8086/80186 register mnemonics, such
as AX, BL, and SI.

o Names of Debugger state variables, such as the
process register PR. (See Section 6 below.)

o The period (.) indicates the value of the
segment and offset for the most recently
opened location.

 Concepts 2-5

For examples of symbols, see the "Address Expres-
sions" subsection below.

ADDRESS EXPRESSIONS

Address expressions in the Debugger have the same
structure and semantics as address expressions in
assembly language. Examples of address expres-
sions appear below:

RgParam represents the simplest
address expression (a
symbol)

RgParam+(100/2) is a more complex address
expression, involving a
symbol

[BX+5] is an indexed address
expression

ES:[BX+5][SI] is a doubly indexed
address expression having
a segment-override prefix

SYMBOLIC INSTRUCTIONS

Symbolic instructions in the Debugger have the
same structure and semantics as they do in as-
sembly language, except that symbolic instruc-
tions cannot include user-defined public symbols.
Examples of symbolic instructions appear below:

MOV AX, WORD PTR [BX+5]

LOCK INC [BX]

CURRENT VALUE

The Debugger remembers a special value known as
the current value. The current value is either
the value most recently displayed by the Debug-
ger, or the value that you typed most recently.
To display the current value again, type an equals
sign (=).

You can also use this instruction to display that
value in a different number system, provided you
first change the radix by entering a CODE-R

2-6 Debugger Manual

command. (See the example in Section 3,
subsection "CODE-R: Changing the Number Base.")

DEBUGGER MODES

The Debugger operates in one of three different
modes depending on how you enter it. Each of
these modes (simple mode, multiprocess mode, and
interrupt mode) is described in detail in Section
8, "Debugger Modes."

 Getting Started with the Debugger 3-1

3 GETTING STARTED WITH THE DEBUGGER

This section explains how to enter and exit from
the Debugger, how to use the Debugger as a
calculator, how to open symbol files, and how to
change the base of the number system in which the
Debugger displays output data.

Some versions of the operating system are
configured without the Debugger. If the Debugger
is not present in your OS, and if you or a process
tries to enter the Debugger, then the operating
system either places an error message on the
screen, or else sounds the audible alarm.

ENTERING THE DEBUGGER

You can enter the Debugger in any one of the
following five ways:

1. When you press the ACTION key and hold it down
while you press the A key (a procedure
indicated throughout this manual as "ACTION-
A").

 This is the most commonly used way to invoke
the Debugger. In this mode, the Debugger
suspends all user processes.

2. When you press the CODE key and the GO key at
the same time, after typing an Executive
command or when using the Context Manager.

3. When a process reaches a previously placed
breakpoint.

4. When you press the ACTION key and the B key at
the same time. In this mode, the Debugger
suspends only the user processes that reach a
breakpoint; all other user processes that are
running continue to run.

5. When a process executes a DEBUG instruction
(INT 3, advanced debugging).

The Debugger interprets keystrokes in a way that
minimizes accidental invocations of the Debugger
or termination of the process being executed. For
example, pressing the ACTION key has no effect
unless you press one of three other keys (A, B, or
FINISH) simultaneously.

3-2 Debugger Manual

DEBUGGER PROMPTS

Whenever you are using the Debugger, the screen
shows your most recent dialogue with the Debugger,
and also shows a Debugger prompt. The Debugger
prompt is an asterisk (*), a pound sign (#), a
space (), a percent sign (%), or an exclamation
mark (!), or a greater than sign (>), depending on
the type of debugging you are doing. These
prompts are discussed in more detail in subsequent
sections of this manual. However, their meanings
are listed below:

* the Debugger has suspended the current
process

the Debugger has not suspended the
current process

! the Debugger is at an interrupt level

% the Debug File utility is in control

> the system has abnormally terminated

DEBUGGER DISPLAYS

When the Debugger becomes active because a process
has reached a breakpoint, the Debugger displays a
description of the break. This description
consists of the breakpoint address, together with
the number of the process that has been suspended.
Then the Debugger displays the Debugger prompt
and waits for commands. While waiting, the Debugger
treats all keyboard input as part of its command
input.

EXITING FROM THE DEBUGGER

To leave the Debugger, press the GO key. The
Debugger responds by restoring the screen that was
present before you began using the Debugger.

After you press GO to leave the Debugger, the
operating system directs all keyboard input toward
a user process.

You can also press ACTION-FINISH to terminate the
current program and invoke the Exit Run File.

 Getting Started with the Debugger 3-3

USING THE DEBUGGER AS A CALCULATOR

You can use the Debugger as a calculator at any
time. To do so, press ACTION-A, enter an
expression to be evaluated, and then type an
equals sign (=). For example, if you type

3*7=

the Debugger returns 15 (hexadecimal.)

You can also use the calculator mode to change the
number base in which the Debugger expresses
values. For example, if you type

800=

the Debugger returns 800, which simply indicates
that the hexadecimal value 800 is equal to itself.
To obtain a display of this value in decimal
notation, type

10. CODE-R

and then

=

In this case, the Debugger returns 2048, which is
the decimal equivalent of 800h

For more information about CODE-R, see the "CODE-
R: Changing the Number Base" subsection below.

CODE-F: OPENING A SYMBOL FILE

The Linker produces symbol files that contain the
addresses of public symbols. (See the
Linker/Librarian Manual for more information about
the Linker.)

One symbol file usually exists for each run file
or for each user task. The Debugger cannot refer
to a symbol file unless you open the symbol file
first. To open a symbol file, type

'filename' CODE-F

A file name consists of text constants and must be
enclosed in single quotation marks. For example,
suppose you want to debug a program called

3-4 Debugger Manual

"Graph.Run". If the corresponding symbol file is
"<Jones>Graph.Sym", then you would type

'<Jones>Graph.Sym' CODE-F

The CODE-F command opens the symbol file for your
program, and gives you access to the public
symbols in the symbol file.

The Debugger can refer to only one symbol file at
one time. When you type 'filename' CODE-F, the
Debugger ignores any previously opened symbol
files.

A user program usually has only one symbol file.
It is good practice to open the symbol file when
you begin a debugging session; thereafter, you can
use its symbols freely until you terminate the
program or end the debugging session.

When a symbol file is open, the Debugger uses
it to provide symbolic names for addresses. For
example, with a suitable symbol file the
instruction

CALL 0FFEF:336

might appear as

CALL ErrorExit

To suppress symbolic output, press

CODE-F

When you do so, the following message appears:

Symbols OFF

To enable symbolic output again, press

CODE-F

When you do so, the following message appears:

Symbols ON

The CODE-F command suppresses only symbolic
output. You can use symbolic names as input any
time you are using a symbol file.

 Getting Started with the Debugger 3-5

When debugging a program that was not loaded by
the Executive or the Context Manager, you cannot
open the symbol file unless you specify the
program segment address of the task, as shown
below:

segment, 'filename' CODE-F

For example, to debug the program 'Fred', whose
base address is 12340h (paragraph 1234h, for the
8086/80186 microprocessor), type

1234, 'Fred.Sym' CODE-F

Otherwise, however, you need not specify the
program base address, because the Debugger can
determine it by making a call to the operating
system.

If you are debugging the operating system, you
must type zero, the base address of the operating
system, before you type the name of the symbol
file, as shown in the example below:

0, 'OS.Sym' CODE-F

CODE-R: CHANGING THE BASE OF THE NUMBER SYSTEM

The CODE-R command changes the output radix. The
output radix is the base of the number system in
which information is expressed. Decimal, hexa-
decimal, octal, or any other base from 2 to 16 can
be used.

All memory data is displayed using the radix that
is in effect at that time. Unless you change it,
this radix is hexadecimal.

To set the output radix to another base, type

k CODE-R

where k is a number from 2 to 16 (decimal.)

To change the output radix back to hexadecimal
from any other base, type

16. CODE-R

or else simply type

CODE-R

3-6 Debugger Manual

If, however, the output radix is already
hexadecimal, and you type CODE-R alone with no
parameters, the output radix changes to decimal.

You can also use the CODE-R command to display the
current value. To do so, type an equals sign (=)
after you specify the base in which you want
values to be displayed. (In this case, the equals
sign specifies the most recent value.)

For example, if you want the hexadecimal value 100
displayed in decimal notation, you would enter

10. CODE-R

100=

The Debugger responds by displaying the decimal
value 256.

NOTE

The output radix applies only to numbers that
the Debugger displays. Numeric constants that
you enter are interpreted or evaluated
independently of the output radix, as
explained in the "Numbers" subsection in
Section 2, "Concepts."

 Examining and Changing Memory Contents 4-1

4 EXAMINING AND CHANGING MEMORY CONTENTS

LOOKING AT MEMORY

After entering the Debugger, you can examine the
contents of memory by typing either a parameter
that designates a machine address, a register, or
an internal Debugger register, followed by a
command (either ← , → or MARK) . The Debugger
displays the contents of the designated address or
register, and opens that address or register so
that you can change its contents.

o To display a single byte, type

addr ←

o To display a single word, type

addr →

o To display a symbolic instruction, type

addr MARK

For example, to display one byte at address 0A1,
type

0A1 ←

The Debugger will return one byte of data, such as

1F

To display one word starting at register location
DS:100, type

DS:100 →

The Debugger will return one word of data, such as

1F20

To display the instruction at "CreateISAM+10",
type

CreateISAM+10 MARK

4-2 Debugger Manual

The Debugger returns the instruction at that
symbolic address. For example, the MARK command
might return

◣ MOV AX, WORD PTR [BX]

Notice that when you press MARK, a small right
triangle (◣) appears on the screen to the right of
what you typed.

USING POINTERS TO DISPLAY MEMORY CONTENTS

You can also use indirect addresses to examine
bytes, words, and instructions. You do so by
specifying the address of a long pointer that
addresses the byte, word, or instruction that you
want to examine.

To display a single byte that is addressed by a
long pointer, type

addr of byte pointer CODE-←

To display a single word that is addressed by a
long pointer, type

addr of word pointer CODE-→

To display a symbolic instruction that is ad-
dressed by a long pointer, type

addr of instruction pointer CODE-MARK

After you enter the CODE-←, CODE-→, or CODE-MARK
command, the open location is the location addressed
by the pointer.

For example, suppose you wish to display the byte
addressed by a pointer at location 244. You could
first fetch the pointer, and then fetch the byte.

244
246
2199:04AE 00

or you could simply use the CODE-← command.

244 CODE-← 00

 Examining and Changing Memory Contents 4-3

DISPLAYING SEVERAL LOCATIONS AT ONCE

You can also use the memory-examination commands
to display several locations at once. To do so,
when you type the parameter, precede it with a
number indicating how many locations you want
displayed. In response, the Debugger displays the
specified number of parameters, and keeps the last
parameter open.

For example, to display three words starting with
the word that begins at location DS:100, type

3, DS:100→

A typical Debugger response appears below:

3, DS:100 → 1F20
0AF:102 → 2F30
0AF:104 → 30FA

DEBUGGER PROMPTS

The Debugger always prompts you when it is ready
for more input. The type of prompt depends on the
open location, as explained below:

o If no location is open (which happens if the
Debugger was just entered, or if the previous
command closed all of the open locations),
then the Debugger issues the prompt that cor-
responds to the circumstances. (See the
"Debugger Prompts" subsection in Section 3,
"Getting Started with the Debugger.")

o If a location is open, then the Debugger
prompts you with an empty space (). This
prompt appears on the same line as the value
of the open location.

CODE-D: DISPLAYING THE CONTENTS OF MEMORY

The CODE-D command lets you display the contents
of memory, in both numerical and ASCII form.
CODE-D takes two parameters, and can display a
number of bytes of memory, along with ASCII
equivalents of those bytes, limited only by the
amount of memory present in the machine. The
Debugger displays the memory content in columns.

4-4 Debugger Manual

For example, to display a specific number of bytes
of memory starting at a specific memory location,
type

k, addr CODE-D

where k is the number of bytes, and addr is the
memory location

For example, to display 9 bytes of memory starting
at memory location 38DD, type

9, 38DD CODE-D

A typical Debugger response is shown below:

38DD 18 83 C3 52 80 3F 00 74 05 =C|§™n@*[

The material displayed at the right of this re-
sponse indicates the ASCII characters that these
bytes represent.

The Debugger automatically turns off the symbolic
display of addresses while memory contents are
being displayed.

CHANGING THE CONTENTS OF A MEMORY LOCATION

When a location is open and the Debugger prompts
you with a space, you can change the contents of
that location by typing the new contents that you
want.

For example, suppose that you want to change the
contents of DS:101 from 2F30 to 2F37. Location
DS:101 is open, and the Debugger prompts you with
a space. You type the right arrow (→) shown
below:

DS:101→

The Debugger responds by displaying

DS:101 → 2F30

After which you type

2F37

Location DS:101 now contains the value 2F37.

 Examining and Changing Memory Contents 4-5

CHANGING INSTRUCTIONS

Remember that assembly language instructions on
the 8086/80186 processors have different lengths.
Therefore, an instruction can include bytes of
memory that are located beyond the bytes that the
Debugger has displayed.

A Debugger command that replaces an instruction
can also leave the last few bytes of the original
instruction dangling after the end of the new
instruction. In such a case, when the new
instruction is shorter than the original one, you
should replace each dangling byte of the original
instruction with a no operation (NOP) instruction.
The NOP instruction acts as a place-holder.

For example, suppose a comparison instruction is
three bytes long and the jump instruction is two
bytes long:

24D:120 ◣ CMP AX, WORD PTR[BP+4] JMP +2

24D:122 ◣ ADD AL.75 NOP

As shown above, when you write the jump instruc-
tion over the comparison instruction, you must
insert a NOP instruction after the jump instruc-
tion.

OPENING A NEW LOCATION

The memory location that is open changes with
each command that modifies the contents of memory.
There are three such commands:

o RETURN

o ↑

o ↓

If you press RETURN, the previously open location
closes and no new locations are opened.

If you press ↑, the previous location opens.

If you press ↓, the next location opens.

4-6 Debugger Manual

The Debugger interprets the words "next" and
"previous" according to the mode in which a
location is open. For example, "next" can refer
to the next byte, the next word, or the next
instruction.

CODE-O: SEARCHING FOR A BYTE PATTERN IN MEMORY

The CODE-O command searches for a byte pattern in
memory. A byte pattern is a user-defined group of
byte specifiers separated by commas and enclosed
in double quotation marks. A byte specifier is
either a sequence of two-digit hexadecimal
numbers, or a string of characters enclosed in
single quotation marks. Examples of byte patterns
appear in Table 4-1 below.

To search for a given byte pattern, type

lower addr, upper addr, byte pattern CODE-O

For example, to search for the byte pattern 30,31
within the range of addresses from 5FE6:0C to
5FE6:100, type

5FE6:0C, 5FE6:100, "30,31" CODE-O

The Debugger searches for a byte pattern within
the range of addresses starting at lower addr and
ending at upper addr. If the pattern is found,
then the Debugger displays the pattern at the
address at which it was found, and changes lower
addr to the address of the first byte following
the pattern.

To make the Debugger continue the search begin-
ning at the new lower addr, type

CODE-O

with no parameters.

In either case, if the Debugger does not find a
byte pattern, then the Debugger ends the search
when it reaches upper addr.

 Examining and Changing Memory Contents 4-7

Table 4-1. Examples of Byte Patterns.

Byte Pattern

"30,31,32"

"'ABC'"

"30,31,32,'ABC',33,34,35"

Pattern Specified

123

ABC

123ABC456

 Using Breakpoints 5-1

5 USING BREAKPOINTS

A breakpoint is a user-defined location in code.
When a process reaches a breakpoint, the process
is suspended, and the Debugger is entered.

If the Debugger is operating in simple mode, all
user processes are suspended whenever any
breakpoint is taken. If the Debugger is in multi-
process mode, only the process that has taken the
breakpoint is suspended. (See Section 8 for a
detailed description of the Debugger's operating
modes, and Section 12 for an explanation of OS
debugging using CODE-I to set breakpoints in
interrupt handlers.)

CODE-B: SETTING AND QUERYING BREAKPOINTS

To set a breakpoint, type CODE-B, preceded by one
parameter. For example, to set a breakpoint at
the address addr, type

addr CODE-B

You can enter CODE-B to set a breakpoint in an
overlay, even if the overlay is not present in
memory.

A breakpoint stays in effect until you remove it
explicitly (by entering the CODE-C command,
described below) or until the process terminates.

When a program in a memory partition calls CHAIN
or EXIT, or is otherwise terminated, only the
breakpoints in that partition are removed.

To obtain a display of a list of all of the
breakpoints that are set at any given time, type

CODE-B

without an address parameter.

This activity is known as querying the
breakpoints.

5-2 Debugger Manual

CODE-C: CLEARING BREAKPOINTS

To clear a breakpoint, type a parameter, followed
by CODE-C. For example, to clear the breakpoint
at address addr, type:

addr CODE-C To clear all of the breakpoints at
once, type

CODE-C without an address parameter.

CODE-A: SETTING CONDITIONAL BREAKPOINTS

A conditional breakpoint is a breakpoint that is
associated with a relational condition. When a
process reaches a conditional breakpoint, the
process is suspended only if the relational
condition is evaluated as TRUE.

To set a conditional breakpoint, type a parameter
and CODE-A. Two examples appear below:

To set a breakpoint at physical address 0E0:3B1,
type

0E0:3B1 CODE-A

To set a conditional breakpoint at symbolic
address Accept+23, type

Accept+23 CODE-A

You define the relational condition by entering
code into the Debugger's patch area. The patch
area is a 50-byte space addressed by the symbol
PatchArea. To enter code, type

PatchArea MARK

The Debugger then displays the first instruction
in the patch area. For example, a typical
Debugger response appears below:

PatchArea ◣ NOP

 Using Breakpoints 5-3

At the end of this line, the Debugger displays the
space () prompt. You can then add your
instruction. To display and modify the next
instruction in the patch area, type your
instruction and then press ↓.

For example, in response to the line displayed
above by the Debugger, you could type

MOV AX, WORD PTR [0] ↓

The Debugger then displays the next instruction in
the patch area:

PatchArea+3 ↓ NOP

You would follow the same procedure, entering the
instruction and then pressing ↓ , for this
instruction and for each of the succeeding ones in
a series.

For example, suppose you want to tell the Debugger
to take the breakpoint if the value of memory
location DS:0 is 200h. After all of your
instructions are entered, the Debugger display
looks like the example shown below:

PatchArea ◣ NOP MOV AX, WORD PTR [0]
PatchArea+3 ◣ NOP CMP AX, 200
PatchArea+6 ◣ NOP JE .+5
PatchArea+8 ◣ NOP MOV AL.0
PatchArea+0A ◣ NOP DEBUG
PatchArea+0B ◣ NOP MOV AL, OFF
PatchArea+0D ◣ NOP DEBUG

Instructions that you add to the patch area must
set the register AL to 0FFh if the breakpoint is
to be taken. If the breakpoint is not to be
taken, your instructions must set AL to 0h. The
original value of the AX register is restored
after the condition is evaluated.

So that control will return to the Debugger, the
last instruction in the relational condition must
be DEBUG (INT 3).

You can set more than one conditional breakpoint
by specifying an additional parameter for the
CODE-A command. This parameter specifies the
PatchArea offset at which the relational condition
begins.

5-4 Debugger Manual

For example, the following parameter and command

20, Initialize CODE-A

set a conditional breakpoint at the location named
"Initialize", whose relational condition begins at
PatchArea+20.

You can change an unconditional (CODE-B)
breakpoint into a conditional breakpoint at any
time, by typing

addr CODE-A

After entering this command, you must also add the
conditional code in the PatchArea, as explained
above.

CODE-P: PROCEEDING FROM A BREAKPOINT

To proceed from the most recently found breakpoint
in the current process, type

CODE-P

The breakpoint remains in effect, and the process
continues. If the process was not broken by
the breakpoint, the Debugger ignores the CODE-P
command. (In this case, because the process is
still running, you cannot logically command it to
resume running.)

To proceed, and to break the kth time the
breakpoint is reached (instead of the next time it
is reached), type

k CODE-P

where k is a decimal number.

(CODE-P with no parameters is equivalent to CODE-P
with a parameter of 1.)

To remove the breakpoint before proceeding, type

0 CODE-P

 Using Breakpoints 5-5

If you entered the Debugger by pressing ACTION-A,
you should enter the CODE-P command to exit from
the Debugger. (Pressing GO has the same effect as
pressing CODE-P; that is, it lets you proceed from
the most recent breakpoint.)

CODE-G: STARTING A PROCESS AT A SPECIFIED ADDRESS

The foregoing commands always cause a process to
start running from the last breakpoint address.
To begin process execution at a different address
(for example, at address addr), type

addr CODE-G

The address addr should be an expression that
includes a user-defined public symbol (for
example, "RgParam+5"), or else it should have the
form indicated below:

x:y

where x is an appropriate CS parameter, and y is
an appropriate IP parameter. (Each process has
its own CS and IP registers in the 8086/80186
processors. These registers point to the
instructions currently being executed in that
process.)

The commands

10:0 CODE-G

and

100 CODE-G

both cause execution to begin at absolute address
100. However, the command "10:0 CODE-G" sets CS
to 10, and the command "100 CODE-G" sets CS to 0.

CODE-X: EXECUTING INSTRUCTIONS INDIVIDUALLY

To make the system execute the next instruction in
the current process, type

CODE-X

After the system executes this instruction, it
opens and displays the next instruction.

5-6 Debugger Manual

Thus, you can type CODE-X again and again to see a
series of instructions displayed and executed one
by one.

To resume continuous execution of instructions
after using CODE-X, either type

CODE-P

or press GO.

Whenever you use the CODE-X command to execute an
instruction that loads a segment register, two
instructions are actually executed.

For example, in the portion of code listed below,
if you use CODE-X to execute the instruction "LES
BX, [bp + 6]", the instruction "PUSH ES" is also
executed, and the PUSH BX instruction is dis-
played as the open location, as indicated below:

LES BX, [bp + 6]
PUSH ES
PUSH BX

CODE-E: BREAKING AFTER THE CURRENT INSTRUCTION

To break after the current instruction, type

CODE-E

In most cases, entering CODE-E has the same effect
as entering CODE-X: it lets you step over an
instruction. However, if the instruction is a
CALL, CODE-X executes the CALL instruction and
then breaks at the first instruction in the called
procedure.

In contrast, CODE-E executes the entire procedure
and then breaks at the first instruction following
the RETURN. Therefore, CODE-E provides a
convenient way to step over a procedure call.

NOTE

You cannot use CODE-E to break after an in-
struction that loads a segment register.

 Working with Registers 6-1

6 WORKING WITH REGISTERS

This section describes the Debugger's internal
process register, and explains how to examine and
modify registers. It also discusses the use of
register mnemonics, and tells how to proceed from
a new Code Segment and Instruction Pointer (CS:IP)
using CODE-G.

THE PROCESS REGISTER

The process register PR is a Debugger internal
register. This register always identifies and
keeps track of the current process. The PR is set
automatically to the process identifier of the
process that most recently reached a breakpoint.
For example, if Process 2 is the process that most
recently reached a breakpoint, then PR is set to
2.

When you invoke the Debugger from the Executive or
from the Context Manager (using CODE-GO) just
before the execution of an application system
begins, PR is set to the identifier of the first
user process.

All Debugger commands that involve processes treat
the process with which they are concerned as the
current process. For example, whenever registers
are read or written to, the register of the
current process is used.

EXAMINING AND MODIFYING REGISTERS

To debug a single-process program, you normally do
not need to refer to PR at all. However, to debug
a multiprocess program, you must know which of the
processes involved is the current process. You
can examine and change PR the same way you would
examine and change any other word location: by
opening it and then entering a new parameter, if
desired. For example, if the current process is
number 4 and you want to change it to number 7,
type

PR →

6-2 Debugger Manual

In this case, the Debugger responds by displaying

PR → 4

to which you respond by typing

7

The current process is now number 7.

When a multiprocess program is debugged, the
8086/80186 register mnemonics indicate the machine
registers that are associated with the current
process. Likewise, the IP (instruction pointer)
and FL (flags) registers indicate the instruction
pointer and flags associated with the current
process.

To examine the registers of other processes, you
must change PR by following the procedure ex-
plained above.

USING REGISTER MNEMONICS

You can read and write to all of the registers
listed below.

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment

AX, BX, CX, and DX are all general registers. BP,
BX, DI, and SI are general registers and index
registers. The 16-bit FL register contains flags,
and the IP register contains the instruction
pointer.

You can use register mnemonic symbols (AX, SI,
etc.) only as left-side values. In other words,
these symbols must be the first parameters in the
commands that you use to examine or to change the
contents of memory.

NOTE

If you try to change the register SP, your
system will abnormally terminate.

 Elementary Display Commands 7-1

7 ELEMENTARY DISPLAY COMMANDS

This chapter explains how to use three basic De-
bugger commands to display a trace of the stack,
to display the user screen, and to display the
contents of the 8087 co-processor.

CODE-T: DISPLAYING A TRACE OF THE STACK

A stack trace consists of several numbered lines.
Each line number corresponds to a stack frame, and
the first line displayed corresponds to the
current stack frame. The CODE-T command displays
the procedure-invocation stack for the current
process. To display the entire stack, type

CODE-T

To display the stack for the k most recent active
procedure invocations, type

k CODE-T

For example, to display the stack for the 6 most
recent invocations, type

6 CODE-T

A typical Debugger response is the display shown
below:

0 3108 12D2:14A (3,3,4F1F,3113)
1 3116 581F:95 (173C,1,4F1F,312A,4F1F,312E)
2 3130 5EC8:0C4 (4F1F,173C,4F1F,314D)
3 313E 571C:255 (26F0,47,4F1F,314D,4F1F,3158)
4 3160 5920:6E (4F1F,2700,4F1F,3178,4F1F,31CD)
5 318E 5FA9:70 (2700,4E1F,0,600,4F1F,31CD)

In this display, the first column contains the
level number for the current frame. The second
column contains the frame pointer (BP) for that
frame, and the third column contains the return
address (CS:IP) that will be effective when
control returns to that level. The remainder of
each line contains the parameters that were passed
to the procedure corresponding to the stack frame.

7-2 Debugger Manual

The Debugger estimates the number of parameter
words displayed (up to a maximum of six).
Therefore, this number might not correspond to
the number of parameters actually passed to the
procedure.

CODE-U: DISPLAYING THE USER SCREEN

When the Debugger is running, it displays only the
Debugger screen. The Debugger does not display
the screen generated by the user process. To view
the user screen without exiting from the Debug-
ger, type

CODE-U

Once the user screen appears, press any key (ex-
cept CODE-U again) to restore the Debugger screen.

CODE-Z: DISPLAYING THE CONTENTS OF THE 8087
REGISTERS

This command displays the contents of the 8087
registers.

NOTE

You should use CODE-Z only if your system has
an 8087 co-processor.

For example, suppose your system has only an
8086/80186 processor. If you enter CODE-Z, then
your system will enter a perpetual WAIT state,
because the 8087 co-processor is not there.

In such a case, the debugging process (as well as
any other processes) will halt, and you will not
be able to enter any instructions or commands from
the keyboard. The only solution is to re-boot
your system.

 Debugger Modes 8-1

8 DEBUGGER MODES

The Debugger operates in three modes: simple mode,
multiprocess mode, and interrupt mode.

o The simple (and most often-used) mode applies
to the debugging of a single-process user
task, such as a compiled BASIC program.

o The multiprocess mode applies to the debugging
of a multiprocess user task whose operation
depends on the continuous execution of all
processes except the ones that are explicitly
stopped at breakpoints.

o The interrupt mode applies to the debugging
of interrupt handlers, or else to debugging
that requires that breakpoints be set in the
operating system Kernel.

The following paragraphs describe how these three
modes are related to the different ways of
entering the Debugger.

SIMPLE MODE

You invoke this mode by pressing ACTION-A. This
mode also occurs when a CODE-B breakpoint is
executed after ACTION-A invokes the Debugger.

You can also enter the Debugger in simple mode by
using the Chain or LoadTask operations of standard
software. (See Section 7 of the CTOS Operating
System Manual for details of this advanced
procedure.)

In this mode, all user processes are suspended
when you or the program enters the Debugger. This
mode does not affect operating system services or
interrupt handlers.

The nonresident portion of the Debugger can swap
in and out of memory. However, this procedure
requires no intervention by the user, and is
not evident to the user. Simple mode requires
approximately 55K bytes less physical memory than
the multiprocess mode or the interrupt mode.

In simple mode, the Debugger prompt is an asterisk
(*).

8-2 Debugger Manual

MULTIPROCESS MODE

You invoke this mode by pressing ACTION-B. This
mode also occurs when a CODE-B breakpoint is
executed after ACTION-B invokes the Debugger.

All user processes continue execution after you
enter the Debugger. The Debugger suspends only
those user processes that have reached a
breakpoint.

This mode does not affect operating system
services or interrupt handlers. It is most useful
for debugging certain real-time programs, such as
the timer process in the Executive.

If you invoke the Debugger by entering the ACTION-
B command, then you can still type ACTION-A to
invoke the Debugger in its ACTION-A mode, and
suspend all user processes. However, once you
invoke the Debugger in ACTION-A mode, you cannot
change directly to the ACTION-B mode.

The Debugger alone requires about 55K bytes of
memory. However, the entire Debugger (including
its nonresident portion), together with the
program being debugged, must fit into the
available memory. If memory is insufficient, a
status message is displayed, and the Debugger
switches to simple mode.

Provided enough memory is available, you can set a
CODE-I breakpoint in multiprocess mode at any
time. The Debugger goes into interrupt mode when
a CODE-I breakpoint is taken. (See Section 12 for
more information about CODE-I breakpoints.)

If the current process as defined by the process
register (PR) is not suspended, the Debugger
prompt is the pound sign (#).

If the current process has been suspended, the
Debugger prompt is an asterisk (*).

For more information about using multiprocess
mode, see Section 9.

 Debugger Modes 8-3

INTERRUPT MODE

This mode occurs when a user process reaches a
CODE-I breakpoint. When the program reaches a
CODE-I breakpoint, the Debugger takes control of
the interrupt system and freezes the condition of
the processor.

As in the multiprocess mode, the entire Debugger
must fit into the available memory. If you set a
CODE-I breakpoint and enough memory is not
available, a status/error message appears.

In the interrupt mode, the Debugger prompt is an
exclamation mark (!).

 Using Multiprocess Mode 9-1

9 USING MULTIPROCESS MODE

This section provides more details about how to
use the Debugger's multiprocess mode: how to
enter the mode, how to proceed, and how to switch
control of the keyboard and the video display
between the user process and the Debugger.

ENTERING MULTIPROCESS MODE VIA ACTION-B

As noted in Section 8, you enter multiprocess mode
by pressing ACTION-B. If you have invoked the
Debugger using ACTION-B, then multiprocess mode is
also entered when a CODE-B breakpoint is executed.

PROCEEDING (CODE-P) AND EXITING

In multiprocess mode, if the current process has
been suspended, the CODE-P command causes that
process to resume.

However, in multiprocess mode, the CODE-P command
does not exit from the Debugger. (As noted above,
you press CODE-P to proceed with the current
process without exiting from the Debugger.) To
exit, you must press GO.

Similarly, you press CODE-G to begin process
execution at a different address from the one at
which the process stopped. (Pressing CODE-G does
not exit from the Debugger.)

KEYBOARD AND VIDEO SWAPPING

In multiprocess mode, pressing GO does not cause
the currently interrupted process to proceed.
Instead, in this mode, you press GO to exit the
Debugger and return control of the screen and the
keyboard to the user process.

 Swapping, Overlays, and Ports 10-1

10 SWAPPING, OVERLAYS, AND PORTS

This chapter describes how the Debugger manages
memory, explains how to examine code in an
overlay, and discusses how to read and write to
ports.

DEBUGGER SWAPPING

The Debugger requires approximately 55K bytes of
memory. However, under some circumstances (for
example, if you are debugging the Word Proces-
sor), you can debug a program that occupies all of
memory, theoretically leaving no room for the
Debugger.

The Debugger manages memory according to the
procedures described below:

o If enough memory is available, the Debugger
uses memory that is not used by the other
processes.

o If enough memory is not available, the
Debugger "swaps out" part of the user's
program, provided swapping out is possible.

When the Debugger swaps out part of the user's
program, program execution is not affected.

Swapping can occur only when the Debugger is in
simple mode. In simple mode, all user processes
are suspended when they reach a breakpoint. (See
also Section 8, "Debugger Modes.")

NOTE

The Debugger swapping mechanism is not related
or connected in any way to the Virtual Code
Segment Management Facility.

10-2 Debugger Manual

EXAMINING CODE IN AN OVERLAY

An overlay is a part of a program that remains on
a disk until you call it using the CALL operation.
The Debugger can display instructions that are
contained in an overlay, even if the overlay is
not present in memory. (For more information
about overlays, refer to the "Virtual Code Segment
Management" section in the CTOS Operating System
Manual.)

To display instructions contained in an overlay,
type

symbolic addr MARK

If the overlay is not present in memory, then the
Debugger places braces around the symbolic address
of the next instruction displayed using the DOWN-
arrow command. For example, the message

[Initialize+2] MOV BP, SP

indicates that the code segment containing the
procedure called "Initialize" is in a swapped-out
overlay.

You cannot modify instructions that are contained
in a swapped-out overlay. Patches that you make
to swapped-in overlays stay in effect only while
the overlay is present in memory.

READING AND WRITING TO PORTS

To read and write to ports, use the left-arrow and
right-arrow commands together with constants.

For example, to read from the byte-input port 17i,
type

17i ←

To read from the word-input port 31i, type

31i →

 Swapping, Overlays, and Ports 10-3

In either of these cases, after you type the
constant, the port becomes an open location. You
can then specify a new parameter to be written to
the port. Note that unlike reading from memory,
reading from a port can change the state of the
system. For example, reading a character from the
keyboard removes the character from the keyboard.

 The Histogram Facility 11-1

11 THE HISTOGRAM FACILITY

The Debugger's histogram facility lets you analyze
a section of your program to see how often it
executes given instructions. The facility does
so by displaying a list of how often the program
refers to one or more memory locations within a
user-specified range. Thus, you can measure
program performance based on this information
about where a program spends its time.

To generate a histogram, the Debugger divides
memory into small regions known as buckets.
Buckets are contiguous; collectively, they span
the entire section of code being analyzed. The
Debugger maintains a set of counters for these
buckets.

The Debugger creates a histogram by sampling the
instruction pointer (CP:IP) 60 times per second.
If CP:IP refers to an address that is located in
the section of code being analyzed, the Debugger
determines which bucket is referred to, and adds
to the counter for that bucket.

CODE-H: INVOKING THE HISTOGRAM FACILITY

Before creating a histogram, you must specify the
lower and upper bounds (addresses) of the section
of code to be analyzed. To do so, enter the CODE-
H command, preceded by two parameters that specify
the lower and upper bounds, respectively, as shown
below:

parameter, parameter CODE-H

For example, to specify line number 10 of a
compiled BASIC program as the lower bound and line
number 1000 as the upper bound, type

@10,@1000 CODE-H

(In BASIC programs the symbolic name of a line
number is the line number preceded by an @
character.)

By default, the bucket size is 16 (decimal) bytes.
To change the bucket size, enter CODE-H with one
parameter. Note that the bucket size must be a
multiple of 16 (decimal).

11-2 Debugger Manual

For example, to change the bucket size to 64
bytes, type

64. CODE-H

After setting the bounds and the bucket size,
start the histogramming procedure by entering
CODE-H with no parameters, as shown below:

CODE-H

The Debugger responds by displaying the message

[Histogram On]

before exiting to the program.

Note that CODE-H is equivalent to GO. When you
enter CODE-H, the Debugger exits and the user
program continues.

NOTE

To support histogramming, the debugger must
allocate enough long-lived memory to contain
the bucket counters.

If this much memory is not available, the debugger
displays the message "Not enough memory." In this
case, the histogram facility will not start. To
avoid this situation, you must either reorganize
your program so the Debugger can acquire the
necessary memory or specify a larger bucket size.

You must reenter the Debugger to obtain a display
of the histogram report. You can do so either by
pressing ACTION-A or by placing a breakpoint in
the program before you start the histogramming
facility.

NOTE

Do not let your program call Exit (i.e., do
not let it terminate) while histogramming is
in progress If you do so, the histogram
information will be lost.

 The Histogram Facility 11-3

CODE-Q: QUERYING THE HISTOGRAM FACILITY

Once you have entered the Debugger again, you can
obtain a display of the histogram report by
entering CODE-Q preceded by the parameter 1, as
indicated below:

1 CODE-Q

A typical Debugger response is shown below:

*1 CODE-Q
@200+20 1
@300+2 1
@300+12 1
@400+0C 5
@600+6 1D
@600+16 0F
@600+26 9
@700+2 0E
@700+12 23
@700+22 0D
@700+32 11
@700+42 0E
@700+52 4
@800+7 7

In Range: 0A5
Out of Range: 6DB
Total: 780

This report displays the address of each bucket
and indicates the value of the associated bucket
counter. It also displays a summary indicating
the total number of samples taken, the number of
times that the instruction pointer was within the
specified range, and number of times that the
pointer was outside the range.

To obtain a display of the bounds and bucket size
in the histogram, enter CODE-Q with no parameters,
as shown below:

CODE-Q

Pressing CODE-Q also produces a report of the
number of bytes required to contain the bucket
counters, as shown in the following display:

Lower: PrimeEntry+9 Upper: @1000+1
Bytes/Bucket: 10 Bytes required: 0C0

11-4 Debugger Manual

If you enter either CODE-Q or 1 CODE-Q without
having exited from the Debugger and run the
histogram facility, the Debugger displays the
message "No data." In this case, you must again
enter the lower and upper bounds and the number of
bytes per bucket, and then enter CODE-H or GO
again to exit from the Debugger and run the
histogram facility.

When you enter the Debugger again after a
histogram has been displayed, you can continue
histogramming simply by exiting from the Debugger
using GO or CODE-P.

TURNING OFF THE HISTOGRAM FACILITY

To turn off the histogram facility, enter CODE-H
again with no parameters, as shown below:

CODE-H

The Debugger responds by displaying the following
message:

[Histogram Off]

After turning off the histogram facility, you can
change the bounds and the bucket size and invoke
the histogram facility again, as explained above.

 Breakpoints in Interrupt Handlers 12-1

12 BREAKPOINTS IN INTERRUPT HANDLERS

The breakpoint commands described in Section 5,
"Using Breakpoints," let you place breakpoints in
normal user code and in normal operating system
code. However, these commands alone cannot place
a breakpoint in the operating system kernel or in
an interrupt handler.

CODE-I: SETTING BREAKPOINTS IN INTERRUPT HANDLERS

To set a breakpoint at address addr in an
interrupt handler or in the OS kernel, type

addr CODE-I

The standard keyboard and video facilities of the
operating system support your interaction with the
Debugger, except when the OS kernel or an
interrupt handler is broken. At these
breakpoints, all processes (including OS
processes) are suspended, and the Debugger then
works by direct access to the physical keyboard
and the screen.

CODE-I breakpoints are prohibited if the Debugger
has swapped out a part of the user program. (The
Debugger does this when the user program and the
Debugger together are too large to fit in the
partition.)

Before exiting from interrupt mode, you should
explicitly remove any CODE-I breakpoints by
entering the CODE-C command.

The Debugger uses hardware interrupts 1 and 3.
Therefore, user programs should not use hardware
interrupts 1 or 3. Other parts of the operating
system use other hardware interrupts. Refer to
the manual for your operating system to learn
which of these other interrupts you should not
use.

12-2 Debugger Manual

ASSEMBLY LANGUAGE CALLS: THE INT 3 INSTRUCTION

If you code an INT 3 instruction in an assembly
language program, the system enters the Debugger
when the INT 3 instruction is executed.

For example, if you code an INT 3 instruction at
location 9904:6A, then when the program executes
that instruction, the system enters the Debugger.
In this case, the system displays the following
type of message:

Debugger call at 9904:6B in Process 8

Note that the address displayed in this message
(9904:6B) is located one byte after the INT 3
instruction (9904:6A).

The Debugger also disassembles the INT 3
instruction by displaying the DEBUG mnemonic, as
shown below:

9904:6A ◣ DEBUG

 Advanced Display Commands 13-1

13 ADVANCED DISPLAY COMMANDS

This section describes two commands that are
used occasionally in advanced debugging. CODE-N
displays linked-list data structures; CODE-S
displays system structures for the status of
processes and exchanges.

CODE-N: DISPLAYING LINKED-LIST DATA STRUCTURES

The CODE-N command displays linked-list data
structures. You should use CODE-N with the
internal Debugger registers CB and DB. The
following paragraphs explain how to do so.

To display a block of memory that is k bytes long
and that has a link word at the jth byte, you
should first set CB equal to k, and then set DB
equal to j. For example,

CB → 0000 8

DB → 0000

To display the first block, type

addr CODE-N

To display each subsequent block, again type

CODE-N

Or, to display n blocks at the same time, type

n, addr CODE-N

where n is a decimal number. For example,

3., 1217:3084 CODE-N

specifies that three blocks are to be displayed at
once. A typical Debugger response appears below:

1217:3084 02 31 C1 01 7C 3E AF 17
1217:3102 DA 31 83 80 68 26 76 5D
1217:31DA 00 00 C1 FF 04 4C 17 12

13-2 Debugger Manual

CODE-S: DISPLAYING THE STATUS OF PROCESSES AND
EXCHANGES

Processes communicate with one another by sending
messages to exchanges. The two primitives used
are SEND and WAIT. An exchange can be occupied by
a message or by a process that is waiting to
receive a message. The CODE-S command displays
the status of processes and exchanges. To obtain
a display of all of the processes and exchanges,
type

CODE-S

When you enter CODE-S, the Debugger displays an
entire screen of information. The first item is a
listing of processes, as shown in Figure 13-1
below:

Processes

 id oPcb cs:ip link st pr ss:sp bp ds exch user oExtPcb
 00 3084 0045:3E7C 31DA C1 01 17A9:3E4C 0000 0000 0002 0000 3184
 01 3096 1075:08F5 0000 C0 01 1217:5104 2796 1217 00OD 0000 3196
 02 30A8 09DC:0091 0000 C0 02 1217:51D4 25DE 1217 0000 0000 31A8
 03 30BA 06FC:0155 0000 C0 03 1217:52FE 1F08 1217 0010 0000 31BA
 04 30CC 06F0:0024 0000 C0 03 1217:54FC 1C60 1217 00OB 0000 31CC
 05 30DE 093D:006A 0000 C0 04 1217:55F6 246C 1217 0004 0000 31DE
 06 30F0 0C9C:003E 0000 C0 05 1217:56EE 5710 1217 0006 0000 31FE
 07 3102 12D2:014A 0000 82 80 4F1F:30D0 30EC 4F1F 001C 0000 3202
 08 3114 5257:009E 0000 82 7F 4F1F:1B3C 1B54 4F1F 001D 0000 3214
 13 31DA 082F:000B 0000 C1 FF 1217:4C04 0000 0000 0000 0000 320A

Figure 13-1. Example of Processes Displayed
by CODE-S.

Each line in this display corresponds to a process
that is currently active in the system. The
number at the beginning of each line is a process
identifier (PID).

The column headings in this display are defined
below:

id The process identifier number.

oPcb The address of the process control block
for that process. The address is relative
to the operating system's data segment.

 Advanced Display Commands 13-3

cs:ip The address of the next instruction to be
executed by the process.

link A link address used by CTOS to keep
processes threaded.

st A byte containing status flags.

pr The priority of the process.

ss:sp The address of the top of the stack for the
process.

bp The base pointer of the process.

ds The data segment of the process.

exch For that process, the default exchange for
responses.

oExtPcb The address of the extended PCB.

The next items the Debugger displays are the Run
Queue and the Exchanges. (See Figure 13-2 below.)

Run Queue |00|01|02|13|

Exchanges

 oExchg oMsgHead oMsgTail oPcbHead oPcbTail
01 31F4 3458 3458 0000 3084
03 3204 0000 0000 30DE 30DE
05 3214 0000 0000 30F0 30F0
0A 323C 0000 345E 30CC 30CC
OF 3264 3452 3452 0000 31C8
11 3274 0000 0000 30BA 30BA
1C 32CC 0000 3458 3102 3102
1E 32DC 0000 0000 3114 3114

Figure 13-2. Example of a Run Queue and Exchanges
Displayed by CODE-S.

The Run Queue display lists the processes that are
ready to run in priority order. These processes
are active instead of WAITing.

13-4 Debugger Manual

Each line in the Exchanges display describes the
state of an exchange. The first number on each
line is an exchange identifier. The addresses
that appear as column headings are all relative to
the operating system's data segment. These
addresses are explained below:

oExchg The address of the exchange.

oMsgHead If messages are queued at the
exchange, oMsgHead is the address of
the first message in the queue.

oMsgTail If messages are queued at the
exchange, oMsgTail is the address of
the last message in the queue.

oPcbHead If processes are queued at the
exchange, oPcbHead is the address of
the first process in the queue.

oPcbTail If processes are queued at the
exchange, then oPcbTail is the address
of the last process in the queue.

If messages are queued at the exchange, then both
oMsgHead and oMsgTail are non-zero.

If processes are waiting at the exchange, then
both oPcbHead and oPcbTail are non-zero.

Either messages or processes, not both, are queued
at an exchange.

To obtain a display of processes or of the point-
ers to messages waiting on exchange k, type

k CODE-S

For example, to obtain a display of the processes
or of the pointers to messages waiting on exchange
7, type

7 CODE-S

Typical Debugger responses are shown below. The
first is for processes, and the second is for
messages.

Exchange 07 - Processes |03|

Exchange 07 - Messages |ADB2:1217|

 Other Advanced Commands 14-1

14 OTHER ADVANCED COMMANDS

This section describes two additional advanced
debugging commands. You use these commands to
deactivate the Debugger (as opposed to exiting
from it), and to turn the line printer echo on and
off.

CODE-K: DEACTIVATING THE DEBUGGER (KILLING THE
DEBUGGER)

Use the CODE-K command to deactivate the Debug-
ger. As used in this manual, the term
"deactivate" means "to remove from the group of
features available to the user." Thus, the CODE-K
command prevents you from using the Debugger at
all.

When you press CODE-K, the Debugger displays a
message asking whether you really want to deactivate
it. If so, press CODE-K again.

Once you press CODE-K the second time, you can
reenter the Debugger only by pressing the RESET
button located on the back of your workstation.

NOTE

You must deactivate the Debugger, using CODE-K,
before you can install a different version of
the Debugger.

CODE-L: TURN LINE PRINTER ECHO ON (OFF)

The Debugger lets you obtain a duplicate of its
screen output on a line printer. The CODE-L
command lets you obtain a printed copy of the
dialogue that appears on the Debugger screen. To
activate this feature, type

CODE-L

14-2 Debugger Manual

If the line printer is properly connected and is
online, the following message appears on the
screen:

Lpt echo ON

If the line printer is not properly connected, or
if it is not online, the following message appears
on the screen:

Lpt echo OFF

If you type CODE-L again and again, the echo
feature alternates between its ON and OFF states.

You cannot use the Debugger's printer-echo fea-
ture if the line printer is also being used by the
operating system or by the program that is being
debugged.

In the file Debugger, CODE-L takes an optional
filename parameter as follows:

'filename' CODE-L

'Filename' is the name of the byte stream file
that contains the screen output duplicate.

 Status Messages A-1

APPENDIX A: STATUS MESSAGES

The error messages that the Debugger displays are
shown below in boldface type. The explanation of
each message appears in regular type.

Breakpoint already set

A previous CODE-B command already set a break-
point at the specified address.

Pattern not found

The specified pattern was not found in the range
of addresses given as parameters of the CODE-O
command

Expected parameter not found

You must use a string parameter with this com-
mand.

Segmented address parameter not found

You must use an address parameter with this
command.

Address must not be in an overlay

You cannot modify code in an overlay.

Too many parameters

You must enter the command again with the
correct number of parameters.

Not allowed when interrupts are disabled

The command in question is not available after a
CODE-I breakpoint has been taken, or when inter-
rupts are disabled.

Not enough parameters

You must enter the command again with the cor-
rect number of parameters.

System error while opening a symbol file

A file system error occurred when the Debugger
tried to open the symbol file. You should
verify that the file name is spelled correctly.

A-2 Debugger Manual

Not a symbol file

The filename parameter in the CODE-F command is
not the name of a symbol file. Check the
spelling.

No such command

That command does not exist. (Refer to Appendix
B, "Command Summary," for a list of all of the
Debugger commands.)

Not implemented

The specified command is not implemented in the
Debugger.

Non-existent memory

No physical memory exists at the specified ad-
dress .

Too many breakpoints

The Debugger permits only 16 breakpoints at one
time.

Radix must be between 2 and 16

The parameter of the CODE-R command must be in
the range from 2 to 16 (decimal), inclusive.

Expected numeric parameter not found

You must use a numeric parameter with this
command.

No such breakpoint

No breakpoint has been set at the address given
in the CODE-C command.

Cannot proceed

You cannot invoke CODE-P to resume a process
that is already running.

No bounds set

You must set the upper and lower bounds before
you turn on the histogrammer.

 Status Messages A-3

Histogrammer ON

This message simply indicates that the histogram
function is active.

Bucket size must be a multiple of 16

When using the histogram facility, you must
specify a number of bytes that is a multiple of
16.

No data

You must run the histogramming facility to
obtain data before you can use CODE-Q to examine
the data.

Lower bound is greater than upper

The histogrammer requires that the lower-bound
address be numerically less than the upper-bound
address.

Expected parameter(s) not found

The parameters of the specified command are not
of the correct type or number.

PatchArea offset too large

The offset in the PatchArea must not exceed 50
bytes.

 Command Summary B-1

APPENDIX B: COMMAND SUMMARY

1. The CODE-R command and the equals sign (=)
neither open nor close any locations.

2. The CODE-X, UP arrow, and DOWN arrow commands
close one location and open another.

3. All other commands close all locations.

The Debugger parameters and commands and their
effects are summarized in the following table.

Parameter(s) Command Effect

addr

addr

k, addr

'filename'

segment,
'filename'

addr

param

param,
param

CODE-B

CODE-B

CODE-C

CODE-C

CODE-D

CODE-F

CODE-F

CODE-F

CODE-G

CODE-H

CODE-H

CODE-H

Displays a list of all
breakpoints

Sets a breakpoint at addr
(when in simple or multi-
process mode)

Clears all breakpoints

Clears the breakpoint at
addr

Displays k bytes starting
at addr CODE-E

Turns symbolic output ON
and OFF

Uses the symbol file

Uses the symbol file with
load offset

Starts the current process
at addr

Invokes the histogram
facility

Specifies the bucket size
for the histogram facility

Specifies the range for
the histogram facility

B-2 Debugger Manual

addr

addr

k, addr

lower addr
upper addr
byte pattern

k

0

1

CODE-I

CODE-I

CODE-K

CODE-L

CODE-N

CODE-N

CODE-N

CODE-O

CODE-O

CODE-P

CODE-P

CODE-P

CODE-Q

CODE-Q

CODE-R

Displays a list of all
breakpoints

Sets a breakpoint at addr
(in interrupt mode)

Exits from and deactivates
the Debugger

Turns printer echo ON and
OFF

Displays the next entry in
a linked list

Displays the first entry in
a linked list

Displays k entries in a
linked list

Searches for byte pattern
starting at lower addr

Searches for byte pattern
starting at new lower addr

Proceeds from the current
breakpoint

Proceeds k times from the
current breakpoint

Proceeds after removing the
current breakpoint

Displays the range and
bucket size for the
histogram facility

Displays the report created
by the histogram facility

Sets the output radix to
hexadecimal (or to decimal,
if the current radix is
hexadecimal)

 Command Summary B-3

k

k

k

addr

k, addr

addr

k, addr

addr

k, addr

value,
expression,
or instruc-
tion

CODE-R

CODE-S

CODE-S

CODE-T

CODE-T

CODE-U

CODE-X

CODE-Z

CODE-←

CODE-←

CODE-→

CODE-→

MARK

MARK

=

Sets output radix to k

Displays status of all
processes and exchanges

Displays status of exchange
k

Displays a trace of the
stack

Displays a trace of k
levels of the stack

Causes a video display of
either the user process or
the Debugger procedures

Executes an instruction,
and opens the next instruc-
tion

Displays the contents of
the 8087 registers

Opens addr as a byte

Opens k successive bytes

Opens addr as a word

Opens k successive words

Opens addr as an instruc-
tion

Opens k successive instruc-
tions

Re-displays the current
value

B-4 Debugger Manual

value

value

↑

↑

↓

↓

GO

RETURN

Opens the previous location

Changes the current loca-
tion, and opens the pre-
vious location

Opens the next location

Changes the current loca-
tion, and opens the next
location

Exits from the Debugger,
and (in simple mode) pro-
ceeds from the current
breakpoint

Closes the open location

 Alphabetical List of Commands C-1

APPENDIX C: ALPHABETICAL LIST OF COMMANDS

All of the commands that are presently implement-
ed in the Debugger are listed alphabetically
below. The page number at the end of each entry
refers to the section in the manual where the
command is described.

CODE-A: Setting Conditional Breakpoints, 5-2

CODE-B: Setting and Querying Breakpoints, 5-1

CODE-C: Clearing Breakpoints, 5-2

CODE-D: Displaying the Contents of Memory, 4-3

CODE-E: Breaking after the Current Instruction,
5-6

CODE-F: Opening a Symbol File, 3-3

CODE-G: Starting a Process at a Specified
Address, 5-5

CODE-H: Invoking the Histogram Facility, 11-1

CODE-I: Setting Interrupt-Level Breakpoints, 12-1

CODE-K: Deactivating the Debugger (Killing the
Debugger), 14-1

CODE-L: Turning the Line-Printer Echo ON (OFF),
14-1

CODE-N: Displaying Linked-List Data Structures,
13-1

CODE-0: Searching for a Byte Pattern in Memory,
4-6

CODE-P: Proceeding from a Breakpoint, 5-4

CODE-Q: Querying the Histogram Facility, 11-3

CODE-R: Changing the Base of the Number System,
3-5

CODE-S: Displaying the Status of Processes and
Exchanges, 13-2

C-2 Debugger Manual

CODE-T: Displaying a Trace of the Stack, 7-1

CODE-U: Displaying the User Screen, 7-2

CODE-X: Executing Instructions Individually, 5-5

CODE-Z: Displaying the Contents of the 8087
Registers, 7-2

(CODE-J, CODE-M, CODE-V, CODE-W, and CODE-Y are
not implemented in the present Debugger.)

 The Debug File Utility D-1

APPENDIX D: THE DEBUG FILE UTILITY

The Debug File utility lets you examine and modi-
fy the data in files and devices. It does not let
you edit a run file. However, you do use this
utility to patch run files and libraries.

To invoke this utility from the Executive, enter
the utility name in the command field and press
RETURN. The Debug File command form will then
appear.

COMMAND: Debug File

DEBUG FILE COMMAND FORM

 File Name

 [Write?]

 [Image Mode?]

where

File Name is the name of the file or
device that you want to
examine or modify

[Write?] asks you to enter “Yes” or
"No" (default is “No”) to
indicate whether you want to
modify any data. (If you
enter "Yes", you will be able
to modify the data.)

[Image mode?] asks you to enter "Yes" or
"No" (default is "No") to
indicate how you want the
Debug File utility to inter-
pret the data in the run file.
If you enter "Yes", the
utility interprets the data
exactly as the data appears in
the run file. Otherwise, the
utility interprets the data
the way the data appears when
loaded in memory.

D-2 Debugger Manual

WARNING

Be very careful not to damage the CTOS file
system by writing to a file or to a device
such as a floppy disk drive that you have
opened via this utility.

PROMPTS AND COMMANDS

When invoked, this utility prompts you with a
percent sign (%).

You can use all the Debugger commands except those
pertaining to breaking and proceeding, as
described in Section 5 above, to examine and
modify the data in a file or device.

The CODE-S (process and exchange status) command
and the CODE-T (stack trace) command work properly
only if the file being debugged is the crash dump
file, [Sys]<Sys>CrashDump.Sys.

EXITING

To exit from this utility, press either FINISH or
GO. Any modifications you made to the data in the
file or device are properly recorded on the disk
only if you press FINISH to exit from the utility.

When you modify a run file, the utility automat-
ically corrects the run file checksum word.

 Operating Notes E-1

APPENDIX E: OPERATING NOTES

DUAL FLOPPY-DISK SYSTEMS

When a system is booted, the Debugger tries to
create a file called <Sys>DebuggerSwap.Sys. This
file requires 74 free sectors on the disk.

If you want to use the Debugger on a dual floppy
disk system, the system disk must contain the
file called <Sys>Debugger.Sys. This file must
not be write-protected, because if it is, the
Debugger cannot create its swap file.

You must enter a CODE-K command to the Debugger
before removing the system disk from the drive.

CLUSTER SYSTEMS

Before using the Debugger on a cluster system
(either from the master workstation or from one
of the cluster workstations), you should follow
carefully the cluster software installation
procedure described in the Release Notice.

DEBUGGER FILES

The Debugger has different file names, depending
on the type of workstation. The Debugger file
must be in the system directory [Sys]<Sys>.

The Debugger file names are listed below:

o IWS Debugger.Sys

o AWS Debugger.Sys

o N-GEN/T1 DebuggerT1.Sys

When the Debugger initializes itself, it creates
a file called "DebuggerSwp.Sys" in the <$>
directory.

 Glossary-1

GLOSSARY

Address expression. Description of a location in
memory. The description consists of one or more
symbols, or an indexed or nonindexed parameter.

Breakpoint. A user-defined point in the code for
a process. Execution stops when a process reaches
a breakpoint.

Bucket. A small region of memory, measured in
multiples of 16 decimal bytes, used by the
Debugger's histogram facility.

Byte pattern. User-defined group of byte
specifiers. The specifiers are separated by
commas and enclosed in double quotation marks.

Byte specifier. Sequence of two-digit hexadecimal
numbers, or a string of characters enclosed in
single quotation marks.

Clear. Remove a breakpoint from a particular
location in memory.

Code listing. English-language display of code
generated by a compiler or translator.

Crash dump. Output (memory dump) caused by a
system failure.

Current process. The process identified by the PR
register in the Debugger. Any registers that are
read or written by the Debugger are for the
current process.

Current value. The value most recently typed by
the user, or the value most recently displayed by
the Debugger.

Echo. Repetition on a line printer or on a screen
of instructions entered by the user and/or
material displayed by the Debugger.

Exchange. Path on which a process waits for or
receives messages or communications from another
process or processes.

Histogram. Debugger facility that displays the
frequency with which a process refers to each
memory location in a user-specified range.

Glossary-2 Debugger Manual

Indexed address. Address expression that uses
index registers.

Interrupt mode. Debugger operating mode used to
debug interrupt handlers or to set breakpoints in
the Operating System Kernel.

Link word. Word address (i.e., a 16-bit address)
pointing to the next block of data.

Linked-list data structure. Data structure
containing elements that are linked by 16-bit
addresses (link words) or by 32-bit addresses
(link pointers). The CODE-N command uses link
words.

Linker. Software system that loads and connects
together the object programs output separately by
a compiler or assembler (BASIC, FORTRAN, et al.),
and from them produces a run file.

Multiprocess mode. Debugger operating mode used
in debugging a user task that involves more than
one process and that depends on continuous
execution of all processes except the ones stopped
at breakpoints.

Offset. The number of bytes by which a memory
location is distant from the beginning of a
segment.

Output radix. The base of the notation in which
Debugger output is expressed (binary, decimal,
hexadecimal, or any other base from 2 to 16,
inclusive).

Parameter. A constant (number, port, or text), a
symbol, or one or more unary or binary operators,
address expressions or symbolic instructions.

Physical address. An address that does not
specify a segment base, and is relative to memory
location 0.

Pointer. See "segmented address" below.

Port constant. Number followed by an "i" or an
"o" (indicating an input port and an output port,
respectively).

 Glossary-3

Public symbol. An ASCII character string associated
with a public variable, a public value, or a public
procedure.

Public variable. Variable whose address can be
referenced by a module other than the module in
which the variable is defined.

Public value. Value whose address can be
referenced by a module other than the module in
which the value is defined.

Public procedure. Procedure whose address can be
referenced by a module other than the module in
which the procedure is defined.

Register mnemonic. Two-letter symbolic name for a
register in the 8086/80186 processor (for example,
AX, BL, SI).

Run file. File created by the linker. The run
file contains the initial image of code and data
for a program.

Run-file checksum word. Number produced by the
summation of words in a run file. Used to check
the validity of the run file.

Segment. A discrete portion of memory, of a
routine, or of a program.

Segment address. Address of a segment base. For
an 8086/80186 microprocessor, a segment address
refers to a paragraph (16 bytes).

Segmented address (pointer). Address that
specifies both a segment base and an offset.

Segment override. Operating code that causes the
8086/80186 to use the segment register specified
by the prefix when executing an instruction,
instead of the segment register that it would
normally use.

Set. Place a breakpoint at a particular location
in memory.

Simple mode. Debugger operating mode used in
debugging a single-process user task, for example,
a compiled BASIC program.

Glossary-4 Debugger Manual

Stack. A region of memory, accessible from one
end by means of a stack pointer.

Stack frame. Region of a stack corresponding to
the dynamic invocation of a procedure. Consists
of procedural parameters, a return address, a
saved-frame pointer, and local variables.

Stack pointer. The indicator to the top of a
stack. The stack pointer is stored in the
registers SS:SP.

Stack trace. Debugger display of a stack,
organized by stack frames.

State variable. Symbolic name of a register that
contains data indicating the state of the Debugger
(for example, PR, IP, or FL).

Symbol. Sequence of alphanumeric and other
characters (under-score, period, dollar sign,
pound sign, or exclamation mark).

Symbolic instructions. Instructions containing
symbols, that is, mnemonic characters corre-
sponding to assembly-language instructions.
(These instructions cannot contain user-defined
public symbols.)

System process. Any process that is not
terminated when the user calls Exit.

Text constant. Sequence of characters enclosed by
quotation marks.

User process. Any process that is terminated when
the user calls Exit.

