
CTOS/VM™ CONCEPTS

Copyright © 1987 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

First Edition (August 1987) 09–00945–01

All rights reserved. No part of this document may be reproduced, trans-
mitted, stored in a retrieval system, or translated into any language without
the prior written consent of Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect
to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Convergent
Technologies reserves the right to revise this publication and to make changes
from time to time in its content without being obligated to notify any person
of such revision or changes.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, AutoBoot, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager/VM, Convergent, CT-DBMS, CT-MAIL,
CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document Designer, The
Operator, AWS, CWS, IWS, S/50, S/120, S/160, S/220, S/320, S/640,
S/1280, Multibus, TeleCluster, Voice/Data Services, Voice Processor,
WGS/Calendar, WGS/Desktop Manager, WGS/Mail, and X-Bus are

trademarks of Convergent Technologies, Inc.

Contents iii

CONTENTS

RELATED DOCUMENTATION xxvii

1 INTRODUCTION 1-1
WHAT IS CTOS/VM? 1-1
WHAT DOES CTOS/VM OFFER? 1-1
CTOS FEATURES 1-2

Multiprogramming 1-2
Multitasking 1-2
Event-Driven, Priority-Ordered
Process Scheduling 1-3
Messaged-Based Operation 1-3
Nationalization 1-4

CTOS/VM ENHANCEMENTS 1-4
Protected Mode Operation 1-4
Real Mode Operating System (RMOS) 1-4
Virtual 8086 Mode 1-5
Variable Partitions with Code
Sharing Capability 1-5

HOW THE OPERATING SYSTEM IS STRUCTURED .. 1-5
USING THIS MANUAL 1-6

Organization 1-7
Chapter Ordering 1-8

2 OVERVIEW OF OPERATING SYSTEM CONCEPTS ... 2-1
OPERATING SYSTEM STRUCTURE 2-1

Process 2-1
Kernel 2-1

Event-Driven Priority Scheduling .. 2-2
Interprocess Communication (IPC) .. 2-2
Inter-CPU Communication (ICC) 2-4

Configurable Command Interpreter 2-5
Other Operating System Features 2-5

File System Management 2-5
Device Handlers 2-6

DISTRIBUTED ENVIRONMENT AND CLUSTERING .. 2-6
Local Resource-Sharing Networks
(Clusters) 2-6
CT-Net Network 2-7

iv CTOS/VM Concepts

OPERATING SYSTEM TYPES 2-8
Workstation Operating Systems 2-8

SRP Operating Systems 2-10
PROGRAM AND PARTITION 2-11
SYSTEM MEMORY ORGANIZATION 2-12

Partition Managing Programs 2-14
Swapping 2-14
User Number 2-15

APPLICATION PARTITION MEMORY
ORGANIZATION 2-17
VIRTUAL CODE MANAGEMENT FACILITY 2-18
FIXED AND VARIABLE PARTITIONS 2-18
CODE SHARING 2-18

3 USING CTOS/VM OPERATIONS 3-1
ASSUMPTIONS 3-1
NAMING CONVENTIONS 3-1
INTERFACE 3-2

Format 3-2
Example Statement 3-3

OPERATION TYPES 3-5
Object Module Procedure 3-5
System-Common Procedure 3-6
Kernel Primitives 3-7
Accessing System Services Using the
Request Procedural Interface 3-7
Accessing System Services Using the
Kernel Primitives 3-8

INTERFACE LEVELS 3-9
ADDRESSING MEMORY 3-10

Logical Memory Address 3-11
Linear Memory Address 3-14
Physical Memory Address 3-14

MEMORY ADDRESSING IN THIS MANUAL 3-15
ADVANTAGES TO PROTECTED MODE
MEMORY ADDRESSING 3-15

Extended Memory 3-15
Protection 3-15

Contents v

4 PROGRAM MANAGEMENT 4-1
WHAT IS A PROGRAM 4-1

Segments 4-1
Linker 4-2

PROGRAM LOADING INTO MEMORY 4-3
EXIT RUN FILE 4-4

Terminating Programs 4-4
Deallocation of System Resources 4-5

OPERATIONS 4-6
Error Handling 4-6
Normal Program Exit 4-7

5 PARAMETER MANAGEMENT 5-1
EXAMPLE PROGRAM 5-1
PARAMETERS 5-2
OVERVIEW OF PARAMETER MANAGEMENT
STRUCTURES AND OPERATIONS 5-3
APPLICATION SYSTEM CONTROL BLOCK
(ASCB) 5-4

VARIABLE LENGTH PARAMETER BLOCK (VLPB) 5-4
Querying Parameters in the Variable
Length Parameter Block 5-5
Example of a Variable Length Parameter
Block for the Delete Command 5-7
Operations for Constructing the
Variable Length Parameter Block 5-8

Initialization 5-8
Parameter Construction 5-8

VARIABLE LENGTH PARAMETER BLOCK
STRUCTURE 5-9
OPERATIONS 5-10

Querying Parameters 5-10
Constructing Parameters 5-10

6 INPUT/OUTPUT 6-1
DEVICE INDEPENDENCE VERSUS DEVICE
DEPENDENCE 6-1
I/O FACILITIES 6-3

vi CTOS/VM Concepts

7 SEQUENTIAL ACCESS METHOD 7-1
CUSTOMIZING THE SEQUENTIAL ACCESS
METHOD 7-2
BYTE STREAM 7-3
USING A BYTE STREAM 7-4
TYPES OF BYTE STREAMS 7-5

Disk Byte Streams 7-5
Printer Byte Streams 7-5
Generic Print System Byte Streams 7-7
Pre-GPS Spooler Byte Streams 7-7
Keyboard Byte Streams 7-9
Communications Byte Streams 7-9
X.25 Byte Streams 7-10
Video Byte Streams 7-10
Tape Byte Streams 7-11

DEVICE/FILE SPECIFICATIONS 7-11
DEVICE/FILE SPECIFICATION PARSING 7-16
OPERATIONS 7-17

Basic 7-17
Advanced 7-18

8 DEVICE-DEPENDENT SAM 8-1
DEVICE-DEPENDENT OPERATIONS WITH
GENERIC PREFIXES 8-1
DEVICE-SPECIFIC OPERATIONS 8-3
OPERATIONS 8-4

Generic Prefixes 8-4
Device-Specific 8-5

9 VIDEO 9-1
VIDEO ATTRIBUTES 9-2
VIDEO SOFTWARE 9-2
PROGRAM/VIDEO SUBSYSTEM INTERACTION 9-4

Sequential Access Method (SAM) 9-4
Using the Current Screen Setup 9-4
Using SAM Directly 9-5

Augmenting the SAM Operations 9-5
Special Characters in Video
Byte Streams 9-6
Multibyte Escape Sequences 9-6
QueryVidBs 9-9

Contents vii

Video Access Method (VAM) 9-9
Video Display Management (VDM) 9-10

Reinitializing the Video Subsystem 9-11
Forms-Oriented Interaction 9-13
Advanced Text Processing 9-13

WORKSTATION VIDEO CAPABILITIES 9-14
Video Capabilities 9-14

Character Cell 9-16
Character Map 9-17
Video Attributes 9-17
Font 9-18
Cursor 9-18

Video Refresh 9-18
WRITING PROGRAMS THAT RUN ON DIFFERENT
WORKSTATION MODELS 9-19
SYSTEM DATA STRUCTURES: THE VIDEO
CONTROL BLOCK AND FRAME DESCRIPTOR 9-19
COLOR GRAPHICS ATTRIBUTE PROCEDURES 9-20
OPERATIONS 9-21

VAM Operations 9-21
VDM Operations 9-22
Color Programming Operations 9-24
Direct Access to Video Data Structures
Operations 9-25

10 KEYBOARD MANAGEMENT 10-1
KEYBOARD MODES 10-1
KEYBOARD MAPPING TABLE 10-2
SYSTEM INPUT PROCESS 10-3
PHYSICAL KEYBOARD 10-5
USING THE KEYBOARD MODES 10-6

Unencoded Mode 10-6
Character Mode 10-6

TYPE-AHEAD BUFFER 10-7
ACTION KEY 10-7
KEYBOARD AND VIDEO INDEPENDENCE 10-9
USING THE KEYBOARD ENCODING TABLE 10-9
USING THE SYSTEM INPUT PROCESS 10-10

Submit File Mode 10-11
Recording Mode 10-13
Submit File Escape Sequences 10-13

APPLICATION PROGRAM TERMINATION 10-17

viii CTOS/VM Concepts

THE MOUSE SYSTEM SERVICE 10-17
OPERATIONS 10-18

Commonly Used 10-18
Less Frequently Used 10-18

11 FILE MANAGEMENT 11-1
OVERVIEW OF FILE SYSTEM CAPABILITIES 11-2

Efficiency 11-2
Reliability 11-2
Convenience 11-3

STRUCTURED FILE ACCESS METHODS 11-4
LOCAL FILE SYSTEM 11-4
FILE SPECIFICATIONS 11-5

Node 11-5
Volume 11-6

Volume Name 11-6
System Volume 11-6
Scratch Volume 11-7
Volume Control Structures 11-7

Directory 11-8
File 11-9
Password 11-9
Directory and File Specifications 11-11
Abbreviated Specifications 11-12

AUTOMATIC VOLUME RECOGNITION 11-13
FILE PROTECTION 11-14

Protection by Password 11-14
Volume Password 11-15
Directory Password 11-15
File Password 11-16
Device Password 11-16
Using a Password for Access 11-17

Protection by Protection Level 11-17
How Protection Levels Work 11-18
How the Operating System Validates
Protection Levels 11-20

Protection by Volume Encryption 11-23
CREATING AND ACCESSING A FILE 11-25

Program Interface Levels 11-25
Structured File Access Methods 11-25
Byte Streams 11-25
File Management Operations 11-26

Contents ix

Logical File Address 11-26
File Handle 11-27
Performing I/O 11-28

Creating a File 11-28
Opening a File 11-30
Reading and Writing a File 11-31
Closing a File 11-33

Local File System 11-34
LfsToMaster 11-35

VOLUME CONTROL STRUCTURES 11-36
Volume Home Block 11-37
Allocation Bit Map and Bad Sector
File 11-37
File Header Block 11-37
Disk Extent 11-38
Extension File Header Block 11-38
Master File Directory and
Directories 11-38
System Directory 11-39

SYSTEM DATA STRUCTURES 11-40
User Control Block 11-40
Device Control Block 11-41

WILD CARD OPERATIONS 11-41
$ DIRECTORY 11-42
OPERATIONS 11-44

Basic 11-44
Basic Utility Operations 11-44
File Attributes 11-45
Default Path 11-45
Directories 11-46
Long-Lived Files 11-46
File Handle Operations 11-47
Asynchronous File I/O 11-47
Volume Data Structures 11-48

12 DISK MANAGEMENT 12-1
ACCESSING A DISK DEVICE 12-1
DEVICE SPECIFICATION AND DEVICE
PASSWORD 12-2
OPERATIONS 12-3

x CTOS/VM Concepts

13 PRINTING MANAGEMENT 13-1
COMPONENTS 13-1
INTERFACE CONSIDERATIONS 13-2

14 COMMUNICATIONS PROGRAMMING 14-1
WHAT SAMC IS USED FOR 14-1

What Programs Use SamC 14-2
What Programs Cannot Use SamC 14-2

USING SAMC AT THE DEVICE-INDEPENDENT
INTERFACE LEVEL 14-3
USING SAMC AT THE DEVICE-DEPENDENT
INTERFACE LEVEL 14-4

The SamC Operations 14-5
Asynchronous Interface 14-5
The AcquireByteStreamC Operation
(Low-Level Open) 14-6
Dynamically Changing Parameters ... 14-6
Querying and Setting Status Lines . 14-7
The CheckForOperatorRestartC
Operation 14-7

OPERATIONS 14-8

15 SERIAL PORT MANAGEMENT 15-1
ACCESS BELOW THE BYTE STREAM LEVEL
(CommLine) 15-1
SERIAL PORT OPERATIONS 15-3

Serial Port Requests 15-3
InitCommLine 15-3
ResetCommLine 15-4
ChangeCommLineBaudRate 15-5

Serial Port System-Common Procedures . 15-5
ReadCommLineStatus 15-5
WriteCommLineStatus 15-6

OPERATIONS 15-7

16 PARALLEL PORT MANAGEMENT 16-1
OPERATIONS 16-2
I/O 16-2

Interrupt Handling 16-2

Contents xi

17 SRP TERMINAL MANAGEMENT 17-1
OPERATIONS 17-3

18 TAPE MANAGEMENT 18-1
SOFTWARE REQUIREMENTS/INSTALLATION 18-1
INTERFACE LEVELS 18-2

Byte Stream Level 18-2
Request Level 18-2

TAPE BYTE STREAMS 18-3
TAPE FILES AND TAPE NAMING 18-3

Tape Names 18-4
Examples 18-5

QIC TAPE 18-6
Format 18-6
Operation 18-8

READING AND WRITING TO QIC TAPE 18-9
Single-Volume QIC Tape File 18-10
Multicartridge QIC Tape File 18-10

Writing to Tape 18-10
Reading from Tape 18-10

SPECIAL CARE FOR QIC TAPE 18-14
HALF-INCH TAPE 18-14

Format 18-14
Operation 18-16

READING AND WRITING TO HALF-INCH TAPE ... 18-17
OPERATIONS 18-18

Quarter-Inch and Half-Inch Tape 18-18
Quarter-Inch Tape 18-19

19 GENERIC PRINT ACCESS METHOD 19-1

20 STRUCTURED FILE ACCESS METHODS 20-1
STRUCTURED FILE ACCESS METHOD
CHARACTERISTICS 20-2
HYBRID ACCESS PATTERNS 20-4
MODIFYING AND READING DATA FILES 20-5
OPERATIONS 20-7

21 INDEXED SEQUENTIAL ACCESS METHOD 21-1

xii CTOS/VM Concepts

22 RECORD SEQUENTIAL ACCESS METHOD 22-1
RSAM FILES AND RECORDS 22-1
WORKING AREA 22-2
BUFFER 22-2
OPERATIONS 22-3

Basic 22-3
Advanced 22-3

23 DIRECT ACCESS METHOD 23-1
DAM FILES, RECORDS, AND RECORD
FRAGMENTS 23-1
WORKING AREA 23-2
BUFFER 23-2

Buffer Size and Sequential Access 23-3
Buffer Management Modes: Write-
Through and Write-Behind 23-4

OPERATIONS 23-5
Basic 23-5
Advanced 23-5

24 MEMORY MANAGEMENT 24-1
TYPES OF MEMORY 24-1
ADDRESSING MEMORY 24-2
SEGMENTS 24-2

Code, Static Data, and Dynamic
Data Segments 24-4
Long-Lived and Short-Lived Memory 24-8
Deallocations 24-9
Long-Lived Memory Uses 24-10
Short-Lived Memory Uses 24-10

OPERATIONS 24-11
Short-Lived Memory 24-11
Long-Lived Memory 24-12
Short-Lived and Long-Lived Memory 24-13
Address Translation 24-14
Alias Management 24-15
Other 24-16

25 UTILITY OPERATIONS 25-1
DATE/TIME MANAGEMENT 25-1

System Date/Time Structure 25-1
System Date/Time Format 25-1

Contents xiii

Expanded Date/Time Format 25-2
STRING COMPARING 25~2
OUTPUT ROUTINES 25-4
CONFIGURATION FILE PARSING 25-4
TEXT EDITING 25-5
INFORMING USER OF WAITING MAIL 25-5
OPERATIONS 25-6

Date/Time Management 25-6
String Comparing 25-7
Output Routines 25-9
Configuration File Parsing 25-10
Text Editing 25-11
Other 25-11

26 SYSTEM DEFINITIONS 26-1
METHODS OF OBTAINING SYSTEM INFOR-
MATION 26-6
OPERATIONS 26-8

Cluster Management 26-8
Disk Management 26-8
File Management 26-8
Operating System 26-9
User Name Management (name Entered
at SignOn) 26-11
Video 26-11

27 MULTIPROGRAMMING 27-1

28 PROCESS MANAGEMENT 28-1
PROCESS 28-1

End User 28-1
Programmer 28-1
Operating System 28-2

PROCESS MANAGEMENT 28-2
CONTEXT OF A PROCESS 28-3
PROCESS PRIORITIES AND PROCESS
SCHEDULING 28-4
PROCESS STATES 28-6
OPERATIONS 28-8

xiv CTOS/VM Concepts

29 INTERPROCESS COMMUNICATION 29-1
AN IPC EXAMPLE 29-1
WHAT REALLY HAPPENS 29-2

Request Procedural Interface 29-2
System Service 29-3

SUMMARY 29-3
OTHER IPC APPLICATIONS 29-4
Communication Within an Application

Partition 29-5
Communication Between Application
Partitions 29-5
Synchronization 29-6
Resource Management 29-7

WHY UNDERSTAND IPC? 29-8
REQUEST CODES 29-8
INTERPROCESS COMMUNICATION (IPC)
COMPONENTS 29-11
THE KERNEL PRIMITIVES 29-13

Kernel Primitives for Sending a
Message 29-13

Request and Respond 29-13
Send 29-16
ForwardRequest and RequestDirect .. 29-17

Kernel Primitives for Receiving a
Message 29-17

Wait 29-17
Check 29-18

THE EXCHANGE 29-18
Types of Exchanges 29-19
Exchange Allocation 29-20
Sending a Message to an Exchange 29-21
Waiting for a Message at an Exchange . 29-23
Exchange Queues 29-24

THE MESSAGE 29-25
REQUEST BLOCK FORMAT 29-26

Standard Header 29-27
Control Information 29-29
Routing Code 29-29
Request Data Item 29-30
Response Data Item 29-30

EXAMPLE REQUEST BLOCK 29-31

Contents xv

ACCESSING SYSTEM SERVICES 29-33
Using the Request Procedural
Interface 29-33
Using the Kernel Primitives
Directly 29-34

CLUSTER/NETWORK COMMUNICATION 29-36
Cluster Configuration 29-37
Cluster Workstation Agent 29-37
Master Agent 29-38
CT-Net 29-38

ROUTING BY FILE HANDLE 29-39
Rules for Routing by Handle 29-40
The File Handle 29-40

ROUTING BY FILE SPECIFICATION 29-41
Rules for Routing by Specification ... 29-41
Expanding File Specifications 29-42

THE ROUTING CODE 29-43
ROUTING REQUESTS 29-46
FILTERS 29-47
INTERPROCESS COMMUNICATION SUMMARY 29-50
OPERATIONS 29-52

30 INTER-CPU COMMUNICATION 30-1
SLOT NUMBER 30-2
SRP ROUTING TYPES 30-3
SRP LINEAR ADDRESSING 30-3

Linear Pointer 30-6
Linear Offset 30-6

BLOCKS 30-6
CPU DESCRIPTION TABLE 30-7
DOORBELL INTERRUPT 30-7
INTERBOARD ROUTING 30-7

How a Message Is Sent 30-8
Sending Requests 30-9
Sending Responses 30-10

How a Message Is Received 30-10
Request? 30-11
Response? 30-12

Sending and Receiving Messages 30-12
OPERATIONS 30-14

xvi CTOS/VM Concepts

31 SYSTEM SERVICES MANAGEMENT 31-1
INTERPROCESS COMMUNICATION 31-1
TYPES OF SYSTEM SERVICES 31-4

Built-in System Services 31-4
Dynamically Installable System
Services 31-5

REQUEST ROUTING TABLE 31-5
WHAT REALLY HAPPENS 31-7

Requests 31-7
The System Service 31-8
GUIDELINES FOR WRITING A SYSTEM SERVICE 31-8
Initialization and Conversion to a
System Service 31-8
System Service Main Program 31-12
Restrictions and Requirements of
Operation 31-13

GUIDELINES FOR DEFINING SYSTEM SERVICE
REQUESTS 31-13
GUIDELINES FOR CREATING A LOADABLE
REQUEST FILE 31-16
SYSTEM REQUESTS 31-18

Termination and Abort Requests 31-19
Termination Request to the File
System 31-20
Swapping Requests 31-21

FILTERS 31-22
TYPES OF FILTERS 31-22

Replacement 31-22
One-Way Pass-Through 31-23
Two-Way Pass-Through 31-24
System Requests for Filters 31-25
Use of Filters 31-26
Example of a Filter Not Serving a
Swapping Request 31-26

DEINSTALLATION OF A SYSTEM SERVICE 31-27
OPERATIONS 31-29

Basic Requests Used by All System
Services 31-29
System Requests 31-30

32 PROGRAM AND PARTITION MANAGEMENT 32-1
AN EXECUTABLE PROGRAM 32-1

Segments 32-2
Linker 32-3

Contents xvii

Code Sharing 32-3
Program Sizing 32-4

MULTIPROGRAMMING AND PARTITION
MANAGEMENT 32-4

Types of Partitions 32-4
Fixed and Variable Partitions 32-5
User Number 32-5
Obtaining Partition Status 32-6
Communication Between Application
Partitions 32-6
Memory Organization of an
Application Partition 32-7

PROGRAM LOADING INTO MEMORY 32-8
EXIT RUN FILE 32-9
TERMINATING PROGRAMS 32-9
REMOVING PARTITIONS 32-10
DEALLOCATION OF SYSTEM RESOURCES 32-11
PARTITION ORGANIZATION IN MEMORY 32-12

At System Initialization 32-12
Single Application Partition in
Memory 32-12
More Than One Application Partition
in Memory 32-14

Partition Swapping 32-15
APPLICATION PARTITION WITH MORE THAN
ONE RUN FILE 32-18
OPERATIONS 32-20

Program Management 32-20
Error Handling 32-20
Normal Program Loading and Exiting 32-21

Tasks 32-22
Partition Management 32-22

Basic Operations 32-22
Program Swapping 32-23
Partition Creation Under Program
Control 32-23
Communication Between Partitions .. 32-24

xviii CTOS/VM Concepts

33 TIMER MANAGEMENT 33-1
REALTIME CLOCK 33-1
PROGRAMMABLE INTERVAL TIMER 33-1
TIMER MANAGEMENT OPERATIONS 33-2

Delay 33-2
Realtime Clock 33-2

Timer Management 33-3
Timing a Single Interval 33-4
Repetitive Timing 33-4

Programmable Interval Timer 33-6
OPERATIONS 33-8

Delay 33-8
Realtime Clock 33-8
Programmable Interval Timer 33-8

34 VIRTUAL CODE MANAGEMENT 34-1
MODEL OVERVIEW 34-2
DATA STRUCTURES 34-3

Overlay Zone Header 34-5
StaticsDesc 34-5
Return Overlay Descriptors 34-6
ProcInfoNonRes 34-7

PROTECTED MODE OPERATION 34-9
REAL MODE OPERATION 34-10

Intercepting Calls 34-10
Intercepting Returns 34-11
Importance of Call/Return
Conventions 34-16

REAL AND PROTECTED MODE OPERATION 34-16
Calls to Procedural Addresses 34-16
Adjusting Addresses 34-17

OPERATIONS 34-20
Basic 34-20
Advanced 34-20

35 QUEUES AND QUEUE MANAGEMENT 35-1
QUEUES 35-1
QUEUE MANAGER 35-2

Run Files 35-2
Installation/Deinstallation 35-2

Contents xix

OVERVIEW OF QUEUE MANAGEMENT 35-3
Clients 35-4
Servers 35-5
Sequence for Using Queue Management .. 35-5
Queue Index File 35-7
Dynamically Manipulating Queues 35-9

QUEUE ENTRY FILE 35-10
Queue Entry File Format 35-11
Queue Entry File Examples 35-13

QUEUE ENTRY 35-13
CLIENT OPERATIONS 35-14

Adding an Entry to a Queue 35-14
Reading Queue Entries 35-15

Queue Entry Handle 35-15
Queue Status Block 35-16

Removing an Entry 35-16
SERVER OPERATIONS 35-17

Establishing Servers 35-17
Marking Queue Entries 35-17
Unlocking Queue Entries 35-18
Queue Entry Formats 35-18

OPERATIONS 35-19
Client Group 35-19
Server Group 35-19
Client/Server Group 35-21

36 INTERRUPT HANDLERS 36-1
TERMINOLOGY 36-1
EXTERNAL INTERRUPT HANDLING MODEL 36-4

Device Handling 36-4
Device Handler Process 36-6
Device Interrupt Handler 36-7

Controlling When External
Interrupts Occur 36-8

The Interrupt Flag 36-8
The Programmable Interrupt
Controller 36-9
Pending and Lost Interrupts 36-11
Nonmaskable Interrupts (NMIs) 36-12

CTOS/VM Interrupt Handler Styles 36-12
CRIHs and CMIHs 36-16
Guidelines for Writing a CRIH 36-17
Guidelines for Writing a CMIH 36-20

xx CTOS/VM Concepts

RIHs and MIHs 36-22
Guidelines for Writing an RIH 36-22
Guidelines for Writing an MIH 36-25

EXAMPLES OF CTOS/VM EXTERNAL
INTERRUPT HANDLERS 36-26

Parallel Port Interrupt Handlers 36-26
X-Bus Interrupt Handlers 36-26
XINT0 and XINT1 36-26
XINT4 36-27

PSEUDOINTERRUPTS 36-27
INTERNAL INTERRUPTS 36-28

Software Interrupts 36-29
Program Exceptions 36-29
Faults 36-30

TRAP HANDLERS 36-31
PACKAGING OF INTERRUPT HANDLERS 36-32

Application Program 36-33
System Service 36-33

OPERATIONS 36-34

37 X-BUS MANAGEMENT 37-1
X-BUS OVERVIEW 37-1
X-BUS MODULE IDs AND BASE I/O
ADDRESSES 37-2
X-BUS MODULE/PROCESSOR MEMORY ACCESS 37-3

Accessing X-Bus Module Memory 37-4
Using X-Bus Operations to Access
Module Memory 37-4
Specifying a Window Size 37-5

Accessing Modules in Protected Mode .. 37-5
Accessing Modules in Real Mode 37-6

X-BUS DMA 37-6
COMMUNICATION AND START-UP PROTOCOLS 37-7
XBIS 37-7
X-BUS INTERRUPTS 37-8
OPERATIONS 37-9

38 CONFIGURATION MANAGEMENT 38-1

Contents xxi

39 CLUSTER MANAGEMENT 39-1
CLUSTER ENVIRONMENT 39-1
STATUS 39-2
POLLING 39-2

Roll Call 39-2
Repoll 39-3

REQUEST ROUTING ACROSS THE CLUSTER 39-3
OPERATIONS 39-5

40 NATIVE LANGUAGE SUPPORT 40-1
INTERNATIONALIZATION 40-2
THE NLS TABLES 40-2
NLS TABLE DESCRIPTIONS 40~5

Keyboard Mapping 40-5
File System Case 40-6
Lowercase to Uppercase 40-6
Video Byte Streams Text 40-7
Uppercase to Lowercase 40-7
Key Cap Legends 40-7
Date and Time Formats 40-8
Number and Currency Formats 40-8
Date Name Translations 40-11
Collating Sequence 40-11
Character Class 40-12
Yes or No Strings 40-12

NLS OPERATIONS 40-13
INTERNATIONALIZING APPLICATION
PROGRAMS 40-14

Existing Programs 40-14
New Programs 40-15

QUERYING THE NLS TABLES 40-15
NATIONALIZATION 40-16
MESSAGE FILE CREATION 40-17

Using Message Files 40-18
Macros 40-19
Using a Small Number of Messages .. 40-19

OPERATIONS 40-20
Utility 40-20
Messages 40-22

xxii CTOS/VM Concepts

APPENDIX A: SPOOLER MANAGEMENT............. A-1

GLOSSARY G-1

INDEX I-1

LIST OF FIGURES

Figure Page

1-1. Relationships of Operating System
Concepts............................ 1-9

2-1. Memory Organization................. 2-13
2-2. Memory Organization with Applica-

tion Partition and Free Memory...... 2-15
2-3. Memory Organization Under

Partition Management................ 2-16
2-4. Memory Organization of an Applica-

tion Partition...................... 2-17

3-1. Interface Levels.................... 3-9
3-2. Memory Address Translations......... 3-12

4-1. From Source Language Modules to
Program in Memory................... 4-2

5-1. Matrix of a Variable Length Parameter
Block for the Executive............. 5-6

5-2. Filled-in Variable Length Parameter
Block............................... 5-7

6-1. Interface Levels.................... 6-2

10-1. Keyboard............................ 10-5
10-2. System Input Process................ 10-11

11-1. Effects of Volume Encryption........ 11-24

17-1. Ports/Access Methods Relationship... 17-1

Contents xxiii

Figure Page

18-1. General QIC Tape Format............. 18-6
18-2. Detail of a QIC Tape File........... 18-7
18-3. Multicartridge QIC Tape

Operation Sequence.................. 18-11
18-4. General Half-Inch Tape Format....... 18-15
18-5. Detail of a Half-Inch Tape File..... 18-16

24-1. From Source Language Modules to
Program in Memory................... 24-5

24-2. Memory Organization of an
Application Partition............... 24-7

28-1. Process States...................... 28-7

29-1. Interaction of Client and System
Service Processes................... 29-2

29-2. Processing Flow of Client and
System Service Processes............ 29-4

29-3. Communication Between Processes..... 29-5
29-4. How IPC Is Used with ICMS........... 29-6
29-5. Synchronization..................... 29-7
29-6. Buffer Management................... 29-9
29-7. Request Primitive................... 29-14
29-8. Respond Primitive................... 29-15
29-9. Send Primitive...................... 29-16
29-10. Wait Primitive...................... 29-17
29-11. Sending a Message to an Exchange.... 29-22
29-12. Waiting for a Message at

an Exchange......................... 29-23
29-13. Messages Queued at an Exchange...... 29-24
29-14. Processes Queued at an Exchange..... 29-25
29-15. Request Block for the Write

Operation........................... 29-31
29-16. Interaction of Filter Process with

Client and System Service Process... 29-47
29-17. Request Routing 29-48
29-18. Interprocess Communication

Summary............................. 29-50

30-1. How a Message Is Sent............... 30-8
30-2. How a Message Is Received........... 30-11
30-3. Interaction of Client and

System Service Using ICC............ 30-13

xxiv CTOS/VM Concepts

Figure Page

31-1. Interaction of Client and System
Service Processes................... 31-2

31-2. Processing Flow of Client and
System Service Processes............ 31-4

31-3. Request Routing Table Fields........ 31-6
31-4. Before Conversion to a

System Service...................... 31-9
31-5. Conversion to a System Service...... 31-11
31-6. System Service Program Model........ 31-12
31-7. One-Way Pass-Through Filter......... 31-23
31-8. Two-Way Pass-Through Filter......... 31-24

32-1. From Source Language Modules
to Program in Memory................ 32-2

32-2. Memory Organization of an
Application Partition............... 32-7

32-3. Memory Organization at System
Initialization...................... 32-13

32-4. Memory Organization Showing a
Single Application Partition
Containing a Program................ 32-14

32-5. Memory Organization with More
Than One Application Partition
in Memory........................... 32-16

32-6. Swapping............................ 32-17
32-7. Program Consisting of More Than

One Run File in an Application
Partition........................... 32-19

34-1. Virtual Code Facility Data
Structures and Their Locations...... 34-4

34-2. Stub Structure...................... 34-8
34-3. Tracing the Stack When an Overlay

Is Discarded........................ 34-13

35-1. Example of a Configuration with
the Queue Management Facility....... 35-4

35-2. Example of a Queue Index File....... 35-9

Contents xxv

Figure Page

36-1. Interrupt Hierarchy................. 36-3
36-2. Device Handler...................... 36-5
36-3. Interrupt Nesting................... 36-11
36-4. Interrupt Handler Styles............ 36-15
36-5. CRIHs and CMIHs..................... 36-16
36-6. User-Written CRIH Summary........... 36-19
36-7. User-Written CMIH Summary........... 36-21
36-8. RIHs and MIHs....................... 36-22
36-9. User-Written RIH Summary............ 36-24
36-10. User-Written MIH Summary............ 36-25

37-1. X-Bus Configuration................. 37-2

LIST OF TABLES

Table Page

2-1 Workstation Operating System
Features............................ 2-9

2-2 SRP Processor Board Features........ 2-10

9-1 Video Capabilities.................. 9-15
9-2 Character Cell Size................. 9-16

10-1 Permitted Codes in Submit File
Escape Sequences.................... 10-14

11-1 Protection Levels................... 11-19
11-2 Bit Number Designations for

Protection Level.................... 11-21

26-1 System Structures................... 26-2

28-1 Process State Transition............ 28-7

29-1 Request Code Levels................. 29-11
29-2 Format of a Request Block Header.... 29-27
29-3 Net Routing Information............. 29-44
29-4 Bit Combinations for Bits 5

Through 7 of RtCode................. 29-45

xxvi CTOS/VM Concepts

Figure Page

30-1 SRP Request Routing Types........... 30-4

31-1 RequestTemplate.txt Fields.......... 31-14
31-2 Creating a Loadable Request File.... 31-18

35-1 Examples of Queues.................. 35-13

40-1 NLS Tables.......................... 40-3
40-2 Number and Currency Formats Key

Elements............................ 40-9
40-3 NLS Operation Summary............... 40-13
40-4 Operations for Internationalizable

Programs............................ 40-14

Related Documentation xxvii

RELATED DOCUMENTATION

This manual is one of a set that documents the
Convergent family of information processing sys-
tems. The set can be grouped as follows:

Introductory

Context Manager/VM Manual
Diagnostics Manual (NGEN)
Executive Manual Installation Guide (NGEN)
Operator's Guide (NGEN)
Quarter-Inch Cartridge Tape for NGEN
Status Codes Manual

Hardware

Color Monitor Manual
Dual Floppy Disk Manual
Ethernet Hardware Manual
Floppy/Hard Disk Manual (see Dual Floppy Disk
 description)
Graphics Controller Manual: Model GC-001
Graphics Controller Manual: Model GC-003
Hard Disk Upgrades and Expansions Manual
Keyboard Manual
Monochrome Monitors Manual
Mouse Hardware Manual
Multiline Port Expander Manual
PC Emulator Hardware Manual
Power System Manual
Processor Manuals
Quarter-Inch Cartridge Tape Hardware Manual
Voice Processor Manual

xxviii CTOS/VM Concepts

Operating Systems

CTOS Programmer's Guide
CTOS/VM Concepts Manual
DISTRIX Operating System Manual
MS-DOS Manuals

Programming Languages

iAPX286 Programmer's Reference Manual (Intel)
80386 Programmer's Reference Manual (Intel)
Assembly Language Manual
BASIC Compiler Manual
BASIC (Interpreter) Manual (see BASIC Compiler
 description)
COBOL Manual (see BASIC Compiler description)
FORTRAN-86 Reference Manual (see BASIC
 Compiler description)
GW-BASIC Operations Manual
GW-BASIC Reference Manual
Pascal Reference Manual (see BASIC Compiler
 description)
Workstation C Programmer's Guide (see
 Workstation C Language Manuals description)

Program Development Tools

COBOL Animator Manual
Debugger Manual
Editor Manual
Font Designer Manual
Forms Manual
Graphics Terminal Font Designer
Linker/Librarian Manual
Mouse Services Manual
Raster Font and Icon Designer Manual

Related Documentation xxix

System Administration

Generic Print System Programmer's Guide
Printing Guide

Data Management Facilities

CT-DBMS Manual
ISAM Manual
Sort/Merge Manual

Office Automation

Graphics
 Graphics Programmer's Guide

Voice
 Voice/Data Services Manual

Communications

Asynchronous Terminal Emulator Manual
CT-Net Reference Manual
Modem Server Reference Manual

Other

80286 Architecture

xxx CTOS/VM Concepts

The following section outlines the contents of these
manuals.

INTRODUCTORY

The Context Manager/VM Manual describes and
teaches the use of the Context Manager/VM, which
allows the user to run applications concurrently
and transfer from one application to another. It
also describes the interaction between the Context
Manager and the Window Services, in which the user
can simultaneously view several applications on
the screen.

The NGEN Diagnostics Manual outlines the tests
used to verify proper operation of the modules of
a workstation. The manual describes tests for in-
dividual modules, along with bootstrap procedures
and customization programs.

The Executive Manual describes the interactive
command interpreter that interacts with the CTOS
and CTOS/VM operating systems. The manual is both
a user's guide and a reference to the available
commands. It addresses command execution, file
management and protection, and program invocation.
The manual also provides descriptions and details
about parameter fields for Executive commands.

The NGEN Installation Guide describes procedures
for unpacking, assembling, cabling, and powering
up an NGEN workstation.

The NGEN Operator's Guide describes the operator
controls, use of the floppy disk drives, verifi-
cation of workstation operations, and use of software
release notices.

Related Documentation xxxi

The Quarter-Inch Cartridge Tape for NGEN Manual
explains the use of quarter-inch cartridge tape
software, primarily for backing up and restoring
hard disks. The manual also describes the use of
the Quarter-Inch Tape maintenance utilities and the
Tape Copy utility.

The Status Codes Manual contains a complete list
of all the status codes that can be generated by a
CTOS workstation or a Shared Resource Processor
(SRP), including bootstrap ROM error codes and
CTOS initialization codes. The manual also de-
scribes and interprets crash status codes.

HARDWARE

The Color Monitor Manual describes the operation
and connections of the 15-inch Color Monitor used
with the NGEN workstation.

The Dual Floppy Disk Manual and the Floppy/Hard
Disk Manual describe the architecture and theory
of operation for the respective NGEN disk modules.
They discuss the applicable disk drives and con-
trollers, and contain the applicable OEM disk
drive manuals.

The Ethernet Hardware Manual describes the Ether-
net Module in terms of its software and hardware
interfaces to the NGEN workstation. The manual
also provides detailed information on installing
the Ethernet Module into an NGEN configuration,
and on various networking and cabling options.

The Graphics Controller Manual: Model GC-001
describes the architecture, theory of operation,
and external interfaces for model GC-001 of the
Graphics Controller Module, which accommodates
either a Monochrome or Color Monitor.

xxxii CTOS/VM Concepts

The Graphics Controller Manual: Model GC-003
gives instructions for installing Model GC-003 of
the Graphics Controller Module. The manual also
provides the functional description and theory of
operation for the module, and describes software
interfaces and external interfaces.

The Hard Disk Upgrades and Expansions Manual
describes the architecture and theory of operation
of the Disk Upgrade and Disk Expansion Modules.

The Keyboard Manual describes the architecture,
theory of operation, and external interfaces for
the NGEN keyboard.

The Monochrome Monitors Manual describes the oper-
ation and connections of the Standard and High
Resolution Monochrome Monitors used with the NGEN
workstation.

The Mouse Hardware Manual describes the architec-
ture, theory of operation, and external interfaces
for the NGEN mouse.

The Multiline Port Expander Manual describes the
architecture, theory of operation, and external
interfaces for the NGEN Multiline Port Expander
Module.

The PC Emulator Hardware Manual describes the PC
Emulator hardware at a functional block and compo-
nent level. The manual also describes the PC
Emulator Module register set and explains how to
attach the module onto the workstation's X-Bus.

The Power System Manual describes the operation
and connections for the 36-Volt Power Supply and
the dc/dc converters used with the NGEN work-
station.

Related Documentation xxxiii

The Workstation C Language Manuals (includes the
Workstation C Programmer's Guide and C Programming
Language Manual) describe the C programming
language, enhancements to the language, library
functions, and operating instructions for running
Workstation C on the CTOS and DISTRIX operating
systems. The manuals also provide troubleshooting
information.

PROGRAM DEVELOPMENT TOOLS

The COBOL Animator Manual describes the COBOL
Animator, a debugger that allows the user to
interact directly with the COBOL source code
during program execution.

The Debugger Manual describes the Debugger, which
is designed for use at the symbolic instruction
level. It can be used in debugging C, FORTRAN,
Pascal, and assembly language programs. (COBOL
and BASIC, in contrast, are more conveniently
debugged using special facilities described in
their respective manuals.)

The Editor Manual describes the test editor that
interacts with the CTOS and CTOS/VM operating
systems.

The Font Designer Manual describes how to design
a new character set for display on the workstation
monitor. The Font Designer produces vector fonts,
as opposed to the raster fonts that are produced
with the Raster and Icon Font Designer.

The Forms Manual describes the Forms facility that
includes the Forms Editor, which is used to
interactively design and edit forms, and the Forms
run time, which is called from an application
program to display forms and accept user input.

xxxiv CTOS/VM Concepts

The Graphics Terminal Font Designer Manual
describes how to use the Graphics Terminal Font
Designer package to create, edit, and load fonts.

The Linker/Librarian Manual describes both the
Linker, which links together separately compiled
object files, and the Librarian, which builds and
manages libraries of object modules.

The Mouse Services Manual describes the Mouse
Server and the object module library for
applications programmers. It also includes a
short description of end-user commands.

The Raster Font and Icon Designer Manual describes
the interactive utility for designing new fonts
(character sets) for the video display.

SYSTEM ADMINISTRATION

The Generic Print System Programmer's Guide is a
guide for writing applications that use the
Generic Print System or the Generic Print Access
Method. It addresses applications that transfer
data to the printer as well as more sophisticated
applications with status checking and printer
control. The manual includes descriptions of
the Generic Print System and Generic Print Access
Method procedural interfaces.

The Printing Guide provides information on how to
install any supported printing device on your
standalone workstation or a workstation within a
cluster. It describes the Print Manager, which is
the interface to the Generic Print System, and how
to use the Print Manager to control and monitor
the status of printing devices. Printer trouble-
shooting is also discussed.

Related Documentation xxxv

The Processor Manuals describe the respective
Processor Modules. Each manual in this two-
volume set covers one processor module and details
the architecture and theory of operation of the
printed circuit boards, external interfaces, and
memory expansion, as well as X-Bus specifications.

The Quarter-Inch Cartridge Tape Hardware Manual
describes the architecture, theory of operation,
and hardware specifications for the Quarter-Inch
Cartridge Tape Module.

The Voice Processor Manual describes the archi-
tecture, theory of operation, external interfaces,
and hardware specifications for the Voice Proces-
sor Module.

OPERATING SYSTEMS

The CTOS Programmer's Guide is a reference guide
for programming under the CTOS operating system.
It describes CTOS programming practices and
introduces the system to programmers who are using
it for the first time.

The CTOS/VM Concepts Manual together with the
CTOS/VM Reference Manual, describes the CTOS/VM
operating system. The CTOS/VM Concepts Manual
introduces the CTOS/VM operating system to the
programmer by presenting concepts in a basic-to-
advanced order. Included among the concepts in
this manual are management of processes, messages,
memory, exchanges, video, keyboard, files, disks,
printers, communications, tape, and timers.
CTOS/VM operations pertaining to each concept are
described briefly at the end of each chapter. The
manual also explains how to use the CTOS/VM
operations and provides information on the admin-
istrative aspects of the operating system.

xxxvi CTOS/VM Concepts

The DISTRIX Operating System Manual describes
DISTRIX, an operating system derived from the UNIX
System V operating system. It describes commands,
application programs, system calls, subroutines,
special files, file formats, games, miscellaneous
facilities, and system maintenance procedures.

The MS-DOS Manuals describe the single-user
operating systems originally designed for the
8086-based personal computer systems.

PROGRAMMING LANGUAGES

The IAPX286 Programmer's Reference Manual (Intel)
describes the architecture of the Intel 80286
microprocessor.

The 80386 Programmer's Reference Manual describes
the 80386 32-bit microprocessor.

The Assembly Language Manual describes the machine
architecture of the associated CPU, the assembly
language, instruction set, and programming at the
symbolic instruction level.

The BASIC Compiler and BASIC (Interpreter), COBOL,
FORTRAN, FORTRAN-86 Reference, and Pascal
Reference manuals describe the system's program-
ming languages. Each manual specifies both the
language itself and operating instructions for
that language.

The GW-BASIC Manuals describe the version of BASIC
that runs on the MS-DOS operating system.

Related Documentation xxxvii

DATA MANAGEMENT FACILITIES

The CT-DBMS Manual describes the CT-DBMS database
management system, which consists of a data
manipulation language for accessing and manipu-
lating the database, as well as utilities for
administering database activities such as mainte-
nance, backup and recovery, and status reporting.

The ISAM Manual describes both the single-user and
the multiuser Indexed Sequential Access Method
(ISAM). It specifies the procedural interfaces
(and how to call them from various languages) and
the utilities.

The Sort/Merge Manual describes the Sort and Merge
utilities that run as a subsystem invoked at the
Executive command level, and the Sort/Merge object
modules that can be called from an application
program.

OFFICE AUTOMATION

GRAPHICS

The Graphics Programmer's Guide describes the
graphics library procedures for applications and
systems programmers. In addition to an alphabetic
reference section describing all graphics proce-
dures, the manual includes annotated program
examples that explain important graphics concepts
and show typical sequences of procedure calls.

xxxviii CTOS/VM Concepts

VOICE

The Voice/Data Services Manual describes the Voice
Data Services, a device driver that provides a
request and procedural interface between applica-
tions software and the Voice Processor Module.

COMMUNICATIONS

The Asynchronous Terminal Emulator Manual de-
scribes the asynchronous terminal emulator.

The CT-Net Reference Manual provides information
for system administrators on installing, configur-
ing, maintaining, and monitoring their local
nodes, and on communicating with remote nodes.

The Modem Server Reference Manual describes the
configuration, installation, maintenance, modems,
and programmatic interface of the Modem Server.
This system service controls up to six asyn-
chronous communications lines, accommodating up to
four clients per line. The Modem Server is used
with CT-Net, CT-MAIL, and the Multimode Terminal
Emulator (MTE); it can also be used with user-
defined communications agents.

OTHER

The 80286 Architecture by Stephen P. Morse and
Douglas J. Albert describes the architecture of
the Intel 80286 microprocessor (John Wiley & Sons,
Inc., New York, N.Y.).

Introduction 1-1

1 INTRODUCTION

WHAT IS CTOS/VM?

CTOS/VM is Convergent Technologies' operating
system with virtual machine (VM) capability. It
is designed for microprocessors that support pro-
tected mode operation. Currently, these micro-
processors are the 80286 and 80386 (available on
workstations only). This manual also describes
the real mode operating systems based on the 80186
microprocessor (available on Shared Resource Pro-
cessors and workstations).

WHAT DOES CTOS/VM OFFER?

CTOS/VM offers a CTOS software foundation shared
by all Convergent proprietary operating systems.
CTOS features include the following:

•	 multiprogramming

•	 multitasking

•	 event-driven,	priority-ordered	process	
scheduling

•	 messaged-based	operation

•	 nationalization

1-2 CTOS/VM Concepts

Additionally, CTOS/VM offers the following en-
hancements:

•	 protected	mode	operation

•	 Real	Mode	Operating	System	(RMOS)

•	 virtual	8086	mode

•	 variable		partitions		with		code		sharing	
capability

CTOS FEATURES

MULTIPROGRAMMING

Multiprogramming is the ability to run more than
one program in memory at the same time. Multi-
programming supports the independent invocation
and scheduling of multiple processes. Addi-
tionally, it supports concurrent I/O and multiple
processor implementations.

MULTITASKING

Multitasking is the ability for any program to
have more than one process (thread of execution).
(Note that in this manual, multitasking is called
multiprocessing.)

The Executive, for example, consists of two
processes: one accepts your keystrokes, while a
second displays the time of day.

Introduction 1-3

EVENT-DRIVEN, PRIORITY-ORDERED PROCESS SCHEDULING

Each process (thread of execution) is assigned a
priority and is scheduled for execution based on
that priority. The Kernel scheduler uses this
priority scheme to provide efficient scheduling.
In the Executive, for example, the clock process
runs at a higher priority than the process accep-
ting user keystrokes.

Scheduling is driven by system events. Whenever
an event, such as the completion of an I/O oper-
ation, makes a higher priority process eligible
for execution, that process is scheduled to
execute immediately.

This scheduling technique is called event-driven,
priority scheduling. It simplifies scheduling
and provides faster response times than scheduling
techniques that are entirely time-based.

MESSAGE-BASED OPERATION

CTOS/VM is message-based. Programs, as well as
the operating system, consist of processes, each
managing various resources and communicating by
means of messages. Overall execution occurs be-
cause messages requesting services are dispatched
and processed.

Message-based operation permits the dynamic
installation/deinstallation of system services
without regenerating the system or altering oper-
ating system code. Dynamic installation/
deinstallation provides the convenience of adding
services, such as printing, queue management, the
mouse, or windowing support, at any time. Ser-
vices can be Convergent-provided or user-written.

Unlike subroutine calls, messages can be filtered
and redirected across networks, simplifying the
development of distributed and multiprocessing
applications.

1-4 CTOS/VM Concepts

NATIONALIZATION

Native language support (NLS) provides a set of
utilities, run time libraries, and data structures
that can be used for the easy portation of soft-
ware to run in various languages.

CTOS/VM ENHANCEMENTS

PROTECTED MODE OPERATION

Protected mode operation provides the advantages
of extended memory and protection. Programs can
reference memory extending beyond the first mega-
byte up to the maximum allowed by the processor
and hardware. Protected mode system structures
place limitations on the memory programs can
access, thereby preventing programs from over-
writing code or referencing static memory al-
located to other programs.

REAL MODE OPERATING SYSTEM (RMOS)

Real mode operating system (RMOS) support allows
you to run any existing real mode application
program on a protected mode operating system with-
out modifying code, recompiling, or relinking.
The real mode program has virtual machine capa-
bility. This means that it appears to be execut-
ing autonomously in a multiprogramming environ-
ment.

Introduction 1-5

VIRTUAL 8086 MODE

Virtual 8086 mode is a virtual machine imple-
mentation that supports the execution of multiple
operating systems, such as MS-DOS, in a multi-
programming environment. In virtual 8086 mode, a
region of memory is allocated and assigned the
operating system characteristics of an 8086
microprocessor. (For details, see the 80386 Pro-
grammer's Reference Manual.) Each memory region,
thus, provides a 1 megabyte address space within
which a program can execute. Concurrently, appli-
cation programs can execute in real mode (RMOS) or
in protected mode in other memory regions.

VARIABLE PARTITIONS WITH CODE SHARING CAPABILITY

Variable partitions and code sharing provide effi-
cient memory usage. A variable partition can
change in size dynamically to meet the require-
ments of the program currently executing. The
code of the executing program can be shared by the
same type of program in a different variable
partition.

HOW THE OPERATING SYSTEM IS STRUCTURED

The basic components of the operating system are

•	 the	Kernel

•	 system	service	processes

•	 system-common	procedures

•	 object	module	procedures

•	 device	and	interrupt	handlers

1-6 CTOS/VM Concepts

The Kernel, the most primitive yet most powerful
operating system component, provides process man-
agement and message-based process communication
facilities.

System service processes manage system resources,
such as files and memory.

The operating system's device handlers and inter-
rupt handlers are accessed indirectly through the
convenient interfaces provided by the system ser-
vice processes.

System-common procedures are procedures that per-
form some common system functions. The Video Ac-
cess Method is a collection of system-common
procedures.

Object module procedures are procedures that are
supplied as part of an object module library file
and can be linked with the application program.
They are not part of the System Image itself. The
Sequential Access Method (SAM) is a collection of
object module procedures.

USING THIS MANUAL

This manual guides you through an overview of how
the operating system works. This manual and the
CTOS/VM Reference Manual are a set that describes
the CTOS/VM operating system.

The CTOS/VM Reference Manual contains a description
of each operation in the System Image and in the
standard operating system library, CTOS.lib. Use the
CTOS/VM Reference Manual as a programming guide. You
can use CTOS/VM with several different programming
languages.

Introduction 1-7

ORGANIZATION

This manual is organized as follows:

•	 Chapter	 1	 introduces	 you	 to	 the	 CTOS/VM	
operating system: it highlights those fea-
tures that are unique to the operating
system and summarizes this manual's organi-
zation.

•	 Chapter	 2	 provides	 an	 overview	 of	 the	
operating system concepts described in
detail in later chapters.

•	 Chapter	 3	 introduces	 you	 to	 the	 various	
types of CTOS/VM operations and explains
ways you can use these operations in your
programs.

•	 Chapter	 4	 describes	 program	 management,	
which consists of those operations used by a
program to self-load into memory, to
self-exit from memory, and to handle error
conditions. This subject is presented
at a more advanced level in Chapter 32,
"Program and Partition Management," which
describes how a partition managing program
performs comparable operations to manage
several programs in memory at once.

•	 Chapter	5	presents	parameter	management,	a	
method of passing information from one pro-
gram to its successor within the same parti-
tion of memory.

•	 Chapters	6	through	23	describe	how	I/O	can	
be performed to devices, such as disks,
video, tape, and communication channels.

•	 Chapters	 24	 through	 34	 cover	 operating	
system theory. These chapters describe such
subjects as memory and partition management,
system services, and how the operating sys-
tem uses interprocess communication (IPC)
and inter-CPU communication (IPC). These
chapters also present more advanced program-
ming concepts.

1-8 CTOS/VM Concepts

•	 Chapter	 35	 describes	 how	 queues	 are	
managed.

•	 Chapters	36	and	37	are	related	to	the	I/O	
chapters (Chapter 6 through 23) but cover
the more advanced concepts of interrupts
and X-Bus management.

•	 Chapters	38	through	40	are	dedicated	to	the	
administrative aspects of the operating
system. As a programmer, you may not be in-
volved in customizing your system. You may
find it beneficial, however, to nationalize
your programs so that they can be used on
operating systems in other countries.

•	 Appendix	A	describes	spooler	management.

CHAPTER ORDERING

Figure 1-1 gives you a visual overview of the
organization of this manual and shows the rela-
tionships of the operating system concepts. Each
box contains a chapter title and its corresponding
chapter number.

In Figure 1-1, the chapters are prioritized in a
need-to-know order. Program management, param-
eters, and I/O, for example, are programming
concepts that you need to know early to get
started with programming. These chapters are
among the first presented in the manual.

Later chapters are located toward the right and
lower-right regions in the figure. These chapters
contain more advanced concepts and operating
system theory.

Introduction 1-9

Figure 1-1. Relationships of Operating System
Concepts

1-10 CTOS/VM Concepts

The chapter boxes associated with multiprogramming
(Chapter 27), for example, provide advanced con-
cepts. You do not need to understand these
concepts right away. You can use the operations
in the CTOS/VM Reference Manual without ever know-
ing the concept of messages and message passing,
for example, which is the basis of IPC
(Chapter 29).

As you become more familiar with the operating
system, you can take advantage of the more ad-
vanced programming techniques.

Note that the chapter boxes associated with
configuration management (Chapter 38) are not
connected to the other chapter boxes. This is
because you may never be involved in the adminis-
trative activities described in these chapters.
If you are a system administrator, you have reason
to investigate this area.

Use Figure 1-1 as a quick reference guide as you
are getting acquainted with the operating system.
You will find these chapters (and the list of
operations described at the end of each) presented
again in an overview figure at the beginning of
the CTOS/VM Reference Manual.

Overview of OS Concepts 2-1

2 OVERVIEW OF OPERATING SYSTEM CONCEPTS

This chapter is an overview of operating system
concepts. These concepts are described in detail
in later chapters of this manual.

OPERATING SYSTEM STRUCTURE

PROCESS

A process is an independent thread of execution
for a program. It carries with it the context
(that is, the processor registers) necessary to
that thread. One or more processes are created
each time a program is scheduled for execution.

The operating system assigns each process a
priority to schedule its execution appropriately:
priorities range from 1 (highest) to 255 (lowest/
null).

System service processes are processes that man-
age system resources. All processes, including
system service processes, are scheduled for exec-
ution in the same way based on their assigned
priority.

KERNEL

The Kernel is the most primitive yet most power-
ful component of the operating system. It
provides

•	 event-driven	priority	scheduling

•	 Interprocess	Communication	(IPC)

•	 Inter-CPU	Communication	(ICC)

2-2 CTOS/VM Concepts

Event-Driven Priority Scheduling

To meet the need for high performance, the oper-
ating system Kernel provides efficient
event-driven priority scheduling.

Each process is assigned one of 255 priorities
and is scheduled for execution based on that
priority. Whenever an event, such as the com-
pletion of an I/O operation, makes a higher
priority process eligible for execution, re-
scheduling occurs immediately. This results in a
more responsive system than scheduling tech-
niques that are entirely time-based.

Interprocess Communication (IPC)

The Kernel's IPC primitives, such as Request and
Wait (or Check), are the primary building blocks
for synchronizing process execution and trans-
mitting information between processes.

Messages and Exchanges. A process can send a
message, wait for a message, or poll (check) for
a message. When a process waits for a message,
its execution is suspended until a message is
sent to it, thus allowing processes to synchro-
nize execution. A process can also check to
determine if a message is available without
suspending its execution.

The operating system is message-based. When a
process sends a message, it actually sends the
message to an exchange rather than directly to
another process. Exchanges function as message
centers where processes send messages or pro-
cesses wait or check for messages. Within a
single processor, overhead is minimized, because
only the address of the message is moved, not the
message itself.

Overview of OS Concepts 2-3

A single process can serve several exchanges, in
which case it can select one of several kinds of
messages to process next. This feature can be
used to set priorities for the work the process
is to perform.

Also, several processes can serve the same ex-
change, thereby sharing the processing of a
single kind of message.

System Service Processes. The operating system
includes a number of system service processes. A
system service process receives IPC messages to
request the performance of its services.
Examples of operating system services include
opening or closing disk files, sending output to a
printing device, or accepting keyboard input. A
process requesting a system service is a client
process. Any process, including another system
service process, can be a client. The use of
system service processes and the formalized
interface provided by IPC results in a highly
modular environment that increases reliability
and flexibility.

System services can be linked-in system services
in the operating system. The file management
system and the keyboard services are examples.

A system service also can be dynamically instal-
lable. The Queue Manager and CT-Mail are exam-
ples. Once installed, a dynamically installable
system service is indistinguishable in operation
from a linked-in service.

Each of the functions provided by the system
service can be accessed by a procedural call from
a high-level language, such as Pascal or C, as
well as from assembly language. The request
procedural interface masks all the complexities
of using IPC: it automatically uses a default
response exchange and builds the request block
message on the stack of the client process.

2-4 CTOS/VM Concepts

Kernel primitives also can be called directly.
This allows an increased degree of concurrency
between multiple I/O operations and computation.
The calling process, for example, can perform
calculations while it is waiting for other data
to be written to a disk file.

Filters. You can customize the function of a
system service by writing a filter for that
service.

A filter intercepts messages destined for another
system service. It may modify the effect of the
messages, but it does not modify either the call-
ing process or the system service for which the
messages were intended.

Inter-CPU Communication (ICC)

The ICC facility provides for communication be-
tween CPUs among the different processor boards
on the SRP. ICC is an extension of IPC.

If the requested system service is on the same
SRP processor board as the client process, the
Kernel uses IPC. If, however, the service is on
a different processor board, the Kernel uses ICC.
ICC passes request and response messages between
processor boards.

The SRP is compatible with the workstations at
the request level. Whether your program runs on
an SRP or on a workstation, your program can
access system services in the same way (that is,
either by using the request procedural interface
or by calling the Kernel primitives).

Overview of OS Concepts 2-5

CONFIGURABLE COMMAND INTERPRETER

Interaction with the workstation operator is a
function of the Executive, not the operating sys-
tem. This allows you to choose how to use the
screen and the keyboard.

The Executive is an interactive command inter-
preter providing a user interface that includes a
HELP facility, command files, and the interactive
addition of new commands. The Executive is also
a normal application-level program.

You can easily replace the Executive with a cus-
tomized command interpreter of your own design.
(For details on the Executive, see the Executive
Manual.)

OTHER OPERATING SYSTEM FEATURES

File System Management

The file system management provides a hierar-
chical organization by node, volume, directory,
and file. A volume (formatted disk) is automat-
ically recognized when you place it online (mount
it) . A file can be dynamically expanded or con-
tracted as long as it fits on one disk (1
gigabyte), and it can be protected by password
(optionally encrypted) and protection level
number. Concurrent file access is controlled by
read (shared), peek (shared), and modify
(exclusive) access modes.

While providing convenience and security, the
file management system supplies you with the full
throughput capability of the disk hardware. This
includes reading or writing any 512 byte sector
of any open file with one disk access, reading or
writing up to 65K bytes (127 sectors) of any open
file with one disk access, overlapping I/O with
process execution, and optimizing disk arm
scheduling.

2-6 CTOS/VM Concepts

The duplication of critical volume control struc-
tures protects the integrity of disk file data
against hardware malfunction. Two Volume Home
Blocks can be created for each volume. In addi-
tion, two File Header Blocks can be created for
each file on a volume.

In the Executive, you can use the Backup Volume
command to recover a file if either of its redun-
dant File Header Blocks is valid. The IVolume
command can be used to suppress the duplication
of volume control structures. (This reduces
reliability, however, and is not recommended.)

Device Handlers

The operating system is designed to accommodate
user-written device handlers. A device handler
can be part of the application program, or it can
be a system service. The Kernel can either save
process context, allowing the use of handlers
written in high-level languages, or an assembly
language interrupt handler can receive the inter-
rupt directly from the hardware. IPC provides an
efficient, yet formal, interface from interrupt
handler to device handler and from device handler
to application program.

DISTRIBUTED ENVIRONMENT AND CLUSTERING

LOCAL RESOURCE-SHARING NETWORKS (CLUSTERS)

The operating system provides support for local
resource-sharing networks (clusters), as well as
for standalone workstations.

Overview of OS Concepts 2-7

A cluster configuration consists of cluster work-
stations connected to a master. The master can
be a master workstation or the SRP. Essentially
the same operating system executes in each
cluster workstation as in the master workstation
(or in the combined processors of the SRP). The
master provides resources, such as file system
management and queue management, for all work-
stations in the cluster. Concurrently, a master
workstation can support its own interactive
application program processing.

In the cluster configuration, the IPC facility is
extended to provide transparent access to system
services that execute in the master. While some
services (such as queue management, 3270 emu-
lator, and database management) migrate to the
master, others (such as video management and key-
board management) remain at the cluster work-
station. A cluster workstation with its own file
system can service file requests locally as well
as send file requests to the master.

One high-speed, RS-422 channel is standard on
each workstation. In cluster configurations con-
nected to a master workstation, the master and
all of the workstations connected to it use this
channel for intercluster communications. For
large clusters with an SRP master, multiple
RS-422 channels are provided.

CT-NET NETWORK

The CT-Net network extends the operating system
resource-sharing capability. CT-Net provides
for sharing resources (such as the file system,
CT-ISAM, X.25 Network Gateway, and printing ser-
vices) between workstations in clusters that are
connected by communications lines over long
distances.

2-8 CTOS/VM Concepts

OPERATING SYSTEM TYPES

Operating systems are available for workstations
and for the SRP.

Workstation operating systems are of the
following types:

•	 standalone	workstation	(Stnd)

•	 master	workstation	(Mstr)

•	 cluster	workstation	(Clstr)

•	 cluster	workstation	with	local	file	system	
(ClstrLfs)

An SRP operating system can contain the following
processors:

•	 Cluster	Processor	(CP)

•	 Data	 Processor	 (DP),	 which	 is	 a	 Storage	
Processor (SP) and Storage Controller (SC)
combination

•	 File	Processor	(FP)

•	 Storage	Processor	(SP)

•	 Terminal	Processor	(TP)

WORKSTATION OPERATING SYSTEMS

Table 2-1 summarizes features available on each
workstation operating system.

Overview of OS Concepts 2-9

Table 2-1
WORKSTATION OPERATING SYSTEM FEATURES

Operating
System

Cluster
Agent

Master
Agent

File
System

Stnd

Mstr

Clstr

ClstrLfs

X

X

X

X

X

X

The differences between each workstation oper-
ating system are a function of the services each
has to offer.

The cluster workstation operating system differs
from the standalone workstation in the (optional)
exclusion of the file management service and the
disk handler, and the inclusion of the Cluster
Agent. The cluster workstation with a local file
system includes a file management service.

The master workstation operating system differs
from the standalone only in its inclusion of the
Master Agent. The master workstation can provide
file services for the entire cluster config-
uration.

2-10 CTOS/VM Concepts

SRP OPERATING SYSTEMS

An SRP operating system comprises several dif-
ferent processor boards. Each processor board
contains a CTOS Kernel and memory, and generally
provides a subset of the services offered by a
workstation operating system. Services provided
by individual processor boards can be shared
among all others. Interboard communication is
achieved by means of a high-speed bus using the
ICC facility. Together, the processor boards
function as a unified operating system.

In general, an SRP operating system consists of
at least one FP or DP and one CP.

Table 2-2 summarizes features provided by each SRP
processor.

Table 2-2
SRP PROCESSOR BOARD FEATURES

SRP
Processor

Master
RS-422
Agent

RS-232-C File
System

Half-Inch
Tape

FP

DP (SP+SC)

CP

TP

SP

X X

X

X

X X

X

Overview of OS Concepts 2-11

The FP as well as the DP provide file management
services, differing only in the type of hardware
upon which the service is performed. The FP ser-
vices hard disks, whereas the DP services the SMD
class of disk drives. The DP, in addition, sup-
ports half-inch tape. Note that the SP handles
half-inch tape exclusively.

The CP and TP contain peripheral ports for
cluster and network communications. The CP
provides a Master Agent to transport messages
over RS-422 channels (to locally clustered
workstations) and an RS-232-C communications
service to support asynchronous terminals and
communications media. The TP specializes in
RS-232-C communications services only.

PROGRAM AND PARTITION

An executable program can consist of code, data, and
one or more processes in a memory partition.

NOTE: The term partition, as used in this manual, shows the bounds of
a program while that program is in memory. Actual partition sizes and
locations vary with each operating system. In addition, partition
contents (protected mode operating systems) are not contiguous in
physical memory, and portions (such as code) may be shared between
partitions. In previous operating system versions, a partition actually
was a static memory cell into which various programs were loaded.

A program is loaded into a memory partition from
a disk-resident file or run file. Run files are
created by compiling and/or assembling source
language modules into object modules and linking
the object modules together into code and data
segments.

When a currently active program such as the Exec-
utive requests it to do so, the operating system
reads the run file into memory, relocates inter-
segment references, and schedules the program for
execution.

2-12 CTOS/VM Concepts

NOTE: This manual generally describes a logical model of the operating
system rather than a particular implementation. In certain cases,
however, such as in the description of "System Memory Organization"
that follows, the implementation is indicated to point out significant
feature differences. (For details, see the Release Notice for your version
of the operating system.)

SYSTEM MEMORY ORGANIZATION

System memory consists of two types of partitions:

•	 System partitions: A system partition
can contain the operating system or a
dynamically installed system service.

•	 Application partitions: An application
partition can contain an application
program.

When a system is initiated, the operating system
is loaded into system partitions at the low and
high address ends of memory. (See Figure 2-1.)

Operating system data is loaded at low and high
addresses.

•	 Data	at	the	low	address	end	includes	the	
system structures and the Interrupt
Vector Table (real mode only).

•	 Data	 at	 the	 high	 address	 end	 includes	
the loadable request files and the NLS
tables.

Overview of OS Concepts 2-13

Figure 2-1. Memory Organization

Operating system code is loaded at the low ad-
dress end for real mode and at the high address
end for protected mode. Code includes the System
Image and the file system, if present. For
protected mode, a resident Debugger optionally
can be loaded as part of the code.

2-14 CTOS/VM Concepts

As shown in Figure 2-1, most of the operating
system is loaded at the high end of memory for
protected mode. This is one of the advantages of
protected mode: it frees more memory for appli-
cation programs to run in the first megabyte.

In either mode, dynamically installed system ser-
vices are loaded into system partitions located
at the high address end of memory.

The remaining memory at initialization is defined
as free memory.

To bring an application program into memory, the
operating system creates a new application par-
tition in free memory into which it loads the
program. The partition is placed at the high
address end of free memory. (See Figure 2-2.)

PARTITION MANAGING PROGRAMS

A partition managing program is a program that
can create new application partitions and load
programs into them. The Context Manager is such
an example. (For details on the Context Manager,
see the Context Manager/VM Manual.)

If a partition managing program exists in memory,
additional application partitions also can exist
in memory.

SWAPPING

When space for new partitions is needed, the
operating system swaps partition managed programs
out of memory to a disk file or to upper memory
(above the first megabyte).

Figure 2-3A shows the Context Manager and Program
W, Program X, and Program Y in memory. Figure
2-3B shows Program X swapped out and Program Z
swapped in.

Overview of OS Concepts 2-15

Figure 2-2. Memory Organization with Application
Partition and Free Memory

USER NUMBER

Each partition has a unique user number (his-
torically the same as a partition handle) that is
shared by all processes in the partition. The
user number refers to the resources associated
with the specified partition. It does not refer
to a partition's particular size or physical lo-
cation in memory.

In a cluster or network environment, the re-
sources of each cluster workstation partition are
identified at the other workstations by a user
number, which has been translated so as to be
unique among all workstations.

2-16 CTOS/VM Concepts

As an example of a user number, each partition
containing a program in Figure 2-3 is a different
user number. Note that Program Z's partition is
in the same basic location that Program X's par-
tition occupied when it was resident in memory.
The user number of Program X's partition,
however, can be used to refer to Program X, even
when Program X is not resident in memory.

Figure 2-3. Memory Organization Under Partition
Management

Overview of OS Concepts 2-17

APPLICATION PARTITION MEMORY ORGANIZATION

The two types of memory allocation available to
an application program are short-lived and long-
lived. Within each application partition, short-
lived memory expands downward from high memory
locations, while long-lived memory expands upward
from low memory locations. (See Figure 2-4.)

Figure 2-4. Memory Organization of an
Application Partition

A program allocates short-lived memory to hold
information it needs while executing. For exam-
ple, it may need to build a record structure.
Short-lived memory cannot be used to pass infor-
mation to other partitions.

When the execution of a program is terminated,
the short-lived memory of its partition is auto-
matically deallocated.

2-18 CTOS/VM Concepts

Long-lived memory, however, is deallocated only
at the specific request of the program. It is,
therefore, useful for passing information from
one program to another. The Executive uses
long-lived memory for passing parameters to
application programs that will run in the same
partition. The Executive typically deallocates
long-lived memory whenever it is reloaded.

Programs can allocate and deallocate short-lived
and long-lived memory by making operating system
requests. A program in one partition cannot al-
locate or deallocate memory in another partition.

VIRTUAL CODE MANAGEMENT FACILITY

The Virtual Code Management facility permits the
execution of an application program that exceeds
the physical memory of an application partition,
by the use of relocatable overlays. To ensure
optimal performance, the use of this facility is
under the programmer's control.

FIXED AND VARIABLE PARTITIONS

A partition can be a fixed partition or a vari-
able partition. A fixed partition always uses a
fixed amount of memory. A variable partition
(protected mode operating systems only) can use
up to the maximum amount of memory that the pro-
gram executing in it may allocate. (For details,
see the Linker/Librarian Manual.)

CODE SHARING

Variable partitions (protected mode operating
systems only) permit a program's code to be
shared by the same type of program in another
variable partition. Shared code can be located
anywhere in physical memory.

Using CTOS/VM Operations 3-1

3 USING CTOS/VM OPERATIONS

This chapter is provided to help you get started
using the CTOS/VM operations in the programs that
you write.

ASSUMPTIONS

It is assumed that the operating system has been
successfully installed on your workstation. In
addition, you should have installed the language
compiler for the high-level language you will be
using and the Software Development Utilities. The
Software Development Utilities include the Linker,
the Librarian, the Assembler, CTOS.lib, and so
forth. (See the Release Notice for Standard Soft-
ware for more information.)

If the above assumptions are correct, you can use
your workstation for writing software programs.

You also should have available the documentation
you will need to refer to while you are writing
your programs. At a minimum, you will need the
CTOS/VM Reference Manual. The Linker/Librarian
Manual, the Assembly Language Manual, the Debugger
Manual, and the appropriate programming language
manual are other supporting software manuals that
you should have when you are ready to compile,
link, and run your program.

NAMING CONVENTIONS

You will notice that certain conventions are used
to name variables in the CTOS/VM Reference Manual
and other supporting software manuals. You need
to familiarize yourself with the naming conven-
tions used in these manuals to understand what the
variables mean when you write programs that use
the CTOS/VM operations.

3-2 CTOS/VM Concepts

See the Quick Reference card on Naming Conventions
that is packaged with this manual. It provides
information on the naming conventions most com-
monly used.

It is recommended that you follow the same naming
conventions when you are developing software.

INTERFACE

The programmatic interface to any of the CTOS/VM
operations is a procedural call.

FORMAT

The format of the procedural interface is given
for each operation in the CTOS/VM Reference Man-
ual. The following are examples of what this
format looks like for three CTOS/VM operations:

WildCardInit (pb, cb, pBuf, sBuf): ercType

PutFrameCharsAndAttrs(iFrame, iCol, iLine,
pbText, cbText, pbAttrs, cbAttrs):
ercType

OpenFile(pFhRet, pbFilespec, cbFileSpec,
pbPassword, cbPassword, mode):
ercType

The operation name is to the left of the left
parenthesis. You cannot change this name. The
names enclosed within the parentheses are variable
names representing parameters. Note that these
variable names follow the naming conventions de-
scribed in the Quick Reference card.

Using CTOS/VM Operations 3-3

For example,

pFhRet

means the memory address (p) of a file handle (Fh)
returned (Ret) to your program.

The CTOS/VM Reference Manual includes a de-
scription for each operation. The description
tells you what to fill in for each parameter to
the procedural interface. (See the following ex-
ample for details.)

Almost all CTOS/VM operations are written as func-
tion calls. A function call returns a one-word
status code commonly known as an erc. Each of the
preceding examples is an operation that returns a
status code and, therefore, is labeled ercType.

If an ercType operation returns with no error, it
returns a status code of 0 or ercOK. The oper-
ating system itself does not report any errors to
the user; it simply returns status codes to
programs that use operating system services. Pro-
grammers should always check the returned status
code and provide for error reporting or recovery.

EXAMPLE STATEMENT

To use the procedural interface format, you must
write it as a language statement. For example,
the format of OpenFile looks like

OpenFile(pFhRet, pbFilespec, cbFileSpec,
pbPassword, cbPassword, mode):
ercType

3-4 CTOS/VM Concepts

The following is an example of how you can fill in
the parameters to OpenFile in Pascal. Each vari-
able name (from left to right) is described and
followed by what you write for it.

1. pFhRet is the address to which the file
handle for the open file will be
returned, for example:

 ADS fh

2. pbFileSpec is the address of a file
specification. You might declare the
file specification as an LSTRING type
and address it by reference, for exam-
ple:

 ADS lsFileSpec[1]

3. cbFileSpec is the length in bytes of the
specification, for example:

 lsFileSpec.len

4. pbPassword is the memory address of the
file password. For example, no password
required is indicated as

 NULL

5. cbPassword is the length in bytes of the
password. For example, no password is
indicated as

 0

Using CTOS/VM Operations 3-5

6. mode is a two-letter constant indicating
the mode in which the file is to be opened.
For example, read mode is indicated as

 'mr'

The completed OpenFile statement in Pascal is thus

erc := OpenFile(ADS fh, ADS lsFileSpec[1],
lsfileSpec.len, NULL, 0, 'mr');

OPERATION TYPES

Your program can use the procedural interface with
any of the following types of operations:

•	 object	module	procedure

•	 system-common	procedure

•	 (operation	 that	 uses	 the)	 request pro-
cedural interface to system services

•	 Kernel	primitive

Each CTOS/VM operation in the CTOS/VM Reference
Manual is identified as one of these types.

Each operation type functions in the operating
system in a different way.

OBJECT MODULE PROCEDURE

An object module procedure is a procedure in a
library. It is not part of the operating system
code itself. The Linker links an object module
with your program as part of the code that is exe-
cuted when your program is run.

3-6 CTOS/VM Concepts

WildCardInit is an example of an object module
procedure. When your program executes a call to
WildCardInit, control is transferred to the
WildCardInit code. When WildCardInit has complet-
ed executing, it returns to the next executable
instruction in your program.

WildCardInit is in the standard operating system
library, CTOS.lib. All of the CTOS.lib object
module procedures are included in the "Operations"
chapter in the CTOS/VM Reference Manual.

SYSTEM-COMMON PROCEDURE

A system-common procedure does not reside in a
library nor is it linked with your program. It is
a procedure within the operating system itself. A
system-common procedure is either so common that
it should not have to be duplicated, or it is
hardware-dependent code too extensive to be in-
cluded in every program written. System-common
procedures increase program performance.

PutFrameCharsAndAttrs is an example of a
system-common procedure.

Using CTOS/VM Operations 3-7

KERNEL PRIMITIVES

The Kernel primitives are part of the operating
system. They are

Check
CreateProcess
ForwardRequest
PSend
Request
RequestDirect
RequestRemote
Respond
Send
Wait
WaitLong

These primitives are described in Chapter 29,
"Interprocess Communication," and Chapter 30,
"Inter-CPU Communication."

ACCESSING SYSTEM SERVICES USING THE REQUEST
PROCEDURAL INTERFACE

The request procedural interface is a routine
within the operating system used to access a
system service. It calls the Kernel primitive,
Request, to do this. The request procedural in-
terface is not linked with your program. Instead,
an interrupt is generated, which transfers control
to the request procedural interface routine. Your
program is placed in a waiting state while the routine
executes.

The request procedural interface first constructs
a request block. The request block is a message
used by all interprocess communications. It is
constructed according to specific conventions from
the parameters you supplied in the procedural
interface.

3-8 CTOS/VM Concepts

The request procedural interface then calls Re-
quest to route the request block to the system
service. When the system service completes its
service, it fills in its response in the request
block and calls the Kernel primitive, Respond.
Respond routes the request block back to your
program.

Upon completion, a status code is returned to your
program. A status code of 0 (ercOK) indicates
that the system service performed the operation
with no error.

The CTOS/VM operations that use the request
procedural interface are request-based operations.
OpenFile is an example. You can identify the
request-based operations in the CTOS/VM Reference
Manual by the request block format following the
operation description.

ACCESSING SYSTEM SERVICES USING THE KERNEL
PRIMITIVES

To access a system service using Kernel prim-
itives, you are required to construct the request
block yourself for the specified request-based
operation. Then you must call the Kernel prim-
itives, Request and Wait (or Check), for the
request to be serviced.

This method of accessing a system service has the
advantage of allowing your program to continue
execution while it periodically checks for the
response from the system service. The request
procedural interface always requires that your
program wait for the response. The request pro-
cedural interface, however, is easier to use.

It is recommended that you read the advanced
chapters in this manual before you use the Kernel
primitives in this way. (See Chapter 29, "Inter-
process Communication," for more information.)

Using CTOS/VM Operations 3-9

INTERFACE LEVELS

Figure 3-1 shows the I/O chapters in this manual.
Each chapter (except Chapter 6, "Input/Output,"
which is introductory) presents the interfaces you
can use to perform I/O to and from hardware de-
vices.

Figure 3-1. Interface Levels

3-10 CTOS/VM Concepts

I/O interfaces are available for the same device
at different interface levels. The level of an
interface implies the degree of control a program
has over a hardware device when it uses that
interface. Low-level interfaces provide greater
hardware control than high-level interfaces but,
at the same time, restrict a program to performing
I/O to fewer devices.

The chapters closer to the top of Figure 3-1
describe high-level interfaces. Low-level inter-
faces are described in the chapters towards the
bottom. The chapters with device names such as
"Video" and "Disk Management," for example, de-
scribe low-level interfaces.

If you are getting acquainted with the CTOS/VM
operations, the easiest way to access a device is
at a high level. For example, you can use the
operations in the Sequential Access Method (SAM)
chapter to access the video device. The SAM
interfaces are easier to use than the low-level
video interfaces, because you write fewer state-
ments in your program.

You will discover that there are advantages and
disadvantages to using different interface levels.

The subject of interface levels is discussed at
length in the I/O chapters. (See these chapters
for more information.)

ADDRESSING MEMORY

In real mode, you are limited to a 1 megabyte phys-
ical address space. This means that your program
can reference each of the 1,048,576 bytes by a
unique physical address.

The physical memory address (PA) is the actual
location in system memory.

Using CTOS/VM Operations 3-11

In protected mode, the physical address space ex-
tends beyond the first megabyte. The amount of
physical memory your program can address is deter-
mined by your system's processor and its hardware
limitations. A 80286 processor, for example, is
capable of providing a 16 megabyte physical ad-
dress space. The actual address space, however,
is determined by the hardware.

(For details on protected mode addressing, see the
iAPX 286 Programmer's Reference Manual, the 80286
Architecture, and the 80386 Programmer's Reference
Manual.)

A segment is a contiguous area of less than 64K
bytes within the physical address space. The
operating system uses segmented addressing. This
means every address is relative to a segment.
(See Chapter 24, "Memory Management," for de-
tails.)

You can think of a memory address as having a
logical, a linear, and a physical translation.
Figure 3-2 summarizes these translations.

LOGICAL MEMORY ADDRESS

The logical memory address is the 32 bit memory
address as viewed by an application program. For
example,

pFh

is the logical memory address (denoted by p) of a
file handle (denoted by Fh) . The logical memory
address is used more frequently than either its
physical or linear memory address translation.

3-12 CTOS/VM Concepts

Figure 3-2. Memory Address Translations

The logical memory address consists of a segment
address (SA) and a relative address (RA). (The
relative address is commonly called the offset.)
The syntax of a logical memory address in assembly
language is

SA:RA

The SA portion is the high-order 16 bits of the
logical memory address.

Using CTOS/VM Operations 3-13

The SA is interpreted differently, depending upon
whether the processor is executing in real or in
protected mode.

•	 In	real	mode,	the	SA	is	multiplied	by	16	
to determine the segment base address in
physical memory.

•	 In	 protected	 mode,	 the	 SA	 is	 a	 selector
(SN). It selects a segment descriptor
entry in a protected mode system struc-
ture [either a Local Descriptor Table
(LDT) or a Global Descriptor Table
(GDT)].

 The segment descriptor selected by the SN
contains a segment base address, which
may be located anywhere in physical
memory. For this reason, if you are
writing a program you want to execute in
protected mode, your program should not
depend upon the value of the SN. (For
details on writing protected mode pro-
grams, see the Engineering Update for
2.0 CTOS/VM.)

The RA (or offset) is the low-order 16 bits of a
logical address. It is the distance, in bytes, of
the target location from the beginning of the
segment.

3-14 CTOS/VM Concepts

LINEAR MEMORY ADDRESS

The linear memory address is computed differently
in real and in protected modes. (See Figure 3-3.)

•	 In	 real	 mode,	 a	 20	 bit	 linear	 memory	
address is computed by multiplying the SA
of the logical address by 16 and adding
the RA.

•	 In	protected	mode,	a	24	or	32	bit	linear	
memory address is computed by adding the
RA to the 24 or 32 bit segment base
address.

PHYSICAL MEMORY ADDRESS

The physical memory address is the actual location
in system memory.

•	 In	real	mode,	the	physical	memory	address	
is equivalent to the linear memory
address.

•	 In	 protected	 mode,	 the	 physical	 memory	
address is equivalent to the linear mem-
ory address unless paging is enabled.

 If paging is enabled, the 32 bit linear
memory address maps to a 32 bit physical
memory address via a page table struc-
ture.

Using CTOS/VM Operations 3-15

MEMORY ADDRESSING IN THIS MANUAL

A byte of memory does not have a unique logical
memory address. The same byte of memory can be
referred to by many different combinations of SAs
and RAs.

In this manual, the term memory address means the
logical memory address. (Chapter 30, "Inter-CPU
Communication," describes a linear address used
for routing requests between processor boards on
the SRP. This is the only case in which the
memory address has a different meaning.)

ADVANTAGES TO PROTECTED MODE MEMORY ADDRESSING

Protected mode addressing provides certain ad-
vantages over real mode.

EXTENDED MEMORY

Protected mode extends memory, allowing you to run
programs beyond the first megabyte of physical
memory. Real mode programs, however, are limited
to the first megabyte.

As an end user, this means you can run more pro-
grams in memory. As a programmer, you can refer-
ence physical memory addresses extending beyond
the first megabyte up to the maximum allowed by your
processor and hardware.

PROTECTION

In protected mode, programs are prevented from
referencing static memory allocated to other pro-
grams, or from overwriting code. This is because
LDTs and GDTs provide for limit and type checking,
which place limitations on the memory programs can
access.

Program Management 4-1

4 PROGRAM MANAGEMENT

The Program Management facility provides opera-
tions used by a program to self-load into memory,
to self-exit from memory, and to handle error
conditions.

WHAT IS A PROGRAM?

An executable program can consist of code, data,
and one or more processes in a partition in
memory.

A program is loaded into memory from a
disk-resident file or run file. Run files are
created by compiling and/or assembling source
language modules into object modules and linking
the object modules together into code and data
segments. (See Figure 4-1.)

SEGMENTS

A code segment contains only processor instruc-
tions (code) and is never modified once it is
loaded into memory. Several processes can execute
instructions from the same code segment. (For
details, see "Code, Static Data, and Dynamic Data
Segments" in Chapter 24, "Memory Management.")

A static data segment contains initial values of
program data structures and is writable once in
memory. Every invocation of a program gets a new
static data segment.

4-2 CTOS/VM Concepts

Figure 4-1. From Source Language Modules to
Program in Memory

LINKER

The Linker reads the object module(s) and combines
the segment elements contained within the modules
according to their segment names, class names, and
directives from the user. (For details, see the
Linker/Librarian Manual.)

The run file that is created by the Linker con-
sists of segments. Segments can be combined based
on a series of different segmentation models.
Most programming languages use the medium model,
although the operating system also supports small
and large model. (For details, see the CTOS
Programmer's Guide.)

Program Management 4-3

A run file created by linking object modules pro-
duced by the Pascal compiler, for example, con-
sists of one code segment for each object module
included in the link and a single static data
segment. The single static data segment, or
DGroup, combines the static data and stack re-
quirements of all the object modules.

A run file of this form is considered standard;
assembly language programmers are urged to adopt
this standard unless other considerations are
overriding. The COBOL compiler and BASIC inter-
preter do not produce object modules. (For de-
tails, see the Linker/Librarian Manual.)

PROGRAM LOADING INTO MEMORY

When a program is loaded into memory, the run file
is read into the short-lived memory of the
application partition. For real mode programs,
any logical memory addresses existing in either
the code or data segments (intersegment refer-
ences) are adjusted to reflect the memory address
at which the program is loaded. For protected
mode programs, the Loader adjusts the base ad-
dresses in each Local Descriptor Table (LDT)
descriptor.

The Virtual Code Management facility allows you to
run a program that is larger than the available
memory in an application partition. If the Vir-
tual Code Management facility is in use, all the
static data segments and the resident code segment
are loaded in memory. The nonresident code seg-
ments are loaded in memory only as needed. (See
Chapter 34, "Virtual Code Management," for
details.)

A program is loaded by the Chain, Exit, ErrorExit,
LoadPrimaryTask, or LoadInteractiveTask operation.

4-4 CTOS/VM Concepts

Note that LoadPrimaryTask and LoadInteractiveTask
must be followed by a call to SwapInContext or
AssignKbdOwner if a program is to be loaded into
memory by a partition managing program. (For de-
tails on partition managing programs, see Chapter
32, "Program and Partition Management.")

EXIT RUN FILE

When the currently executing program exits, the
exit run file is the next program that is loaded
into the partition. Exit run files are
user-specified. Each application partition has
its own. For example, the Executive sets itself
as the exit run file: the user starts the
application from the Executive, and when the
application is done, the Executive is reloaded.

A program can specify an exit run file for its
partition by using the SetExitRunFile operation.
A program can determine the exit run file of its
partition by using the QueryExitRunFile operation.

If no exit run file is specified in a partition,
the partition becomes vacant.

TERMINATING PROGRAMS

The application program terminates itself by using
the Chain, Exit, or ErrorExit operation.

When a program terminates, the operating system
issues termination requests. Termination requests
(system requests) are messages that notify system
services of a program's termination. Upon receipt
of a termination request, system services release
resources, such as open files, that may be allo-
cated to the terminating program. (For details,
see Chapter 31, "System Services Management.")

Program Management 4-5

DEALLOCATION OF SYSTEM RESOURCES

Only the resources allocated to an exiting program
are deallocated when that program terminates.

The resources that are deallocated include

•	 Short-lived	 memory.	 	 (See	 Chapter	 24,	
"Memory Management.")

•	 Exchanges.	 	 (See	 Chapter	 29,	 "Interpro-
cess Communication.")

•	 Files	 opened	 by	 the	 OpenFile	 operation	
(except long-lived files). (See Chapter
11, "File Management.")

•	 Timer	 Request	 Blocks	 allocated	 by	 the	
OpenRTCClock operation. (See Chapter 33,
"Timer Management.")

•	 Communications	 channels	 allocated	 by	 the	
InitCommLine operation. (See Chapter 15,
"Serial Port Management.")

•	 Global	 Descriptor	 Table	 selectors	 (SGs)	
(protected mode). (See the iAPX 286
Programmer's Reference Manual, the 80286
Architecture, and the 80386 Programmer's
Reference Manual.)

4-6 CTOS/VM Concepts

OPERATIONS

The Program Management operations described below
are categorized as error handling and normal
program exit operations. Operations are arranged
in a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

ERROR HANDLING

FatalError Terminates operation of the appli-
cation program and passes an abnor-
mal status code to the exit run
file.

CheckErc Checks status codes. If CheckErc
is called with a nonzero status
code, FatalError is called with
that value.

ErrorExit* Terminates the current application
program in an application partition
and passes an abnormal status code
to the exit run file.

ErrorExitString*
Returns a string (usually printed)
to the exit run file.

*Dynamically installed system services use these
operations at a certain time during installation.
(For details, see Chapter 31, "System Services
Management.")

Program Management 4-7

Crash Causes system operation on a work-
station to terminate, a crash dump
to be written, the operating system
to be reloaded, and SignOn to dis-
play the cause of the crash when it
is restarted.

SetMsgRet Same as ErrorExitString except the
program does not exit.

NORMAL PROGRAM EXIT

Exit* Terminates the current application
program in an application partition
and passes a normal status code to
the exit run file.

Chain* Replaces the current application
program in an application partition
with the specified run file.

SetExitRunFile
Establishes a new exit run file for
an application partition.

QueryExitRunFile
Returns the name, password, and
priority of the exit run file of an
application partition.

*Dynamically installed system services use these
operations at a certain time during installation.
(For details, see Chapter 31, "System Services
Management.")

Parameter Management 5-1

5 PARAMETER MANAGEMENT

The Parameter Management facility provides a
structured mechanism for passing limited informa-
tion from one application program to its successor
within the same application partition.

EXAMPLE PROGRAM

The Executive is a typical example of an applica-
tion program that uses the Parameter Management
facility.

The Executive interfaces with the user through a
forms-oriented interface. A forms-oriented inter-
face accepts parameters from the user.

The Executive thus passes user-supplied parameters
to other programs. The way that the Executive
does this is described below. (See the Executive
Manual for details.)

In the Executive, the user types a command name on
the command line. When the user presses Return,
the Executive is given the command.

The Executive responds by writing the
user-requested command form to the screen. The
command form contains the appropriate prompts for
the user to enter data.

If the user, for example, types Delete on the
command line and presses Return, the following
command form appears:

Delete

File list
[Confirm each?]

5-2 CTOS/VM Concepts

The command form consists of a list of prompts.
The user enters data on the lines (parameter
fields) in the form next to the prompts, correct-
ing typing errors if necessary. When satisfied
with the contents of the fields, the user presses
Go to execute the command.

The Executive passes the parameters to the Delete
program. The Delete program, in turn, deletes the
user-specified files.

A forms-oriented interface, such as the Executive,
is one type of program that can use the Parameter
Management facility to its advantage. Parameter
Management, however, can be used by any applica-
tion program in a partition that needs to provide
information to any other program that will run in
the same partition.

PARAMETERS

A parameter consists of zero or more subparam-
eters.

In the Executive Delete command described above,
the prompt [Confirm each?], for example, accepts
either

•	 zero	parameters	(meaning	the	user	did	not	
enter any information)

•	 one	parameter	(a	Yes	answer)

A subparameter typically consists of an arbitrary
sequence of characters not including a space.

The prompt [File list] in the Executive Delete
command allows the user to enter one or more file
names. Each file name is a subparameter; the
parameter is the complete file list the user
entered on the File list line. (For details on
Executive parameters, see the Executive Manual.)

Parameter Management 5-3

As another example, the parameter

1 abc Work.Fri

contains three subparameters, which are 1, abc, and
Work.Fri. The space is the delimiter that separates
the subparameters.

A space can be embedded within a subparameter by
including the entire subparameter in single quotes.
For example, the parameter

'1 abc' Work.Fri

contains two subparameters: 1 abc and Work.Fri.

OVERVIEW OF PARAMETER MANAGEMENT STRUCTURES AND
OPERATIONS

Programs using the Parameter Management facility
must organize parameter data to simplify the
method in which other programs extract the
parameters.

The organized data is stored in the Variable
Length Parameter Block (VLPB), a data structure in
long-lived memory of the application partition.
[For details, see "Variable Length Parameter Block
(VLPB)," later in this chapter.] The memory
address of the VLPB is stored in the Application
System Control Block (ASCB) of the partition.
[For details, see "Application System Control
Block (ASCB)," later in this chapter.]

To place parameter data in an organized fashion
into the VLPB, programs can use the Parameter
Management operations for constructing the VLPB.
(These operations are described in "Operations for
Constructing the Variable Length Parameter Block,"
later in this chapter.)

5-4 CTOS/VM Concepts

To extract parameters from the VLPB, programs can
use the Parameter Management operations for
querying the parameters stored in that structure.
(These operations are described in "Querying
Parameters in the Variable Length Parameter
Block," later in this chapter.)

APPLICATION SYSTEM CONTROL BLOCK (ASCB)

An Application System Control Block (ASCB) is
automatically created in an application partition
when the partition is created. The ASCB contains
the memory addresses of various types of partition-
specific information, such as the VLPB. This
information is available to be queried by
programs, such as the Executive, which execute in
the partition. (See Chapter 26, "System Defini-
tions," for details on how a program can obtain
partition information from the ASCB. For details
on the ASCB structure, see Table 4-1 in the
CTOS/VM Reference Manual.)

VARIABLE LENGTH PARAMETER BLOCK (VLPB)

The Variable Length Parameter Block (VLPB) is a
partition structure used by the Parameter Manage-
ment facility to communicate parameters to pro-
grams.

The VLPB is created in the long-lived memory of an
application partition. Its memory address is
stored in the pVLPB field of the ASCB.

Conceptually, the VLPB can be described as a
two-dimensional sparse array of strings. The Exe-
cutive command form illustrates the parts of this
array as follows:

•	 Each	element (iParam, jParam) in the array
is the value of a subparameter entered into
an Executive command form.

Parameter Management 5-5

•	 Each	row (iParam) of the array corresponds
to a line in the command form, with one row
for each parameter.

•	 Each		column (jParam) of the array cor-
responds to a subparameter.

QUERYING PARAMETERS IN THE VARIABLE LENGTH
PARAMETER BLOCK

A program can query the VLPB to obtain parameter
information by using three operations: RgParam,
CParams, and CSubParams.

•	 RgParm	 returns	 the	 memory	 address	 of	 the	
array element specified by (iParam,
jParam). Each element of the array
returned by RgParam is actually a 6 byte
block of memory called an sdType. The
first 4 bytes are the memory address of
the string. The last 2 bytes are the
length of the string.

•	 CParams	 returns	 the	 number	 of	 parameters	
stored in the VLPB. CParams, for
example, is the number of fields in an
Executive command form plus 1.

•	 CSubParams	 returns	 the	 number	 of	 sub-
parameters stored in the VLPB for a
specified parameter. CSubParams, for
example, is the number of subparameters
the user entered in a specified field of
an Executive command form.

Figure 5-1 shows the matrix of a VLPB array for
the Executive.

5-6 CTOS/VM Concepts

Figure 5-1. Matrix of a Variable Length Parameter
Block for the Executive

The Executive places the following information in
row 0 (iParam 0):

•	 The	 Executive	 command	 name,	 such	 as	
Delete, is placed into element (0,0).

•	 The	 case	 value	 entered	 when	 the	 command	
was created is placed into element
(0,1). The case value specifies which
command invoked the current run file (disk
resident file) when more than one
possibility exists. The case value can
be queried by a run file to determine
which command invoked it.

•	 The	 Redo	 keystroke	 buffer	 is	 placed	 into	
element (0,2). The Redo keystroke buffer
contains the entire series of keystrokes
that the user typed.

Rows 1 through n store the parameters and sub-
parameters that the user entered in the command
form.

Parameter Management 5-7

EXAMPLE OF A VARIABLE LENGTH PARAMETER BLOCK FOR
THE DELETE COMMAND

If the Executive Delete command were filled out as
follows:

0 Delete
1 File list abc def gh
2 [Confirm each?] y

the VLPB would look like the matrix shown in Figure
5-2.

Figure 5-2. Filled-in Variable Length Parameter
Block

When the user presses Go, the Executive organizes
the data to simplify the extraction of the
parameters.

The RgParam operation provides access to the
parameters by returning to the caller the memory
address of the array element specified by (iParam,
jParam).

In Figure 5-2, for example, the memory address of
abc is returned by RgParam (1,0); the address of
def is returned by RgParam (1,1).

5-8 CTOS/VM Concepts

OPERATIONS FOR CONSTRUCTING THE VARIABLE LENGTH
PARAMETER BLOCK

Initialization

The following operation sequence is recommended to
initialize a VLPB:

•	 Call	 ResetMemoryLL	 to	 reset	 the	
long-lived memory of the partition. Note
that ResetMemoryLL also deletes the
contents of the Redo keystroke buffer.

•	 Call	AllocMemoryLL	to	allocate	the	number	
of bytes required for containing the VLPB
structure.

•	 Call	 RgParamInit	 to	 initialize	 the	 spec-
ified memory for the VLPB.

Parameter Construction

The construction of parameters for a VLPB is
supported by three object module procedures:
RgParamSetSimple, RgParamSetEltNext, and
RgParamSetListStart.

RgParamSetSimple creates one subparameter per row
of the VLPB sparse array.

To construct a VLPB array with more than one
subparameter per row, a program must first call
RgParamSetListStart. RgParamSetListStart sets the
global variable for placing the subparameters in
the VLPB. Following a call to RgParamSetListStart,
a call to RgParamSetEltNext must be made for each
subparameter to be created in the row.

The VLPB and the parameter-passing services of the
Executive are applicable to any application pro-
gram using the operating system.

Parameter Management 5-9

VARIABLE LENGTH PARAMETER BLOCK STRUCTURE

The VLPB structure is a self-describing,
two-dimensional array of character strings. Each
element of the array rgSdoParam is a pair (ob, cb)
of words, where

•	 ob is the offset within the VLPB of the
corresponding row of the two-dimensional
array

•	 cb is the number of bytes occupied by the
row

The strings that make up a row are prefixed with a
1 byte count and packed together without padding.

When a program uses the operations for con-
structing a VLPB (described previously), the VLPB
structure is filled in with values.

(See Table 4-31 in the CTOS/VM Reference Manual,
for the format of the VLPB.)

5-10 CTOS/VM Concepts

OPERATIONS

The Parameter Management operations described
below are categorized by function. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

QUERYING PARAMETERS

The operations below are used by every program to
query parameters in the VLPB.

CParams Returns the number of parameters
stored in the VLPB.

CSubParams Returns the number of subparameters
stored in the VLPB for a specified
parameter.

RgParam Provides access to the parameters
stored in the VLPB.

CONSTRUCTING PARAMETERS

The operations below are used by only a few
systems programs to construct parameters.

RgParamInit Initializes the specified memory to
be the VLPB.

RgParamSetSimple
Creates a parameter with one sub-
parameter.

RgParamSetEltNext
Creates an additional subparameter
of the current parameter in the
VLPB.

RgParamSetListStart
Initiates the creation of a param-
eter with multiple subparameters.

Input/Output 6-1

6 INPUT/OUTPUT

This chapter is a guide to the CTOS/VM I/O
facilities. It presents interface options avail-
able and discusses considerations you need to make
regarding these options.

Figure 6-1 shows the I/O chapters in this manual.
Each chapter (except this chapter, which is
introductory) presents interfaces you can use to
send I/O to a hardware device.

I/O interfaces are available for the same device
at different interface levels. The level of an
interface implies the relative degree of program
control over a hardware device. Low-level inter-
faces provide greater hardware control than
high-level interfaces but, at the same time, limit
program I/O to fewer devices.

In Figure 6-1, the chapters towards the top
describe high-level interfaces. Low-level inter-
faces are described in the chapters towards the
bottom.

DEVICE INDEPENDENCE VERSUS DEVICE DEPENDENCE

A program's capability to run on various devices
is a characteristic built into the program's
design as a result of its interface level.

A device-independent program is capable of per-
forming I/O to devices of different types, such as
video, tape, or keyboard. Using high-level inter-
faces, thus, results in device independence.

You can write a device-independent program, for
example, by using the Sequential Access Method
(SAM) operations.

6-2 CTOS/VM Concepts

Figure 6-1. Interface Levels

Input/Output 6-3

A device-dependent program is limited to per-
forming I/O to a limited number of devices or a
particular type of device. Using the low-level
interfaces, thus, results in a device-dependence.

The video device, for example, has its own group
of video operations for performing I/O functions.
These operations result in video device-
dependence. The file system, keyboard, and other
devices have their own comparable operations.

A device-dependent program provides for more
direct control over the physical device but, at
the same time, requires more effort to write.

I/O FACILITIES

Any of the following I/O facilities can be used
for the same device:

•	 High-level	 to	 low-level	 device	 access	 to	
data:

- Sequential Access Method (SAM). SAM
is known more familiarly as byte
streams. Using these high-level
interfaces results in device-indepen-
dence. (See Chapter 7, "Sequential
Access Method.")

- Device-Dependent SAM. Using certain
operations at this lower level results
in device-dependence. (See Chapter 8,
"Device-Dependent SAM.")

6-4 CTOS/VM Concepts

- Device level. The operations at this
level are specific to a given type of
device and thus result in device-
dependence. (See the device-named
chapters, such as Chapter 9, "Video,"
and Chapter 10, "Keyboard Management."
These are shown towards the bottom in
Figure 6-1.)

 The chapters entitled "Disk Manage-
ment," "Parallel Port Management,"
and "Serial Port Management" describe
operations that are even closer to
the actual device details than the
operations described in the other
device-named chapters. (See Figure
6-1.)

- Interrupt handlers and X-Bus. The
chapters entitled "Interrupt Handlers"
and "X-Bus Management" describe oper-
ations associated with more than one
device.

•	 High-level	device	access	to	special	kinds	
of data:

- Generic Print Access Method (GPAM).
GPAM provides high-level I/O for com-
plex documents that may include text,
graphics, or special text attributes.
GPAM is an object module library that
provides device independent formatting
commands used for printing. (See
Chapter 19, "Generic Print Access
Method.")

•	 High-level	 device	 access	 to	 structured	
data files:

- File access methods. Chapter 20,
"Structured File Access Methods," is a
guide to three high-level I/O inter-
faces to structured data files.

Sequential Access Method 7-1

7 SEQUENTIAL ACCESS METHOD

The Sequential Access Method (SAM) provides
device-independent access to a default set of real
devices, such as the screen, printer, files, and
keyboard. To transfer data to or from the device,
SAM uses a character-oriented sequence of bytes
known as a byte stream.

SAM consists of object module procedures in the
standard operating system library, CTOS.lib.

SAM provides an alternative to the direct pro-
gramming interfaces available at the
device-dependent level. (The device-dependent
interfaces are listed in chapters, such as "Video"
or "Serial Port Management," which are associated
with device names.)

With SAM you can write a program that can be

•	 used	flexibly	to	access	any	of	the	avail-
able devices

•	 written	with	a	minimum	amount	of	code

If, for example, you want to write a compiler
program that accepts its data from either the
keyboard or a file and directs its listing to the
screen, a printer, or a file, it would be to your
advantage to use SAM's device-independent level of
interface.

If, however, you know that your program will
always perform I/O to a single device, it would be
to your advantage to use the device-dependent
level of interfaces for that device.

7-2 CTOS/VM Concepts

Device-dependent interfaces are specific to each
kind of peripheral device available on a work-
station. Programming at the device-dependent
level has the advantages of

•	 maximizing	run	time	efficiency

•	 providing	 access	 to	 the	 specialized	 fea-
tures of the peripheral device hardware
(for example, controlling the cursor at
the video level)

CUSTOMIZING THE SEQUENTIAL ACCESS METHOD

The default devices that SAM supports are as
follows:

•	 disk

•	 parallel	printer

•	 spooler

•	 keyboard

•	 null

•	 video

For some applications, you may not need to use all
of the devices supported by SAM. For example, a
program might use SAM only to obtain keyboard
input and to display text on the screen.

If this is the only way you use SAM in a
particular application, you can configure SAM's
device-dependent object modules selectively to
support only the devices you need.

Sequential Access Method 7-3

You generate SAM (SAMGen) by editing a configu-
ration file, assembling it, and linking the
resulting object module with your program.

Specific uses of a SAMGen are

•	 reduction	 of	 the	 memory	 needed	 by	 an	
application program by eliminating
unneeded device support

•	 inclusion	 of	 support	 for	 communications	
and RS-232-C serial communications print-
ers

•	 inclusion	of	support	for	tape

•	 inclusion	 of	 support	 for	 the	 Generic	
Print System (GPS)

•	 inclusion	 of	 user-written,	 device-
specific SAM object modules

(For details on customizing SAM object modules,
see "Building a Customized SAM" in the CTOS
Programmer's Guide.)

BYTE STREAM

A byte stream is a readable (input) or writable
(output) sequence of 8-bit bytes. An input byte
stream can be read until either the reader chooses
to stop reading or until status code 1 ("End of
file") is returned. An output byte stream can be
written until the writer chooses to stop writing.
(Of course there are physical limitations: a file
could expand, for example, to fill all available
disk storage.)

7-4 CTOS/VM Concepts

A Byte Stream Work Area (BSWA) is a 130 byte
memory work area for the exclusive use of SAM
operations. Any number of byte streams can be
open concurrently, using separate BSWAs. A BSWA
must be allocated for each byte stream opened.
(For details on the BSWA, see the CTOS Program-
mer's Guide.)

USING A BYTE STREAM

To open a byte stream, call the OpenByteStream
operation, supplying the following parameters:

•	 the	device/file	specification	string	from	
the list in "Device/File Specifications,"
presented later in this chapter

•	 a	password	if	appropriate

•	 the	mode	(indicating	whether	I/O	is	
needed)

•	 the	address	of	the	130	byte	BSWA

•	 the	address	and	size	of	the	
user-allocated buffer

When calling other device-independent operations
such as ReadBsRecord, WriteBsRecord, or
CloseByteStream, you supply the address of the
same BSWA.

There are two predefined and already allocated
BSWAs (bsVid for video frame 0 and bsKbd for the
keyboard). These special BSWAs are defined in SAM
standard object modules. Because these BSWAs are
already opened, it is not necessary (nor allowed)
to specify them as arguments to OpenByteStream or
CloseByteStream. These byte streams may be used
by passing the memory address of bsVid or bsKbd to
the appropriate byte stream operations.

Sequential Access Method 7-5

TYPES OF BYTE STREAMS

The types of byte streams that SAM supports are
described below.

DISK BYTE STREAMS

A disk byte stream is a byte stream that uses a
file on disk. A valid file name follows the stan-
dard file naming conventions. (For details on
file naming, see Chapter 11, "File Management.")

Disk byte streams permit both input and output to
be directed to the same open byte stream (that is,
the same BSWA).

The standard operations of SAM are augmented by
two operations that allow random access to files:
GetBsLfa and SetBsLfa. These device-dependent
operations are available only for disk byte
streams and return status code 7 ("Not imple-
mented") if attempted on other byte streams. (For
details, see Chapter 8, "Device-Dependent SAM.")

PRINTER BYTE STREAMS

A printer byte stream is a byte stream that per-
forms direct printing. Valid strings for printer
byte streams are [LPT] and [PTR]n. n is any valid
RS-232-C serial communications channel in a [COMM]
device specification if a printer is attached to
that serial port. (For details on communications
channels, see "Device/File Specifications," later
in this chapter.)

7-6 CTOS/VM Concepts

Direct printing transfers text directly from ap-
plication program memory to the specified parallel
or serial printer interface of the workstation on
which the application program is executing. A
printer byte stream cannot be used to access a
printer assigned to the GPS or to the spooler.
(See "Generic Print System Byte Streams" and
"Pre-GPS Spooler Byte Streams," next in this
chapter.)

The selected configuration file determines the
printer characteristics. (See the Create Configu-
ration File command in the CTOS System Administra-
tor's Guide.) For example, the configuration file
controls whether a printer byte stream suspends
execution of the caller until the workstation
operator corrects a condition requiring manual
intervention or reports it to the calling program.

Normally printer byte streams change tab and
end-of-line characters to the form expected by the
printer. Return (code 0Ah), for example, can be
transformed to a Carriage Return/Linefeed combi-
nation for some printers, or just to a Carriage
Return (code 0Dh) or to a Linefeed (code 0Ah) for
others. Tab characters can be transformed to
spaces for printers without mechanical tabs.
These transformations are controlled by the se-
lected configuration file.

Any of three printing modes can be specified with
the SetImageMode operation: normal, image, or
binary. SetImageMode sets the printing mode any
time following the opening of the printer
byte stream. This differs from the effect of
SetImageMode when used with pre-GPS spooler byte
streams.

For compatibility between spooled and direct
printing, SetImageMode should be used before the
first WriteBsRecord or WriteByte operation.

Sequential Access Method 7-7

Normal mode converts tabs into spaces and converts
end-of-line characters to device-dependent codes.

Image mode and binary mode perform no code con-
version.

Binary mode does not print the banner page or send
any extra code not in the file to the printer, nor
does it recognize the escape sequences controlling
special video capabilities. (For details on the
video escape sequences, see Chapter 9, "Video.")

GENERIC PRINT SYSTEM BYTE STREAMS

A Generic Print System (GPS) byte stream is a byte
stream that is sent to a GPS printing device. GPS
byte streams supersede pre-GPS spooler byte
streams. (See "Pre-GPS Spooler Byte Streams,"
next in this chapter. Also see "Device/File
Specification Parsing," later in this chapter.)

For compatibility with pre-GPS spooler byte
streams, GPS byte streams implement the
SetImageMode operation in the same way as pre-GPS
spooler byte streams.

PRE-GPS SPOOLER BYTE STREAMS

(See the Printing Guide before using a pre-GPS
spooler byte stream and for details on pre-GPS
spooler escape sequences. For details on pre-GPS
printing, see Appendix A, "Spooler Management.")

A pre-GPS spooler byte stream automatically cre-
ates a uniquely named disk file for temporary text
storage. It then transfers the text to the disk
file and expands the disk file as necessary. When
the spooler byte stream is closed, a request is
queued for the spooler by the Queue Manager for
later printing of the previously created disk
file. The temporary file is deleted after it is
printed. This is spooled printing.

7-8 CTOS/VM Concepts

Normally, pre-GPS spooler byte streams change tab
and end-of-line characters to the form expected by
the printer. For example, a system Return (code
0Ah) can be transformed to a Carriage Return/
Linefeed combination for some printers, or just to
a Carriage Return (code 0Dh) or a Linefeed (code
0Ah) for others. Tab characters can be trans-
formed to spaces for printers without mechanical
tabs. These transformations are controlled by the
selected configuration file. (For details, see
the Create Configuration File command in the CTOS
System Administrator's Guide.)

Any of three printing modes can be set with the
SetImageMode operation: normal, image, or binary.
SetImageMode sets the printing mode only if it is
called immediately following the opening of the
spooler byte stream. This differs from the effect
of SetImageMode when used with printer byte
streams. (See "Printer Byte Streams," earlier in
this chapter.)

For compatibility between spooled and direct
printing, SetImageMode should be used before the
first WriteBsRecord or WriteByte operation.

Normal mode prints the banner page between files,
converts tabs into spaces, converts end-of-line
characters to device-dependent codes, and recog-
nizes the escape sequences for manual interven-
tion. (For details on banner pages, see the
Printing Guide.)

Image mode prints the banner page between files
and recognizes the escape sequences, but performs
no code conversion.

Binary mode does not print the banner or send any
extra code not in the file to the printer, nor
does it recognize the escape sequences. Escape
sequences are special character sequences that
invoke special functions.

Sequential Access Method 7-9

KEYBOARD BYTE STREAMS

A keyboard byte stream is equivalent to using the
ReadKbd operation in character mode. (For details
on keyboard program modes, see Chapter 10, "Key-
board Management.") The keyboard byte stream does
not support unencoded keyboard mode.

To support device-independence, keyboard byte
streams return status code 1 ("End of file") when
the FINISH (ASCII value 4) key is pressed, and
status code 4 ("Operator intervention") when the
CANCEL (ASCII value 7) key is pressed.

(For details on submit file escape sequences, see
Chapter 10, "Keyboard Management.")

COMMUNICATIONS BYTE STREAMS

A communications byte stream is a byte stream that
uses an RS-232-C serial communications channel
(serial port). Communications byte streams pro-
vide support for the two communications channels
of the serial input/output (SIO) communications
controller. Operation is in asynchronous, full-
duplex mode without explicit modem control. Like
disk byte streams, communications byte streams
permit both input and output to be directed to the
same open byte stream (that is, the same BSWA).
Only one byte stream can be opened for each
communications channel of the SIO controller.

The selected configuration file determines the
communications characteristics. (For details, see
the Create Configuration File command in the CTOS
System Administrator's Guide.)

Normally, communications byte streams strip null
(00h) and delete (7Fh) characters from the stream
of received data characters. Image mode (set with
the SetImageMode operation) specifies that commun-
ications byte streams pass all incoming characters
to the requesting program exactly as received.

7-10 CTOS/VM Concepts

X.25 BYTE STREAMS

An X.25 byte stream is a byte stream that enables
data transmission via the X.25 Network Gateway.
(For details, see the X.25 Network Gateway Man-
ual.)

Each open X.25 byte stream corresponds to a vir-
tual circuit that is initiated when the byte
stream is opened, and cleared when the byte stream
is closed. Setting up and clearing of the virtual
circuit is .controlled through the use of a
configuration file.

VIDEO BYTE STREAMS

A video byte stream is a byte stream that uses the
video display. The standard SAM operations are
augmented by

•	 Certain	 characters	 that	 have	 special	 in-
terpretation.

•	 Multibyte	 escape	 sequences.	 	 The	 multi-
byte escape sequences (beginning with the
character 0FFh) can be used to control
the special workstation video capabili-
ties.

•	 One	 device-dependent	 operation.	 	 The	
QueryVidBs operation returns information
about video byte streams.

(See Chapter 9, "Video," for details on video byte
streams and on other ways to control the video
subsystem.)

Sequential Access Method 7-11

TAPE BYTE STREAMS

A tape byte stream reads or writes a tape as a
purely sequential device. It looks for the pat-
tern of file marks that designate the beginning and
end of a file. Within the limits specified by
the tape configuration file, tape byte streams for
half-inch tape ignore exact record and block sizes
when reading.

With tape byte streams, you can read or write to
tape using the standard byte stream interface.
Valid tape names include the characters [TAPE] or
[QIC] plus additional information. (For details
on tape naming, see Chapter 18, "Tape Manage-
ment.")

In read mode, records are read from the tape as a
sequence of bytes until a file mark is encoun-
tered. The user is not aware of the record size.

For half-inch tape in Write mode, the record size
is obtained from the tape configuration file.

Tape byte streams are not included in the standard
SamGen. They must be included by performing a
custom SamGen. (For details, see the CTOS Pro-
grammer's Guide.)

DEVICE/FILE SPECIFICATIONS

The device/file specification string is any of the
following:

{node}[volname]<dirname>filename
File identified by its full file
specification. Abbreviated speci-
fications are also allowed. (See
Chapter 11, "File Management," for
details on file names.)

7-12 CTOS/VM Concepts

[LPT]&[volname]<dirname> filename
Centronics-compatible printer con-
nected to the parallel printer
port. (See Appendix A, "Spooler
Management.")

 &[volname]<dirname>filename is op-
tional. It describes a configura-
tion file containing the printer
characteristics. A default con-
figuration file is used if none is
specified. (For details, see the
Create Configuration File command
in the CTOS System Administrator's
Guide.)

[PTR]n&[volname]<dirname>filename
RS-232-C-compatible printer, where
n identifies the serial I/O (SIO)
communications channel to which
the printer is connected and can
be any of the channels listed
below.

 &[volname]<dirname>filename is op-
tional. It describes a configura-
tion file containing the printer
characteristics. A default con-
figuration file is used if none is
specified. (For details, see the
Create Configuration File command
in the CTOS System Administrator's
Guide.)

Sequential Access Method 7-13

[COMM]n&[volname]<dirname>filename
Communications channel n of the SIO
communications controller, where n
identifies the channel.

 &[volname]<dirname>filename is op-
tional. It describes a configura-
tion file containing the communi-
cations characteristics. A de-
fault configuration file is used
if none is specified. (For de-
tails, see the Create Configura-
tion File command in the CTOS
System Administrator's Guide.)

Valid channel identifiers are listed below:

 Channel
Synonyms

Processor
Channel

 Device

A 0 0A

B 1 0B

C 2
D 3
E 4
F 5
G 6
H 7
I 8
J 9

A

B

C
D
E
F
G
H
I
J

Workstations,
SRP, TP and CP

Workstations,
SRP, TP and CP

SRP - TP and CP
SRP - TP only
SRP - TP only
SRP - TP only
SRP - TP only
SRP - TP only
SRP - TP only
SRP - TP only

7-14 CTOS/VM Concepts

The following specifications support the XC-002 port
expander module:

1A Leftmost XC-002, Channel A
1B Leftmost XC-002, Channel B
1C Leftmost XC-002, Channel C
1D Leftmost XC-002, Channel D

2A Second XC-002, Channel A
2B Second XC-002, Channel B
2C Second XC-002, Channel C
2D Second XC-002, Channel D

[QICm]n Quarter-inch cartridge (QIC) tape.
(For details on tape naming, see
"Tape Names" in Chapter 18, "Tape
Management.")

[TAPEsm]n Half-inch tape. (For details on
tape naming, see "Tape Names" in
Chapter 18, "Tape Management.")

{node}[queuename]reportname
Spooled printer. The queue name is
the name of the pre-GPS scheduling
queue associated with the spooler.
[SPL] is the default name of the
first spooled printer.

 The report name is a text string of
up to 12 characters that is in-
cluded in the Spooler Status
command's status display. (For
details, see the CTOS System
Administrator's Guide.)

Sequential Access Method 7-15

[KBD] Keyboard. This also includes the
system input process used for sub-
mit files and batch jobs. (For
details on the system input proc-
ess, see Chapter 10, "Keyboard
Management," in this manual. For
details on batch, see the CTOS
System Administrator's Guide.)

[X25]n&[volname]<dirname>filename
X.25 virtual circuit, where n is a
network identification that cur-
rently must be zero.

 &[volname]<dirname>filename is op-
tional. It describes a configura-
tion file containing the circuit
characteristics. (For details,
see the X.25 Network Gateway
Manual.)

[NUL] Null device. Input operations al-
ways return status code 1 ("End of
file"). Output operations discard
all output but return status code 0
(ercOK).

[VID] Video frame 0. The frame must be
established in advance using the
Video Access Method (VAM) or the
Executive. (For details, see Chap-
ter 9, "Video.")

[VID]n Video frame n.

7-16 CTOS/VM Concepts

DEVICE/FILE SPECIFICATION PARSING

To determine the type of byte stream you are spec-
ifying, SAM parses the device/file specification
string supplied to OpenByteStream. This string
parsing process is described below.

Scanning from left to right, SAM first looks for a
left bracket ([).

If a left bracket ([) is not found and disk byte
streams are included in the SAM configuration, SAM
assumes the string to be a file name. The byte
stream is a disk byte stream, which is directed to
a disk file.

If a left bracket ([) is found, Sam attempts to
match the string characters and the string length
within the square brackets to the reserved words
for system devices, such as KBD, LPT, and PTR.

1. If a match occurs, SAM specifically
looks for any characters to the right of
the right square bracket (]).

a. If a left angle bracket (<) is found,
the string is assumed to be a file
name, and the byte stream is
therefore a disk byte stream.

b. If no characters are found, the
string is a reserved word for a
device, and the device byte stream is
directed to the specified device.

2. If no match occurs and GPS is installed,
SAM assumes the byte stream is a GPS
byte stream. Otherwise, if the spooler
is installed, the byte stream is assumed
to be a pre-GPS spooler byte stream.

Sequential Access Method 7-17

OPERATIONS

The SAM operations described below are categorized
as basic or advanced. Operations are arranged in
a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

BASIC

OpenByteStream Opens a device/file as a byte
stream.

ReadBsRecord Reads the specified count of bytes
from the open input byte stream to
the specified memory area.

ReadByte Reads 1 byte from the open input
byte stream.

WriteBsRecord Writes the specified count of bytes
to the open output byte stream from
the specified memory area.

WriteByte Writes 1 byte to the open output
byte stream.

CloseByteStream
Closes the open byte stream.

OutputToVid0
Provides programs, such as system
services, with the ability to per-
form minimal output to the video
device without linking to a full
video byte stream.

7-18 CTOS/VM Concepts

ADVANCED

ReadBytes Reads up to the specified count of
bytes from the open input byte
stream. ReadBytes returns the mem-
ory address of the start of the
byte stream but does not move the
bytes to a separate buffer.

CheckpointBs Writes any partially full buffers
of the open output byte stream and
waits for all write operations to
complete successfully before re-
turning.

ReleaseByteStream
Abnormally closes the device/file
associated with the open output
byte stream.

QueryVidBs Allows your program to obtain in-
formation about a video byte
stream.

Device-Dependent SAM 8-1

8 DEVICE-DEPENDENT SAM

The Sequential Access Method (SAM) discussed in
Chapter 7 highlights the device-independent aspect
of SAM. By using the basic operations described
in that chapter, you are allowing your program to
be portable to a number of devices.

SAM, however, has a device-dependent portion to
its code for each type of device it supports.

The device-independent operations map to
device-dependent operations specific to each
device. Mapping is done automatically each time
a device-independent operation is called. It is
based on information stored in the Byte Stream
Work Area. (See Chapter 7, "Sequential Access
Method.")

DEVICE-DEPENDENT OPERATIONS WITH GENERIC PREFIXES

Calling a device-independent operation results in
mapping to a device-dependent operation with a
generic prefix.

To send output to an open line printer byte
stream, for example, you would call the
device-independent operation, WriteBsRecord.
WriteBsRecord, in turn, calls the device-dependent
operation, FlushBufferLP. The generic prefix is
FlushBuffer. LP (the name of the specific device)
is appended to the prefix.

8-2 CTOS/VM Concepts

The device-independent operations and the generic
prefixes to their device-dependent versions are as
follows:

Device-Independent
Operation Generic Prefix

OpenByteStream OpenByteStream...

ReadByte,
ReadBsRecord FillBuffer...

WriteByte,
WriteBsRecord FlushBuffer...

part of
CloseByteStream CheckPointBs...

part of
CloseByteStream ReleaseByteStream...

SetImageMode SetImageMode...

(For details, see the CTOS Programmer's Guide,
"Building a Customized SAM.")

Device-Dependent SAM 8-3

DEVICE-SPECIFIC OPERATIONS

To handle select types of byte streams in special
ways, you can incorporate certain device-specific
operations directly into your program. The
device-specific operations are as follows:

Operation Applicable Byte Streams

SetImageMode Communications, printer,
Generic Print System (GPS),
pre-GPS spooler

PutBackByte Disk (async and sync)

GetBsLfa Disk (async and sync)

SetBsLfa Disk (async and sync)

QueryVidBs Video

If you use these operations, you limit your
program to specific devices. If, for example, you
use GetBsLfa in your byte stream, your program
will work only if you specify a disk file name.

Note that, although GetBsLfa and SetBsLfa pertain
to files, these operations are called only through
byte streams and are therefore included in this
chapter rather than in Chapter 11, "File Manage-
ment." The same is true of QueryVidBs, which is
included here instead of in Chapter 9, "Video."
QueryVidBs is a byte stream path for manipulating
the video device.

(See the CTOS Programmer's Guide, "Building a
Customized SAM," for details on how to use these
operations in customizing your program.)

8-4 CTOS/VM Concepts

OPERATIONS

The device-dependent SAM operations described below
are categorized by interface function. Operations
are arranged in a most to least frequent use order.
(See the CTOS/VM Reference Manual, Chapter 3,
"Operations," for a complete description of each
operation.)

GENERIC PREFIXES

Every type of byte stream has operations whose names
begin with the prefixes below.

OpenByteStream...
Opens a specific device/file as a
byte stream.

FillBuffer... Reads data from the device into a
user-specified buffer.

FlushBuffer... Writes data from a user-specified
buffer to the device.

CheckPointBs...
Ensures that all data in the buffer
has been output to the device
(forms part of the CloseByteStream
operation).

ReleaseByteStream...
Releases the device for use by
other programs (completes the
CloseByteStream operation).

SetImageMode...
Affects the interpretation of bytes
read from or written to the device
(for example, controls whether tabs
are expanded or not).

Device-Dependent SAM 8-5

DEVICE-SPECIFIC

The operations below limit your program to specific
devices.

SetImageMode Sets the normal, image, or binary
mode for printer, spooler, and
communications byte streams.

PutBackByte Returns 1 byte to the open input
disk byte stream.

GetBsLfa Returns the logical file address
at which the next I/O operation
will occur for the open disk byte
stream.

SetBsLfa Sets the logical file address at
which the I/O operation is to
continue for the open disk byte
stream.

QueryVidBs Returns video information about
the type of video device asso-
ciated with an open video byte
stream.

Video 9-1

9 VIDEO

This chapter describes the video facility. The
video facility is a highly flexible means for the
display of alphanumeric and graphic information.
Workstation video is of two types: character map
and bit map.

Although most character map workstations can be
equipped to display graphics, the primary feature
is the video hardware contained to support the
character map. The hardware reads characters and
attributes from memory. It then converts them
from the extended ASCII (8 bit) memory repre-
sentation to a pattern of illuminated dots, called
pixels, that it displays on the screen. During
this conversion, the video hardware references a
translation table (font) that is loaded into the
video hardware under program control. Character
map fonts are created with the Font Designer.

A bit map workstation does not contain hardware to
support the character map (although it contains
graphics hardware). Instead, the video software
provides character map emulation to support
character-only application programs. The font can
be modified, but it is of a different format from
the character map font. Bit map fonts are created
with the Raster Font and Icon Designer.

The video facility is described here from the
viewpoint of

•	 how	 you	 can	 use	 it	 to	 your	 advantage	 in	
your programs

•	 what	 video	 capabilities	 are	 available	 to	
you with each hardware type

(The details of programming using color are
described in the CTOS/VM Reference Manual,
Appendix F, "Using Color.")

9-2 CTOS/VM Concepts

VIDEO ATTRIBUTES

Video attributes can be either screen or character
attributes and control the visual presentation of
characters on the screen.

•	 Screen attributes control the pre-
sentation of the entire screen. Examples
are blank, reverse video (dark characters
on a light background), half-bright, num-
ber of characters per line, and the pre-
sence or absence of character attributes.

•	 Character attributes control the
presentation of a single character. Examples
are reverse video, blinking, half-bright,
underlining, bold, and struck-through.

VIDEO SOFTWARE

The video software consists of a device-
independent and a device-dependent level of inter-
face to the video facility. Each level provides
varying degrees of screen and character attribute
control.

The screen consists of a number of separate,
rectangular areas called frames. Each frame can
be scrolled up or down independently of other
frames. You can select from several features,
including multiple frames and scrolling of each
frame, to enhance your program video output.

Video 9-3

The video software consists of the following two
interface levels:

•	 At	 the	 device-independent	 level,	 you	 can	
use the Sequential Access Method (SAM).
SAM provides device-independent access to
devices such as the printer, files, key-
board, as well as the screen. (See
Chapter 7, "Sequential Access Method.")
SAM provides automatic scrolling.
Video-specific extensions to the SAM
provide direct cursor addressing, control
of character attributes, and so on.

•	 At	 the	 device-dependent	 level,*	 you	 can	
use

- The Video Access Method (VAM). VAM
operations provide you with direct
access to the characters and character
attributes of each frame. They in-
clude explicit control of scrolling.

- The Video Display Management facility
(VDM). VDM consists of operations
for screen setup: VDM controls the way
that the screen appears. For example,
the VDM operations enable you to split
the screen into frames. VDM and VAM
can be used together or independently,
as described in "Program/Video Subsys-
tem Interaction," which follows.

*Actually, VAM and VDM are device type-
dependent operations. Although they limit
your program output to a video device, they
allow you to write to the video on any type of
workstation.

9-4 CTOS/VM Concepts

PROGRAM/VIDEO SUBSYSTEM INTERACTION

You can choose to direct your program output to
the screen using any of several methods. The
methods described below range from simple (re-
quiring little programming effort) to more complex
(requiring more programming effort but providing
greater output control).

SEQUENTIAL ACCESS METHOD (SAM)

You can use SAM's device-independent operations in
two basic ways, as described below.

Using the Current Screen Setup

If you are writing a program such as a compiler
that will be invoked by the Executive to display
messages in a streaming or sequential way, you do
not need to initialize the video display. In-
stead, you can take advantage of the Executive's
screen setup. Screen setup allows you to use
the device-independent SAM operations, such as
OpenByteStream, specifying the video as your de-
vice string. SAM then generates a video byte
stream for use by the video display. You can
alternately use the pre-opened byte stream, bsVid.

The Executive eliminates the need to reinitialize
the video because your program, when invoked,
inherits the Executive's

•	 character	font

•	 character	map	(in	system	memory)

•	 three	frames	(Command	Frame,	Event	Frame,	
and Status Frame)

which comprise the Executive's current screen
setup.

Video 9-5

SAM's video byte stream extensions support mul-
tiple frames, character attributes, and explicit
positioning of characters in a frame, but do not
support line attributes (other than cursor posi-
tion). SAM recognizes a few special cursor-
positioning characters including Return, Next
Page, Backspace, and Tab. When a special char-
acter or full line would cause the cursor to move
below the bottom line of the frame, SAM
automatically scrolls the frame and repositions
the cursor.

Using SAM Directly

If you choose not to have your program use the
Executive screen setup, you can still use SAM's
device-independent operations as above, but you
also must initialize the screen. [See "Video
Display Management (VDM)," later in this chapter.]
For example, if you want your program to be
invoked directly by the Context Manager, you must
use VDM to initialize the screen.

AUGMENTING THE SAM OPERATIONS

If you want greater control over the video byte
stream, you can augment the SAM device-independent
operations by the following:

•	 Special	 interpretation	 of	 certain	
characters.

•	 Multibyte	 escape	 sequences.	 	 The	 multi-
byte escape sequences (beginning with the
character 0FFh) can be used to control
the special video capabilities of the
Convergent workstations.

•	 One	 device-dependent	 operation.	 	 The	 op-
eration QueryVidBs returns information
about video byte streams.

Each of these methods is described below.

9-6 CTOS/VM Concepts

Special Characters in Video Byte Streams

(See Table J-7 in the CTOS/VM Reference Manual for
the special characters interpreted by video byte
streams.) Note that a multibyte escape sequence
is available to disable all these special inter-
pretations except 0FFh.

Multibyte Escape Sequences

Multibyte escape sequences can

•	 control	screen	attributes

•	 control	character	attributes

•	 control	scrolling	and	cursor	positioning

•	 dynamically	redirect	a	video	byte	stream

•	 automatically	 pause	 between	 full	 frames	
of text

•	 perform	various	other	miscellaneous	func-
tions

Note that where the escape sequences include
alphabetic characters, uppercase and lowercase are
equivalent.

Controlling Screen Attributes. Screen attributes
can be controlled with four multibyte escape
sequences. (See Table J-4 in the CTOS/VM Refer-
ence Manual.) Each of the 3 byte sequences begins
with the escape byte 0FFh and continues with a
pair of characters represented by the specified 8
bit ASCII character codes.

Video 9-7

Controlling Character Attributes. Character at-
tributes can also be controlled with multibyte
escape sequences. (See Table J-2 in the CTOS/VM
Reference Manual.)

Workstations support six character attributes:
blinking, bold, half-bright, reverse video,
struck-through, and underline.

You can use the escape sequence for subsequent
characters in video byte streams to set all six
character attributes in any combination.

Controlling Scrolling and Cursor Positioning.
Characters are normally written to the frame
sequentially, with the cursor advancing one
character position at a time, from left to right
and top to bottom. A cursor is normally displayed
at the character position where the next character
will be displayed. Text is automatically scrolled
each time a character is written to the lower
right corner of a frame. When such a scroll
occurs, the entire contents of the frame scroll up
one line, and the contents of the previous top
line of the frame disappear.

(See Table J-5 in the CTOS/VM Reference Manual for
the escape sequences that directly control scroll-
ing and cursor positioning.)

Dynamically Redirecting a Video Byte Stream. When
a video byte stream is opened, it is designated as
directed to one of the frames. However, a special
escape sequence makes it possible to dynamically
redirect a video byte stream.

An independent cursor position is recorded for
each frame. The position within frame i is re-
stored automatically when a video byte stream is
redirected to frame i. (See Table J-1 in the
CTOS/VM Reference Manual.)

9-8 CTOS/VM Concepts

Automatically Pausing Between Full Frames of Text.
Automatic pausing between full frames of text can
be controlled through multibyte escape sequences.
When this pause facility is enabled and further
output to the frame would cause text to be
scrolled off the top of the frame, the message

Press NEXT PAGE or SCROLL UP to continue

is displayed on the last line of the frame. At
this point, if the user presses Next Page, output
continues for another full frame of text. If the
user presses Cancel, status code 4 ("Operator
intervention") is returned to the calling process.
If the user presses Finish, status code 1 ("End of
file") is returned to the calling process. If
the user presses any other key, the audio alarm is
momentarily activated. (See Table j-3 in the
CTOS/VM Reference Manual for the escape sequences
controlling pause.)

Since the automatic pause facility reads char-
acters from the keyboard (using the operation
ReadKbdDirect), there is potential for interaction
with the client's use of the keyboard. (See
Chapter 10, "Keyboard Management," for a descrip-
tion of the ReadKbdDirect operation.)

A single client using a keyboard byte stream and
one or more video byte streams will operate cor-
rectly. A more complex environment may require
using program-specific logic to control pauses in
scrolling. Automatic pausing can be affected by

•	 use	of	the	unencoded	keyboard	mode

•	 use	of	ReadKbd	instead	of	a	keyboard	byte	
stream

Video 9-9

•	 keyboard	 input	 performed	 by	 one	 client	
while another uses a video byte stream

•	 keyboard	 input	 initiated	 by	 the	 Kernel	
primitive, Request, but not immediately
followed by the Kernel primitive, Wait

Miscellaneous Functions. See Table J-6 in the
CTOS/VM Reference Manual for a description of the
escape sequences that perform miscellaneous
functions.

QueryVidBs

The QueryVidBs operation returns information about
a video byte stream, such as frame number or
current line number. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of this operation.)

VIDEO ACCESS METHOD (VAM)

If you want more direct control over the screen
than SAM provides, you can use the Video Access
Method (VAM) operations. If your program does
not require special screen setup, you can use the
VAM operations independently of the Video Display
Management (VDM) operations. [See "Video Display
Management (VDM)," next in this chapter.]

VAM provides direct access to the characters and
character attributes of each frame. VAM opera-
tions can

•	 Put	a	string	of	characters	anywhere	in	a	
frame.

•	 Specify	character	attributes	for	a	string	
of characters.

9-10 CTOS/VM Concepts

•	 Scroll	 a	 frame	 up	 or	 down	 a	 specified	
number of lines.

•	 Position	 a	 cursor	 in	 a	 frame.	 	 (Each	
frame can have its own cursor.)

VIDEO DISPLAY MANAGEMENT (VDM)

If you choose not to use the Executive's screen
setup or if your program is not invoked by the
Executive, you can reinitialize the video subsys-
tem using the VDM facility before using the VAM or
SAM operations.

The VDM facility sets up the screen. By using the
VDM operations, your program can

•	 determine	the	video	capability	present

•	 load	 a	 new	 character	 font	 into	 the	 font	
RAM

•	 stop	 video	 refresh	 on	 a	 character	 map	
workstation (useful when moving or chang-
ing the size of the frames or the
character map)

•	 change	screen	attributes,	such	as	reverse	
video and half-bright, while the screen
is being video-refreshed

•	 calculate	the	amount	of	memory	needed	for	
the character map based on the preferred
height and width of the characters, and
the presence or absence of character
attributes

•	 initialize	each	of	the	frames

•	 initialize	the	character	map

Video 9-11

Once the character map is set up and video refresh
is started, you can use the VAM or the SAM
operations to control the screen image by modi-
fying the characters and attributes stored in the
character map.

Reinitializing the Video Subsystem

Your program needs to reinitialize the video
display only if the intended state is not the same
as that provided by the Executive.

To reinitialize the video display, you must in-
clude a particular sequence of software operations
similar to the following:

1. Use the QueryVidHdw operation to deter-
mine the level of video capability pre-
sent on the workstation in use.

2. Optionally use the LoadFontRam operation
to read the character font from a file
to memory and then load this font into
the font RAM.

3. Use the ResetVideo operation to place
the following information in the Video
Control Block:

•	 number	of	characters	per	line

•	 number	of	lines	per	screen

•	 the	 presence	 or	 absence	 of	 character	
attributes

4. Use the InitVidFrame operation to spec-
ify the screen coordinates and dimen-
sions of each of the frames.

9-12 CTOS/VM Concepts

5. Use the SetScreenVidAttr operation to
set reverse video or half-bright, if
wanted.

6. Use the InitCharMap operation to ini-
tialize the character map.

7. Use the SetScreenVidAttr operation to
initiate video refresh.

On bit map workstations, you do not have to turn
video refresh off and on during initialization.

On character map workstations that have graphics
capability, using the SetScreenVidAttr operation
to turn off video refresh turns off only the char-
acters, not the graphics. However, on bit map
workstations, where graphics and characters are
not separated, both are turned off.

Following reinitialization, your program can dis-
play information by using VAM or SAM.

The Executive also allows you to use the Screen
Setup command to respecify the following video
characteristics:

•	 reverse	video

•	 number	of	characters	per	line

•	 number	of	lines

•	 the	presence	or	absence	of	character	
attributes

•	 suppress	pause	between	pages

•	 color

•	 screen	timeout

(For details on the Screen Setup command, see the
Executive Manual.)

Video 9-13

FORMS-ORIENTED INTERACTION

VAM is ideal for forms-oriented interaction, that
is, interaction in which a form is displayed in a
frame and the workstation user enters data into
the blank fields of the form. Direct cursor ad-
dressing and modification of individual characters
and character attributes support this interaction.

For example, the PutFrameAttrs operation is used
to highlight the field to be entered next. It
sets reverse video for the range of character
positions that constitute the field. After the
field is entered, PutFrameAttrs is used again to
reset the reverse video attribute on the character
positions of the field.

ADVANCED TEXT PROCESSING

VAM is also ideal for applications that perform
advanced text processing, because it provides
scrolling up and down of entire or partial frames.
It is easy, for example, to scroll up the top four
lines of a frame and insert a new line of text
between the old fourth and fifth lines. During
scrolling, character attributes scroll along with
the text they affect.

9-14 CTOS/VM Concepts

WORKSTATION VIDEO CAPABILITIES

The workstation types and models have different
video capabilities. These are summarized in
Table 9-1. (See the CTOS System Administrator's
Guide for information on configuring the video for
your workstation.)

VIDEO CAPABILITIES

Note that, in the discussion below, the descrip-
tions of video capabilities apply to either
character map or bit map workstations, unless
specified otherwise.

Video 9-15

Table 9-1
VIDEO CAPABILITIES

CHARACTER BIT MAP

MAP Low-
res

Hi-
res

Hi-res
zoomed

Character
Attributes

Blinking Yes * * *

Bold Yes Yes Yes Yes

Half-bright Yes † Yes No

Reverse video Yes Yes Yes Yes

Struck-through Yes Yes Yes Yes

Underline Yes Yes Yes Yes

Loadable font Yes Yes Yes Yes

Number of
characters/line 80 80 80 146

Number of lines/
screen 29 29 38 38

* Blinking is substituted with an outline char-
acter.

† Half-bright is emulated for consistency across
the hardware, but it is recommended that you do
not use it in your programs for the low-
resolution monitor.

9-16 CTOS/VM Concepts

Character Cell

Table 9-2 shows the character cell sizes available
for character map and bit map workstations.

Table 9-2
CHARACTER CELL SIZE

 WORKSTATION
 TYPE/MODEL

SIZE

Character map 9 x 12

Bit map
Low-resolution
monitor

9 x 12

High-resolution
monitor

12 x 20

High-resolution
zoomed monitor

7 x 20

Based on the character cell size of your partic-
ular workstation, you can obtain other information
describing the level of video capability pro-
grammatically by using the QueryVidHdw or the
QueryVideo operation. (For details, see the de-
scriptions of these operations in the CTOS/VM
Reference Manual, Chapter 3, "Operations.")

Video 9-17

Character Map

On a character map workstation, characters disp-
layed on the screen are stored in a contiguous
area called the character map. The video con-
troller has its own RAM containing a 4K byte char-
acter map and a 4K byte soft font.

The character map consists of 2K bytes of words.
Each word in the character map contains one ASCII
character byte (low byte) and one attribute byte
(high byte) that applies only to that specific
character. The map and font can be updated at any
time and the result is immediately visible on the
screen.

On a bit map workstation, there is no video con-
troller with its own character map: the character
map is a software virtual map.

Video Attributes

Screen attributes control the presentation of the
entire screen. The screen attributes are blank,
half-bright, and reverse video.

Character attributes control the presentation of a
single character. Character attributes can
be present or absent, depending on the value of
a screen attribute. If character attributes are
present, then each character has an 8 bit char-
acter attribute field; 6 of the 8 bits in the
character attribute field are used to specify the
presence or absence of the attributes: blinking,
bold, half-bright, reverse video, struck-through,
and underline.

9-18 CTOS/VM Concepts

Font

You can create workstation fonts using one of the
font design applications provided. For character
map workstations, use the Font Designer; for bit
map workstations, use the Raster Font and Icon
Designer.

The font contains pixel information for all 256
characters. Character map workstations also sup-
port half-pixel shift in any pixel row of a
character. This allows the Font Designer to
maximize resolution.

Cursor

On a character map workstation, the standard cur-
sor is a blinking underline and is not changeable
by software. Bit map workstations have a
software-loadable cursor. The cursor bit array is
superimposed in the character.

VIDEO REFRESH

On character map workstations, the video RAM is
contained within the processor module and is
accessible to the processor at a fixed location in
the processor's address space. The location of
the character map cannot be changed. To switch
screens, it is necessary to copy the contents of
the character map.

Video 9-19

WRITING PROGRAMS THAT RUN ON DIFFERENT WORKSTATION
MODELS

Different workstation models have different num-
bers of lines on the screen. Therefore, care must
be taken to write code that can run on a screen
with a variable number of lines. This type of
code can be written as follows.

During initialization, include a call to
QueryVidHdw or QueryVideo. (For details on these
operations, see Chapter 3, "Operations," in the
CTOS/VM Reference Manual.) The memory address of
a block of video information is returned. At
offset 1 in this block is a 1 byte field called
nLinesMax. This field contains the number of
lines on the screen. The lines are numbered from
0 to n-1 (where n is equal to the nth line).

When writing calls to operations that require row
and column coordinates (such as PutFrameChars or
PutFrameAttrs), the row coordinate should be used
as a variable rather than as a constant.

For example, to write a message on the line of the
screen that is 2 from the bottom, the row co-
ordinate used is nLinesMax-3.

SYSTEM DATA STRUCTURES: THE VIDEO CONTROL BLOCK
AND FRAME DESCRIPTOR

The Video Control Block (VCB) contains all infor-
mation known to the operating system about the
video display, including the location, height, and
width of each frame, and the coordinates at which
the next character is to be stored in the frame by
SAM. You can obtain the memory address of the VCB
by calling the GetpStructure operation with
a structCode value of 2. (GetpStructure is de-
scribed in Chapter 3, "Operations," in the CTOS/VM
Reference Manual. See Table 4-32 in that same
manual for the format of the VCB.)

9-20 CTOS/VM Concepts

The VCB contains an array of frame descriptors. A
frame descriptor is a component of the VCB and
contains all information known about one of the
frames. The number of frame descriptors in the
VCB is specified at system build. (See Table 4-13
in the CTOS/VM Reference Manual for the content of
a frame descriptor.)

COLOR GRAPHICS ATTRIBUTE PROCEDURES

Alphanumeric color procedures are available on
color monitor workstations. Character attributes
such as blinking, half-bright., reverse video, and
underlining are ordinarily under hardware control
through the alphanumeric style RAM. The graphics
control board has an alternate style RAM that
enables eight different attribute combinations to
be used on a screen.

The graphics style RAM includes color and
intensity specification with reverse video and un-
derlining. Blinking cannot be specified with this
style RAM.

An 8 byte memory work area is allocated to specify
the entries that are passed to the graphics style
RAM. Each byte uses the low-order 6 bits for the
color specification and the high-order 2 bits for
reverse video and underlining, respectively.

If you want to use color in your programs or if
you want to program the graphics control reg-
isters, you must use the ProgramColorMapper
operation. (For details and examples of how this
is done, see the CTOS/VM Reference Manual,
Appendix F, "Using Color.")

Video 9-21

OPERATIONS

The video operations described below are cate-
gorized by software function. Operations are
arranged in a most to least frequent use order.
(See the CTOS/VM Reference Manual, Chapter 3,
"Operations," for a complete description of each
operation.)

VAM OPERATIONS

PutFrameChars Overwrites the specified character
positions in the specified frame
with the specified text string.

PutFrameAttrs Establishes the same character at-
tribute for a range of character
positions within a specified frame.

PutFrameCharsandAttrs
Combines the PutFrameChars and
PutFrameAttrs functions so that a
sequence of characters can be
written in a single call.

QueryFrameChar Returns a single character located
in the character map at the speci-
fied coordinates of the specified
frame.

QueryFrameCharsandAttrs
Returns a character string and
its associated attributes from the
character map at the specified co-
ordinates.

PosFrameCursor
Establishes a visible cursor within
the specified frame at the speci-
fied coordinates.

9-22 CTOS/VM Concepts

QueryFrameCursor
Returns the cursor position for the
specified frame.

ScrollFrame Scrolls the specified portion of
the specified frame up or down by
the specified number of lines.

MoveFrameRectangle
Moves an arbitrary rectangle of
characters and corresponding attri-
butes within a frame of the
character map to another position
in the map.

QueryFrameBounds
Returns the size in number of
columns and lines for the specified
frame.

VDM OPERATIONS

QueryVidHdw Places information describing the
level of video capability of the
workstation in the specified memory
area. QueryVidHdw fills in only
certain fields in the specified
memory area according to the oper-
ating system version.

QueryVideo Performs the same function as
QueryVidHdw except QueryVideo fills
in all fields in the specified
memory area.

LoadFontRam Reads the character font from the
specified open file to the spec-
ified memory area and then trans-
fers the font to the font RAM.

Video 9-23

ResetVideo Suspends video refresh, resets all
screen attributes, and changes the
values stored in the VCB to reflect
the specified parameters.

ResetFrame Restores the frame to its initial
state,- that is, all character posi-
tions are blanked and all character
attributes are reset.

InitVidFrame Defines the screen coordinates and
dimensions of one of the frames.

SetScreenVidAttr
Sets/resets a specified screen
attribute.

InitCharMap Initializes the character map.

SetVideoTimeOut
Causes the screen refresh to turn
off after a specified time has e-
lapsed during which no keyboard
activity has occurred.

QueryFrameBounds
Returns the size in number of col-
umns and lines for the specified
frame.

9-24 CTOS/VM Concepts

COLOR PROGRAMMING OPERATIONS

ProgramColorMapper
Sets and queries the palette and or
control structure.

SetAlphaColorDefault
Sets up a default alpha palette and
control structure.

LoadColorStyleRam
Specifies 8 bytes that are passed
to the color graphics style RAM.
These attribute settings display
different combinations of color,
reverse video, and underlining.

SetStyleRam Sets a flag that indicates which of
the following style RAMs is to be
used: the graphics style RAM or
the standard alphanumeric style
RAM.

SetStyleRamEntry
Modifies a single 1 byte entry in
the graphics style RAM.

Video 9-25

DIRECT ACCESS TO VIDEO DATA STRUCTURES OPERATIONS

It is possible, although not recommended, to ac-
cess the video data structures directly at an
interface level below VAM and VDM. Although
programming at this lower level can be more
efficient than using VAM or SAM, your program will
not be compatible among the several workstation
models. Specifically, it will not work on a bit
map workstation.

The following operations provide direct access to
the video data structures.

LockVideo Locks the video structures used by
the operating system.

UnLockVideo Is used after calling LockVideo to
remove a lock on the video struc-
tures used by the operating system.

LockVideoForModify
Modifies the video structures used
by the operating system.

UnLockVideoForModify
Is used after LockVideoForModify is
called to remove a lock on the vid-
eo structures used by the operating
system.

Keyboard Management 10-1

10 KEYBOARD MANAGEMENT

The Keyboard Management facility enables an appli-
cation program to control the keyboard.

The keyboard microprocessor transmits each event
of a sequence of pressed/released keys to keyboard
management.

Although this chapter refers to the keys by the
standard symbols engraved on them, the function of
each key is completely under the control of the
application program.

KEYBOARD MODES

The application program can request input from the
keyboard in either of two modes: unencoded or
character.

In unencoded mode, the program receives an 8 bit
keyboard code for each key depressed/released. For
example, in the following sequence of pressed/
released keys, the program would receive a key-
board code for each of the four key transitions:

1. Press Shift.

2. Press A.

3. Release A.

4. Release Shift.

The program also would receive a different key-
board code for the depression/release of the left
Shift key than it would for the depression/release
of the right Shift key.

10-2 CTOS/VM Concepts

Unencoded mode provides maximum flexibility. With
unencoded mode, a program can, for example, use
any key as a Shift key, provide a hierarchy of
Shift keys, and make decisions based on how long a
key remains pressed. These are only three of many
possibilities. The Editor makes extensive use of
the flexibility afforded by unencoded mode. (See
the Editor Manual. Note especially the descrip-
tion of Move and Copy.)

In character mode, the program receives an 8 bit
character code when a key other than Shift, Code,
Lock, or Action is pressed.

In the same four-event key sequence described
above (for unencoded mode), a program in encoded
mode would receive only one character code, the
code for uppercase A.

Character mode provides the program with the same
kind of information as a traditional n-key roll-
over encoded keyboard. However, even character
mode provides greater flexibility than an encoded
keyboard. As keyboard management converts the
sequence of keyboard codes to character codes, it
accesses a keyboard mapping table to direct its
translation.

KEYBOARD MAPPING TABLE

A keyboard mapping table maps keyboard codes to
character codes. Keyboard mapping is implemented
by the Keyboard Encoding Table included in the
operating system at system build or by the NLS
Keyboard Mapping Table loaded as part of the
Nls.sys file. (For details on the NLS Keyboard
Mapping Table and the Nls.sys file, see Chapter
40, "Native Language Support.")

Keyboard Management 10-3

To modify the built-in table, you must regenerate
the operating system. (For details, see the CTOS
System Administrator's Guide and the Release
Notice for your version of the operating system.)
The contents of the table loaded as part of
Nls.sys can be modified dynamically. (For de-
tails, see Chapter 40, "Native Language Support.")

Modifying the Keyboard Encoding Table allows the
keyboard to be customized without requiring the
program to support the complexity of directly
interpreting the unencoded keyboard.

SYSTEM INPUT PROCESS

Keyboard management is augmented by the system
input process. The system input process permits
all the characters typed at the keyboard to be
recorded in a file, in addition to returning them
to the application program requesting them. (Note
that the application program must be in character
mode.)

The file can be used as a record of all data typed
by the user. The file also can be played back as
a submit file, in which the sequence of characters
it contains is substituted for characters typed at
the keyboard. The use of submit files allows the
convenient repetition of command sequences. A
submit file might be used, for example, to run the
sequence of programs necessary to produce
end-of-month reports.

10-4 CTOS/VM Concepts

The Editor can be used to prepare a submit file
containing the same sequence of characters that
would be typed to the desired programs. When this
submit file is activated by a request from a
program or an Executive command, a character from
the file is returned to the program whenever it
requests a character from the keyboard. (Since
the system input process always operates in char-
acter mode, this is not applicable to a program
that uses the keyboard in unencoded mode.)

A submit file does not preclude direct access to
the keyboard. The program can bypass an active
submit file and read characters directly from the
keyboard. This is necessary when the program
needs confirmation that a physical action was
performed. For example, if a submit file is used
to produce a sequence of reports, the program
needs to accept confirmation from the keyboard,
rather than from the submit file, that the correct
report forms are loaded into the printer.

When requesting a character, a program can specify
that the character must come from the keyboard
rather than the submit file. Also, a special
sequence of characters (an escape sequence) in the
submit file can cause input to be accepted
temporarily directly from the keyboard. Pressing
a special key causes the input source to revert to
the submit file.

(For details, see "Using the System Input Pro-
cess," later in this chapter.)

Keyboard Management 10-5

PHYSICAL KEYBOARD

The physical keyboard is shown in Figure 10-1. The
keyboard includes special function keys and keys
with LEDs. Application programs control some of
the keyboard LEDs. In unencoded mode, applica-
tion programs control the LED in the Lock key;
in character mode, this LED is under the control of
keyboard management.

Figure 10-1. Keyboard

The keyboard microprocessor transmits each event
of a sequence of pressed/released keys to keyboard
management.

When a key is pressed or released, the keyboard
microprocessor transmits a sequence of bytes to
indicate all keys currently pressed.

10-6 CTOS/VM Concepts

Keyboard management memory retains which keys are
pressed. When it receives a byte sequence from
the keyboard microprocessor, it compares the keys
currently reported as pressed to the ones it
stored as pressed. The differences are the keys
pressed/released. This information is represented
in the keyboard code for each key.

USING THE KEYBOARD MODES

An SetKbdUnencodedMode operation can be used by an
application program to specify the mode (character
or unencoded) in which the ReadKbd and the
ReadKbdDirect operations are to function.

UNENCODED MODE

In unencoded mode, the program receives the
keyboard code returned by ReadKbd or ReadKbdDirect.
The 7 low-order bits of the 8 bit keyboard code
identify the key; the high-order bit is 0 to
indicate key depression and 1 to indicate key
release. (See the CTOS/VM Reference Manual,
Appendix C, for the specific 7 bit code generated
for each key of the physical keyboard.)

CHARACTER MODE

In character mode (the default mode) the program
receives the character code returned by ReadKbd or
ReadKbdDirect. The 8 bit character code signifies
a key pressed other than Shift, Code, Lock, or
Action. Pressing Shift, Code, or Lock does not
generate a character code, but influences the
character codes generated for other keys pressed
simultaneously. Action has a special, system-wide
meaning. (For details, see "Action Key," later in
this chapter.)

Keyboard Management 10-7

TYPE-AHEAD BUFFER

Keyboard management provides a type-ahead buffer
to store character codes (or keyboard codes, if in
unencoded mode) not yet read by a program. If the
user types too many characters before processing,
the excess is discarded. When a program reads
beyond the characters buffered successfully,
it receives status code 610 ("Type-ahead buffer
overflow"). The size of the type-ahead buffer is
usually 128 characters but can be changed at
system build. The content of the type-ahead buf-
fer is discarded by

•	 SetKbdUnencodedMode,	 if	 the	 mode	 is	 ac-
tually changed.

•	 Chain	 and	 ErrorExit,	 if	 the	 status	 code	
is abnormal (nonzero). (For details,
see "Application Program Termination,"
later in this chapter.)

ACTION KEY

Action is a special kind of Shift key; it is
processed specially, even in unencoded mode. The
interpretation of all other keys is modified while
Action is pressed.

Key combinations that include Action are processed
independently of calls by the program to ReadKbd
or ReadKbdDirect and are not affected by character
or keyboard codes stored in the type-ahead buffer.

The key combination Action-Delete clears the
type-ahead buffer.

The key combination Action-Overtype blanks out the
screen. It does not affect any ongoing activity,
but simply makes the screen blank. To reactivate
the video display, press any nonediting key, such
as Shift or Code.

10-8 CTOS/VM Concepts

The key combination Action-Finish terminates the
execution of the current program and invokes the
exit run file. The DisableActionFinish operation
disables this feature.

The key combinations Action-A and Action-B invoke
the Debugger if the Debugger is included in the
operating system at system build.

Key combinations that include Action are available
for program interpretation. Pressing Action in
conjunction with any other key causes the keyboard
code for that key to be stored in keyboard
management memory. The keyboard code (also
called an action code) can be obtained by calling
ReadActionCode or ReadActionKbd. Calling either
of these operations avoids changing modes to
obtain this information, thereby allowing the
type-ahead buffer to continue while the program
tests for special user intervention.

The BASIC interpreter, for example, uses
Action-Cancel to interrupt computation without
interfering with type-ahead. The Context Manager
uses Action-Go, Action-Next, and Action-F1 to
Action-F10 for switching from one context (user
number) to another.

ReadActionKbd can be called to determine immediately
if an Action key sequence is used. Typically,
ReadActionKbd is used asynchronously. (For
details on the asynchronous use of requests,
see Chapter 29, "Interprocess Communication.")

Keyboard Management 10-9

KEYBOARD AND VIDEO INDEPENDENCE

Keyboard management does not automatically echo
characters to the video device. A program can
assign various functions to each character and
can select whether or not to echo the characters.
Keyboard management attaches no special signi-
ficance to keys such as Finish, Help, Return, or
Delete. Action is the only key with special
significance.

USING THE KEYBOARD ENCODING TABLE

The Keyboard Encoding Table translates keyboard
codes to character codes. The table provides
translation of the following:

•	 the	character	code	to	generate	if	Shift is
pressed

•	 whether	Lock	has	the	effect	of	Shift for
this key

•	 whether	the	key	is	typematic	(repeats)

•	 the	 initial	 delay	 before	 beginning	 type-
matic repeating

•	 the	frequency	of	typematic	repeating

•	 whether	a	key	responds	to	diacritical	key	
handling

Diacritical key handling is useful for displaying
characters with diacritical marks, such as the
German a with an umlaut. The first key of a dia-
critical key pair enables diacritical mode; the
second key displays the diacritical result. Any
of the character codes can be assigned diacritical
key handling.

10-10 CTOS/VM Concepts

You can use either of two methods to set up
diacritical key handling. You can modify the
built-in keyboard table, which requires regene-
rating the operating system; or (an easier method)
you can edit the Keyboard Mapping table in the
Nls.sys file and rebootstrap your system. (For
details, see Chapter 40, "Native Language
Support.")

The Keyboard Encoding Table provides an 8 bit
superset of the ASCII printable characters. (See
the Standard Character Set in Appendix B in the
CTOS/VM Reference Manual.) All 256 8 bit
character codes can be generated from the
keyboard. Each of the first 128 character codes
(and some of the second 128) can be generated
either by pressing a single key or by pressing
Shift while pressing another key. Pressing Code
while pressing another key causes the high-order
bit to be set (80h to be inclusive ORed) in the
character code that would otherwise be generated.
Thus, the use of Code (or Code and Shift) permits
the generation of the remainder of the 256
character codes.

USING THE SYSTEM INPUT PROCESS

The system input process permits all the char-
acters typed at the keyboard to be recorded in a
file, in addition to returning them to the appli-
cation program requesting them. The application
program must be in unencoded mode.

The system input process provides for three modes
of operation: normal, recording, and submit.

•	 In	 submit mode, input is read from the
submit (recorded) file rather than from
the keyboard.

Keyboard Management 10-11

•	 In	recording mode, a copy of the keyboard
input is written to a recording file.

•	 In	 normal mode, neither recording mode
nor submit mode is active.

The system input process is shown in Figure 10-2.

Figure 10-2. System Input Process

SUBMIT FILE MODE

In submit mode, input is read from the submit
(recorded) file rather than from the keyboard.
Submit files can provide the convenience of auto-
matically repeating command sequences.

10-12 CTOS/VM Concepts

To activate a submit file, SetSysInMode can be
called by an application program or through an
Executive command. (For details, see SetSysInMode
in the CTOS/VM Reference Manual, Chapter 3 "Oper-
ations.")

A submit file remains active until

•	 all	characters	in	the	file	are	read

•	 an	end-of-file	escape	sequence	is	read

•	 SetSysInMode	is	called	again

Calling the ReadKbd operation while a submit file
is active causes a character to be read from the
file and returned to the calling program. After
all characters are read from the submit file, it
is automatically closed. Subsequent calls to
ReadKbd cause characters to be read directly from
the keyboard. Transition of input source from
submit file to keyboard is totally transparent to
the application program. If, however, a program
needs to know whether a submit file is active, the
QueryKbdState operation can be called to provide
this information.

A submit file can be disabled temporarily by the
SetKbdUnencodedMode operation or by a read-direct
escape sequence. (See "Submit File Escape Se-
quences," later in this chapter, for details on
the read-direct escape sequence.)

The system input process is not available to
application programs that use the keyboard in
unencoded mode. This is because, in unencoded
mode, the ReadKbd operation reads keyboard codes
from the keyboard, not the submit file. Calling
SetKbdUnencodedMode with an fOn parameter value of
FALSE, however, sets character mode again and
reactivates the submit file. Subsequent char-
acters thus are read from the submit file.

Keyboard Management 10-13

The ReadKbdDirect operation is available to read
from the keyboard at all times, regardless of
whether a submit file is active.

The submit file is disabled temporarily when a
read-direct escape sequence is read from the
submit file. (See "Submit File Escape Sequences,"
later in this chapter for, details.)

RECORDING MODE

SetSysInMode can specify recording mode. When
recording mode is activated, all characters typed
at the keyboard and read in character mode by
ReadKbd (but not by ReadKbdDirect) are written to
a recording file, in addition to being returned to
the application program calling ReadKbd. (Note
that Action keys are not recorded.)

A recording file can be used later as a submit
file to repeat the same sequence of input char-
acters. A recording file and a submit file cannot
be active simultaneously.

SUBMIT FILE ESCAPE SEQUENCES

Certain sequences of characters (escape sequences)
invoke special functions when read from a submit
file. A submit file escape sequence consists of
two or three characters.

•	 The	 first	 character	 of	 the	 escape	
sequence is the character code 03h (¢),
which indicates the presence of an
escape sequence.

•	 The	 second	 is	 a	 code	 to	 identify	 the	
special function.

•	 The	 third	 character,	 if	 present,	 is	 an	
argument to the special function.

10-14 CTOS/VM Concepts

The permitted codes are shown in Table 10-1.
Additional escape sequences are used by the Submit
command. (See the Executive Manual for details.)

Table 10-1
PERMITTED CODES IN SUBMIT FILE ESCAPE SEQUENCES

Character Code Function

¢ 03h A two-character escape se-
quence that represents the
character code 03h. Since
03h (¢) is used to introduce
escape sequences, this
escape sequence (that is,
two consecutive ¢'s) is the
only way to represent the ¢
in a submit file.

1 31h A three-character, read-
direct escape sequence.
(See the discussion follow-
ing this table.)

2 32h An end-of-file escape se-
quence. When this two-
character escape sequence is
read during a ReadKbd oper-
ation, the submit file is
closed. The current and
subsequent ReadKbd
operations read characters
directly from the keyboard.
(This escape sequence is
meaningful only in submit
files that were created
through the Editor rather
than as recording files.)

Keyboard Management 10-15

The read-direct escape sequence is a
three-character submit file escape sequence that
causes ReadKbd to read characters directly from
the keyboard until a specified key is pressed.
The third byte of the escape sequence specifies
the key that is to terminate input from the
keyboard. When the specified key is pressed, its
keyboard code is not returned to the program.
Rather, the current and all subsequent ReadKbd
operations read characters from the submit file
(unless another escape sequence redirects the
input source).

For example, it is frequently useful to have the
user enter data into a single field of an
Executive command form during the operation of a
submit file. (See the Executive Manual for de-
tails.) To accomplish this, the submit file
should contain the following line of code:

.

.

.

data for the previous field

0Ah (Return/Next)

the 3 character escape sequence 03h, 31h, 0Ah
((¢, 1, Return/Next)

0Ah (Return/Next)

data for the next field

.

.

.

10-16 CTOS/VM Concepts

When the escape sequence is read from the submit
file, the cursor is blinking in the leftmost
character position of the field that is to be
entered manually. The user then enters the selec-
ted data into the field and presses either Return
or Next (symbolized by Return|Next). Pressing
Return|Next resumes the execution of the submit
file, but control is not returned to the program.
The second Return|Next in the submit file ends the
entry of data into the field and advances to the
next field of the form.

As another example, it may be useful to have the
user enter data into all the fields of a form
during playback of the submit file. To accomplish
this, include the four characters

03h, 31h, 1Bh, 1Bh

in the submit file. This causes all characters
except Go (1Bh) to be read from the keyboard.
When the operator completes the form and presses
Go, the Go read from the keyboard resumes the
playing of the submit file. The Go in the submit
file (the 1Bh following the three-character escape
sequence) completes the processing of the form.
(See the Executive Manual for details.)

Keyboard Management 10-17

APPLICATION PROGRAM TERMINATION

When an application program terminates (because of
the Chain, Exit, or ErrorExit operations, or
Action-Finish), termination has the following
effects on keyboard management:

•	 If	the	keyboard	was	in	unencoded	mode,	it	
is reset to character mode, and the
content of the type-ahead buffer is
discarded.

•	 The	Action-Finish feature is reenabled.

•	 The	action	code,	if	any,	is	discarded.

If the program terminates abnormally (because of
the Chain or ErrorExit operations with a nonzero
status code, or Action-Finish), termination has
the following additional effects:

•	 The	 content	 of	 the	 type-ahead	 buffer	 is	
discarded.

•	 The	submit	or	recording	file	is	closed.

Termination of the program does not affect the
keyboard LEDs. The Executive, however, resets the
LEDs when it is loaded.

THE MOUSE SYSTEM SERVICE

If the Mouse system service is installed, use
the Mouse operation, ReadInputEvent, rather than
ReadKbd or ReadKbdDirect for Mouse and keyboard
input. (See the Mouse System Services Manual for
details on the Mouse system service and the Mouse
operations.)

10-18 CTOS/VM Concepts

OPERATIONS

The keyboard management operations described below
are categorized by use. Operations are arranged
in a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

COMMONLY USED

ReadKbd Reads one character from the key-
board, or from a submit (submit)
file if one is active.

Beep Activates an audio tone for
.3 second.

SetKbdLed Turns on/off one of the keyboard
LEDs.

QueryKbdLeds Returns the status (on/off) of the
keyboard LEDs.

LESS FREQUENTLY USED

SetKbdUnencodedMode
Selects unencoded or character
mode.

ReadKbdDirect Reads one character code (or key-
board code, if in unencoded mode)
from the keyboard.

DisableActionFinish
Disables operating system interpre-
tation of Action-Finish.

Keyboard Management 10-19

SetSysInMode Changes the state of the system
input process.

CheckpointSysIn
Writes the content of the current,
partially filled, output buffer to
the recording file if the system
input process is in recording mode.

QueryKbdState Returns the status of the keyboard
and of the system input process to
a structure provided by the pro-
gram.

ReadActionCode Returns the action code, if any,
and resets the indication that an
action code is available.

ReadActionKbd Detects Action key sequences.

File Management 11-1

11 FILE MANAGEMENT

The file management system provides a hierarchical
organization of disk file data by node, volume,
directory, and file. The operating system auto-
matically recognizes a volume when you place it
online (mount it). A file can have a 50 character
file name, a 12 character password, and a file
protection level. A file can be dynamically
expanded and contracted without limit as
long as it fits on one disk (1 gigabyte). Concurrent
access is controlled by read (shared), peek
(shared), and modify (exclusive) access modes.

While providing convenience and reliability, the
file management system supplies you with the full
throughput capability of the disk hardware. This
includes reading or writing any 512 byte sector of
an open file with one disk access, reading or
writing up to 65K bytes (127 sectors) of an open
file with one disk operation, overlapping I/O with
process execution, and optimizing disk arm sched-
uling.

You can access files located at a cluster work-
station that has local storage as well as files
located at the master.

11-2 CTOS/VM Concepts

OVERVIEW OF FILE SYSTEM CAPABILITIES

EFFICIENCY

File system efficiency is provided through the
following methods:

•	 Careful	 data	 placement:	 The	 operating	
system places the volume control struc-
tures, which are resident on each volume,
at locations that minimize disk arm
movement.

 The operating system brings the Volume
Home Block into memory when you place a
volume online. In addition, it retains
the most recently used directory and file
information in memory.

•	 Randomization	 (hashing)	 techniques:	 The	
operating system uses randomization
techniques for placing an entry in a
directory sector and later for locating
the entry. These techniques reduce the
number of disk reads required to access
directory information.

RELIABILITY

Reliability is provided through the following fea-
tures:

•	 Duplication	 of	 two	 volume	 control	 struc-
tures: the Volume Home Block and the
File Header Blocks.

 This duplication ensures that damage to
one copy of a volume control structure does
not cause data loss.

File Management 11-3

•	 Ordered	 updating	 of	 volume	 structures:	
This ensures that the volume will not be
corrupted by power failure, hardware
malfunction, or software error.

•	 Multilevel	 (volume,	 directory,	 or	 file)	
password protection.

•	 Multiple	 file	 protection	 levels:	 A	 file	
protection level specifies the access
allowed to a file when the program
requesting access does not provide a
valid volume or directory password.

•	 Optional	 volume	 encryption:	 You	 can	
optionally encrypt the passwords of all
files and directories created on a
volume. Volume encryption ensures that a
file cannot be opened without a valid
password.

CONVENIENCE

Convenience is provided through the following
means:

•	 Hierarchical	 organization	 of	 disk	 file	
data by node, volume, directory, and
file.

•	 Long	file	names	(up	to	50	characters).

•	 Dynamic	 file	 length:	 You	 can	 determine	
the file length when you create the file,
and you can change file length later.

•	 Removable	file	volumes	(floppy	disks).

11-4 CTOS/VM Concepts

•	 Automatic	 recognition	 of	 volumes	 placed	
online: read (shared), peek (shared), or
modify (exclusive) file modes.

•	 Device	 independence:	 The	 device	 on	 which	
a file is located is transparent to you.

STRUCTURED FILE ACCESS METHODS

Structured file access methods augment the file
management system by providing additional
structured access to disk file data. The
structured file access methods are

•	 The		Record		Sequential		Access		Method.		
(See Chapter 22.)

•	 The	Direct	Access	Method.				(See	Chapter	
23.)

•	 The		Indexed		Sequential		Access		Method.		
(See the ISAM Manual.)

LOCAL FILE SYSTEM

A cluster workstation can have its own local
file system. The local file system allows a
cluster workstation to access files on its
local disks as well as files on disks at the
master. The operating system routes
processing requests to either the local or
master file system on the basis of file
specifications or handles. (For details on
routing requests, see Chapter 29, "Interprocess
Communication.")

File Management 11-5

You can bootstrap a cluster workstation either
from a file at the master or from the local
file system. A cluster workstation boot-
strapped from its local file system is a
self-contained entity that accesses the master
only for shared files. If a malfunction occurs
at the master, the cluster workstation can
continue to operate normally, provided all of
the files you access are on your workstation's
local disks.

An application program can access a master file
system in the same way the program accesses a
standalone workstation's local file system. A
program that works on a standalone workstation
will work correctly on a cluster workstation
that accesses master files.

FILE SPECIFICATIONS

The file management system organizes disk file
data hierarchically by node, volume, directory,
file, and (optionally) password.

NODE

A system connected to CT-Net can access the
files of other network nodes, subject to
password protection. If the file you are
requesting is not on your node, you must
specify the different node when attempting to
access the file.

A node name is a string of characters. It can
have a maximum of 12 characters.

11-6 CTOS/VM Concepts

VOLUME

The files of the system are located on volumes.
In the Executive, use the IVolume command to
format and initialize a volume. (For details on
IVolume, see the CTOS System Administrator's
Guide.) You can protect a volume by a volume
password and by volume encryption.

A floppy disk and the media sealed inside a
hard disk drive are examples of volumes. A
floppy disk is a removable volume.

Volume Name

A volname (volume name) is a string of
characters. It can have a maximum of 12
characters.

System Volume

Sys is a mnemonic for the volume name of the
disk from which the operating system was
bootstrapped.

For example, in a hard disk system where the
operating system was bootstrapped from hard
disk drive 0, you can use Sys instead of its
volume name.

In a cluster workstation without local disk
storage, Sys is a synonym for the volume name
of the disk on the master from which the
workstation was bootstrapped.

!Sys signifies the volume name of the disk from
which the master of the cluster was boot-
strapped.

File Management 11-7

Scratch Volume

You can reference the volume on which scratch
(temporary) files are placed either by its
mnemonic, Scr, or by its real name. The volume
to be used as the scratch volume (Sys by
default) is determined at system build
(SysGen). For protected mode, the scratch
volume also can be determined by an entry in
[Sys]<Sys>Config.sys. (For details, see the
CTOS System Administrator's Guide.)

Volume Control Structures

A volume contains several volume control struc-
tures: the Volume Home Block, the File Header
Blocks, and the Master File Directory, among
others.

The Volume Home Block is the root structure of
information for a disk volume.

The File Header Block of each file contains
information about that file and about the disk
address and size of each of its Disk Extents.
(A Disk Extent is one or more contiguous disk
sectors.)

The Master File Directory contains an entry for
each directory on the volume. The directories
provide fast access to the File Header Block of
a specific file. They do not, however, contain
any information about the file that is not also
contained in its File Header Block.

Volume Home Blocks (working and initial copies)
and File Header Blocks (primary and secondary
copies) each have duplicates on the volume for
reliability.

11-8 CTOS/VM Concepts

The location on the volume of the Volume Home
Blocks, the File Header Blocks, and the other
volume control structures minimizes disk arm
movement and therefore maximizes efficiency.
The File Header Blocks are located in a single
area of the volume, the disk address and size
of which are recorded in the working and
initial copies of the Volume Home Block.
Volume control structures that the operating
system accesses frequently, including the
primary and secondary copies of the File Header
Blocks, are located near the middle of the
disk.

DIRECTORY

The files of a volume are divided into one or
more directories. A directory is a collection
of related files on one volume. The maximum
number of directories that you can create on a
volume depends on the size of the Master File
Directory, which you can specify when you
initialize the volume. The maximum number of
files that you can create in a directory
depends on two factors:

•	 the	 directory	 size	 that	 you	 specified	
when you created the directory

•	 the	 length	 of	 all	 names	 of	 all	 files	 in	
that directory

A directory can be protected by a directory
password.

You can create a directory with the CreateDir
operation and delete it with the DeleteDir opera-
tion.

A dirname (directory name) is a string of char-
acters. It can have a maximum of 12 characters.

File Management 11-9

FILE

A file is a set of bytes (on disk) that are treat-
ed as a unit. The files of a volume consist of
integral numbers of 512 byte sectors and must be
completely contained on one disk (1 gigabyte).

You can create a file with the CreateFile oper-
ation and delete it with the DeleteFile operation.
Once you create a file, you can access it with the
OpenFile operation and close it with the CloseFile
operation.

The ChangeFileLength operation changes the length
of an open file.

The RenameFile operation renames an existing file.

A file is protected by a file protection level and
by an optional file password.

A filename (file name) is a string of characters.
It can have a maximum of 50 characters.

PASSWORD

Four types of password protection are available:

•	 volume

•	 directory

•	 file

•	 device

A volume password protects a volume. A directory
password protects a directory on a volume. A
file password protects a file in a directory on a
volume. A device password is used with operations
that work directly with the disk.

11-10 CTOS/VM Concepts

You can specify a volume password at the time you
initialize the volume using the IVolume command.
Use the CreateDir operation to specify a directory
password. You can specify a file password using
the SetFileStatus operation.

Volume, directory, and file passwords can consist
of all alphanumeric characters, plus the period (.)
and the hyphen (-). A volume, directory, or file
password can have a maximum of 12 characters.

You can access a file if you know its volume,
directory, or file password. Knowing a volume
password allows you to access all of the direc-
tories and files of that volume. Knowing a
directory or file password permits access that is
dependent on the file protection level specified
for each file. (For details, see "File Protec-
tion," later in this chapter.)

The OpenFile operation accepts a single password.
This password is compared first against the volume
password, then against the directory password, and
last against the file password (if one was speci-
fied). You are granted access to open the file
if any of these comparisons matches provided the
file protection level permits access. (For details,
see "File Protection," later in this chapter.)

The CreateFile operation accepts a single password
that authorizes you to create a file in the
specified directory. It is not a password to be
assigned to the file being created. This password
is compared first against the volume password and
then against the directory password. You are
granted access to create the file if either of
these comparisons matches. (The SetFileStatus
operation assigns a password to the file being
created. The CreateDir operation assigns a pass-
word to the directory being created.)

File Management 11-11

You can specify a default password using the
SetPath operation. The default password is used
whenever an explicit password is not specified to
an operation. The default password, like an ex-
plicit one, is compared to the volume, directory,
and file passwords.

Valid passwords are required for some Executive
commands, such as Backup Volume, IVolume, and the
User File Editor. If you fail to supply the pass-
word or supply an incorrect one, status code 219
("Access denied") is returned.

The protection provided by each of the four
password types is discussed in "Protection by
Password," later in this chapter.

DIRECTORY AND FILE SPECIFICATIONS

You refer to a directory by a directory specifi-
cation. A directory specification has the form

{node}[volname]dirname

You refer to a file by a file specification. A
full file specification has the form

{node}[volname]<dirname>filename^password

The distinction between uppercase and lowercase
in directory and file specifications is not sig-
nificant in matching directory and/or file names
during directory search; the distinction is,
however, preserved by the file management system
to make the directory and file specifications
easier to read.

11-12 CTOS/VM Concepts

It is recommended that node names, volume names,
and directory names consist only of alphanumeric
characters, plus the period (.) and the hyphen
(-). It is recommended that file names consist
of alphanumeric characters, plus the period (.),
the hyphen (-), and the right angle bracket (>).

ABBREVIATED SPECIFICATIONS

If you previously established a default specifi-
cation, you can refer to a file or directory by
an abbreviated specification.

The SetPath operation establishes a default node,
a default volume, a default directory, and a
default password. The SetPrefix operation establi-
shes a default file prefix. SetPath and
SetPrefix establish defaults for the user number
of the caller.

If a program has issued the SetPath operation
with the default volname of [MasterVol] and the
default dirname of <Susan>, you can access the
files

[MasterVol]<Susan>Todays>work
[MasterVol]<Susan>Yesterdays>work

as either

<Susan>Todays>work <Susan>Yesterdays>work

if just the volname is omitted, or

Todays>work Yesterdays>work

if the default volname and default dirname are
omitted; <dirname> cannot be omitted unless
[volname] is also omitted.

File Management 11-13

If a program has issued the SetPrefix operation
with the default file prefix of Todays>, in
addition to the default volname and dirname
established by the SetPath operation above, you
can access the files

[MasterVol]<Susan>Todays>work
[MasterVol]<Susan>Yesterdays>work

as

work

and

<Susan>Yesterdays>work

You could no longer specify the file in the last
example above as

Yesterdays>work

because the file you accessed would be

[MasterVol]<Susan>Todays>Yesterdays>work

which is not the same file.

AUTOMATIC VOLUME RECOGNITION

The operating system automatically recognizes
a volume that you place online (that is, mount).
For example, when you insert a floppy disk into a
disk drive, the operating system reads the disk to
determine whether it contains a volume and, if it
does, that no other volume of the same name is
already online. After this validation by the
operating system, the volume responds to your
requests if they contain the appropriate specifi-
cations and passwords.

11-14 CTOS/VM Concepts

When you place a volume online, the operating
system reads the Volume Home Block into memory.
The Volume Home Block remains there as long as
the volume remains online.

If you leave a floppy drive door open, any open
files on the disk in that drive are automatically
put into a special dismounted state. You can
close such files in the usual manner, but if you
attempt to perform other operations on them,
status code 216 ("Wrong volume mounted") is
returned.

FILE PROTECTION

The operating system offers a file-oriented
security system.

Passwords control access to a specific device,
volume, directory, or file. Protection levels
assigned to each file define the type of access
allowed. (For details, see "Protection by Pro-
tection Level," later in this chapter.)

Using passwords and protection levels together,
you can define a file security system to meet
your specific needs. Optionally, you can use
volume encryption to ensure security of passwords
of all directories and files created on that
volume. (For details, see "Protection by Volume
Encryption," later in this chapter.)

PROTECTION BY PASSWORD

The four password types are volume, directory,
file, and device. The type of protection
provided by each password is described below.

File Management 11-15

Volume Password

You can access any file, regardless of password
or protection level, with the volume password.
In the absence of a volume password, the system
is not protected. The volume password overrides
directory or file passwords. If a volume
password exists, it is required for opening the
volume as a device.

For example, if you sign on with the volume
password, or enter it with the Executive Path
command, the operating system gives you access to
all files on that volume, whether they are
password-protected or not, without additional di-
rectory or file passwords.

NOTE: You must have a volume password for directory or file
passwords to take effect.

You assign a volume password when you create the
volume using the IVolume command. You can change
the password using the Change Volume Name
command.

Directory Password

You can use a directory password to restrict file
creation or file renaming within a directory. If
a directory password exists, you must specify it
or the volume password to create or rename any
files within the directory. A directory
or volume password is required to remove a
directory. You can also use a directory password
to access a file, unless a protection level that
ignores directory passwords has been assigned to
the file. (For details, see "Protection by
Protection Level," later in this chapter.)

11-16 CTOS/VM Concepts

You can establish a directory password with the
Executive Create Directory command.

Use the Executive Set Directory Protection
command to change or remove a directory password.

File Password

You can use a file password to restrict access to
a specific file. Access depends on the file pro-
tection level. (For details, see "Protection by
Protection Level," later in this chapter.) Files
do not have passwords when they are created.

To add a password to a previously unprotected
file, or to change a file password, use the Exe-
cutive Set Protection command.

File passwords are most often used to allow certain
files in a directory to be read, without allowing
access to the other files.

Device Password

You use a device password for operations that
work directly with the disk, such as the IVolume
or Backup Volume commands. The operating system
assigns these passwords at system build. Unless
you have a customized operating system, default
passwords assigned with Standard Software apply.
For the hard disk, the password is the same as
the device name (for example, D0 or D1). For
floppy disks, the default is no password.

File Management 11-17

Using a Password for Access

If you did not assign a volume password to the
volume when you initialized it, you can sign on
to the system without supplying a password and
have full access to all files.

If a volume password was assigned, you can enter
a volume, directory, or file password when you
sign on. The SignOn password is used for access,
which is restricted accordingly.

You can also use the Executive Path command to
enter a password. Thus, if you signed on with a
directory password and wish to access files in a
different directory, you can supply the necessary
password by using the Path command. Also, some
Executive commands include parameter prompts for
a password.

You can also enter a password as a part of a
device, volume, directory, or file name. The
password consists of the characters between a
caret (^) and the end of the parameter or sub-
parameter name, for example:

Example: filename^password

PROTECTION BY PROTECTION LEVEL

The operating system uses a file protection level
to control which types of passwords you are re-
quired to supply, if any, to open a specific file
in read, peek, or modify mode.

A protection level is assigned only to files. A
directory has a default protection level. The
default, however, is used to assign a protection
level to each file at the time that the file is
created.

11-18 CTOS/VM Concepts

How Protection Levels Work

Nine protection levels are available. Table 11-1
shows the name, number, and type of access al-
lowed for each protection level. Note that pro-
tection level numbers are not hierarchical.
Because the password requirements for opening a
file in peek and read mode are equivalent, read
mode is used to mean either of these modes in the
following discussion.

As an example of how protection levels work, the
file specified by

[Sys]<MyDir>Foo

is assigned a protection level number of 23
(Nondirectory Modify Password). The Foo file,
<MyDir>, and [Sys] are assigned passwords.

You can open the Foo file in Read mode without
providing a password. You cannot, however, open
the Foo file in modify mode by providing the
password for <MyDir>. (Note in Table 11-1 that
you must supply either the volume password or the
file password to gain access to the Foo file in
modify mode.)

File Management 11-19

Table 11-1

PROTECTION LEVELS

Protection
 Level

Level
Number

Password
Required
(Read or
 Peek Mode)*

Password
Required
(Modify
 Mode)*

Unprotected 15 None None

Modify
Protected

5 None Directory

Nondirectory
Modify
Password

23 None File

Modify
Password

7 None Directory
or

file

Access
Protected

0 Directory Directory

Read
Password

1 Directory
or

file

Directory

Nondirectory
Access
Password

19 File Directory
or

file

Access
Password

3 Directory
or

file

Directory
or

file

Nondirectory
Password

51 File File

*You can access any file with the volume password
regardless of password or protection level.

11-20 CTOS/VM Concepts

The default file protection level does not affect
the passwords and protection of the directory in
any way. It is used only as a default level for
files created within the directory. If, for ex-
ample, a directory has a password and is assigned
the lowest level of protection (15, unprotected),
it is not totally unprotected since you are re-
quired to provide a directory or volume password
to create or rename files within that directory.
When created, files within that directory are
assigned a protection level of 15 (unprotected).
You can change the protection level with the
Executive Set Directory Protection command.

How the Operating System Validates Protection
Levels

The operating system validates that a file can be
opened in read or modify mode. To do this, the
operating system first checks if a volume
password was provided to open the file. If a
volume password was provided, it is compared with
the assigned volume password, if any. A match
grants access to the file with no further
validation.

If, however, a volume password was not provided,
the operating system checks the protection level
number against a bit pattern. The bit pattern is
described in Table 11-2.

Bit numbers 0 through 7:

7 6 5 4 3 2 1 0

designate the file protection level, as shown in
the table. The operating system checks the
meanings of these bits against the password
information (directory password, file password,
or none) supplied to open the file. If any of
the bit checks is valid, the file can be opened.
Otherwise, status code 219 ("Access denied") is
returned.

File Management 11-21

Table 11-2

BIT NUMBER DESIGNATIONS FOR
PROTECTION LEVEL

Bit 0: If the value is 1 and if there is a
file password, it is valid for
opening in read mode (mr).

Bit 1: If the value is 1 and if there is a
file password, it is valid for
opening in modify mode (mm).

Bit 2: If the value is 1, no password is
required for read mode (mr).

Bit 3: If the value is. 1, no password is
required for modify mode (mm).

Bit 4: If the value is 1, a directory
password is not valid for modify
mode (mm).

Bit 5: If the value is 1, a directory
password is not valid for read
mode (mr).

Bit 6: Reserved for internal use.

Bit 7: Reserved for internal use.

11-22 CTOS/VM Concepts

As an example, the file specified by

[Sys]<MyDir>Foo

is assigned protection level number 15.

15 (Fh) in binary form is

0 0 0 0 1 1 1 1

Bit numbers 2 and 3 are set. This means the Foo
file can be opened in read or modify mode without
a password. Note that this agrees with
protection level "15 (unprotected) in Table 11-1.

As another example, if the Foo file above is
assigned protection level number 51 (33h); in
binary form, this is

0 0 1 1 0 0 1 1

In this case, bits 2 and 3 are 0. As a result, a
directory or a file password is required to open
the file in read or modify mode.

The operating system then checks for a password
supplied to open Foo. It matches this password
with the one assigned.

Because bits 4 and 5 are set, a matching
directory password is not valid. Bits 0 and 1
also are set, however, indicating that a matching
file password is valid for opening the file.

Note that the bit interpretations agree with
protection level 51 (nondirectory password) in
Table 11-1.

(For details on common system protection appli-
cations, see the CTOS System Administrator's
Guide.)

File Management 11-23

PROTECTION BY VOLUME ENCRYPTION

You can use an IVolume command option to encrypt
the passwords of all files and directories
created on a volume. (For details on the
IVolume, see the CTOS System Administrator's
Guide.)

An encrypted password has the following char-
acteristics:

•	 The	 password	 is	 12	 bytes	 	 (that	 is,	 	 12	
characters long).

•	 The	high-order	bit	is	set	in	the	byte	for	
the rightmost character.

Figure 11-1 compares the effects of volume
encryption on operations that require passwords.

All passwords provided to the OpenFile operation
are encrypted for an encrypted volume.

The GetFileStatus and GetDirStatus operations
return encrypted file and directory passwords,
respectively, for an encrypted volume.

Note that pressing Code in combination with
another key results in setting the high-order bit
of a byte. Using this key combination for the
rightmost character of a 12 character password
string is not recommended. This is because the
SetFileStatus and SetDirStatus operations inter-
pret such a password as encrypted for an
encrypted volume. Access using this password
would be denied in a future OpenFile operation.
(See Figure 11-1.)

11-24 CTOS/VM Concepts

Figure 11-1. Effects of Volume Encryption

File Management 11-25

CREATING AND ACCESSING A FILE

PROGRAM INTERFACE LEVELS

You can create and access a file on a disk device
using different interface levels. These are

•	 structured	file	access	methods

•	 byte	streams	(Sequential	Access	Method)

•	 file	management	operations

Structured File Access Methods

The structured file access methods provide access
to data files that are structured in specific
ways. A chapter is dedicated to each of these
methods in this manual. (For details, see
Chapter 20, "Structured File Access Methods.")

Byte Streams

You can create and access disk files by using the
Sequential Access Method (disk byte streams).

When you use disk byte streams, you are using the
file management operations indirectly. The byte
stream routines call the appropriate file manage-
ment operations for you. You can write as many
bytes as you want (provided you do not run out of
disk space). When you close your file, the byte
stream makes the appropriate calls to close the
file.

Most programs use the byte stream interface level
because it is a relatively easy and flexible way
to create and to access files. (For details, see
Chapter 7, "Sequential Access Method.")

11-26 CTOS/VM Concepts

File Management Operations

At the very lowest interface level (closest to
the hardware), you can use the file management
operations described in "Operations" at the end
of this chapter. At this level, you have the
greatest degree of control over the file you
create. You can also use the Request and Wait
primitives and build your own request block based
on the request blocks for these operations.

The file management operations provide random
access to 512-byte sectors of a file. (512
bytes is the size of a physical disk sector.) The
operations allow you to read and write multiple
sectors, starting with a particular sector of a
file. Device independence is provided by masking
the device characteristics of the disk on which
the file is located. (Use of the file management
operations is discussed in "Reading and Writing a
File," later in this chapter.)

LOGICAL FILE ADDRESS

A logical file address (lfa) is a 32 bit unsigned
integer that your program uses to locate a
position within a file. It specifies a byte
position; that is, it is the number (the offset)
that would be assigned to a byte in a file if all
the bytes were numbered consecutively starting
with 0.

You use the lfa in file management operations
(such as Read or Write) to locate a particular
sector of a file. The lfa must be on a sector
boundary. Therefore, you must supply an lfa (in
bytes) to a Read or a Write operation that is a
multiple of 512. For example, to locate the
third sector in a file, you would supply an lfa
of 1024.

File Management 11-27

If you are using byte streams, however, you are
not required to provide an lfa that is a 512 byte
multiple.

The 2 high-order bits of the lfa are reserved as
special indicators. Bit 31 is set to override
normal system checks and is used to attempt
access to defective disks. Bit 30 is set to
suppress retry of input or output to recover from
errors. For example, a program logging
high-speed, digitized wave forms that could
accept badly written data but not the time
required for retry, would specify an lfa of
40000400h to specify the third sector of a file
with error retry suppressed. The returned status
code reports errors in the normal way even when
the special indicators are set.

FILE HANDLE

A file handle (fh) is a 16 bit integer that
uniquely identifies an open file. It is returned
by the OpenFile operation and is used to refer to
the file in subsequent operations such as Read,
Write, and DeleteFile.

A file handle can be long-lived or short-lived.
You can use the OpenFileLL or SetFhLongevity
operation to set a file handle long-lived. Only
a short-lived (normal) file handle is closed by a
CloseAllFiles operation or automatically when an
application program terminates. A long-lived, as
well as a short-lived, file handle is closed by
an explicit CloseFile operation or by the
CloseAllFilesLL operation.

11-28 CTOS/VM Concepts

PERFORMING I/O

To perform I/O to a disk file with the file man-
agement operations, perform the following
sequence of steps:

1. Create the file.

2. Open the file.

3. Write data to the file and subsequently
read the data.

4. Close the file.

Each step of this sequence is described below. A
comparable description is given for what happens
when you use byte streams.

Creating a File

What You Do to Create a File. To create a file
using the file management operations, you need to
call CreateFile. You can specify the length of
your file as a multiple of 512 bytes, or you can
specify 0 bytes. If you specify 0 bytes, you must
make a subsequent call to the ChangeFileLength
operation to specify the file length.

The CreateFile and the ChangeFileLength operations
are the only operations that allocate disk sectors
for a file. ChangeFileLength can allocate or
deallocate sectors. The operating system uses the
byte value you specified to determine the number
of 512 byte sectors to allocate for your file.

File Management 11-29

When you use the byte streams interface, the byte
stream automatically calls the CreateFile opera-
tion. A byte stream always creates a 30 sector
file, expanding the file in 30 sector increments,
as required. When the file is closed, file size
is contracted to the end of the sector containing
the If a of the last byte written (end-of-file
pointer).

What the Operating System Does to Create a File.
The operating system performs the following steps
when you call the operations CreateFile and
ChangeFileLength. The operating system

1. Verifies that a volume of the requested
name is already online. (The Volume
Home Block is brought into memory when
a volume is placed online.)

2. Verifies that a directory of the
requested name is on that volume. (The
most recently used directory
information is retained in memory.)

3. Verifies that a file of the requested
name does not exist in that directory.
(The most recently used file
information is retained in memory.)

4. Allocates a File Header Block and
assigns the requested number of disk
sectors by consulting the Allocation
Bit Map. (The Allocation Bit Map
controls the assignment of disk
sectors. For details, see "Volume
Control Structures," later in this
chapter.)

5. Inserts an entry for the file in the
requested directory.

11-30 CTOS/VM Concepts

Opening a File

What You Do to Open a File. To open a file using
the file management operations, you call the
OpenFile or the OpenFileLL operation. In either
case, you supply the file specification, the
password (if required), and the file mode. A file
handle is returned to your program that you can
use in future requests (such as Write or Read) to
the opened file.

Note that the byte stream's interface opens the
file for you when you open the byte stream.

What the Operating System Does to Open a File.
When you open a file, the operating system

1. Verifies that a volume of the requested
name is already online. (The Volume
Home Block is brought into memory when
a volume is placed online.)

2. Verifies that a directory of the
requested name is on that volume. (The
most recently used directory infor-
mation is retained in memory.)

3. Verifies that a file of the requested
name is in that directory. (The most
recently used file information is
retained in memory.)

4. Allocates a File Control Block, one or
more File Area Blocks, and the memory
address of the File Control Block (FCB)
in the User File Block (UFB). (For
details on these structures, see
"System Data Structures," later in this
chapter.)

File Management 11-31

5. Copies the information from the File
Header Block to the File Control Block
and one or more File Area Blocks.

6. Returns a file handle. The file handle
serves to identify this particular File
Control Block.

Reading and Writing a File

Using the File Management Operations. You can
select to read from and write to a file in three ways
when you use the file management operations. These
are

•	 Using	the	Read	and	Write	operations.		The	
Read and Write operations are the
simplest way of performing I/O, because
constructing a request block and issuing
the Request and Wait primitives are done
automatically. Read and Write do not
provide for any overlap between I/O
operations and computation.

•	 Using	 the	 ReadAsync	 and	 CheckReadAsync	
and WriteAsync and CheckWriteAsync oper-
ations. The ReadAsync and WriteAsync
operations are a more complex way of
performing I/O. They allow a program to
initiate an I/O transfer and then com-
pute and/or initiate other I/O transfers
before checking (with the CheckReadAsync
and CheckWriteAsync operations) for the
successful completion of the first
transfer.

11-32 CTOS/VM Concepts

•	 Constructing	 a	 request	 block	 and	 using	
the Request and Wait (or Check) primi-
tives. This is the most direct method of
reading and writing a file. It also
requires the most effort on your part.
This method allows your program to
overlap multiple I/O operations and
computation.

(See Chapter 29, "Interprocess Communication," for
details on the Request, Wait, and Check Kernel
primitives.)

When you write to the file, you must specify where
in the file your data is to be written. You can
write full sectors only. However, you can write
to any byte offset in the file that is a multiple
of 512 (beginning of a sector).

If you write more data than can be contained with-
in the number of sectors allocated, you must allo-
cate more sectors by calling ChangeFileLength and
supplying the new file length.

If you write to fewer sectors than you created,
you can call ChangeFileLength to change the file
length to a new shorter length.

Your program, however, may require the unused sec-
tors as temporary space for holding variable
amounts of data at different times. In such a
case, it would be to your advantage to retain
the extra sectors. If you anticipate frequent
changes to the file length, you should consider the
following:

•	 Each	time	you	change	the	sector	length	of	
your file, the operating system has to
allocate or deallocate sectors and
consult its Allocation Bit Map. (For de-
tails on the Allocation Bit Map, see
"Volume Control Structures," later in
this chapter.)

File Management 11-33

•	 Frequent	 changes	 to	 the	 Allocation	 Bit	
Map fragment the disk space.

If you plan to use your disk file as input to a
program that uses byte streams, you must call the
SetFileStatus operation to specify the logical
file address of the last byte you wrote
(end-of-file pointer). SetFileStatus is used to
set the end-of-file pointer only. To allocate
additional sectors, you must use the
ChangeFileLength operation.

Using Byte Streams. When you write to a file
using the byte stream interface, you can write any
number of bytes (versus being restricted to
multiples of 512). The operating system writes
your data sequentially to the disk.

When you append data to the file using byte
streams, the data is written where the previous
data ended.

Random access using byte streams is not as effi-
cient as it is when using the file management
operations. This is because you do not have as
much control over the amount of data being read.

Closing a File

Using the File Management Operations. When you
have completed the processing of a file, you close
it using the operations CloseFile, CloseAllFiles,
or CloseFilesLL. The number of 512 byte sectors
allocated for the file is not changed.

If, for example, you had written 512 bytes and the
file length that you specified to your last
ChangeFileLength operation was 1024 bytes, the
file length will remain 1024 bytes when you close
the file.

11-34 CTOS/VM Concepts

Using Byte Streams. When you close the byte
stream, the end-of-file pointer is set auto-
matically. The byte stream adjusts the number of
allocated file sectors to the minimum required to
contain your file data.

If, for example, you closed a file containing 612
bytes of data, the byte stream calls SetFileStatus
to set the end-of-file pointer within the second
sector. ChangeFileLength then is called to de-
allocate the unused 28 sectors.

LOCAL FILE SYSTEM

When the operating system intercepts a request to
open a file, it routes the request to the local
file system. If the volume is not found, it
routes the request to the master.

You can route a file access request explicitly to
the master by including the special exclamation
point character (!) before the volume specifi-
cation, as in [!Sys]<Sys>Exec.Run, for example.

Any cluster workstation can access files on disks
at the master. However, you cannot access files
on a local disk from the master or from other
cluster workstations. You must copy a local file
to the master if it is to be processed by the
master, another workstation in the cluster, or
another node.

You must copy a local file to the master before it
can be processed by any of the following:

•	 spooler	 (if	 the	 Generic	 Print	 System	 is	
not in use)

•	 remote	job	entry	(RJE)

File Management 11-35

•	 indexed	sequential	access	method	(ISAM)

•	 any		system		service		executing		at		the	
master or another cluster workstation

A cluster workstation bootstrapped from its local
file system is a self-contained entity that must
access the master only for shared files. If a
malfunction occurs at the master, the cluster
workstation can continue to operate normally pro-
vided all file accesses are to local disks.

LFSTOMASTER

LfsToMaster is a system configuration file option
that provides for sharing master run files with
cluster workstations. (For details on configura-
tion file options, see the CTOS System Administra-
tor's Guide.)

LfsToMaster results in certain requests for
opening a file that fail locally to be retried at
the master. The request is retried if all of the
following conditions are TRUE:

•	 The	 request	 is	 an	 OpenFile,	 OpenFileLL,	
or ReOpenFile operation opened in read or
peek (shared) mode.

•	 The	status	code	returned	is	203	("No	such	
file").

•	 The	 request	 originated	 at	 a	 cluster	
workstation with a local file system.

•	 The	 file	 specification	 is	 of	 the	 form	
[Sys]<Sys>Filename.

To specify the local file system (and thereby
override the default of routing the request to the
master), use [+Sys]<Sys>Filename as the file
string.

11-36 CTOS/VM Concepts

VOLUME CONTROL STRUCTURES

A disk volume contains volume control structures.
Volume control structures allow the file manage-
ment system to manage (allocate, deallocate,
locate, avoid duplication of) the space on the
volume not already allocated to the volume control
structures themselves.

Volume control structures are created when the
disk is first initialized. Initialization must be
performed using the IVolume command. (For de-
tails, see the CTOS System Administrator's Guide.)

The volume control structures include the

•	 Volume	Home	Block

•	 File	Header	Blocks

•	 Master	File	Directory

•	 directories

•	 Allocation	Bit	Map

The primary and secondary copies of the File
Header Block are located on different cylinders
and at different rotational positions and are
accessed (except for floppy disks) by different
read/write heads. These duplicates ensure that
damage to one copy does not cause a data loss.
The IVolume command permits suppression of dupli-
cate File Header Blocks. However, this reduces
reliability and is not recommended.

The initial copy, unlike the working copy, of the
Volume Home Block, is not modified after it is
created. The primary and secondary copies of the
File Header Block, however, are always true dupli-
cates.

File Management 11-37

VOLUME HOME BLOCK

Each volume is assigned a Volume Home Block. The
Volume Home Block (VHB) is the root structure
(that is, the starting point for the tree struc-
ture) of the information on the disk volume.

For example, the VHB contains the volume name and
the date it was created. The VHB also contains
the memory addresses of the Allocation Bit Map,
the Bad Sector File, the File Header Blocks, the
Master File Directory, the System Image, the Crash
Dump Area, and the Log File. The VHB is one
sector in size.

(The VHB structure is shown in Table 4-33 in the
CTOS/VM Reference Manual.)

ALLOCATION BIT MAP AND BAD SECTOR FILE

The Allocation Bit Map controls the assignment of
disk sectors. It has 1 bit for every sector on
the disk, and the bit is set if the sector is
available. The size of the Allocation Bit Map
depends on the size of the volume.

The operating system places an entry for each
unusable disk sector in the Bad Sector File. The
Bad Sector File is one or more sector(s) in size.

FILE HEADER BLOCK

Each file is assigned a File Header Block (FHB).
The FHB contains information about the file such
as its name, password, protection level, the
date/time it was created, the date/time it was
last modified, and the disk address and size of
each of its disk extents. The FHB is one sector
in size.

(The FHB structure is shown in Table 4-12 in the
CTOS/VM Reference Manual.)

11-38 CTOS/VM Concepts

DISK EXTENT

A Disk Extent is one or more contiguous disk
sectors that compose all or part of a file. The
entry for a Disk Extent in the FHB is 8 bytes:
4 bytes specify its location, and 4 bytes specify
its size.

The operating system allocates a File Area Block
(FAB) for each Disk Extent of an open file.

EXTENSION FILE HEADER BLOCK

A FHB can accommodate 32 Disk Extents. A file
that contains more requires extension File Header
Blocks (extension FHBs). Extension FHBs are
seldom necessary unless you place an unusually
heavy burden on the file management system. Your
file may require extension FHBs, for example, if
you expand the same file many times or fragment
the available disk space by deleting and creating
files frequently on a nearly full volume you
seldomly refresh. (You can refresh a volume by
using the Backup Volume, IVolume, and Restore
commands. See the CTOS System Administrator's
Guide for details on these commands.)

MASTER FILE DIRECTORY AND DIRECTORIES

Each directory on a volume, including the Sys
directory (see below), has an entry in the Master
File Directory (MFD). The entry's position within
the MFD is determined by randomization (hashing)
techniques. The entry contains the directory's
name, password, location, and size.

(See Table 4-7 in the CTOS/VM Reference Manual for
the format of a directory entry in the MFD.)

File Management 11-39

Each directory on the volume consists of one or
more directory sectors. Randomization (hashing)
techniques determine the directory sector in which
a file is entered. The entry contains the file's
name and a pointer to the FHB.

(See Table 4-8 in the CTOS/VM Reference Manual for
the format of a file entry in a directory sector.)

The MFD and the directories provide fast access to
the File Header Block of a specific file. They
do not, however, contain any information about the
file that is not also contained in its FHB. (The
most recently used file and directory information is
retained in memory.)

SYSTEM DIRECTORY

The Sys Directory is different from other direc-
tories in two ways. First, when a volume is
initialized, its MFD contains only one entry,
which is for the Sys Directory. (You can create
other directories by using the CreateDir opera-
tion.) Second, the Sys Directory contains entries
for all system files. You must not delete,
rename, or overwrite these files.

These file entries are always present in the Sys
Directory of each volume:

•	 the	MFD	(Mfd.Sys)

•	 the	FHB	(FileHeaders.Sys)

11-40 CTOS/VM Concepts

SYSTEM DATA STRUCTURES

System data structures are data areas contained
within the operating system and are necessary for
its operation. They are often configuration-
dependent. The six system data structures related
to the file management system are the

•	 User	Control	Block	(UCB)

•	 File	Control	Block	(FCB)

•	 File	Area	Block	(FAB)

•	 Device	Control	Block	(DCB)

•	 I/O	Block	(IOB)

•	 Volume	Home	Block	(VHB)

The UCB and the DCB are user-accessible and are
described below.

USER CONTROL BLOCK

A user number is associated with the resources
allocated to an application partition.

Each user number is assigned a UCB. The UCB
contains the default node, default volume, default
directory, default password, and default file
prefix set by the last SetPath and SetPrefix
operations.

(The UCB structure is shown in Table 4-30 in the
CTOS/VM Reference Manual.)

File Management 11-41

An incomplete file specification is expanded by
the

•	 Net	 Agent	 at	 the	 master,	 before	 the	 Net	
Agent routes the request to a remote node
in the net

•	 Cluster	 Agent	 before	 the	 Cluster	 Agent	
routes the request to the master

•	 local	file	system

•	 Kernel	on	a	sending	processor	board	in	an	
SRP during inter-CPU communication (ICC)

(For details on request routing, see Chapter 29,
"Interprocess Communication." For details on ICC,
see Chapter 30, "Inter-CPU Communication.")

DEVICE CONTROL BLOCK

Each physical device is assigned a DCB. The DCB
contains information, generated at system build,
about the device. For a disk, the information
includes how many tracks are on a disk, the number
of sectors per track, and so forth. The DCB con-
tains the memory address of a chain of I/O Blocks.

(The DCB structure is shown in Table 4-6 in the
CTOS/VM Reference Manual.)

WILD CARD OPERATIONS

A wild card is a special character in a file
specification. It instructs the Executive program
to search for file specifications that match all
characters given in the file specification except
the wild card character(s).

11-42 CTOS/VM Concepts

The Executive recognizes the asterisk (*) and the
question mark (?) as wild card characters. (For
details on wild card characters, see the Executive
Manual.)

Two wild card operations can be used with files.
These are

•	 WildCardInit

•	 WildCardMatch

You can use these operations to build a list of
files that match a wild card specification.

To do this, call WildCardInit with a wild card
specification. Then build a loop, calling
WildCardNext. Each time WildCardNext returns to
your program, it returns to the next file name
that matches the wild card specification.

The Executive, for example, uses these operations
to expand wild cards that the Executive user types
into a form.

$ DIRECTORY

The <$> directory is a disk directory in which
programs can create temporary files. A <$> direc-
tory is required by all application programs and
is needed for the maximum number of users con-
nected to the master.

When a request with the directory name of <$> is
given as part of a file specification, the operat-
ing system expands the directory name to the form

<$000>nnnnn>

File Management 11-43

where nnnnn is the user number associated with the
application partition. This expansion occurs only
if the directory name is <$>.

If, for example, user number 3 requests access to
the foo file on the [Sys] volume using the
directory name <$>, the file specification is
expanded as follows:

[Sys]<$>foo to [Sys]<$000>00003>foo

Since the user number(s) of a cluster workstation
are reassigned whenever the system is boot-
strapped, you should not use the <$> directory for
permanent files.

11-44 CTOS/VM Concepts

OPERATIONS

The file management operations are described below.
Operations are arranged in a most to least frequent
use order. (See the CTOS/VM Reference Manual,
Chapter 3, "Operations," for a complete description
of each operation.)

BASIC

OpenFile Opens an already existing file,
and returns a file handle.

Read Transfers an integral number of
512 byte sectors from disk to
memory.

Write Transfers an integral number of
512 byte sectors from memory to
disk.

CloseFile Closes an open file.

CloseAllFiles Closes all files that are
currently open for the user,
except those marked long-lived.

BASIC UTILITY OPERATIONS

CreateFile Creates a file of the specified
name in the specified directory
on the specified volume.

DeleteFile Deletes an open file.

RenameFile Changes the file name and/or the
directory name of an existing
file. A file can be renamed to
another directory on the same
volume.

File Management 11-45

FILE ATTRIBUTES

ChangeFileLength
Expands or contracts an open file
to a new length.

GetFileStatus Copies the requested status in-
formation to the specified area.

SetFileStatus Copies the specified status in-
formation from the specified
memory area to the FHB.

DEFAULT PATH

ClearPath Clears the defaults established
by the SetPath and SetPrefix
operations.

SetPath Establishes a default volume, a
default directory, and a default
password.

SetPrefix Establishes a default file prefix
that begins the file name part of
a file specification if that file
specification does not have an
explicit volume name or directory
name.

SetNode Allows the specification of a
node name to be used as part of
the default path whenever a file
specification is given that does
not contain a node name or volume
name.

GetUCB Copies the UCB for the current
user number to the specified
area.

11-46 CTOS/VM Concepts

DIRECTORIES

WildCardInit Establishes a wild-carded file
specification to be used by suc-
cessive calls to the related
WildCardNext operation.

WildCardNext Returns the next file name that
matches a wild-carded file spe-
cification supplied previously by
a call to WildCardInit.

CreateDir Creates a directory of the speci-
fied name on the specified volume.

DeleteDir Deletes an empty directory.

ReadDirSector Reads a 512 byte sector of the
specified directory.

GetDirStatus Determines information about a
directory.

SetDirStatus Changes a directory password or
default file protection level.

LONG-LIVED FILES

OpenFileLL Opens an already existing file
and returns a file handle marked
long-lived.

SetFhLongevity Sets how long a file handle is to
survive.

GetFhLongevity Copies the requested information
on the longevity of the file
handle to the specified area.

File Management 11-47

CloseAllFilesLL
Closes all files that are
currently open for the user, in-
cluding those marked long-lived.

FILE HANDLE OPERATIONS

ChangeOpenMode Changes the access mode of a file
that is already open.

RemakeFh When given an existing file
handle, creates a new file handle
to be associated with the user
number of the process issuing
this request.

ReopenFile Is similar to OpenFile except
that, if a file handle already
exists for that file for the
issuing user number, that handle
rather than a new one is
returned.

ASYNCHRONOUS FILE I/O

ReadAsync Initiates the transfer of an
integral number of 512 byte
sectors from disk to memory. The
procedure CheckReadAsync must be
called to check the completion
status of the transfer.

WriteAsync Initiates the transfer of an in-
tegral number of 512 byte sectors
from memory to disk. The
procedure CheckWriteAsync must be
called to check the completion
status of the transfer.

11-48 CTOS/VM Concepts

CheckReadAsync
Waits for input completion,
checks the status code, and ob-
tains the byte count of data read
after a ReadAsync procedure.

CheckWriteAsync
Waits for output completion,
checks the status code, and ob-
tains the byte count of data
written after a WriteAsync proce-
dure.

VOLUME DATA STRUCTURES

GetVHB Copies the VHB of the specified
device to the specified memory
area.

Disk Management 12-1

12 DISK MANAGEMENT

Disk management operations provide device-level
access to disk devices, in contrast to the
file-level access provided by file management
operations. Access to a disk device at such a
level is necessary to read a floppy disk written
on a non-Convergent system or to format an
uninitialized disk.

Device-level access is provided to the following
media:

•	 single	 or	 dual	 sided,	 5	 1/4	 inch	 floppy	
disks written in double density

•	 all	varieties	of	hard	disks

The sector size and density of a floppy disk, if
other than 512-byte double density, must be spe-
cified with the SetDevParams operation. (For
a complete description of SetDevParams, see the
CTOS/VM Reference Manual, Chapter 3, "Opera-
tions.")

ACCESSING A DISK DEVICE

A device can be accessed by using an OpenFile
operation with a device or volume specification.
The Read, Write, ReadAsync and CheckRead Async,
WriteAsync and CheckWriteAsync, and CloseFile
operations all accept a file handle returned by
such an OpenFile operation. (For details on file
handles, see Chapter 11, "File Management," and
Chapter 29, "Interprocess Communication.")

Device-level access to disks bypasses the con-
currency control of the file management system.
Thus extreme care is required if device-level
access is used in a cluster configuration.

12-2 CTOS/VM Concepts

DEVICE SPECIFICATION AND DEVICE PASSWORD

A disk device is a physical hardware entity.
Access to a device requires presentation of a de-
vice specification and a password. A device spe-
cification can take either of two forms, depending
on whether the medium of the disk device contains
a valid file system.

If a volume contains a valid file system, the
device specification has the form

{node}[volname]

In this case, the volume password must be spe-
cified. Volume passwords are described in Chapter
11, "File Management."

If, however, the medium does not contain a valid
file system (either because the medium was never
initialized to contain one or because the file
system has become malformed), the device speci-
fication has the form

{node}[devname]

In this case, the device password must be speci-
fied. A device password protects a device. It
can have a maximum of 12 characters, consisting of
all alphanumeric characters plus the period (.)
and the hyphen (-).

A volname (volume name) or a devname (device name)
is a string of characters. A volname or devname
can have a maximum of 12 characters, consisting of
all alphanumeric characters, plus the period (.)
and the hyphen (-).

Disk Management 12-3

OPERATIONS

The disk management operations are described
below. Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

SetDevParams Allows the characteristics of the
floppy disk controller to be modi-
fied.

QueryDCB Copies the Device Control Block
(DCB) of the specified device to
the specified memory area.

Format Initializes the surface of a floppy
disk or other disk media to accom-
modate fixed-size data sectors.
Format is used by the IVolume
command.

MountVolume Mounts the volume on the specified
disk drive.

DismountVolume Dismounts the specified volume,

Printing Management 13-1

13 PRINTING MANAGEMENT

The Printing Management facility provides a
Generic Print System (GPS) to route output to the
printer. If GPS is installed, it takes precedence
over pre-GPS printing. (For details on pre-GPS
printing, see Appendix A, "Spooler Management.")

COMPONENTS

GPS consists of the following dynamically in-
stalled system services:

•	 Routing	Switch

•	 Device	Driver

•	 Spooler

•	 Font	Service

The above services and the Queue Manager (de-
scribed in Chapter 35, "Queues and Queue Manage-
ment") work together to control printing and to
handle communication between the application
program, the operating system, and the installed
printing devices.

GPS is a separate program from CTOS/VM and, as
such, is covered comprehensively in separate man-
uals. (For installation details, see the Printing
Guide; for programming information, see the
Generic Print System Programmer's Guide.)

13-2 CTOS/VM Concepts

INTERFACE CONSIDERATIONS

You can choose to request output to a GPS printing
device through any of the following interfaces:

•	 Sequential	 Access	 Method	 (SAM).	 	 In	
accessing SAM directly, you sidestep
GPAM's controls but retain device-
independence. From a programmer's view-
point, SAM is the simplest way to print a
document. You specify the GPS printer
name, and the GPS system services handle
all aspects of printing for you. (For
details, see Chapter 7, "Sequential
Access Method.")

•	 Generic	Print	Access	Method	(GPAM).		GPAM	
is a device-independent means of in-
cluding complex text formatting, such as
boldface, text, or graphics, to your out-
put with a minimum of programming effort.
GPAM sends its control information to the
printing device through SAM. (For
details, see Chapter 19, "Generic Print
Access Method.")

•	 Direct	GPS	request.		At	the	direct	inter-
face level, your program becomes GPS-
dependent. This is not the recommended
method.

Communications Programming 14-1

14 COMMUNICATIONS PROGRAMMING

This chapter describes communications programming
at the device-dependent and the device-independent
interface levels.

•	 At	the	device-dependent	level,	communica-
tions byte streams (SamC) consists of the
device-dependent interfaces of the Se-
quential Access Method (SAM). These in-
terfaces provide greater control through
a variety of operations specific to com-
munications needs. SamC is the standard
way to access RS-23 2-C ports in asynchro-
nous mode.

•	 At	 the	 device-independent	 level,	 SAM	
allows your program to send I/O to a
variety of devices. Using communication
byte streams at this level is described
briefly in this chapter for comparison
purposes. (For details, see Chapter 7,
"Sequential Access Method.")

WHAT SAMC IS USED FOR

SamC is the RS-232-C device-dependent portion of
SAM. It is the standard operating system driver
for RS-232-C ports (in asynchronous mode). This
includes the use of ports for terminals, modems,
and serial printers, as well as direct inter-CPU
connection.

Using the standard RS-23 2-C driver frees the
applications programmer from having to write
interrupt handlers (described in Chapter 36,
"Interrupt Handlers"), buffer management proce-
dures, serial controller chip initialization se-
quences, and other low-level software.

14-2 CTOS/VM Concepts

SamC is intended to be flexible enough to do any-
thing you might need to do with a serial port,
except synchronous RS-232-C communication, which is
not supported. You can use SamC indirectly, as
part of SAM, which preserves device independence
(the ability to perform I/O on SamC or a disk file
interchangeably, for example). Alternatively, for
special needs, you can call SamC directly using
its device-dependent interfaces. (SAM does not
provide access to all of these interfaces.)

WHAT PROGRAMS USE SAMC

Programs that accept or internally generate oper-
ating system file specifications beginning with
[COMM] or [PTR] use SamC. SamC is linked with the
program's run file.

Clients of SamC include the Executive Copy command
and the spooler (for serial printers).

WHAT PROGRAMS CANNOT USE SAMC

Programs based on a synchronous RS-232-C com-
munications protocol cannot use SamC. Such pro-
grams must interface directly with the operating
system at a lower level. (For details, see
Chapter 15, "Serial Port Management.")

Communications Programming 14-3

USING SAMC AT THE DEVICE-INDEPENDENT INTERFACE
LEVEL

SAM allows you to access communication ports from
your program at the level of OpenByteStream,
ReadBsRecord, WriteBsRecord, and the other device-
independent byte stream operations described in
Chapter 7, "Sequential Access Method." To use the
device-independent SAM operations, you must speci-
fy a device in your OpenByteStream call. (For a
list of the device specifications, see Chapter 7,
"Sequential Access Method.")

SAM can be configured to include or exclude sup-
port for particular devices. Each device type has
a corresponding byte stream. You can choose your
own subset of the byte stream types, depending
upon your needs and memory requirements.

To use SamC through SAM, it is necessary to have a
configuration file for each communications chan-
nel. The configuration file specifies options for
devices attached to the channel. As an example,
separate transmission/receive baud rates may be
required. You can use the default configuration
file, or you can use the Create Configuration File
utility to create or edit configuration files.
(For details, see the Create Configuration File
utility in the CTOS System Administrator's Guide.)

The configuration file supports parallel printer,
serial printer, and communications configurations.
SamC handles serial printer ([PTR]) and communica-
tions ([COMM]) configurations. You can open both
kinds of configuration files with [COMM] or [PTR]
device specifications.

(See "Communications Programming" in the CTOS Pro-
grammer's Guide for details. Also see "Building a
Customized SAM" in the same manual for information
on how to customize SAM.)

14-4 CTOS/VM Concepts

USING SAMC AT THE DEVICE-DEPENDENT INTERFACE LEVEL

The device-dependent interfaces of SamC itself (as
distinct from SAM of which it is a part) provide a
more powerful and flexible set of services than
those available at the level of SAM.

Programs that are distinctly communications ori-
ented (as opposed to programs such as the
Executive, which merely use SamC through SAM as it
would any other type of byte stream) can take
advantage of the SamC services.

SamC also supports operations that are not ap-
propriate for other byte stream types. Programs
may supplement SAM by occasionally using SamC
interfaces.

Although more complex to use than SAM, SamC com-
prises a complete set of services and can act as a
replacement for SAM (provided communications byte
streams and no other device types need be
supported). Used in this fashion, SamC is a
general-purpose device driver for asynchronous
RS-232-C communications. It can form the heart of
virtually any communications product except those
that use synchronous communications protocols.
Both half- and full-duplex communications are sup-
ported efficiently with a variety of line control
and data editing options. Among other con-
veniences, using SamC frees you from writing
interrupt handlers. (Writing interrupt handlers
is described in Chapter 36, "Interrupt Handlers.")

Communications Programming 14-5

THE SamC OPERATIONS

Asynchronous Interface

Because SamC is a subroutine package, you cannot
issue asynchronous requests to it as you can with
disk or keyboard byte streams, for example.
(Asynchronous requests allow the caller to con-
tinue executing rather than wait at an exchange.)
For this reason, asynchronous variants of the
synchronous interfaces are provided, as follows:

Asynchronous Synchronous

FillBufferAsyncC FillBufferC
FlushBufferAsyncC FlushBufferC
CheckPointBsAsyncC CheckPointBsC,

Some applications require using asynchronous in-
terfaces. MS-DOS, for example, must be able to
initiate FillBufferC (communications input) and
FlushBufferC (communications output) operations
without the possibility of waiting as a
side-effect.

The asynchronous operations include additional
parameter options that allow the caller to specify
what SamC should do if it needs to wait before the
operation can be completed. As an example, one
option provides using the PSend Kernel primitive
to send a message to a caller-specified exchange
when completion becomes possible. (PSend and
other Kernel primitives for sending messages are
described in detail in Chapter 29, "Interprocess
Communication.")

14-6 CTOS/VM Concepts

FillBufferAsyncC provides a way to check the Byte
Stream Work Area (BSWA) contents for input without
waiting, if no input is there. In the past, SamC
users often peeked into the BSWA to see if input
characters were waiting. Doing so required knowl-
edge of the BSWA, communications byte stream's
private control structure. This is not recom-
mended, however, because the BSWA contents change
from release to release.

The AcquireByteStreamC Operation (Low-Level Open)

The OpenByteStream and OpenByteStreamC operations
require a configuration file containing the com-
munications line configuration parameters (baud
rate and so on). AcquireByteStreamC is a
lower-level interface that accepts an in-memory
structure corresponding to the configuration file
contents. Applications, such as CT-MAIL, use this
interface to open SamC channels, thus avoiding an
actual configuration file on disk. (For details,
see the discussion on "Avoiding Configuration
Files" in "Communications Programming" in the CTOS
Programmer's Guide.)

AcquireByteStreamC also provides for greater con-
trol over the buffer sizes chosen for the receive
and transmit queues. Under OpenByteStreamC, the
caller supplies a single memory area of a chosen
size, which OpenByteStreamC divides up between
receive and transmit queues, according to its
needs.

Dynamically Changing Parameters

SamC provides a way to query or change configu-
ration parameters without closing and reopening
the byte stream. CT-MAIL uses this feature to
change the baud rate and other parameters without
closing the byte stream (and thereby disconnecting
an attached modem).

Communications Programming 14-7

Querying and Setting Status Lines

The RS-232-C standard defines additional status
lines that are not used by SamC but may be
significant when dealing with modems or special
hardware. Communications byte streams provide an
interface to access or, where appropriate, to
change the state of these lines.

The CheckForOperatorRestartC Operation

The Spooler periodically can call the
CheckForOperatorRestartC operation to support auto
restart on printers. This feature makes it
possible for the spooler to restart output in
response to

•	 an	 operator	 pressing	 the	 Break	 switch	 on	
the printer

•	 an	 operator	 opening	 and	 then	 closing	 the	
printer cover (on a printer with no Break
switch)

14-8 CTOS/VM Concepts

OPERATIONS

The SamC operations are described below. Opera-
tions are arranged in a most to least frequent use
order. (See the CTOS/VM Reference Manual,
Chapter 3, "Operations," for a complete descrip-
tion of each operation.)

OpenByteStreamC*
Opens a ([COMM] or [PTR]) byte
stream device-specific to an
RS-232-C serial port.

AcquireByteStreamC
Is a substitute for OpenByteStreamC
that does not require a configu-
ration file on disk and offers more
flexibility.

FillBufferC* Reads characters from the receive
queue that have been received at
the serial port.

FillBufferAsyncC
Is the asynchronous form of
FillBufferC.

FlushBufferC* Writes characters to the transmit
queue, where they will be output to
the serial port.

FlushBufferAsyncC
Is the asynchronous form of
FlushBufferC.

*This operation is the communications byte stream
variant of a device-dependent SAM operation.
(See Chapter 8, "Device-Dependent SAM," for de-
tails.)

Communications Programming 14-9

DiscardInputBsC
Discards any characters in the re-
ceive queue.

DiscardOutputBsC
Discards any characters in the
transmit queue.

SetImageModeC* Sets normal, image, or binary mode
for [Comm] and [Ptr] byte streams
device-specific to RS-232-C serial
ports.

ReadByteStreamParameterC
Reports the current value of the
specified communications line pa-
rameter.

WriteByteStreamParameterC
Modifies the value of the specified
communications parameter.

ReadStatusC Reads the values of the specified
status bits.

WriteStatusC Writes to the specified communica-
tions lines status bits, changing
the condition of the corresponding
status lines.

CheckForOperatorRestartC
Checks for an operator signal to
restart the printer.

*This operation is the communications byte stream
variant of a device-dependent SAM operation.
(See Chapter 8, "Device-Dependent SAM," for de-
tails.)

14-10 CTOS/VM Concepts

SendBreakC Sends a break signal on the com-
munications line previously opened
under the Sequential Access Method.

CheckPointBsC* Waits until all characters pre-
viously written to the byte stream
have been physically output from
the serial port.

CheckPointBsAsyncC
Asynchronous form of CheckPointBsC
that can be used to perform the
CheckPointBsC function when the
caller does not want its process to
wait.

ReleaseByteStreamC*
Stops all receive and transmit
operations on a serial byte stream,
making the serial port available
for use by other users again.

*This operation is the communications byte stream
variant of a device-dependent SAM operation. (See
Chapter 8, "Device-Dependent SAM," for details.)

Serial Port Management 15-1

15 SERIAL PORT MANAGEMENT

This chapter describes communications programming
at the serial port interface level. This is a
level below SamC, which is described in
Chapter 14.

ACCESS BELOW THE BYTE STREAM LEVEL (CommLine)

SamC does not support the serial controller in
synchronous mode. To write a program that uses
a synchronous communication protocol, it is neces-
sary to interface directly with the operating
system at a level below SamC.

The following operations are part of the operating
system's support for serial ports:

•	 InitCommLine

•	 ResetCommLine

•	 ChangeCommLineBaudRate

•	 TerminateCommLine

•	 ReadCommLineStatus

•	 WriteCommLineStatus

These operations are used by SamC itself. They
are not to be used by clients of SamC.

15-2 CTOS/VM Concepts

The serial port operations accomplish three
objectives:

•	 Workstation-independent	 programs	 do	 not	
require relinking for each new hardware
type.

•	 Raw	 interrupt	 handlers	 are	 compatible	 in	
protected mode. (See Chapter 36, "Interrupt
Handlers," for details on raw interrupt
handlers.)

•	 The	operations	are	compatible	with	the	SRP.

(For details on how to use these operations to
write programs and to convert old programs to use
the InitCommLine interface, see "Communications
Programming" in the CTOS Programmer's Guide.)

All Convergent synchronous RS-232-C communications
products that do not use the SamC level of inter-
face use InitCommLine. These products do not
incorporate into their software any specific
knowledge of different port addresses, clock fre-
quencies, and so on that are peculiar to different
machines. A single run file for each of these
products runs on all types of hardware, including
all workstations and the SRP CP and TP boards.

Serial Port Management 15-3

SERIAL PORT OPERATIONS

SERIAL PORT REQUESTS

InitCommLine

InitCommLine assigns the caller to a physical
channel on any RS-232-C serial port communications
controller. InitCommLine does this by parsing the
device specification passed to it. (For a list of
device specifications, see Chapter 7, "Sequential
Access Method.")

Your program should treat this specification as an
uninterpreted string, so that your program con-
tinues to work when new hardware modules (with new
forms of file specifications) are introduced.
InitCommLine returns two port addresses, a control
port and a data port, for the channel.

Note that InitCommLine does not tell the caller
which half of the communications controller it is
on. (Each controller has two channels, A and B.)
This distinction is not necessary to a program.
The controller does have certain operations that
are always performed on channel A or channel B but
affect both channels. InitCommLine performs these
functions for you. For example, the serial
communications controller is reset after an inter-
rupt. (For details on interrupts, see Chapter 36,
"Interrupt Handlers.")

15-4 CTOS/VM Concepts

The user still must perform some operations di-
rectly on the channel, using the two port
addresses. InitCommLine does not even fully ini-
tialize the channel (although it does reset it),
since it is not provided all of the ini-
tialization parameters. Note that the only param-
eters supplied to InitCommLine are those dealing
with external hardware (outside the serial con-
troller). This hardware (baud rate timers and
external control registers) is InitCommLine's
responsibility because it varies from machine to
machine. The controller, however, is invariant:
All Convergent machines use the same (or
software-equivalent) serial controller-type chips.

The SRP TP has 8274 and 8251 serial controllers.
Only the two 8274 devices (four serial ports in
all) are supported by InitCommLine. The 8251
devices are not supported.

ResetCommLine

You cannot issue ResetCommLine, or any other oper-
ation, until you have successfully completed an
InitCommLine operation for that channel. The
argument to ResetCommLine is a handle returned by
InitCommLine.

InitCommLine acquires the channel for you (and
resets it so you have a chance to initialize it to
your specifications before you start taking inter-
rupts). ResetCommLine gives the channel back to
the operating system, making it available for
other users and freeing you from the respon-
sibility for servicing interrupts from it. Thus,
InitCommLine and ResetCommLine are logical paren-
theses, like OpenFile and CloseFile, for a serial
port.

Serial Port Management 15-5

ChangeCommLineBaudRate

ChangeCommLineBaudRate is used to change
InitCommLine's baud rate parameters dynamically.

SamC uses this interface to implement its
WriteByteStreamParameterC call. SamC clients
should use WriteByteStreamParameterC to modify the
baud rate(s) dynamically. They should not use
ChangeCommLineBaudRate directly.

The serial controller is not affected by
ChangeCommLineBaudRate.

SERIAL PORT SYSTEM-COMMON PROCEDURES

These operations are procedures rather than re-
quests so that it is possible to call them from
inside an interrupt handler. (For details on
interrupt handlers, see Chapter 36, "Interrupt
Handlers.")

ReadCommLineStatus

This procedure allows certain RS-232-C signals,
whose function is not defined by the serial
controller, to be queried by the application
program in machine-independent fashion.

SamC uses this interface to implement its
ReadStatusC call. ReadStatusC is the way communi-
cations byte stream clients should query the sta-
tus lines. They should not use ReadCommLineStatus
directly.

15-6 CTOS/VM Concepts

WriteCommLineStatus

This procedure allows certain RS-232-C signals,
whose function is not defined by the serial
controller, to be raised or lowered by the appli-
cation program in machine-independent fashion.

SamC uses this interface to implement its
WriteStatusC call. WriteStatusC is the way
communications byte stream clients should set or
clear the status lines. They should not use
WriteCommLineStatus directly.

Serial Port Management 15-7

OPERATIONS

The serial port operations are described below.
Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

InitCommLine Allocates a serial port to the user
and specifies how interrupts from
the port will be serviced.

ReadCommLineStatus
Reads values to the specified
status bits.

WriteCommLineStatus
Writes to the specified status
bits, changing the condition of the
corresponding status lines.

ChangeCommLineBaudRate
Reinitializes the specified baud
rate timer(s)

ResetCommLine Makes the specified serial port
available for use again.

LockIn Allows a program to read from the
serial I/O port. LockIn is essen-
tial on certain types of work-
station hardware because of the
timing functions it performs.

Lockout Allows a program to write to the
serial I/O port. Lockout is essen-
tial on certain types of work-
station hardware because of the
timing functions it performs.

Parallel Port Management 16-1

16 PARALLEL PORT MANAGEMENT

This chapter describes the interfaces to a
Centronics-compatible device that connects to a
parallel port.

The parallel port operations below are variants of
device-dependent SAM operations. (See Chapter 8,
"Device-Dependent SAM," for details.) Lp, the
name of the parallel port device, is appended to
the generic prefix in each operation name:

•	 OpenByteStreamLp

•	 FlushBufferLp

•	 CheckPointBsLp

•	 ReleaseByteStreamLp

You can use these operations directly. They allow
you to open a parallel port printer byte stream
and to perform I/O to that byte stream at the
level closest to the hardware.

If, however, you open a byte stream using the
device-independent OpenByteStream operation, and
you specify [LPT] as your device string,
OpenByteStream automatically maps to
OpenByteStreamLp. As another example, to send
output to an open byte stream, you can call the
device-independent operation, WriteBsRecord,
which, in turn, maps to FlushBufferLp.

Chapter 8, "Device-Dependent SAM," lists the
device-independent operations that map to each of
the parallel port operations.

16-2 CTOS/VM Concepts

OPERATIONS

The parallel port operations described below are
categorized by function. Operations are arranged
in a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

I/O

OpenByteStreamLp
Opens a parallel port byte stream.

FlushBufferLp Writes output to the parallel port.

CheckPointBsLp
Waits until the byte stream has been
physically output from the parallel
port.

ReleaseByteStreamLp
Stops all receive and transmit
operations on a parallel port byte
stream, making the port available for
use by other users again.

INTERRUPT HANDLING

SetLpISR Establishes the printer interrupt
service routine (PISR) to process
interrupts generated by the parallel
printer interface. (See Chapter 36,
"Interrupt Handlers," for details.)

SRP Terminal Management 17-1

17 SRP TERMINAL MANAGEMENT

The SRP terminal management operations are pro-
gramming interfaces to Shared Resource Processor
(SRP) terminals attached to all ports. However,
there are certain ports that can be accessed only
by these interfaces. Figure 17-1 shows the
relationships of ports to access methods for the
SRP and for workstations.

The communications programming operations de-
scribed in Chapter 14 are at the same interface
level as the SRP terminal management operations.

Figure 17-1 indicates that you can access the 8274
ports using either of these operation groups. You
would most likely use the SRP terminal operations
if you need to access the 8251 ports.

At a level farther away from the hardware, you can
use the device-independent Sequential Access
Method (SAM) operations to access all ports.

For details on the other interfaces illustrated,
see

•	 Chapter	7,	"Sequential	Access	Method"

•	 Chapter	14,	"Communications	Programming"

•	 Chapter	15,	"Serial	Port	Management"

17-2 CTOS/VM Concepts

Figure 17-1. Ports/Access Methods Relationship

SRP Terminal Management 17-3

OPERATIONS

The SRP terminal management operations are de-
scribed below. Operations are arranged in a most
to least frequent use order. (See the CTOS/VM
Reference Manual, Chapter 3, "Operations," for a
complete description of each operation.)

OpenTerminal Initiates the use of a specified
port on either a Cluster Processor
(CP) or a Terminal Processor (TP),
or initiates asynchronous RS-422
communications with a Programmable
Terminal (PT) connected to a CP.

ReadTerminal Reads data from a PT or from one of
the asynchronous ports on a CP or a
TP.

CloseTerminal Indicates that the requesting
process (client) is finished with a
port.

SetTerminal Performs out-of-band functions on a
port.

WhereTerminalBuffer
Locates the terminal output buffer.

DrainTerminalOutput
Ensures an empty output buffer.

Tape Management 18-1

18 TAPE MANAGEMENT

Tape management provides you with the information
you need if you are writing programs for
quarter-inch cartridge (QIC) tape or half-inch
tape.

You use the tape medium for storing data. If you
are aware of the underlying software (and, in the
case of QIC tape, hardware) principles of how tape
works, tape can be much faster and more efficient
than floppy disks for storage purposes. The tape
utilities, such as Tape Backup Volume, Tape
Restore, and Tape Copy, described in the CTOS
System Administrator's Guide allow you to use tape
through the Executive in an optimal way. They are
sufficient for most users.

In some cases, you may want to write your own
programs. This chapter describes the tape soft-
ware available to you and provides you with the
principles you need to know to write tape pro-
grams.

SOFTWARE REQUIREMENTS/INSTALLATION

All tape software is part of standard software.
Tape software includes

•	 half-inch	 tape	 server	 for	 the	 Shared	
Resource Processor (SRP)

•	 QIC	tape	server	for	the	SRP

•	 QIC	tape	server	for	workstations

•	 tape	 versions	 of	 various	 Executive	
utilities (described in the CTOS System
Administrator's Guide)

18-2 CTOS/VM Concepts

INTERFACE LEVELS

You can write programs to a tape device at dif-
ferent interface levels.

BYTE STREAM LEVEL

At the byte stream level, you can use the Sequen-
tial Access Method (SAM) operations to send I/O to
a tape byte stream. (See Chapter 7, "Sequential
Access Method.")

You must link tape byte streams with your program
by means of a special version of SamGen. (For
details, see "Building a Customized SAM" in the
CTOS Programmer's Guide.)

REQUEST LEVEL

At the request level, you can use the operations
described in "Operations" at the end of this
chapter. These operations provide greater program
control over the tape hardware.

To request tape services, you can use the request
procedural interface, or you can use the Request
and Wait or Check Kernel primitives. (For de-
tails, see Chapter 29, "Interprocess Communica-
tion.")

In certain cases, such as when you are reading a
foreign tape or a multicartridge QIC tape file,
you must use Request and Check. (For details, see
"Tape Byte Streams" and "Multicartridge QIC Tape
File," later in this chapter.)

Tape Management 18-3

TAPE BYTE STREAMS

A tape byte stream is a set of procedures that
reads a tape as a purely sequential sequence of
bytes. It looks for the pattern of file marks
that designate the beginning and end of a file.
Within the limits specified by the tape configura-
tion file, tape byte streams for half-inch tape
ignore exact record and block sizes when reading.

The general concept of byte streams and their
relation to the SAM is discussed in Chapter 7,
"Sequential Access Method." The tape software is
an example of the user-written, device-specific
SAM object modules described in "Customizing the
Sequential Access Method" in that chapter.

A half-inch tape byte stream interprets file mark
pairs as meaning end of tape (EOT). For this
reason, your program must use requests to the tape
server to read a tape that uses file mark pairs in
any other way.

TAPE FILES AND TAPE NAMING

A tape contains tape files. A tape file can span
multiple QIC tape cartridges or half-inch tape
reels.

Tape files differ from disk files in that they do
not have file names and are not grouped into
directories. They are identified by sequential
numbers: 0, 1, 2, and so on. Also, a tape file
can contain many disk files. For example, when
you archive an entire hard disk using the Tape
Backup Volume utility, all the files from that
disk are placed in one long tape file.

As a result, tape names include numbers to indi-
cate the QIC or half-inch tape drive and the tape
file.

18-4 CTOS/VM Concepts

TAPE NAMES

Tape names are of the following formats:

Tape Type Format

QIC tape [QICm]n

Half-inch tape [TAPEsd]n

where

n Is a number that indicates the position of
the tape.

 where

0 Is the beginning of the first file,
which is always at the beginning of the
tape.

1 Is the beginning of the second file, and
so on.

+ Is the position after the last existing
tape file; + is valid for opening a tape
for writing only.

For QIC tape, if n is left blank, the first
position on the tape is assumed.

For half-inch tape, if n is left blank, the
current position on the tape is assumed; this
is a convenient way to indicate "start at the
next file."

Tape Management 18-5

NOTE: Be sure to make the distinction between multiple tape drives
(which is discussed below) and multiple QIC tape cartridges or half-inch
tape reels. The tape drive name does not indicate which of a series of
tapes is referred to.

m Indicates the drive number for QIC tape
(where m is 0 or 1).

 On a workstation, the default is drive 0,
which is the leftmost drive.

 On the SRP, only one drive is available, so
the drive number can be omitted.

s Indicates the number of the SRP board
[Storage Processor (SP) or Data Processor
(DP)] that controls the half-inch tape drive
(0 for the first SP or DP board, 1 for the
second SP or DP, 2 for the third, and so on
to 7). The default is 0. (For details on
board numbering, see the CTOS System
Administrator's Guide.)

d Indicates the drive number for half-inch tape
on the SRP (where d is in the range of 0
to 5.)

 If you do not include the drive number, the
drive directly connected to the SP board is
assumed (that is, the first drive in the
daisy chain).

EXAMPLES

Following are a few examples of tape names:

[QIC1]2 Is the third QIC tape file on the
tape in the second (rightmost)
QIC drive.

18-6 CTOS/VM Concepts

[QIC]0 Is the first QIC tape file on the
tape in the first (leftmost) QIC
drive.

[TAPE1]2 Is the third half-inch tape file
on the tape in the second drive.

[TAPE]+ Is the position after the last
tape file on the tape in the first
drive.

(Tape names also are discussed in the CTOS System
Administrator's Guide.)

QIC TAPE

FORMAT

Figure 18-1 shows the general format of a QIC
tape. A QIC tape file is the data between tape
marks. A tape mark can indicate either the
logical end of a file or the logical end of tape
(EOT).

 Figure 18-1. General QIC Tape Format

Tape Management 18-7

You can write to QIC tape at either of two
positions: at the beginning of the tape or at the
logical EOT (to append data).

Figure 18-2 shows the detail of a QIC tape file.

A QIC tape file contains a sequence of
fixed-sized, 512-byte physical records or data
blocks.

 Figure 18-2. Detail of a QIC Tape File

The tape header has no fixed format. Its contents
can vary with each application.

You can write approximately 2000 bytes in one
WriteTapeRecords operation. (Note that the number
of bytes can be changed by a SysGen. For details,
see the CTOS System Administrator's Guide and the
Release Notice for your version of the operating
system.) Your data is written to the tape in
fixed-sized, 512 byte records. If the data does
not completely fill a record, the record is padded
with 0s.

QIC tape provides no space between records;
through data compression, it increases storage
efficiency.

18-8 CTOS/VM Concepts

OPERATION

The QIC tape drive is a streaming-mode device. In
streaming mode, the tape can move rapidly, without
stopping between blocks. This mode makes QIC tape
highly suitable for archiving, for example.

The QIC tape server maintains an internal buffer
in which it houses buffered data that you supply
when you call the WriteTapeRecords operation.
When the QIC server's buffer is full, it writes
the data out to tape in 512-byte records. If the
server's buffer empties sooner than it is filled,
the tape's movement becomes less efficient.

To maintain tape movement, the QIC server rewrites
the last record again in anticipation of more
data. If it does not receive another buffer of
data, the hardware stops the tape.

Tape stopping and starting takes approximately 1
1/2 seconds. If this occurs frequently, QIC tape
can be less efficient than other methods of data
storage.

To maintain constant tape movement, your appli-
cation program can use I/O buffers in the
following ways:

•	 Use	 single,	 large	 buffers	 (up	 to	 64K	
bytes) for I/O. If you are performing
I/O to a multicartridge QIC tape file,
however, you are restricted to a maximum
buffer size of 1536 bytes. (See "Multi-
cartridge QIC Tape File," later in this
chapter, for details.)

Tape Management 18-9

•	 Use	 multiple	 buffers.	 	 To	 do	 this	 you	
must issue the Request and Wait or Check
Kernel primitives. By doing so, your
program provides a greater degree of
overlap between multiple I/O operations
and computation. Using multiple buffers
ensures that the server's internal buffer
is used to its maximum efficiency. (See
Chapter 29, "Interprocess Communication,"
for details on the Request, Wait, and
Check Kernel primitives.)

 A request, for example, can be issued with
a 1536 byte buffer. This allows the client
to issue a second request without waiting
for the response from the first. When the
response for the first returns, another
request can be issued.

READING AND WRITING TO QIC TAPE

The QIC tape server can read from QIC tape at any
valid position. Because data cannot be over-
written, however, you are not allowed to specify
the name of an existing tape file to the OpenTape
operation. You can specify either of two posi-
tions :

•	 the		beginning		of		the		tape		(that		is,	
[QIC]0), to erase the tape in advance of
writing

•	 the	 logical	 EOT	 (that	 is,	 	 [QIC]+),	 to	
append data to the end of the tape

For details on tape naming, see "Tape Files and
Tape Naming," earlier in this chapter and the CTOS
System Administrator's Manual.

18-10 CTOS/VM Concepts

SINGLE-VOLUME QIC TAPE FILE

If your program is going to perform I/O to a
single-volume tape file, you can use a single
large buffer. You do not need to use any of the
special tape operations described in "Multicart-
ridge QIC Tape File," below.

MULTICARTRIDGE QIC TAPE FILE

Writing to Tape

If your program writes a quantity of data that
will not fit on a single volume, you will need to
check for the EOT. You must plan the sequence of
operations carefully.

Each time the QIC server receives a buffer of
information from a WriteTapeRecords operation, the
server responds with a 0 status code (ercOK). The
response, however, does not necessarily mean that
the server has written the data to the tape; the
server may have housed the information in its own
internal buffer for a future write to the tape.

If your program provides no means of handling the
contents of the QIC server's buffer at the EOT,
the server will flush its buffer. As a result,
neither you nor your program will have any way of
accounting for lost data.

Reading from Tape

If your program reads a quantity of data spanning
volumes, you will need to provide a means of
verifying and reading the next tape(s).

Figure 18-3 shows the sequence of operations for
performing I/O to a multicartridge QIC tape file.

Tape Management 18-11

Figure 18-3. Multicartridge QIC Tape Operation
Sequence

18-12 CTOS/VM Concepts

The following describes the sequence summarized in
Figure 18-3:

1. The application program issues the
QICSync operation immediately after it
calls OpenTape.

2. The application processes a record and
issues either a WriteTapeRecords or
ReadTapeRecords request. It checks per-
iodically for a response from the
server.

3. The QIC server responds to QICSync at
EOT.

4. The application prompts the user to
insert the next tape.

5. The application calls QICSync. The
server responds that the user has either
inserted the tape (zero value in the
ercRet field of the request block) or
has not inserted the tape (nonzero value
in ercRet).

 If ercRet is nonzero, steps 4 and 5 are
repeated.

Tape Management 18-13

6. If the application is writing, the
application calls the WriteQICHeader re-
quest. WriteQICHeader bypasses the ser-
ver's internal buffer and writes the
header information to the newly inserted
tape. Upon completing WriteQICHeader,
the server responds with a zero value in
ercRet.

•	 If	 the	 application	 determines	 that	 it	
wrote the header to the correct tape,
the application calls QICSync again
with a zero value in ercRet to inform
the server that the tape header
is valid. When the server responds, the
application calls QICSync again to
prepare the server for the next EOT
(back to step 1). This completes one
cycle of the sequence.

•	 If,	 however,	 the	 application	 deter-
mines that it wrote the header to the
correct tape, (user inserted the
wrong tape), the application calls
QICSync with a nonzero value in
ercRet. The sequence is repeated
from step 4.

7. If the application is reading, the ap-
plication calls the ReadQICHeader re-
quest. Upon completing ReadQICHeader,
the server responds with a zero value in
ercRet.

•	 If	 the	 application	 determines	 that	
the header it read (user inserted
correct tape) is valid, the
application calls QICSync again with
a zero value in ercRet to inform the
server. When the server responds,
the application calls QICSync again
to prepare the server for the next
EOT (back to step 1). This completes
one cycle of the sequence.

18-14 CTOS/VM Concepts

•	 If,	 however,	 the	 application	 deter-
mines that the header it read (user
inserted the wrong tape) is invalid,
the application calls QICSync with a
nonzero value in ercRet. The
sequence is repeated from step 4.

SPECIAL CARE FOR QIC TAPE

New tapes should always be retensioned before use.
To retension the tape, use the QicRetension utility
through the Executive. This utility winds the
entire tape in one direction and then rewinds
it. (See the CTOS System Administrator's Guide
for details.)

The tape cartridge should be retensioned every
8 hours of normal use. When the tape drive is
used extensively in start/stop mode, the cartridge
should be retensioned once every 2 hours.

A tape cartridge that has been exposed to low
temperatures (below 41°F or 5°C) or high tem-
peratures (above 113°F or 45°C) for any length of
time or a tape that has been stored unused for a
long time should be retensioned before you try to
read it or write to it again.

HALF-INCH TAPE

FORMAT

Figure 18-4 shows the general format of a
half-inch tape. Each of the tape files represents
data written at a different tape session. For
example, one file could be the result of a Tape
Backup Volume. A second file could be data from a
user-written program.

Tape Management 18-15

 Figure 18-4. General Half-Inch Tape Format

A half-inch tape file consists of data between
tape marks. A tape mark indicates either of two
positions:

•	 the	logical	end	of	a	file

•	 the	 logical	 EOT	 if	 the	 tape	 mark	 is	
followed immediately by a second mark

TapeOperation is used to write file marks at the
end of a taping session. If your program appends
data to the tape in a later write, the appended
data overwrites (erases) one of the two file marks
before the new data is written.

Figure 18-5 shows the details of a half-inch tape
file.

A half-inch tape file contains a sequence of
records or data blocks. The system leaves a space
between records called the interrecord gap.

The tape header has no fixed format. Its contents
can vary with each application.

18-16 CTOS/VM Concepts

 Figure 18-5. Detail of a Half-Inch Tape File

You can write records of any length within the
minimum and maximum limits. (The maximum limit is
determined by the buffer size specified during
installation of the tape server.) You can, how-
ever, get more data on a single tape if you make
the records large. (Also, it is faster for the
server to write one large record than to write a
series of smaller ones.) On the other hand, it is
safer if you make records very small because, if
any part of a record is damaged, all of the data
on that record is lost. You must reach a compro-
mise between these factors in deciding the size of
a record.

OPERATION

The half-inch tape drive can operate in either
start/stop or streaming mode.

In start/stop mode, the drive writes a record and
then stops within the interrecord gap. This mode
runs slowly to avoid damage to the tape.

Tape Management 18-17

In streaming mode, the drive runs the tape much
more quickly and ramps slowly until it stops. It
then backs up to a point considerably before the
interrecord gap at the end of the file just
written. When it is called upon to write again,
it ramps up to speed and starts writing as it
passes the end of the previously written file.

Considering the ramping and backing time, the
effective tape speed is not actually streaming
mode. Speed is significantly reduced if you are
running a program that uses streaming mode from a
cluster workstation. Start/stop mode can be more
efficient in this case.

READING AND WRITING TO HALF-INCH TAPE

The tape server can read from or write to half-
inch tape at any valid tape position. The
server can overwrite a previous file. However,
all data on the tape is lost beyond the position
that writing begins. Single records on half-inch
tape cannot be updated.

You are not required to use a special EOT sequence
when performing I/O to a multivolume half-inch
tape file. The half-inch tape server does not use
an internal buffer to implement streaming.

When the server reaches the EOT, a status code is
returned to the program. Your program can then
prompt the user to insert a new tape.

18-18 CTOS/VM Concepts

OPERATIONS

The tape management operations are described be-
low. Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

QUARTER-INCH AND HALF-INCH TAPE

The following operations are used for programming
to QIC tape and to half-inch tape.

OpenTape Gives a user exclusive access to
the tape drive and positions the
tape.

CloseTape Removes a user's exclusive access
to a tape drive, thereby making the
drive available to other users.
For half-inch tape, CloseTape re-
winds the tape. The tape is not
rewound for QIC tape.

ReadTapeRecords
Reads n fixed-length records from
the tape into a user buffer.

WriteTapeRecords
Writes n fixed-length records.

TapeStatus Allows users to determine the
status of the tape drive.

TapeOperation Allows the user to issue such
non-data transfer commands as
Rewind Tape, Erase, and Skip
Records to a tape drive.

Tape Management 18-19

QUARTER-INCH TAPE

The following operations are used for reading and
writing a multivolume QIC tape file.

QICSync Functions as part of the dialogue
between the client and the QIC
server in handling EOT.

ReadQICHeader Reads the header information on a
newly inserted tape. ReadQICHeader
bypasses the QIC tape server's
internal buffer, which may contain
data from a partially read record.

WriteQICHeader Writes the header information on a
newly inserted tape. This opera-
tion bypasses the QIC server's in-
ternal buffer, which may contain
data to be written to the new tape.

Generic Print Access Method 19-1

19 GENERIC PRINT ACCESS METHOD

The Generic Print Access Method (GPAM) is a li-
brary of object module procedures, which send text
formatting commands to an output device. GPAM is
a high-level, device-independent I/O programmer
interface. (See Chapter 6, "Input/Output.")

You would typically use GPAM if you wish to add a
variety of formatting characteristics to text you
output to a printing device.

GPAM's formatting commands communicate with the
output device through the Sequential Access Method
(SAM). (For details on GPAM, see the Generic
Print System Programmer's Guide.)

Structured File Access Methods 20-1

20 STRUCTURED FILE ACCESS METHODS

The file management system described in
Chapter 11 provides access to disk file data as
randomly addressable, 512 byte sectors. Up to
127 sectors can be read or written in a single
request. Data is transferred directly between
disk and the buffer specified in the read/write
request (that is, it is not buffered by the file
system). Asynchronous operation (concurrent I/O
and computation on behalf of the same process)
is a standard feature of the file management
system.

Several structured file access methods (described
in detail in the following three chapters in this
manual) augment the capabilities of the file man-
agement system. The file access methods are
object module procedures that can be linked to
application programs as required. (See the
Linker/Librarian Manual.) These object module
procedures provide buffering and use the asyn-
chronous I/O capabilities of the file management
system to automatically overlap I/O and
computation.

In contrast to the file management system, which
organizes disk file data as unstructured 512 byte
sectors, the structured file access methods
organize disk file data as one of the following:

•	 a	sequence	of	variable-length	records

•	 a	sequence	of	fixed-length	records

Files are organized as a contiguous sequence of
records. They are both blocked (as many records
as possible are stored in each physical sector)
and spanned (logical records are permitted to
cross physical sector boundaries).

20-2 CTOS/VM Concepts

Generally, a file is created and accessed by

•	 the	 Indexed	 Sequential	 Access	 Method	
(ISAM) or the Direct Access Method
(DAM), if the file is a sequence of
fixed-length records

•	 the	 Record	 Sequential	 Access	 Method	
(RSAM), if the file is a sequence of
variable-length records

Note that SAM described in Chapter 7 is an un-
structured file access method. SAM is used to
create and to subsequently access a file consist-
ing of an unstructured sequence of bytes called a
byte stream. (See Chapter 7, "Sequential Access
Method," for details.)

STRUCTURED FILE ACCESS METHOD CHARACTERISTICS

The structured file access methods and their
general characteristics are the following.

Indexed Sequential Access Method (ISAM) provides
random and sequential, nonoverlapped I/O. Non-
overlapped means that a call to an ISAM operation
does not return to the application program until
an associated I/O is complete.

ISAM is a multikey, multiuser access method.
Each ISAM data set is composed of one type of da-
ta record of a fixed format. Therefore, all data
records in a given ISAM data set have the same
size.

The size of the data records, the number of keys,
the type of each key, and the method of ordering
keys are specified when an ISAM data set is
created.

Structured File Access Methods 20-3

An ISAM data set consists of two files: an index
file and a data store file.

ISAM consists of object module procedures in the
library, ISAM.lib. ISAM is a separately purchas-
able software product. (See the ISAM Manual for
details.)

Record Sequential Access Method (RSAM) provides
sequential, overlapped I/O. Overlapped means
that although the application program makes a
call to an RSAM operation and that operation re-
turns, I/O can continue concurrently (overlapped)
with the computations of the application program.

An RSAM file is accessed as a sequence of fixed-
or variable-length records. Files can be opened
for read, write (which replaces any prior file
content), and append. In addition to pure se-
quential access, there are operations for
scanning forward to the next well-formed record
following detection of a malformed record.

RSAM consists of object module procedures in the
standard operating system library, CTOS.lib.

Direct Access Method (DAM) provides random, non-
overlapped I/O.

A DAM file is accessed as a sequence of numbered,
fixed-length records. Random access is by record
number; the implementation is such that reading
or writing records with sequential record numbers
provides good sequential performance. Files can
be opened for read or modify (permitting se-
lective modification for prior file content).

DAM consists of object module procedures in the
standard operating system library, CTOS.lib.

20-4 CTOS/VM Concepts

HYBRID ACCESS PATTERNS

In the following chapters, the terms ISAM data
store file, RSAM file, and DAM file are used to
denote the primary means by which the file is
accessed.

This usage, while convenient, is oversimplified:
any file created with ISAM, RSAM, or DAM can be
physically viewed as unstructured and accessed
using SAM. Similarly, any file of records
created with DAM or ISAM can be physically
accessed using RSAM (that is, treating
fixed-length records as a special case of
variable-length records). Finally, an ISAM data
store file contains fixed-length records and
therefore can be accessed using DAM.

Although all these hybrid access patterns are
possible, they are not all advisable. For exam-
ple, reading a DAM file with SAM fetches control
bytes along with the DAM record bytes; inter-
preting these requires special knowledge. Also,
the file header for ISAM data store files, RSAM
files, and DAM files contains a byte used to
identify the file type. Accessing the file with
a different access method can alter this byte.
For example, if an ISAM data store file is
accessed with DAM, it is marked as a DAM file and
cannot be accessed by ISAM operations unless an
ISAM Reorganize is done. (See the ISAM Manual
for details.)

An ISAM data store file has an associated index
file that must be updated in a complex way when
the data store file is modified. If the data
store file is modified using ISAM, this is done
automatically. If the data store file is updated
otherwise, the integrity of the ISAM data set can
easily be destroyed. (See the ISAM Manual for
details.)

Structured File Access Methods 20-5

The hybrid access patterns listed below are both
useful and safe:

•	 Use	 of	 RSAM	 or	 DAM	 to	 read	 an	
ISAM-created file as though it were an
unkeyed DAM file, that is, with the
records accessed according to their
physical ordering.

•	 Use	of	RSAM	to	read,	write,	or	append	to	
a DAM-created file. (However, if, fol-
lowing a write or append to such a file,
there are records of different lengths,
the file is subsequently accessible only
with RSAM, not with DAM.)

•	 Use	 of	 DAM	 to	 read	 or	 modify	 an	
RSAM-created file in which all records
have the same length.

MODIFYING AND READING DATA FILES

The Maintain File command can modify and/or read
RSAM and DAM data files. Maintain File can do
all of the following:

•	 verify	the	file	structure

•	 remove	malformed	records

•	 remove	deleted	records

•	 optionally	 write	 a	 log	 of	 the	 verifi-
cation of the file structure to a video
display

Maintain File is described in the Executive
Manual.

20-6 CTOS/VM Concepts

Maintain File also is used with the ISAM
Reorganize command. (See the ISAM Manual for de-
tails.)

ISAM data store files, RSAM files, and DAM files
are standard access method files. As such, they
contain standard record headers, record trailers,
and file headers.

A physical record consists of the record header,
the record data, and the record trailer stored in
contiguous bytes.

A standard file header is located at the be-
ginning of the first sector at the start of the
file. The header consists of information common
to all standard access methods followed by
information unique to the particular access
method. The first physical record is located at
the beginning of the second file sector.

The structure of a standard file header, a stan-
dard record header, and a standard record trailer
are given in the CTOS/VM Reference Manual, Chap-
ter 4, "System Structures." (See Tables 4-22,
4-23, and 4-24, respectively.)

Structured File Access Methods 20-7

OPERATIONS

The file access methods provide the operation
listed below. (See the CTOS/VM Reference Manual,
Chapter 3, "Operations," for a complete descrip-
tion.)

GetStamFileHeader
Copies the file header of an RSAM,
DAM, or ISAM file into the speci-
fied area.

Indexed Sequential Access Method 21-1

21 INDEXED SEQUENTIAL ACCESS METHOD

The Indexed Sequential Access Method (ISAM) pro-
vides efficient, yet flexible, random access to
fixed-length records identified by multiple keys
stored in disk files.

Each ISAM data set holds one type of data record.
The size of the data records, the number of keys,
and the type of each key are specified when an
ISAM data set is created.

ISAM is described more fully in the ISAM Manual.

Record Sequential Access Method 22-1

22 RECORD SEQUENTIAL ACCESS METHOD

The Record Sequential Access Method (RSAM) pro-
vides efficient sequential access to fixed- and
variable-length records. Records are read and
written using sequential, overlapped I/O. Records
are both blocked (as many records as possible are
stored in each physical sector) and spanned
(logical records are permitted to cross physical
sector boundaries). There is also an operation to
scan forward to the next well-formed record
following detection of a malformed record. Files
can be opened for read, write (which replaces any
prior file content), and append.

RSAM can be called directly from any Convergent
programming language. RSAM consists of object
module procedures contained in the standard
operating system library, CTOS.lib.

RSAM FILES AND RECORDS

The RSAM provides efficient sequential access to
fixed- and variable-length records in a file. An
RSAM file is a sequence of these records.

A record can be as large as 65,527 bytes or as
small as 1 byte. To provide efficient disk sto-
rage, records are blocked and spanned.

If a sector cannot be read or a record is mal-
formed, the remainder of the file can be read
after the ScanToGoodRsRecord operation is used to
locate the next well-formed record.

22-2 CTOS/VM Concepts

WORKING AREA

RSAM uses a work area supplied by the application
program. A Record Sequential Work Area (RSWA) is
a 150 byte memory work area for the exclusive use
of the RSAM procedures. Multiple RSAM files can
be open simultaneously using separate RSWAs.

BUFFER

RSAM also uses a word-aligned buffer supplied by
the application program. The buffer must be at
least two sectors (1K byte) long. The buffer size
is not constrained by the longest record to be
read or written, but, in such cases, performance
can be improved by using large buffers.

RSAM uses overlapped output. Therefore, data
written to an RSAM file can be retained in the
buffer and not actually written to the file until
some time after the WriteRsRecord operation re-
turns. The CheckpointRsFile operation flushes the
buffers of an RSAM file, ensuring that all data
was written to disk.

Record Sequential Access Method 22-3

OPERATIONS

The RSAM operations described below are categor-
ized as basic or advanced. Operations are
arranged in a most to least frequent use order.
(See the CTOS/VM Reference Manual, Chapter 3,
"Operations," for a complete description of each
operation.)

BASIC

OpenRsFile Opens or creates an RSAM file.

ReadRsRecord Reads the next record from an RSAM
file.

WriteRsRecord Writes a record to an RSAM file.

CloseRsFile Closes an RSAM file (including con-
clusion of all I/O operations).

ADVANCED

SetRsLfa Sets the logical file address at
which the next I/O operation will
occur.

GetRsLfa Returns the logical file address at
which the next I/O operation will
occur.

ScanToGoodRsRecord
Scans forward to the next
well-formed record in an RSAM file.

CheckpointRsFile
Checkpoints the open output RSAM
file.

ReleaseRsFile Releases all resources associated
with an open RSAM file (for exam-
ple, open files and exchanges).

Direct Access Method 23-1

23 DIRECT ACCESS METHOD

The Direct Access Method (DAM) provides efficient
random access to fixed-length records. A record
is referred to in DAM by the record number within
a file.

DAM can be accessed in COBOL through COBOL Re-
lative I/O. DAM can also be called directly from
any of the Convergent programming languages. DAM
consists of object module procedures in the
standard operating system library, CTOS.lib.

In reading, writing, or deleting, DAM does simple
address calculations based on the record size and
number to find the required sectors of the DAM
file. DAM keeps a cache of recently referenced
sectors that are obtained without reference to the
disk. Sectors not in the cache are accessed with
a single disk access.

DAM FILES, RECORDS, AND RECORD FRAGMENTS

DAM provides efficient random access to records
identified by the record number within a file.
The record number of the first record in a DAM
file is 1.

A DAM file is a sequence of fixed-length records.
The length of a record is specific to each DAM
file and is specified when the file is first
created.

23-2 CTOS/VM Concepts

A record can be as large as 63,992 bytes or as
small as 0 bytes. To provide efficient disk
storage use, records are both blocked (as many
records as possible are stored in each physical
sector) and spanned (logical records are permitted
to cross physical sector boundaries). A record
that is blocked and spanned contains the standard
8 bytes of header and trailer in addition to the
stored data of the record itself.

A record fragment is a contiguous area of memory
within a record. A record fragment is specified
using an offset from the beginning of the record
and a byte count. The record fragment must be
contained within the record.

Record fragments are read from and written to open
DAM files using the operations ReadDaFragment and
WriteDaFragment, respectively.

WORKING AREA

DAM uses a work area supplied by the application
system. A Direct Access Work Area (DAWA) is a 64
byte memory work area for the exclusive use of the
DAM procedures. Any number of DAM files can be
open simultaneously using separate DAWAs.

BUFFER

DAM also, uses a word-aligned buffer supplied by
the application program. The buffer size is spe-
cified by the program. The size is subject only
to the constraint that it be a multiple of 512,
and that it be greater than or equal to the record
size plus 519.

Direct Access Method 23-3

This constraint can be relaxed in two cases:

•	 If	 512	 is	 a	 multiple	 of	 the	 record	 size	
plus 8, the minimal size is simply 512.

•	 If	 the	 record	 size	 plus	 8	 is	 a	 multiple	
of 512, the minimal size is the record
size plus 8.

BUFFER SIZE AND SEQUENTIAL ACCESS

DAM reads from and writes to the buffer by using a
single request to the file management system. This
typically requires only a single disk access.
Whenever the disk is read, the entire buffer is
filled.

If the buffer size is chosen to be larger than the
record size (by at least a factor of 2), the
buffer acts as a look-ahead cache. If sequential-
ly numbered records are requested, DAM typically
finds them in the buffer and does not access the
disk. In this way, if the application program
makes a suitable buffer size choice, DAM can
provide efficient record sequential access.

23-4 CTOS/VM Concepts

BUFFER MANAGEMENT MODES: WRITE-THROUGH AND
WRITE-BEHIND

DAM provides two modes of buffer management:
write-through and write-behind. The mode is
initially set to write-through when a DAM file is
opened. The mode can be changed using the
SetBufferMode operation.

In the write-through mode, DAM immediately writes
the changed sectors of the buffer to disk whenever
a record is written or deleted. DAM guarantees
that the file content on disk is accurate at the
completion of a modify operation.

In the write-behind mode, DAM writes changed
sectors of the buffer to disk only when new
sectors are brought into the buffer, the DAM file
is closed, or the mode is changed to
write-through. Write-behind mode provides better
performance when DAM is used to modify records in
sequential order.

Direct Access Method 23-5

OPERATIONS

The DAM operations described below are categorized
as basic or advanced. Operations are arranged in
a most to least frequent use order. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

BASIC

OpenDaFile Opens or creates a DAM file.

ReadDaRecord Reads a record from a DAM file.

WriteDaRecord Writes a record to a DAM file.

DeleteDaRecord Deletes a record from a DAM file.

CloseDaFile Closes a DAM file.

ADVANCED

QueryDaRecordStatus
Copies to the specified area the
status of a record in an open DAM
file.

QueryDaLastRecord
Copies to the specified area the
number of the last record in an
open DAM file.

TruncateDaFile Truncates an open DAM file (that
is, it removes all records beyond a
specified point).

ReadDaFragment Reads a record fragment from an
open DAM file.

23-6 CTOS/VM Concepts

WriteDaFragment
Writes a record fragment to an open
DAM file.

SetDaBufferMode
Sets the buffer management mode to
write-through or write-behind.

Memory Management 24-1

24 MEMORY MANAGEMENT

Memory management supports the dynamic allocation
and deallocation of memory areas in an application
partition for a program's code and data storage.

TYPES OF MEMORY

The two types of memory allocation available to a
program are long-lived and short-lived. Within
each application partition, long-lived memory ex-
pands upward from low memory locations, while
short-lived memory expands downward from high
memory locations.

The operating system allocates short-lived memory
for the program's code and static data when it
loads the program. No explicit use of memory man-
agement operations by the programmer is necessary
to do this.

You can obtain additional long-lived and
short-lived memory for your program by making
requests of the operating system.

When program execution is terminated, the
short-lived memory of its partition is
automatically deallocated.

Long-lived memory is deallocated only at the
explicit request of each application program.
Therefore, long-lived memory is useful for passing
information from an application program to a
succeeding program in the same partition.
Long-lived memory is deallocated, however, by a
program that calls the Chain operation and is
replaced by the Executive.

24-2 CTOS/VM Concepts

ADDRESSING MEMORY

In real mode, you are limited to a 1 megabyte
physical address space. This means you can refer-
ence each of 1,048,576 bytes by a unique physical
address.

The physical address (PA) is the actual location
in memory.

In protected mode, the physical address space
extends beyond the first megabyte. The amount of
physical memory you can address is determined by
your system's processor and its hardware limita-
tions. A 80286 processor, for example, is capable
of providing a 16 megabyte physical address space.
The actual address space, however, is determined
by the hardware. (For details on the address
space, also see Chapter 3, "Using CTOS/VM
Operations.")

SEGMENTS

A segment is a contiguous area of fewer than 64K
bytes within the physical address space. The op-
erating system uses segmented addressing. This
means every address is relative to a segment.

A paragraph is 16 bytes of memory. In real mode,
segments are aligned on paragraph boundaries in
physical memory.

Memory Management 24-3

It is conventional to address a byte within a seg-
ment by using a logical memory address. A
logical memory address consists of the following:

•	 a	16	bit	segment address (SA)

•	 a	relative address (RA) (called an offset)

In real mode, the SA is the actual segment base
address. The segment base address is the first
byte of the segment in physical memory.

In protected mode, the SA is a selector (SN). The
SN is the index of a segment descriptor entry in
either a Local Descriptor Table (LDT) or a Global
Descriptor Table (GDT). (For details on protected
mode structures, see Chapter 3, "Using CTOS/VM
Operations.")

The segment descriptor contains a segment base
address, which may be located anywhere in physical
memory. For this reason, if you are writing a
program you want to execute in protected mode,
your program should not depend upon the value of
the SA.

The RA (or offset) is the low-order 16 bits of a
logical address. It is the distance, in bytes, of
the target location from the beginning of the
segment.

A byte of memory does not have a unique logical
memory address. The same byte of memory can be
referred to by many different combinations of SAs
and RAs.

In this manual, the term memory address means
logical memory address. (Chapter 30, "Inter-CPU
Communication," describes a linear address used
for routing requests among processor boards in
SRPs. This is the only case in which memory ad-
dress has another meaning.)

24-4 CTOS/VM Concepts

CODE, STATIC DATA, AND DYNAMIC DATA SEGMENTS

The three types of segments are code, static data,
and dynamic data. Each segment type can be either
shared or exclusive.

•	 A	 code segment contains only processor
instructions (code) and is never modified
once it is loaded into memory. This
characteristic permits several processes
to execute instructions from the same
code segment. It also allows the Virtual
Code management facility to reload code
segments from the run file as needed
without previously saving a copy of the
segment in memory. (For details, see
Chapter 34, "Virtual Code Management.")

•	 A	 data segment contains writable data.
There are no restrictions on modifying a
data segment's content. If a data seg-
ment is shared among processes, concur-
rency control is the responsibility of
those processes.

 A static data segment is automatically
loaded into memory when the run file that
contains it is loaded. A dynamic data
segment is allocated by a program in
memory by means of run-time calls to the
operating system.

Memory Management 24-5

A program on disk is stored in a run file that
contains code and/or static data segments. When
requested, the operating system loads the program
into a memory partition and adjusts any logical
memory addresses that exist in either code or data
segments to reflect the memory address at which
the program is loaded. (See Figure 24-1.)

Figure 24-1. From Source Language Modules to
Program in Memory

Code and static data segments are created by com-
piling and/or assembling source language modules
into object modules and linking the object modules
together into code and data segments.

24-6 CTOS/VM Concepts

The Linker reads the object module(s) and combines
them according to their segment names, class
names, and directives from the user.

(For details, see the Linker/Librarian Manual and
the Assembly Language Manual.)

Segments can be combined based on a series of
different models of computation (use of segment
registers). Most programming languages use the
medium model, although the operating system also
supports the small and large model. (For details,
see the CTOS Programmer's Guide.)

A run file created by linking object modules pro-
duced by the Pascal compiler, for example, con-
sists of one code segment for each object module
included in the link and a single static data
segment. The single static data segment, or
DGroup, combines the static data and stack re-
quirements of all the object modules.

A run file of this form is considered standard;
assembly language programmers are urged to adopt
this standard unless other considerations are
overriding. The COBOL compiler and BASIC inter-
preter do not produce object modules. (For de-
tails, see the Linker/Librarian Manual.)

A program can allocate a dynamic data segment of
memory by means of run-time calls to the operating
system.

The Virtual Code Management facility allows you to
run a program that is larger than the available
memory in an application partition. If the Vir-
tual Code management facility is in use, all the
static data segments and the resident code segment
are loaded into memory. The nonresident code
segments are loaded into memory only as needed.
(For details, see Chapter 34, "Virtual Code
Management.")

Memory Management 24-7

NOTE: This manual generally describes a logical model of the operating
system rather than a particular implementation (such as real mode or
protected mode). (For implementation details, see the Release Notice for
your version of the operating system.)

Figure 24-2 shows the memory organization of an
application partition. Because system services do
not allocate or deallocate memory, the memory in a
system partition consists only of enough
short-lived memory for the system service itself.
(For details on system partitions, see Chapter 31,
"System Services Management.")

Figure 24-2. Memory Organization of an
Application Partition

24-8 CTOS/VM Concepts

LONG-LIVED AND SHORT-LIVED MEMORY

All currently unallocated long-lived and
short-lived memory in an application partition is
in a contiguous area called the common unallocated
memory pool. Memory can be allocated from both
ends of the pool. There is no restriction on how
much can be allocated from either end, other than
that the sum of the allocations cannot exceed the
amount of memory available in an application
partition. The QueryMemAvail or QueryBigMemAvail
operation returns the size of all available memory
in an application partition.

In real mode, memory is allocated and deallocated
only on paragraph boundaries. That is, the phy-
sical address of the area is a multiple of 16.
Because of this, the areas of memory the operating
system allocates can be conveniently referenced by
using the segment addressing convention discussed
in "Segments," earlier in this chapter.

The AllocMemoryLL, AllocAreaSL, and AllocMemorySL
operations allocate long-lived (LL) and
short-lived (SL) memory segments in an application
partition. The AllocAllMemorySL operation can
allocate more than 65,536 bytes, and thus the
entire area allocated by this operation is not
necessarily addressable as a single segment.

The DeallocMemoryLL and DeallocMemorySL operations
deallocate long-lived and short-lived memory seg-
ments, respectively, in an application partition.
The ResetMemoryLL operation deallocates all
long-lived memory in an application partition.

Memory Management 24-9

The ExpandAreaLL and ExpandAreaSL operations
increase the size of a segment previously allo-
cated using the AllocMemoryLL or AllocAreaSL
operations, respectively. (Segments allocated
with AllocMemorySL should not be expanded.) If
the Linker's DS allocation option is specified,
ExpandAreaSL also may be used to increase the size
of the static data segment, DGroup. (See the
Linker/Librarian Manual for details.)

The ShrinkAreaLL and ShrinkAreaSL operations
decrease the size of a segment previously allo-
cated using the AllocMemoryLL or AllocAreaSL
operations, respectively. (Segments allocated
using AllocMemorySL cannot be decreased in size.)

DEALLOCATIONS

Relative to allocations from one end of the memory
of an application partition, deallocations must
occur in exactly the opposite sequence. That is,
the user must follow a last-allocated,
first-deallocated discipline when deallocating
either long-lived or short-lived memory. For
example, if a program allocates short-lived memory
segments A, B, and C, it must deallocate them in
the order C, B, A.

Thus the motion of the borders (the dashed lines
in Figure 24-2) of the common memory pool in an
application partition resembles the playing of an
accordion: the borders converge when memory is
allocated and diverge when memory is deallocated.
This scheme is efficient because all unallocated
memory is in a common pool and because the oper-
ating system has to remember only the addresses of
the next (long-lived and short-lived) segments to
allocate, not the addresses of all allocated
segments.

24-10 CTOS/VM Concepts

LONG-LIVED MEMORY USES

The long-lived memory in an application partition
is used for VLPB parameters passed from one pro-
gram to a succeeding program in the same parti-
tion. A program cannot place 32 bit logical
memory addresses in long-lived memory. This is
because the long-lived memory of a variable parti-
tion can be relocated when a program terminates
and is replaced by a succeeding program with dif-
ferent memory requirements.

Long-lived memory allocations are returned to the
common pool of unallocated memory in an appli-
cation partition upon explicit request of the
program or if the program calls the Chain
operation and is replaced by the Executive.

SHORT-LIVED MEMORY USES

The short-lived memory in an application partition
is used by the operating system to contain the
code and static data segments of each application
program. If code is shared, however, code can be
located anywhere in memory. (For details, see
Chapter 32, "Program and Partition Management.")
Short-lived memory also is allocated by appli-
cation programs for use as dynamic data segments
for data that is to be processed only by the
current program. Other common uses of short-lived
memory are I/O buffers and the Pascal heap.

Short-lived memory allocations are returned to the
common memory pool whenever the program is re-
placed (in any application partition by the Chain,
ErrorExit, or Exit operations, or if a single
application partition is in memory, by the key
combination Action-Finish). (See Chapter 4, "Pro-
gram Management.")

Memory Management 24-11

OPERATIONS

The memory management operations are described
below. Operations in the first two categories are
arranged in a most to least frequent use order.
Operations in the remaining categories are alpha-
betized. (See the CTOS/VM Reference Manual,
Chapter 3, "Operations," for a complete descrip-
tion of each operation.)

SHORT-LIVED MEMORY

AllocAreaSL Creates a short-lived segment and
allocates memory for it of the
specified size. AllocAreaSL re-
turns a 32 bit logical address of
the base of the segment.

AllocMemorySL Similar to AllocAreaSL, except that
the segment may not subsequently be
increased or decreased in size.
However, the offset portion of the
32 bit address returned is guaran-
teed to be 0, enabling the segment
to be addressed using only the 16
bit segment base address portion.

AllocAllMemorySL
Allocates the largest possible
short-lived memory segment in an
application partition.

DeallocMemorySL
Deallocates a short-lived memory
segment in an application parti-
tion.

24-12 CTOS/VM Concepts

ExpandAreaSL Allocates additional memory of the
specified size within the specified
short-lived segment. The specified
segment must have been created by a
prior call to AllocAreaSL (except
when specifying the Linker's DS al-
location option and ExpandAreaSL to
expand the static data segment,
DGroup).

ShrinkAreaSL Deallocates memory of the specified
size within the specified short-
lived segment. The segment must
have been created by a prior call
to AllocAreaSL (except when speci-
fying the Linker's DS allocation
option and ShrinkAreaSL to decrease
the size of the static data
segment, DGroup).

AllocMemoryFramesSL
Creates a short-lived segment and
allocates cFrames*4096 bytes of
short-lived memory at the beginning
of the segment. The beginning of
the segment is aligned on a 4K byte
boundary in physical memory.

LONG-LIVED MEMORY

AllocMemoryLL Allocates a long-lived memory seg-
ment in an application partition.

DeallocMemoryLL
Deallocates a long-lived memory
segment in an application parti-
tion.

ExpandAreaLL Allocates additional memory of the
specified size within the specified
long-lived segment.

Memory Management 24-13

ShrinkAreaLL Deallocates memory of the specified
size within the specified long-
lived segment.

ResetMemoryLL Deallocates all long-lived memory
in an application partition.

SHORT-LIVED AND LONG-LIVED MEMORY

CreateAlias Returns an alias selector for the
specified source memory address.
The alias selector combined with a
0 offset references the same linear
address as the specified source
memory address.

DefineInterlevelStack
Initializes the stack segment (SS)
and the stack pointer (SP) fields
of the caller's task state segment
for the specified protection level.
DefineInterlevelStack is supported
in protected mode only.

DefineLocalPageMap
Defines an address mapping between
the linear address specified by
saLocal and the physical address
referenced by pFrames. This opera-
tion is supported only by 80386
microprocessor-based operating sys-
tems executing in protected mode.

24-14 CTOS/VM Concepts

InitLocalPageMap
Initializes the segment addressed
by pLocalPageMap for use as a local
page map. The segment must be at
least 8K bytes in size and must be
aligned on a 4K byte boundary in
physical memory. This operation is
supported by 80386 microprocessor-
based operating systems executing
in protected mode only.

QueryBigMemAvail
Returns the size in bytes of all
available free memory in an appli-
cation partition.

QueryMemAvail Returns the size in paragraphs of
all available free memory in an
application partition.

ADDRESS TRANSLATION

PaFromP Returns the 32 bit PA referenced by
the logical memory address. PaFromP
supports software that interfaces
with hardware using physical ad-
dresses.

PaFromSn Returns the PA referenced by the
protected mode selector (SN).
PaFromSn is supported by operating
systems executing in protected mode
only and is invoked by PaFromP.

SgFromSa Returns an alias GDT selector (SG)
that references the same memory
location as the specified SA.

Memory Management 24-15

SnFromSr Returns the protected mode SN that
references the same memory location
as the specified real mode segment
address (SR). SnFromSr is suppor-
ted only by operating systems exe-
cuting in protected mode.

SrFromSn Returns the real mode SR that
references the same memory location
as the specified protected mode se-
lector (SN). SrFromSn is supported
only by operating systems executing
in protected mode.

ALIAS MANAGEMENT

CreateAlias Returns an alias selector for the
specified source memory address.
The alias selector combined with a
0 offset references the same linear
address as the specified source
memory address.

ReuseAlias Rewrites the base address and limit
fields of an alias selector ini-
tially allocated by CreateAlias.
ReuseAlias is supported in protect-
ed mode only.

ReuseAliasLarge
Is the same as ReuseAlias except
that it provides a more general
interface. ReuseAliasLarge is sup-
ported in protected mode only.

24-16 CTOS/VM Concepts

OTHER

AllocMoverSegment
Allocates a variable-length segment
of memory with an address greater
than 1 megabyte.

DeallocMoverSegment
Frees a variable-length segment
previously allocated with the
AllocMoverSegment operation.

SetSegmentAccess
Sets the access mode of a code or a
data segment in protected mode.
SetSegmentAccess performs no func-
tion in real mode.

Utility Operations 25-1

25 UTILITY OPERATIONS

The standard operating system library, CTOS.lib,
provides a number of utility operations that can
be used to maximize the efficiency of writing
programs.

DATE/TIME MANAGEMENT

SYSTEM DATE/TIME STRUCTURE

If a program executing on a master or standalone
workstation needs to know the time to greater
precision than 1 second, it can access the system
date/time structure by calling the GetpStructure
operation with a structCode parameter of 240.
(See the CTOS/VM Reference Manual, Chapter 3,
"Operations," for a description of GetpStructure.)

The system date/time structure is shown in Table
4-26 in the CTOS/VM Reference Manual)

SYSTEM DATE/TIME FORMAT

The system date/time format provides a compact
representation of the date and the time of day
that precludes invalid dates and allows simple
subtraction to compute the interval between two
dates. The system date/time format consists of
the seconds and the dayTimes2 fields of the system
date/time structure.

25-2 CTOS/VM Concepts

The system date/time format is represented in 32
bits to an accuracy of 1 second. The high-order
15 bits of the high-order word contain the count
of days since March 1, 1952. The use of a 15 bit
field allows dates up to the year 2042 to be
represented. The low-order bit of the high-order
word is 0 to represent AM and 1 to represent PM.
The low-order word contains the count of seconds
since midnight/noon. Valid values are 0 to 43199.

The current system date/time is maintained in the
master (for all the workstations of a cluster
configuration) or in the standalone workstation.

You can access and modify the current system date/
time by calling the GetDateTime and SetDateTime
operations.

EXPANDED DATE/TIME FORMAT

The ExpandDateTime and CompactDateTime operations
convert between the system date/time format and an
expanded date/time format in which year, month,
day of month, and so forth, are represented as
discrete fields.

(See Table 4-9 in the CTOS/VM Reference Manual for
the expanded date/time format.)

STRING COMPARING

String comparing operations inform you of string
equalities.

StringsEqual states whether two strings contain
exactly the same data. StringsEqual does no
translation.

Utility Operations 25-3

ULCMPB compares two strings, using uppercase and
lowercase translations. Unlike StringsEqual,
ULCMPB can take nationalized character sets into
account. (For details on nationalization, see
Chapter 40, "Native Language Support.") The Exec-
utive program uses this operation for interpret-
ing the field entries in a command form or for
file matching.

NlsYesOrNo and NlsYesNoOrBlank are two other
string comparing operations that handle nationa-
lized characters. (For details, see Chapter 40,
"Native Language Support.")

NlsYesOrNo uses uppercase and lowercase trans-
lations to compare a string against nationalized
words meaning yes and no. The string passed can
match any portion of a yes or no word. For
example, y, ye, and yes match yes.

NlsYesNoOrBlank performs the same function as
NlsYesOrNo, except that NlsYesNoOrBlank, in addi-
tion, checks for a null string.

It is recommended that the operations NlsYesOrNo
or NlsYesNoOrBlank be used in conjunction with the
RgParam operation for parsing answers to yes/no
options of Executive parameters. (For details on
RgParam, see Chapter 5, "Parameter Management.")

FComparePointer compares two logical addresses for
equality. FComparePointer typically is used to
compare the binary values of the logical addres-
ses. However, it also can be used to compare the
byte locations of the addresses in the linear
memory address space. (For details on memory
addresses, see Chapter 3, "Using CTOS/VM Opera-
tions," and Chapter 24, "Memory Management.")

25-4 CTOS/VM Concepts

OUTPUT ROUTINES

Output routines allow you to direct information to
any byte stream (including the video device) in a
way that is compatible with the operating system.
The default output device is [VID]0 (video
frame 0).

These operations are replacements for language run
time operations. They provide a convenient and
efficient way of coding strings in a language such
as PL/M, which has no run-time support for dis-
playing strings.

NPrint
OutputBytesWithWrap
OutputQuad
OutputWord
PutByte
PutChar
PutPointer
PutQuad
PutWord
SbPrint
ZPrint

All of the output operations use NPrint and
PutChar for output, allowing you to provide your
own versions of NPrint and PutChar.

CONFIGURATION FILE PARSING

The configuration file parsing operations are used
for parsing standard configuration files, which
contain human readable entries of the form

:fieldname:value

Utility Operations 25-5

Examples of these files are .user files, Context
Manager configuration files, and Document Designer
configuration files. (The CTOS System Administra-
tor's Guide illustrates a user configuration file,
which is a typical example.)

The file parsing operations are

LookUpField
LookUpNumber
LookUpReset
LookUpString
ReadToNextField

TEXT EDITING

The TextEdit operation is a useful operation for
building a single-line text editor. You can call
the TextEdit operation if you want to write a
program that allows the user to do either of the
following:

•	 enter	data	into	a	field

•	 edit	 the	 data	 entered	 by	 means	 of	 the	
normal keystrokes of Backspace, Left
Arrow, Right Arrow, and Code-Left Arrow,
such as those used by the Executive

INFORMING USER OF WAITING MAIL

The QueryMail operation can be used by any program
to display that new mail is waiting for the user.
The Executive, for example, uses this operation to
display the mail message on the video status line.

25-6 CTOS/VM Concepts

OPERATIONS

The utility operations are described below. (See the
CTOS/VM Reference Manual, Chapter 3, "Operations,"
for a complete description of each operation.)

DATE/TIME MANAGEMENT

CompactDateTime
Converts from an expanded date/
time format to system date/time
format.

ExpandDateTime Converts from the system date/time
format to an expanded date/time
format in which year, month, day
of month, and so on, are repre-
sented as discrete fields.

FormatDateTime
Is the same as NlsFormatDateTime.
FormatDateTime is documented for
historic reasons only.

FormatTime Converts an expanded date/time
structure into an ASCII string
containing the day, date, and
time.

FormatTimeDt Converts an expanded date/time
structure into an ASCII string
containing the date.

FormatTimeTm Converts an expanded date/time
structure into an ASCII string
containing the time.

GetDateTime Returns the current date/time in
the system date/time format.

Utility Operations 25-7

NlsFormatDateTime
Converts from date/time format to
textual string format. This opera-
tion is used if you are creating
your own NLS tables to be linked
with your program. (For details
on NLS, see Chapter 40, "Native
Language Support.")

NlsParseTime Converts a string into an expanded
date/time structure.

NlsStdFormatDateTime
Obtains the memory address of the
Date and Time Formats table. This
operation is recommended over
either NlsFormatDateTime or
FormatDateTime for ease in nation-
alization. (For details, see
Chapter 40, "Native Language Sup-
port.")

ParseTime Is the same as NlsParseTime.
NlsParseTime should be used for
ease in nationalization.

SetDateTime Sets the date/time of the oper-
ating system.

STRING COMPARING

FComparePointer
Compares two logical addresses.
FComparePointer returns TRUE if
the addresses have the same binary
value.

FsCanon Translates a byte string into the
file system canonical form with
respect to case.

25-8 CTOS/VM Concepts

NlsULCMPB Is the same as ULCMPB. NlsULCMPB
is documented for historic reasons.

NlsYesNoOrBlank
Is similar to NlsYesOrNo, except
that, in addition, NlsYesNoOrBlank
checks for a null string.

NlsYesOrNo Performs a case-insensitive string
comparison against nationalized
words meaning yes and no.

StringsEqual Compares two strings using a
Boolean function that returns TRUE
(0FFh) if the two strings are the
same.

ULCMPB Compares two strings, using the
lowercase to uppercase conversion
table, if present, to carry out
the case-insensitive comparison.
NlsULCMPB returns 0FFFFh if the
two strings are equal/ otherwise,
it returns a word containing the
index of the first two characters
in the strings that are different.
ULCMPB should be used over
NlsULCMPB for ease in nationali-
zation.

WildCardMatch Checks a string against a wild
card specification.

Utility Operations 25-9

OUTPUT ROUTINES

NPrint Prints a string to the video or
other device.

OutputBytesWithWrap
Outputs a string to the video byte
stream. If the string does not
fit on the current line, a Car-
riage Return and Tab are inserted
to continue the string output on
the next line.

OutputQuad Prints a quad (32-bit unsigned
integer) to the video or other de-
vice as specified by the NPrint
and PutChar operations.

OutputWord Prints a word (16-bit unsigned
integer) to the video or other de-
vice as specified by the NPrint
and PutChar operations.

PutByte Prints a byte (8-bit unsigned
integer) to the video or other de-
vice as specified by the NPrint
and PutChar operations.

PutChar Prints a character to the video or
other device.

PutPointer Prints a memory address to the
video or other device as specified
by the NPrint and PutChar opera-
tions.

PutQuad Prints a quad to the video or
other device as specified by the
NPrint and PutChar operations.

25-10 CTOS/VM Concepts

PutWord Prints a word to the video or
other device as specified by the
NPrint and PutChar operations.

SbPrint Prints a string in which the first
byte is the size of the string to
the video or other device as spe-
cified by the NPrint and PutChar
operations.

ZPrint Prints a null-terminated string to
the video or other device as spe-
cified by the NPrint and PutChar
operations.

CONFIGURATION FILE PARSING

LookUpField Reads from a file and searches for
a :FieldName: string, beginning at
the current location in the file.
The operation returns the string
:FieldName: and the count of bytes
in the string.

LookUpNumber Reads from a file and searches for
a :FieldName: string, beginning at
the current location in the file.
The operation returns the string
length to the caller.

LookUpReset Resets the point from which a scan
begins to the beginning of the
current file.

LookUpString Reads from a file and searches for
a :FieldName: string, beginning at
the current location in the file.
The operation returns the count of
bytes in the string.

Utility Operations 25-11

ReadToNextField
Reads from a file and searches for
a :FieldName: string. The opera-
tion stores the text strings
between the current location and
the :FieldName: string, setting
the beginning of :FieldName: to be
the current location.

TEXT EDITING

TextEdit Edits a line of text. The opera-
tion takes a character and a text
descriptor and returns the des-
criptor with appropriate changes.

OTHER

QueryMail Displays to the video status line
the fact that mail is waiting for
the user. QueryMail can be called
by any program.

WriteLog Writes a variable-length record to
the system log file.

System Definitions 26-1

26 SYSTEM DEFINITIONS

This chapter presents the system structures and
other kinds of system-related information. This
chapter also recommends methods you can use to
obtain system information.

Table 26-1 presents the system structures and
provides a brief description of each. (See the
CTOS/VM Reference Manual, Chapter 4, "System
Structures," for detailed descriptions of each of
these structures.)

26-2 CTOS/VM Concepts

Table 26-1

SYSTEM STRUCTURES
(Page 1 of 4)

 System Structure Definition

Application System
Control Block

Passes parameters and other
information between pro-
grams within a partition.

Boot Block Contains the information
passed to the operating
system by the bootstrap
ROM.

Communications
Status Buffer

Contains usage statistics
for the master workstation
and the workstations
attached to it.

Device Control Block Describes the type, charac-
teristics, and status of a
disk.

Expanded Date/Time
Format

Contains discrete fields
for the date/time, includ-
ing the year, month, day of
month, and so forth.

Extended Partition
Descriptor*

Contains specifications for
the current application
program file and exit run
file.

*This structure is for internal use only.

System Definitions 26-3

Table 26-1

SYSTEM STRUCTURES
(Page 2 of 4)

 System Structure Definition

File Header Block Contains information about
a file, its disk address,
and its disk extents.

Frame Descriptor Contains all information
about a video frame.

Real Mode Interrupt
Vectoring

Contains hardware and soft-
ware interrupt and trap
vectors.

Port Structure Contains hardware port ad-
dresses of various devices
whose memory addresses dif-
fer in various configura-
tions.

Process Control
Block*

Contains the combined hard-
ware and software context
of a process.

Queue Status Block Contains a queue entry's
server user number, prior-
ity, and the buffers in
which the queue entry han-
dles for the queue entry
and the logically following
queue entry are stored.

*This structure is for internal use only.

26-4 CTOS/VM Concepts

Table 26-1

SYSTEM STRUCTURES
(Page 3 of 4)

 System Structure Definition

Standard File Header
Format

Contains file header infor-
mation, such as the file
signature, file type, and
the minimum and maximum
file record sizes.

Standard Record
Header Format

Contains record informa-
tion, such as the unique
record identifier, the phy-
sical record size, and the
record status.

Standard Record
Trailer Format

Indicates whether the rec-
ord is malformed.

System Configuration
Block

Contains detailed infor-
mation about the System
Image.

System Date/Time
Structure

Contains information about
the system date/time to a
greater precision than 1
second.

System Definitions 26-5

Table 26-1

SYSTEM STRUCTURES
(Page 4 of 4)

 System Structure Definition

Terminal Output
Buffer

Used by the Shared Resource
Processor (SRP) Terminal
Management operations.
(See Chapter 17, "SRP Ter-
minal Management," for de-
tails on these operations.)

Timer Pseudointer-
rupt Block

Used by the SetTimerInt and
ResetTimerInt operations.
(See Chapter 33, "Timer
Management," for details on
these operations.)

Timer Request Block
Format

Controls the Realtime Clock
(RTC) services.

Variable Length
Parameter Block

Communicates parameters
when a program chains to
another program.

Video Control Block Contains all information
known to the operating
system about the video
display.

26-6 CTOS/VM Concepts

METHODS OF OBTAINING SYSTEM INFORMATION

Certain operations provide access to particular
system structures. These operations and the sys-
tem structures you can access are as follows:

Operation System Structure

GetpASCB Application System Control
Block

GetpStructure Returns the memory address
of various system struc-
tures. (For details, see
the CTOS/VM Reference
Manual, Chapter 3, "Opera-
tions.")

GetUCB User Control Block

GetVHB Volume Home Block

QueryDCB Device Control Block

You should use the GetpStructure operation to
access the system structures not included in the
list above. (See the CTOS/VM Reference Manual,
Chapter 3, "Operations," for a description of
GetpStructure.)

Programs that access a system structure directly
are not compatible with operating systems exe-
cuting in protected mode.

System Definitions 26-7

As an example, historically, the Video Control
Block (VCB) could be accessed directly by its mem-
ory address (244h) in low memory. This required a
segment address of 0. The resulting logical
address thus was

0:244

In protected mode, this address implies a selector
(SN) of 0. An SN with a value of 0, however, is
invalid. (For guidelines on writing protected
mode programs, see the Engineering Update for 2.0
CTOS/VM.)

GetpStructure provides you with a valid memory
address compatible in real mode and in protected
mode.

26-8 CTOS/VM Concepts

OPERATIONS

The system information operations are described
below. (See the CTOS/VM Reference Manual, Chapter
3, "Operations," for a complete description of
each operation.)

CLUSTER MANAGEMENT

GetClusterStatus
Returns usage statistics for each
communications line and for the
workstations attached to it.

DISK MANAGEMENT

QueryDCB Copies the Device Control Block
(DCB) of the specified device to
the specified memory area.

FILE MANAGEMENT

GetUCB Copies the User Control Block
(UCB) for the current user number
to the specified area.

GetVHB Copies the VHB of the specified
device to the specified memory
area.

System Definitions 26-9

OPERATING SYSTEM

CurrentOSVersion
Determines the version of an oper-
ating system. CurrentOSVersion
should be used instead of
OSversion for programs that run on
earlier versions of the operating
system.

EnterBootrom Transfers control to the beginning
of the boot ROM.

FilterDebugFInterrupts
Directs the Debugger to pass
through Debugger interrupts (sin-
gle step, breakpoint) on a per
process basis by sending messages
to an exchange.

FProcessorSupportsProtectedMode
Returns TRUE on an 80286 or sub-
sequent microprocessor (a proces-
sor capable of protected mode
execution). It returns FALSE on
an 8086 or 80186 microprocessor.

FProtectedMode Returns TRUE if the calling pro-
gram is executing in protected
mode. It returns FALSE if the
program is executing in real mode.

FRmos Returns TRUE if the calling pro-
gram is executing in real mode and
the operating system is executing
in protected mode.

FRmosUser Is the same as FRmos, except
FRmosUser allows the specification
of a user number.

26-10 CTOS/VM Concepts

GetCoProcessorStatus
Reports if either a math coproces-
sor or a software floating-point
emulator, such as the Math Server,
is present (to execute floating-
point instructions).

GetFRmosUser Is used to determine a client's
execution mode. GetFRmosUser sets
the fRmos flag to TRUE if the
specified user number is executing
a real mode program. Otherwise,
the flag is set to FALSE.

GetNodeName Obtains the node name of the local
node where this request is issued.

GetPartitionStatus
Returns status information about
the specified application parti-
tion and the program currently
executing in it.

GetpASCB Returns the address of the ASCB of
the application partition in which
the program is executing.

GetpStructure Returns the memory address of an
operating system structure.

OsVersion Is the same as CurrentOSVersion.
CurrentOSVersion, however, should
be used for programs running on
earlier versions of the operating
system.

QueryCoprocessor
Reports if a coprocessor, such as
the Math Server, is present (to
execute floating-point instruc-
tions).

System Definitions 26-11

QueryLdtr Returns the GDT selector that
identifies the specified user num-
ber's (LDT). If the user number
does not have an LDT, QueryLdtr
returns the null selector.

SetpStructure Provides controlled write access
to selected fields of certain
system data structures that may
legitimately be modified by user
programs running in protected mode.

USER NAME MANAGEMENT (name entered at signon)

GetWsUserName Returns the user name that is
signed on at the specified cluster
workstation.

GetUserStatus Copies user status information to
the specified memory area.

SetWsUserName Stores the user SignOn name of the
workstation.

VIDEO

QueryVideo Performs the same function as
QueryVidHdw, except QueryVideo
fills in all fields in the speci-
fied memory area.

QueryVidHdw Places information describing the
level of video capability of a
workstation in the specified mem-
ory area.

Multiprogramming 27-1

27 MULTIPROGRAMMING

This chapter serves as an introduction to in-
formation that will become more important to you
as you gain familiarity with the more immediate
and practical operating system concepts described
in previous chapters. The chapters that follow
describe the operating system's multiprogramming
capabilities.

Multiprogramming allows several programs to be in
memory at once. In addition to independent exe-
cution scheduling, these programs are provided the
ability to communicate with each other.

For example, it is possible for a program to
communicate with

•	 other	run	files	within	the	same	partition

•	 programs	in	other	partitions

•	 programs	 at	 other	 workstations	 within	 a	
cluster

•	 other	 processors	 of	 the	 Shared	 Resource	
Processor (SRP)

•	 programs	at	remote	nodes

The multiprogramming chapters describe those
events, transparent to you, that allow multi-
programming to take place. As an example, your
program can request to write to a file. By using
the appropriate write operation, you can have your
output written to the file you specify. A status
code is returned to your program, indicating the
success or failure of this operation.

27-2 CTOS/VM Concepts

In a multiprogramming environment, the following
are just a few of the events that take place as a
result of your program request:

•	 The	 request	 is	 communicated	 to	 the	 file	
system by means of interprocess communi-
cation (IPC) and Kernel primitives.

•	 The	 file	 system	 manages	 access	 to	 the	
specified file, performs the requested
service (sends output to the file), and
responds to your program by means of IPC
and Kernel primitives.

•	 Underlying	 these	 events,	 process	 manage-
ment is at work, scheduling the execution
activities of your program, the file
system, and all other system processes
that are competing with each other for
processing time.

The multiprogramming subjects and a reference to
the chapter in which each is described are as
follows:

•	 Processes:	 A	 process	 is	 an	 independent	
thread of execution along with the hard-
ware context (that is, the processor
registers) necessary to that thread. One
or more processes are created each time a
program is executed. Certain operations
manipulate processes, allowing you to
create, prioritize, and obtain informa-
tion about them for future programming
reference. (See Chapter 28, "Process
Management.")

Multiprogramming 27-3

•	 IPC:	 IPC	 is	 the	 core	 to	 communication	
among processes. Chapter 29 describes
the IPC concepts of messages and ex-
changes and the relationships of these
concepts to processes. (See Chapter 29,
"Interprocess Communication.")

•	 Inter-CPU	 Communication	 (ICC):	 ICC	 is	
the method by which messages are passed
between processor boards on the SRP.
(See Chapter 30, "Inter-CPU Communica-
tion.")

•	 System	 Services:	 System	 services	 act	 as	
managers of resources that can be ac-
cessed by application programs or other
system services. Chapter 31 describes
how system services work and includes
guidelines for writing system services.
(See Chapter 31, "System Services
Management.")

•	 Program	 and	 Partition	 Management:	 Chap-
ter 32 describes how the operating system
manages its memory resource. It de-
scribes how programs are loaded into
memory and how they exit. It further
describes the operations that can be used
by a partition managing program to create
and remove partitions under its manage-
ment. (See Chapter 32, "Program and
Partition Management.")

•	 Timer	 Management:	 Timer	 management	
describes the Realtime Clock (RTC) and
the Programmable Interval Timer (PIT).
(See Chapter 33, "Timer Management.")

Process Management 28-1

28 PROCESS MANAGEMENT

PROCESS

A process is a single thread of program execution.
It can be perceived from three points of view:

•	 The	 end	 user	 sees	 two	 processes	 on	 the	
Executive screen.

•	 The	 programmer	 creates	 additional	 pro-
cesses to perform separate functions
within a single program by making the
appropriate operating system calls.

•	 The	 operating	 system	 schedules	 processes	
to use the processor.

END USER

As an end user, you can actually see two processes
at work in the Executive. When you type into an
Executive form, the main program process accepts
your keystrokes. At the same time, a second pro-
cess updates the clock. Whether or not you type,
the clock continues to be updated.

PROGRAMMER

As a programmer, you perceive a process in terms
of how you create an additional process in a
multiprocess program like the Executive.

When the Executive run file is loaded into memory,
the main program starts executing. At some point,
it calls CreateProcess, which starts up the clock
process. Each process executes as a separate
thread. Global variables allow the main program
and the clock to share the same data.

28-2 CTOS/VM Concepts

Typically, processes share the same code but have
separate stacks. The degree and method of data
sharing are program-specific.

OPERATING SYSTEM

The operating system Kernel views the two Execu-
tive processes as units competing for processor
time. It is the operating system's responsibility
to manage use of the processor among all existing
processes.

PROCESS MANAGEMENT

The operating system's process management facility
always allocates the processor to the highest
priority process currently requesting it. In the
Executive for example, the clock process runs at a
higher priority than the process accepting user
keystrokes to ensure that the clock gets updated.

Scheduling is driven by system events. Whenever
an event, such as the completion of an I/O
operation, makes a higher priority process
eligible for execution, rescheduling occurs imme-
diately.

This scheduling technique is called event-driven
priority scheduling. It reduces overhead and
provides for a more responsive system than
techniques that are entirely time-based.

To give multiple programs with the same priority a
fair share of system resources, processes with
priorities in a predefined range are optionally
subject to time slicing.

Process Management 28-3

CONTEXT OF A PROCESS

The context of a process is the collection of all
information about a process. The context has both
hardware and software components.

The hardware context of a process consists of
values to be loaded into processor registers when
the process is scheduled for execution. This
includes the registers that control the location
of the process's stack.

The software context of a process consists of its
default response exchange, the priority at which
it is scheduled for execution, and the interrupt
vectors pointing to software interrupt handlers
that the program uses.

The root structure containing the combined hard-
ware and software context of a process is a system
data structure called the Process Control Block
(PCB).

When a process preempts another process of lower
priority, the operating system performs a context
switch by saving the hardware context of the
preempted process in that process's PCB. When the
process is rescheduled for execution, the operat-
ing system restores the content of the registers,
thus permitting the process to continue as though
it were never interrupted.

28-4 CTOS/VM Concepts

PROCESS PRIORITIES AND PROCESS SCHEDULING

The priority of a process indicates the process's
importance relative to other processes and is
assigned at process creation. Priorities range
from a high of 0 to a low of 254. Priorities and
their normal (and recommended) uses are as fol-
lows:

Priority Use

 0-9 Operating system

10-64 System services

65-254 Application programs

 255 Null process (see below)

The scheduler maintains a queue of the processes
that are eligible to execute on a priority basis.

Rescheduling occurs when a system event makes a
process executable because it has a higher pri-
ority than the one currently executing. Examples
of system events include an interrupt from a
device controller, X-Bus module, timer, or real-
time clock, or a message sent from another process.

In most cases, the time interval between events is
determined by the duration of a typical I/O
operation. A process can lose control involun-
tarily only to a process of higher priority.

If a system event causes a message to be sent to
an exchange at which a higher priority process is
waiting, the operating system performs a context
switch and reallocates the processor to execute
the higher priority process.

Process Management 28-5

When a system event occurs that makes a process
eligible to execute, that process receives control
of the processor until one of the following
occurs:

•	 Another	 process	 with	 a	 higher	 priority	
preempts its execution.

•	 It	 voluntarily	 relinquishes	 control	 of	
the processor usually by calling the
Kernel primitive, Wait.

If no other process has work to perform, the null
process is given control of the processor. The
null process, which is always ready-to-run, exe-
cutes at priority 255, lower than any real
process.

In real mode, the null process examines the
checksum value the operating system creates for
its code segment when it is bootstrapped. The
null process ensures that the checksum is valid.
A variance in checksums indicates that a program
has modified code and results in the operating
system crashing with status code 91 ("Operating
system checksum error").

In protected mode, the null process exists only to
simplify the algorithm of the operating system
scheduler.

To give multiple programs with the same priority a
fair share of system resources, processes with
priorities in a predefined range are subject to
time slicing. Processes within this range that
have the same priority are executed in turn for
intervals of 100 milliseconds each in repeating
cycles. The priority range is a system build
parameter.

28-6 CTOS/VM Concepts

PROCESS STATES

A process can exist in one of four states: run-
ning, ready, waiting, and suspended.

A process is in the running state when the
processor is actually executing its instructions.
Only one process can be in the running state at a
time. Any other ready-to-run processes are in the
ready state. Any number of processes can be in
the ready state at the same time.

A process is in the waiting state when it waits at
an exchange for a message to synchronize execution
with other processes. A process enters the wait-
ing state when it voluntarily issues the Kernel
primitive, Wait, which specifies an exchange at
which no messages are currently queued. Any
number of processes can be waiting at a time.
(See Chapter 29, "Interprocess Communication," for
details.)

As soon as the running process waits, the highest
priority process in the ready state is placed in
the running state.

If a process is suspended, it is also placed in
either the ready or waiting states, but it is
never placed in the running state. A process is
suspended, for example, if it is subject to time
slicing and its time slice runs out before it has
completed executing.

The relationship among process states is shown in
Figure 28-1. Table 28-1 describes the transitions
between process states and the events causing the
transitions.

Process Management 28-7

 Figure 28-1. Process States

Table 28-1
PROCESS STATE TRANSITION

 Transition

EventFrom To

Running Waiting A process executes a Wait but
no messages are at the ex-
change.

Waiting Ready/ Another process sends a message
to the exchange at which a
process is waiting.

Running Ready A higher priority process
leaves the waiting state and
preempts this process.

Ready Running All higher priority processes
enter the waiting state.

28-8 CTOS/VM Concepts

OPERATIONS

The process management operations are described
below. Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

CreateProcess Creates a new process and schedules
it for execution.

ChangePriority Changes the priority of the calling
process.

ChangeProcessPriority
Changes the priority of a process
specified by the process ID.

SetDeltaPriority
Allows the dynamic changing of a
process priority based on the
memory partition it is executing
in. SetDeltaPriority is used only
by partition managing programs,
such as the Context Manager.

SetDispMsw287 Directs the Kernel to set the ma-
chine status word on every process
context switch. (SetDispMsw287 is
used by software that manages or
emulates the Math Coprocessor only
on 80286 or 80386 microprocessor-
based operating systems.)

RescheduleProcess
Moves a process in front of all
other processes of the same pri-
ority on the run queue.

QueryProcessNumber
Allows a process to determine its
own process ID.

Interprocess Communication 29-1

29 INTERPROCESS COMMUNICATION

The Interprocess Communication (IPC) facility
synchronizes process execution and information
transmission between processes through the use of
messages and exchanges. A process can communi-
cate with another process in its own partition or
in another partition.

AN IPC EXAMPLE

When you write a statement in your program, like

erc := OpenFile(ADS fh, ADS lsFileSpec[1],
lsfileSpec.len, NULL, 0, 'mr');

your purpose might be to use the file handle (fh)
returned to refer to the open file in a sub-
sequent read or write statement. You assume that
the statement will just work.

What you are actually doing is using the request
procedural interface, one of the most common
applications of IPC. A request procedural inter-
face is an operating system routine that uses IPC
to communicate the requested information in the
statement you wrote to the file system service.
IPC is used again to return the response infor-
mation (file handle) from the file system to your
program.

Your program is the client. Any program, in-
cluding another system service, can be a client if
it makes a request of a system service.

IPC provides the means by which a client and a
system service communicate with each other. The
communication is in the form of a special IPC
message called a request block. The messenger
facilitating the communication is the operating
system Kernel.

29-2 CTOS/VM Concepts

WHAT REALLY HAPPENS

When your program calls OpenFile, your program
enters the operating system's request procedural
interface routine. (See Figure 29-1.)

Figure 29-1. Interaction of Client and System
Service Processes

REQUEST PROCEDURAL INTERFACE

The request procedural interface

1. builds the request block message for
OpenFile in the client process's memory,
copying information provided in the OpenFile
statement

2. calls Request to route the request block to
the system service exchange

Interprocess Communication 29-3

3. places the client in a wait state at its
default response exchange

(For details, see "Using the Request Procedural
Interface," later in this chapter.)

SYSTEM SERVICE

The system service waits at its service exchange
for request blocks requesting its service. (See
Figure 29-1.) Upon receipt of the request block,
the system service verifies the information in the
request block message.

If the information is valid, the system service
performs its service and answers the client's re-
quest by filling in the request block with its
response and a normal status code (erc). If the
request is invalid, however, it places a status
code indicating an error in the request block.

Upon completion Of these functions, the system
service calls Respond to route the request block
back to the client's exchange. The client's wait
is satisfied, and it is ready to execute its next
instruction.

Figure 29-2 compares the processing flow of the
client process to the system service process.

SUMMARY

The request procedural interface uses IPC to send
your request to the system service. You assume
the information you requested will be available to
use in your next program instruction.

29-4 CTOS/VM Concepts

Figure 29-2. Processing Flow of Client and System
Service Processes

The request procedural interface is a convenient
way to access system services. It is compatible
with BASIC, COBOL, FORTRAN-86, PL/M, C, and
Pascal, as well as assembly language. For this
reason, it is a common IPC application. IPC has
other applications as well.

OTHER IPC APPLICATIONS

To a great extent, the power of the operating sys-
tem results from its IPC facility. IPC supports
three multiprogramming capabilities:

•	 communication

•	 synchronization	

•	 resource	management

Interprocess Communication 29-5

COMMUNICATION WITHIN AN APPLICATION PARTITION

Communication, the most elementary interaction
between processes, is the transmission of data
from one process to another by means of an
exchange. Figure 29-3 shows an example of commu-
nication. Process A and Process B are executing
within the same application partition. Process A
sends a message to Exchange X, and Process B waits
for a message at that exchange.

Figure 29-3. Communication Between Processes

COMMUNICATION BETWEEN APPLICATION PARTITIONS

IPC is used in a special way by application
programs that want to communicate with programs in
other application partitions. This is done using
the Intercontext Message Server (ICMS).

The requesting application program sends an IPC
message to ICMS. ICMS, in turn, uses IPC to for-
ward the message to the receiving program. If the
receiving program is swapped out of memory, ICMS
holds the message until the receiving program is
resident again to accept it.

29-6 CTOS/VM Concepts

Figure 29-4 shows how IPC is used with ICMS. (For
details on ICMS, see the Context Manager/VM Man-
ual.

Figure 29-4. How IPC Is Used with ICMS

SYNCHRONIZATION

Synchronization is the means by which a process
ensures that a second process has completed a
particular item of work before the first process
continues execution. Synchronization between pro-
cesses and the transmission of data between pro-
cesses usually occur simultaneously.

Interprocess Communication 29-7

As shown in Figure 29-5, Process A sends a message
to Exchange Y, requesting that Process B perform
an item of work. Process A then waits at Exchange
Z until Process B has completed the work. This
synchronizes the continued execution of Process A
with the completion of an item of work by Pro-
cess B.

Figure 29-5. Synchronization

RESOURCE MANAGEMENT

In a multiprogramming environment, resource man-
agement is the means of sharing resources among
processes in a controlled way. For example, sev-
eral processes may need to use the printer; how-
ever, only one process can use the printer at a
particular time.

One way to control a resource is to establish a
process to manage it. Then, only the managing
process accesses the resource directly. Other
processes access the resource indirectly by
sending messages to the process that performs the
chosen function. System service processes, which
manage resources such as files, devices, and
memory, are implemented by means of an analogous
mechanism.

29-8 CTOS/VM Concepts

As an example of resource management, a pool of
buffers may be available in a partition to be
shared by processes performing I/O. When a buffer
is not in use, a message indicating the number of
the available buffer can be queued at an exchange
set up to manage allocation of the buffers.

As shown in Figure 29-6, Process A waits at the
exchange, picks up a message indicating that
buffer 1 is available, and proceeds to use buffer
1. Process B waits at the exchange and is allo-
cated buffer 2. Process C waits and is allocated
buffer 3, the last available buffer. Then, when
Process D waits, no buffer is available. Process
D, therefore, must wait at the exchange until one
of the processes using a buffer completes and
returns a buffer available message back to the
exchange.

WHY UNDERSTAND IPC?

You can write statements like the OpenFile example
at the beginning of this chapter, and IPC will
work for you automatically.

At some point, however, you may want use some more
advanced programming techniques to increase the
efficiency of your program or to write your own
system service. In these cases, you need to
understand the mechanism behind IPC.

REQUEST CODES

A request code is a 16 bit value that uniquely
identifies a chosen system service operation. For
example, the request code for the OpenFile opera-
tion is 4.

Interprocess Communication 29-9

Figure 29-6. Buffer Management

The request code is used in IPC both to route a
request to the exchange of the appropriate system
service and to specify which of its several functions
the request refers to.

If you are writing a system service, you need to
assign request codes to the requests you define to
be performed by that service.

29-10 CTOS/VM Concepts

The operating system has a number of built-in
system services of its own, such as the file
system and keyboard. Request codes for operating
system requests are listed in Appendix D of the
CTOS/VM Reference Manual.

There are 64K possible request codes divided into
16 byte request levels of 4K bytes each. To use
the request procedural interface and validity
checking structures, a request must be defined by
a request code in an even-numbered level.

The request levels are shown in Table 29-1.
Levels 0 through B are reserved for internal
use.

NOTE: You can reserve request codes in Level A or B by contacting
Convergent Technologies, Technical Support.

Level 0 must always be linked into the operating
system, and it must contain definitions for all
requests used by the operating system up to the
point at which system initialization is complete.
Levels 1 through F can be loaded at system boot
time from one or more files contained on the
system disk.

Initialization request structures also include
tables for the system requests used for termi-
nation, abort, and swapping. System requests are
defined by odd-level request codes. (For details
on system requests, see Chapter 31, "System Ser-
vices Management.")

Interprocess Communication 29-11

Table 29-1

REQUEST CODE LEVELS

Level Hexadecimal Values

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0000 to 0FDF and FFE0 to FFFF
1000 to 1FFF
2000 to 2FFF
3000 to 3FFF
4000 to 4FFF
5000 to 5FFF
6000 to 6FFF
7000 to 7FFF
8000 to 8FFF
9000 to 9FFF
A000 to AFFF
B000 to BFFF
C000 to CFFF
D000 to DFFF
E000 to EFFF
F000 to FFDF

INTERPROCESS COMMUNICATION (IPC) COMPONENTS

The basic components of IPC are the

•	 Kernel	primitives

•	 exchanges

•	 message	(usually	a	request	block)

The Kernel primitives are used to send and receive
messages.

Actually, the Kernel primitives are inherently
part of the Kernel's code: calling a primitive
wakes up the Kernel to perform some action.

29-12 CTOS/VM Concepts

The Kernel acts as a messenger by sending messages
to their appropriate destinations. When a system
service waits to receive a message at its desig-
nated exchange, the Kernel checks to see if any
messages are there to be serviced.

The message conveys information and provides syn-
chronization between processes. A 4 byte data
item is communicated between processes. This data
item is usually the memory address of a larger
data structure that is called the message.

A message is actually sent to an exchange rather
than directly to a process. An exchange can be
thought of as serving the function of a post
office where postal patrons (processes) go to mail
(send) letters (messages) or pick up (wait/check
for) letters.

In the same way that the postal patron drops a
letter in the mail box and then walks away
trusting that the letter will be delivered, a pro-
cess sends a message and then continues executing
without further regard.

A postal patron who is expecting an important
letter can periodically go to the post office to
check whether it has arrived. If the letter is
especially important, the patron can wait in the
post office for the letter to arrive.

A process has analogous mechanisms* available when
it expects to receive a message. It can check
periodically whether a message is posted at
(queued on) an exchange, or it can wait at the ex-
change for the arrival of a message. Because
computers are much faster than the postal service,
it is usually more appropriate to wait for a
message than to check for its arrival.

A request block is a special type of message for-
matted according to specific conventions and used
by all interprocess communications to the operat-
ing system.

Interprocess Communication 29-13

THE KERNEL PRIMITIVES

KERNEL PRIMITIVES FOR SENDING A MESSAGE

The Kernel primitives for sending a message
include

•	 Request

•	 Respond

•	 Send

•	 ForwardRequest

•	 RequestDirect

(Note that RequestRemote is an additional Kernel
primitive that is used to send a message to a re-
mote processor on the SRP. This operation is de-
scribed in Chapter 30, "Inter-CPU Communication.")

Request and Respond

Request is used by a client to direct a request to
a system service. Respond is used by system ser-
vices to respond back to the client. To provide a
meaningful environment, each Request must be
answered by a matching Respond.

The Request primitive directs a request for a sys-
tem service from a client process to the service
exchange of the system service process. (See Fig-
ure 29-7.) Before the Request is issued, the data
required for the system service must be arranged
in a request block in the client's memory.

A request block is a special type of message for-
matted according to specific conventions and used
by all IPCs to the operating system.

29-14 CTOS/VM Concepts

Figure 29-7. Request Primitive

Request does not accept an identification of an
exchange as a parameter. It uses the request code
of the request block as an index into an operating
system request routing table to determine the
appropriate service exchange. Request routing
tables reside in the System Image and translate
request codes to service exchanges.

The Respond primitive is used by a system service
process to send an answer to a request back to the
response exchange of a client process. (See
Figure 29-8.)

Interprocess Communication 29-15

Figure 29-8. Respond Primitive

The only parameter to the Respond primitive is the
memory address of the client's request block.
That is, the system service must use (as a param-
eter to Respond) the same memory address that the
client used as a parameter to Request. The ex-
change to which the response is directed is deter-
mined by the response exchange field of the
request block.

29-16 CTOS/VM Concepts

Send

The Send primitive, unlike Request or Respond,
accepts any 4 byte field as a parameter. This is
usually, but not necessarily, the address of a
message. Send does not require a formalized re-
quest block message, nor does it require a match-
ing response.

Send should be used by processes within the same
partition (user number).

NOTE: Send should not be used to send messages between programs in
different application partitions. This is done in a special way by ICMS. For
details, see "Communication Between Application Partitions," earlier in this
chapter.

Figure 29-9 shows how Send works in the com-
munication between Process A and Process B in the
same partition. Process A sends a message to
Exchange X, and Process B waits for a message at
that Exchange.

 Figure 29-9. Send Primitive

Interprocess Communication 29-17

ForwardRequest and RequestDirect

The ForwardRequest and the RequestDirect prim-
itives are used by special types of system
services called filters, which intercept messages
destined to other system services. (See
"Filters," later in this chapter. For details on
how ForwardRequest and RequestDirect are used by
filters, see Chapter 31, "System Services Manage-
ment.")

KERNEL PRIMITIVES FOR RECEIVING A MESSAGE

The Kernel primitives for receiving a message are
wait and Check.

Wait

The Wait primitive checks whether a message is
queued at the specified exchange. System services
wait at system service exchanges until their
services are requested. Clients wait at exchanges
to synchronize their execution with the completion
of a system service they request. (See Figure
29-10.)

 Figure 29-10. Wait Primitive

29-18 CTOS/VM Concepts

In the context of all Kernel primitives for send-
ing messages except Send [that is, Request,
Respond, ForwardRequest, RequestDirect, and
RequestRemote (described in Chapter 30)], the
message queued at the exchange is always a request
block.

The details on how a process waits at an exchange
to receive messages are described and illustrated
in detail in the following sections, later in this
chapter:

•	 "Sending	a	Message	to	an	Exchange"

•	 "Waiting	for	a	Message	at	an	Exchange"

The request procedural interface uses the Wait
primitive rather than Send.

Check

The Check primitive checks whether a message is
queued at the specified exchange. If one or more
messages are queued, the message that was queued
first is removed from the queue and its memory
address is returned to the calling process. If no
messages are queued, status code 14 ("No message
available") is returned.

Unlike the Wait primitive, the Check primitive
never causes the calling process to wait.

(For details and examples of how to use the Check
primitive, see "Accessing System Services," later
in this chapter.)

THE EXCHANGE

A message is actually sent to an exchange rather
than directly to a process. An exchange functions
as a message center.

Interprocess Communication 29-19

An exchange is referred to by a unique, 16 bit
integer. An exchange consists of two first-in,
first-out queues. One is a queue of processes
waiting for a message,- the other is a queue of
messages that are ready for processes to poll.

Note that either messages or processes (not both)
can be queued at an exchange at any given time.

Only the address of the message, not the message
itself, is sent to an exchange. This minimizes
overhead. Therefore queueing a number of messages
at the same exchange requires very little execu-
tion time or memory. IPC places no restriction on
the size and content of the message. The re-
ceiving process must be programmed to use IPC to
wait or to poll (check) for the availability of a
message.

TYPES OF EXCHANGES

A response exchange is the exchange at which the
client waits for the system service's response.
The response exchange field in the request block
directs the response to the correct exchange.

The default response exchange is a special case of
response exchange. This exchange is automatically
used as the response exchange whenever a client
process uses the request procedural interface to a
system service. A run file is assigned a default
response exchange when it is first loaded into
memory. Each new process created in a program
must be allocated a unique default response
exchange.

29-20 CTOS/VM Concepts

Direct use of the default response exchange (that
is, using it when you are not using the request
procedural interface) is not recommended. The use
of the default response exchange is limited to
requests of a synchronous nature. That is, the
client, after specifying the exchange in a Re-
quest, must wait for a response before specifying
the exchange again in another Request.

A service exchange is an exchange that is assigned
to a system service at system build or when the
system service is dynamically installed. The
system service waits for requests for its services
at its service exchange.

EXCHANGE ALLOCATION

Exchanges are allocated in three ways:

•	 Exchanges	 for	 certain	 built-in	 system	
services are allocated at system build.

•	 Exchanges	 can	 be	 dynamically	 allocated	
and deallocated using the AllocExch and
DeallocExch operations.

•	 A	 unique	 default	 response	 exchange	 must	
be allocated for each new process cre-
ated in a program that will use the re-
quest procedural interface. A process
can determine the identification of its
own default response exchange using the
QueryDefaultRespExch operation.

Upon termination, the exchanges allocated to the
terminating program are deallocated.

Interprocess Communication 29-21

SENDING A MESSAGE TO AN EXCHANGE

When a process sends a message to an exchange, one
of two actions results at the exchange (see Figure
29-11):

•	 If	no	processes	are	waiting,	the	message	is	
queued.

•	 If	one	or	more	processes	are	waiting,	the	
process that was queued first is given
the message and is put in the ready
state. If this ready process has a high-
er priority than the sending process, a
context switch occurs, and the ready
process becomes the running process. The
sending process is placed in the ready
state and loses control until it once
again becomes the ready process with the
highest priority. [The process states
(ready, running, and waiting) are de-
scribed in Chapter 28, "Process Manage-
ment."]

After a message is queued at an exchange, the
sending process must not modify it. A system ser-
vice, for example, may have temporarily replaced
the response exchange in a waiting client's
request block with its own service exchange to
request a resource from another system service.

29-22 CTOS/VM Concepts

 Figure 29-11. Sending a Message to an Exchange

Interprocess Communication 29-23

WAITING FOR A MESSAGE AT AN EXCHANGE

When a process calls Wait and waits for a message
at an exchange, one of two actions results at the
exchange (see Figure 29-12):

•	 If	 no	 messages	 are	 queued,	 the	 calling	
process is placed in the waiting state,
and its Process Control Block (PCB) is
queued at the exchange until a message is
sent.

•	 If	 one	 or	 more	 messages	 are	 queued,	 the	
message that was queued first is removed
from the queue and its memory address is
returned to the process, which then
resumes execution.

Figure 29-12. Waiting for a Message at an
Exchange

29-24 CTOS/VM Concepts

EXCHANGE QUEUES

Either processes or messages, but not both, can be
added to a queue at an exchange at any given time.

Messages are queued using link blocks. A link
block is a 6 byte structure containing the address
of the message (or the message itself) in the
first 4 bytes and the address of the next link
block (if any) in the last 2 bytes.

Figure 29-13 shows how messages are queued at an
exchange.

Figure 29-13. Messages Queued at an Exchange

Processes are queued at an exchange by linking
through a field that is reserved for this purpose
in each PCB.

Interprocess Communication 29-25

Request blocks are self-describing and consist of

•	 a	standard	header

•	 control	 information	 specific	 to	 the	 re-
quest

•	 a	routing	code

•	 descriptions	of	the	request	data	items

•	 descriptions	of	the	response	data	items

STANDARD HEADER

The format of the standard request block header is
shown in Table 29-2.

Table 29-2

FORMAT OF A REQUEST BLOCK HEADER

Offset Field Size (bytes)

0
1
2
3
4
6
8
10

sCntInfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

1
1
1
1
2
2
2
2

29-26 CTOS/VM Concepts

wnere

sCntInfo Is the number of bytes of control
information. Control information
is the data after the request block
header and before the first request
address/size (pb/cb) pair.

RtCode Is a routing code placed in the
request block by the operating
system for routing requests. The
default value of this field is 0.

nReqPbCb Is the number of request address/
size pb/cb) pairs,

nRespPbCb Is the number of response address/
maximum size (pb/cbMax) pairs.

userNum Is a 16 bit integer that uniquely
identifies the client's partition
and the resources with which it is
associated.

 Each application partition has a
unique user number. The processes
in an application partition share
the same user number. A process
can obtain its user number by means
of the GetUserNumber operation.
(GetUserNumber is described in
Chapter 3, "Operations," in the
CTOS/VM Reference Manual.)

 If the userNum field contains 0,
the operating system substitutes
the user number of the client ini-
tiating the request.

Interprocess Communication 29-27

Figure 29-14 shows how processes are queued at an
exchange.

Figure 29-14. Processes Queued at an Exchange

THE MESSAGE

A message conveys information and provides syn-
chronization between processes. A 4 byte data
item is communicated between processes. This data
item is usually the memory address of a larger
data structure, which is called the message. The
interpretation of the 4 byte field is by agreement
of the sending and receiving processes. Typically
this field is the memory address of a request
block.

The message can be in any part of memory that is
under the control of the sending process. By
convention, control of the memory that contains
the message is passed along with the message.

29-28 CTOS/VM Concepts

A request block is a special type of message for-
matted according to specific conventions and used
by all interprocess communications to the oper-
ating system. It is a data structure provided by
the client, containing the specification and the
parameters of the desired system service. A re-
quest block contains a request code field, a
response exchange field, and several other fields;
IPC is used most commonly with messages in this
format.

This format is described in "Request Block For-
mat," which follows.

REQUEST BLOCK FORMAT

The Request primitive initiates the request for a
system service; the Respond primitive initiates
the response. This structure provides

•	 guaranteed	 matching	 of	 Requests	 and	
Responds

•	 opportunity	 to	 redirect	 requests	 for	
system services to other system services

•	 opportunity	 to	 redirect	 requests	 for	
system services to the master of a clus-
ter configuration or over CT-Net

The format of a request block is designed to pass
information between a client and a system service.
It provides for the transparent migration of
system services between standalone, cluster, and
network configurations.

Interprocess Communication 29-29

exchResp Is the response exchange of the
client. A special exchange called
the default response exchange is
allocated when a run file is loaded
into memory. It is used by the
request procedural interface and
should not be used explicitly. The
AllocExch operation should be used
to allocate exchanges.

ercRet Is the status code (erc) returned
by the system service.

rqCode Is a request code, a 16 bit value
that uniquely identifies the se-
lected system service.

 The request code is used both to
route a request to the appropriate
system service exchange and to
specify to that service which of
its several functions is being re-
quested.

CONTROL INFORMATION

Control information is specific to each request.
The sCntInfo field contains the number of bytes of
control information transmitted from the client to
the system service.

ROUTING CODE

The routing code (RtCode) field consists of 1 byte
that allows the Kernel and agents to route a
request from a program anywhere in the network,
even if the request is undefined in the client
process's workstation operating system. The
default value of this field is 0.

29-30 CTOS/VM Concepts

This field is important to you if you are defining
requests for a system service. (See "Routing
Requests," later in this chapter, for more infor-
mation about the RtCode field. Also see
Chapter 31, "System Services Management," for
details on defining requests for user-written
system services.)

REQUEST DATA ITEM

Each request data item descriptor consists of the
following:

•	 the	4	byte	memory	address	of	the	request	
data item

•	 the	2	byte	size	of	the	item

The total size (in bytes) of the request data item
descriptors is 6 times nReqPbCb. Request data
items are transmitted from client to system ser-
vice. As an example, a request data item can be a
name of a file to be opened.

RESPONSE DATA ITEM

Each response data item descriptor consists of the
following:

1. the 4 byte memory address of the area
into which the response data item is to
be moved by the system service

2. the 2 byte maximum allowable byte count
of the response data item

The total byte size of the response data item
descriptors is 6 times nRespPbCbMax. Response
data items are transmitted from system service to
client.

Interprocess Communication 29-31

A response data item is information that the sys-
tem service wants the client to know about, such
as the file handle (fh) returned by the OpenFile
operation or the number of bytes it wrote to the
client's buffer in a Write operation.

EXAMPLE REQUEST BLOCK

Figure 29-15 shows the request block for the Write
operation.

Figure 29-15. Request Block for the Write
Operation

29-32 CTOS/VM Concepts

Note that the request block header is the standard
format described in "Request Block Format," ear-
lier in this chapter. The Contents column shows
values for some of the request block fields, for
example:

•	 The	 request	 code	 (rqCode)	 for	 Write	 is	
36.

•	 The	 6	 bytes	 of	 control	 information	
(sCntInfo) consist of

- the file handle (fh) returned from a
previous OpenFile operation (2 bytes)

- the logical file address (lfa) of the
sector into which the data is to be
written (4 bytes)

•	 The	 routing	 code	 (RtCode)	 field	 contains	
0 until the request is issued. File
handle or file specification information
is defaulted to this field. (See "Rout-
ing by File Handle" and "Routing by File
Specification," later in this chapter,
for more information about this field.)

•	 A	 single	 request	 data	 item	 (nReqPbCb)	 is	
described by pBuffer/sBuffer.

- pBuffer is the memory address of a
buffer containing the data to be
written.

- sBuffer is the count of bytes to be
written.

Interprocess Communication 29-33

•	 A	 single	 response	 data	 item	 (nRespPbCb)	
is described by psDataRet/ssDataRet.

- psDataRet is the memory address of a
word into which the count of bytes
successfully written is returned.

- ssDataRet indicates the size of the
word (2 bytes) into which the count of
bytes written is returned. If the
request procedural interface is used,
it automatically supplies this value.

ACCESSING SYSTEM SERVICES

System services can be accessed

•	 indirectly,		by		the		request		procedural	
interface

•	 directly,	 	 by	 	 the	 	 Kernel	 	 primitives,	
Request and Wait (or Check)

USING THE REQUEST PROCEDURAL INTERFACE

Using the request procedural interface is con-
venient because it automatically constructs a
request block and issues the Request and Wait
primitives for you.

Except for the ReadAsync and WriteAsync proce-
dures, the request block is constructed on the stack
of the client process.

29-34 CTOS/VM Concepts

Most request procedural interfaces to system ser-
vices do not provide any overlap between compu-
tation by the client process and execution of the
system service. Because Read and Write are the
system services for which the overlap of com-
putation and execution of the system service is
most ideal, however, the operating system provides
the ReadAsync, CheckReadAsync, WriteAsync, and
CheckWriteAsync operations.

These operations allow the client to initiate an
I/O operation and then to compute and/or initiate
other I/O operations before checking for the
successful completion of the original one.

A special form of request procedural interface
called the alternate request procedural interface
provides a further convenience to clients that
want to request a service on behalf of a different
user number. The very nature of a system service
may require that it issue the same request repea-
tedly for different user numbers.

The alternate request procedural interface re-
quires only that you add the letters Alt and one
extra parameter (userNum) to the parameters in the
request statement. To write to a file, for exam-
ple, you would write a statement of the form

erc=AltWrite(userNum, fh, pBuffer, sBuffer,
lfa, psDataRet);

where userNum is the user number on behalf of which
the request is being issued.

USING THE KERNEL PRIMITIVES DIRECTLY

Using the Request and Wait (or Check) primitives
is more powerful than using the request procedural
interface: it allows a greater degree of overlap
between multiple I/O operations and computation by
the client process.

Interprocess Communication 29-35

For example, if you use the Check primitive in-
stead of Wait, your program can continue executing
some other function, such as updating the video to
reflect current statistics. Execution is asyn-
chronous with the return of the request.

To use the Kernel primitives directly, you must

•	 Call	 AllocExch	 to	 allocate	 a	 response	
exchange for the request block. You must
not use the default response exchange.

•	 Build	 a	 request	 block	 in	 your	 program.	 	
Static information, such as the request
block header, can be defined during
program initialization. (See "Request
Block Format," earlier in this chapter.)
Parameters, such as buffers that change
during program execution, must be updated
each time the block is reused.

•	 Call	 the	 Kernel	 primitives,	 Request	 and	
Wait (or Check).

NOTE: Save the request block response exchange in a variable. Do not
pass the response exchange in the request block as a parameter to a
Kernel primitive. Modification of an outstanding request block can result
in conflict if, for example, the request block is redirected to a filter.

If you need to synchronize program execution with
the return of the request block information, you
can call Request and then issue a Wait for the
response. Wait suspends process execution until
the request block returns.

If your program does not depend on the information
being returned immediately, you can issue Check
periodically. Check tells whether a request block
has returned without suspending program execution.

29-36 CTOS/VM Concepts

You may reach a point at which you must synchro-
nize execution with the return of the request
block. Your program, for example, may be per-
forming a heavy computation, occasionally needing
to write output to a disk file. When it is time
to write, you can call Wait, specifying the re-
sponse exchange in your request.

When the request block returns, you can safely use
it in another Write request. This may require
adjusting the addresses and sizes of the request
block buffers.

If more than one request block is outstanding, you
must ensure that it is the correct one. To do
this, your program can verify the request code or
the address of the request block. (The request
block address can be verified using the
FComparePointer operation.)

CLUSTER/NETWORK COMMUNICATION

The operating system provides for cluster work-
station as well as CT-Net configurations.

A cluster configuration consists of cluster work-
stations and a master. A cluster provides commu-
nication and resource sharing within a localized
area, such as a building.

A CT-Net configuration consists of nodes connected
by communications lines over long distances. A
node is a junction in a network (such as a work-
station or a processor board on the SRP), where
communication lines originate and/or terminate.
CT-Net, thus, provides for communication and
resource sharing over a wide area network.

Interprocess Communication 29-37

CLUSTER CONFIGURATION

The master of a cluster configuration can be a
master workstation or an SRP. The master provides
resources, such as file system management and
queue management, for all workstations in the
cluster. In addition, it concurrently supports
its own program processing as well as user-
written, multiuser system services.

Essentially the same operating system executes in
each cluster workstation as in a master work-
station or in the combined processors of the SRP.
A cluster workstation can have its own local file
system, or it can use the file management system
of the master.

In the cluster configuration, IPC is extended to
provide transparent access to system services that
execute at the master. While some services (such
as queue management, 3270 Terminal Emulator, and
database management) migrate to the master, others
(such as video management and keyboard management)
remain at the cluster workstation.

CLUSTER WORKSTATION AGENT

In a cluster workstation, however, if the function
is to be performed at the master, the request
block is queued at the exchange of the Cluster
Workstation Agent. The Cluster Workstation Agent
converts interprocess requests to interstation
messages for transmission to the master. The
Cluster Workstation Agent is included at system
build in a System Image that is to be used on a
cluster workstation.

29-38 CTOS/VM Concepts

MASTER AGENT

The System Image used at the master is built to
include a corresponding service process: the
Master Agent. The Master Agent reconverts the
interstation message to an interprocess request
that it queues at the exchange of the system
service on the master that actually performs the
intended function. Note that the operating system
request code routing table that translates request
codes to service exchanges at the master is nec-
essarily different from the table at the cluster
workstation. When the system service at the mas-
ter responds, the response is routed through the
Master Agent, the high-speed data link, and the
Cluster Workstation Agent before being queued at
the client's response exchange in the cluster
workstation that was specified in the request
block.

The format of request blocks is designed to allow
the Cluster Workstation Agents and Master Agents
to convert between interprocess requests and in-
terstation messages very efficiently and with no
external information. Because request blocks are
completely self-describing, the agents can trans-
fer requests and responses between the master and
cluster workstations without any knowledge of what
function is requested or how it is to be
performed.

CT-NET

CT-Net extends the CTOS/VM resource sharing capa-
bility to permit sharing of system resources among
nodes in a network.

A system service, for example, can be installed at
a master and accessed by remote nodes over CT-Net
or by workstations in a localized cluster.

Interprocess Communication 29-39

CT-Net consists of two system services that issue
and execute requests on behalf of clients and
system services at local or remote network nodes.
These services are the Net Agent and the Net
Server.

The Net Agent receives requests destined for sys-
tem services located at remote nodes and forwards
these requests to the remote nodes.

The Net Server responds to requests from remote
Net Agents. The Net Server receives a request
block from the Net Agent, executes the request on
behalf of the remote client, and returns the re-
sponse to the originating Net Agent.

(For more information on the CT-Net environment
and network configurations, see the CT-Net Refer-
ence Manual.)

ROUTING BY FILE HANDLE

A request can be routed by handle. A handle is a
16 bit identifier assigned by a system service and
used to reference a resource. A file handle is
returned by the file system to refer to a file
opened by OpenFile. Future requests, such as Read
or Write, identify the open file by passing the
file handle back to the file system.

The file system sets all of the bits except the
high-order bit in the file handle.

A file handle returned over CT-Net from a remote
node has the high-order bit set by a Net Agent to
indicate that the file system returning it is
remote. Any request that references a file handle
with the high-order bit set can, thus, be routed
to the Net Agent.

29-40 CTOS/VM Concepts

RULES FOR ROUTING BY HANDLE

A request routed by file handle must adhere to the
following rules:

•	 If	 a	 client	 issues	 a	 request	 by	 file	
handle, the request must be defined to
include the handle in the first word of
the request block control information.
(See "Request Block Format," earlier in
this chapter.)

•	 If	a	system	service	issues	a	response	to	
return a file handle, the request must
be defined to return the handle in the
first address/size (pb/cb) pair of the
request block. (See "Request Block
Format," earlier in this chapter.)
OpenFile, for example, returns a handle.

THE FILE HANDLE

The bits in the file handle mean the following:

Bits Meaning

 15 The high-order bit identifies a
CT-Net handle if it is set. Any
request that uses a CT-Net handle is
routed to the Net Agent.

14 to 10 The next 5 bits identify the File
Processor on the SRP and the verify
code. The verify code is the number
of times that the master has been
rebooted.

Interprocess Communication 29-41

 9 to 0 The remaining bits identify the File
Control Block for the file.

 The Net Agent translates these bits
to a unique number. The Net Agent
uses this number to associate the
handle with a session and a remote
handle,

 A session is a connection between two
nodes initiated by the Net Agent.
When the Net Agent receives a request
routed by handle, it uses the number
to find the session and the remote
handle.

ROUTING BY FILE SPECIFICATION

Requests can be routed by file specification.
File specifications are described by address/size
(pb/cb) pairs in the request block. (See "Request
Block Format," earlier in this chapter.)

RULES FOR ROUTING BY SPECIFICATION

A request routed by file specification must adhere
to the following rules:

•	 Node	 names	 are	 from	 1	 to	 12	 characters	
long and can be any combination of alpha-
numeric characters. Each node must be
given a unique name and address.

 Two node names are reserved:

Name Meaning

local Is ignored. Other routing in-
formation is used.

master Route this request to the
master.

29-42 CTOS/VM Concepts

•	 A	 request	 can	 have	 a	 maximum	 of	 two	
file specifications. The first file
specification must be in the first request
pb/cb pair; the second (if any), in the
third pb/cb pair.

•	 If	 a	 file	 specification	 has	 a	 password	
associated with it, the password must be
specified by the pb/cb pair immediately
following the file specification. A second
instance of the file specification must
also have the password.

EXPANDING FILE SPECIFICATIONS

The Cluster Workstation Agent expands any incomplete
specifications before sending a request to the
master. (The master does not have a copy of the
User Control Block and therefore cannot expand the
specifications itself.)

Expanding a specification involves adding default
path information from the User Control Block. The
information that must be added depends on the type
of the specification.

File specifications are expanded as follows:

Specification
 Type Method of Expansion

FileSpec Expands everything to the left
of the file name, that is, the
de-fault file name prefix, the
de-fault directory, the default
volume, and the default node, for
example:

{node}[volname]<dirname>fileName

DevSpec Expands everything to the left
of the volume name, that is, the
default node, for example:

 {node}[volname]

Interprocess Communication 29-43

Specification
 Type Method of Expansion

DirSpec Expands everything to the left of
the directory name, that is, the
default volume and the default
node, for example:

{node}[volname]<dirname>

FileSpec2 The same as FileSpec, but the re-
quest contains two specifications
to expand.

FileSpecP2S2 The same as FileSpec, but the
specification occurs in the third
request pb/cb pair, instead of
the first.

THE ROUTING CODE

The routing code (RtCode) field is a 1 byte field
of the request block used by the Kernel and agents
to route requests. It determines

•	 whether	 the	 request	 is	 to	 be	 routed	 by	
specification or by handle

•	 for	requests	routed	by	specification,	the	
location of the specification in the
request block

•	 for	requests	routed	by	specification,	the	
method of expansion

When the request is issued, the routing code
(RtCode) field defaults to the Net Routing in-
formation. Net routing information is used to
define a file system request.

29-44 CTOS/VM Concepts

Table 29-3 describes the Net Routing information

Table 29-3

NET ROUTING INFORMATION

Value
(Decimal) Token Description

1 RW This request is a read or
write and may have to be bro-
ken up into small requests.

2 OpenFh This request opens a re-
source. The first response
pb/cb pair of this request
returns a handle that is used
later by other requests to
refer to this resource.

4 (Reserved)

8 SpecPW All file specification pb/cb
pairs are followed by pass-
word pb/cb pairs. If SpecPW
is set and there is no spe-
cification to expand (rSpec =
0 or rSpec > 5), the first
pb/cb pair is a password to
expand (for example,
ChangeOpenMode).

16 rFh Route this request by handle.
This handle was returned by a
request defined as OpenFh.

32 through 224 (See Table 29-4.) Combina-
tions of bits 5 through 7 of
the 1 byte RtCode field indi-
cate the methods of file
specification expansion. One
combination indicates closing
of a resource.

Interprocess Communication 29-45

Table 29-4 describes each bit combination of bits 5
through 7 of the RtCode.

Table 29-4

BIT COMBINATIONS FOR BITS 5 THROUGH 7 OF RTCODE

Value
(Decimal) Token Description

0 No specification routing.

32 DevSpec Route by DevSpec.

64 DirSpec Route by DirSpec.

96 FileSpec Route by file specifica-
tion.

128 FileSpec2 Route by file specifica-
tion. (The request con-
tains two of them.).

160 FileSpecP2S2 Route by file specifica-
tion in P2/S2.

192 CloseFh This request is closing a
resource that was opened
by a request defined
OpenFh.

224 (Reserved)

29-46 CTOS/VM Concepts

ROUTING REQUESTS

A client's request can be routed from anywhere in
a cluster or network, even if the request is un-
defined in the client process's workstation
operating system.

In a standalone workstation, the request block is
queued at the exchange of the system service that
actually performs the desired function.

Figure 29-17 shows the various paths over which a
request can be routed.

If the request is issued on the SRP the Kernel on
the processor board of the SRP first determines
which of seven SRP routing types is defined for
the request. (SRP routing types are described in
Chapter 30, "Inter-CPU Communication.") The rout-
ing type determines whether the request is local
or if it must be routed to a remote processor
board. See the first decision (branch) at the top
of Figure 29-17 (page 1 of 2).

If the request is issued on a workstation, the
first decision the Kernel makes is based on the
RtCode field in the request block. In Figure
29-17 (page 1 of 2), this is represented by the
decision just beneath the top (SRP routing) de-
cision. (For details, see "Routing Code" and
"Routing Requests," earlier in this chapter. Also
see Chapter 31, "System Services Management," for
details on defining requests for user-written
system services.)

Interprocess Communication 29-47

FILTERS

A filter process is a system service that is
interposed between a client and a system service
process so that they appear to be communicating
directly with each other. The filter does this by
substituting its exchange for that of the original
system service in the operating system request
routing table.

Filters can be used in many ways. A filter, for
example, might be used between the file management
system and its client process to perform special
password validation on all or some requests.
Filters are commonly used by the keyboard service
to filter keystrokes for various accounting
purposes.

The interaction of a filter process with a client
and system service process is shown in Figure
29-16.

Figure 29-16. Interaction of Filter Process with
Client and System Service Process

29-48 CTOS/VM Concepts

Figure 29-17. Request Routing (page 1 of 2)

Interprocess Communication 29-49

Figure 29-17. Request Routing (page 2 of 2)

29-50 CTOS/VM Concepts

Cluster Agents and Net Agents act as filters in
directing IPC messages to other destinations for
further IPC processing. Configurations involving
network routing require that a filter intercept
messages branching to local services as well as
those that are routed over the network.

(For details on filters, see Chapter 31, "System
Services Management.")

INTERPROCESS COMMUNICATION SUMMARY

Figure 29-18 summarizes interprocess communication
concepts presented in this chapter.

Figure 29-18. Interprocess Communication Summary

Interprocess Communication 29-51

1. The system service does a ServeRq to serve the request
code(s) at its exchange. (ServeRq is described in Chapter
31, "System Services Management." This causes the
Kernel to place the service exchange in the operating
system request code routing table at the offset of the
request code.

2. The system service process waits at its service exchange.
(The Kernel takes the system service process off the run
queue and places it in the ready state.)

3. The client process builds a request block in its memory.
(Note that the request procedural interface automatically
does this step and the next two steps.

4. The client calls Request. (The Kernel looks up the service
exchange in the operating system request routing table
and queues the request block address on the service
exchange message queue. The request can be routed over
various paths as described in "Routing Requests," earlier
in this chapter.)

5. The client issues a Wait. (The Kernel takes the client
process off the run queue and queues the client at its
response exchange. The response exchange is the default
response exchange if the request procedural interface is
used.)

6. The Kernel removes the request block address from the
service exchange message queue and passes it to the
system service process. The system service process is
placed in the ready state.

7. The system service performs its function and calls
Respond. The Kernel looks up the client's response
exchange in the request block and routes the request back
to the client.

8. The client process is given the request block and is placed
in the ready state. If it is the highest priority process, it is
given control of the processor, and it continues execution.

29-52 CTOS/VM Concepts

OPERATIONS

The IPC operations are described below. Opera-
tions are arranged in a most to least frequent use
order. (See the CTOS/VM Reference Manual, Chapter
3, "Operations," for a complete description of
each operation.)

Request Requests a system service by send-
ing a request block to the exchange
of the system service process.

QueryDefaultResponseExch
Allows a process to determine the
identification of its own default
response exchange.

Wait Removes the message (if any) from
the queue that was queued first at
the specified exchange. Wait
causes the calling process to be
placed into the waiting state if no
messages are queued.

WaitLong Similar to Wait but is used if the
process waiting is expected to be
waiting for a long time (more than
30 seconds).

AllocExch Allocates an exchange.

Respond Notifies a client process that
the requested system service was
performed by sending the request
block of the client process back to
the response exchange specified in
the request block.

Check Removes the first message queued
(if any) first at the specified
exchange. Check returns the status
code 14 ("No message available") if
no messages are queued.

Interprocess Communication 29-53

Send Sends the specified message to the
specified exchange.

RequestDirect Sends a request block to an
explicitly specified system service
exchange. Sending the request
block is done independently of the
default routing implied by the
request code in the request block.

ForwardRequest
Used by filter processes. This
operation forwards a request block
to another system service for fur-
ther processing. It does not re-
quire a matching Respond.

PSend Checks whether processes are queued
at the specified exchange. The
PSend Kernel primitive functions
identically to the Send primitive
but is used instead of Send for
interrupt handling.

DeallocExch Deallocates an exchange.

Inter-CPU Communication 30-1

30 INTER-CPU COMMUNICATION

The Inter-CPU Communication (ICC) facility pro-
vides for communication between CPUs among the
different processor boards on the Shared Resource
Processor (SRP). ICC is an extension of Interpro-
cess Communication (IPC). (See Chapter 29, "In-
terprocess Communication." See the CTOS System
Administrator's Guide for details on the types of
SRP boards and board naming.)

The SRP is compatible with the workstations at the
request level. Messages passed between a client
and a system service on the same processor board
use IPC. The Kernel routes the request to the
system service exchange; the system service
performs its function and responds to the client's
exchange, acknowledging service completion.
Figure 29-1 in Chapter 29 shows the request/
response model on a workstation. (This same model
is used for requests routed locally on a single
SRP processor board.)

When a client requests a system service, the Ker-
nel examines its request routing table to deter-
mine, for example,

•	 if	the	request	block	is	correctly	formed

•	 to	which	system	service	the	request	is	to	
be sent

These actions are taken in the case of ICC or IPC.
However, the destination to which the request is
sent determines if the request is handled as a
normal IPC message or if it is to be routed by
means of ICC.

30-2 CTOS/VM Concepts

ICC involves interboard routing or the passing
of the request and the response message between
processor boards. To accomplish this, ICC uses

•	 processor	 boards	 identified	 by	 slot	 num-
bers

•	 SRP	 routing	 type	 information	 in	 the	
operating system's request routing table

•	 an	 ICC	 Server	 Agent	 on	 each	 processor	
board, which issues requests on behalf
of a client on a different processor
board

•	 communication	 between	 processors	 over	 a	
high-speed bus

•	 linear	 pointers	 and	 linear	 offsets	 for	
interboard addressing

•	 Y-blocks	 and	 Z-blocks	 for	 storing	 copies	
of request blocks

•	 a	 request	 ring	 buffer	 and	 a	 response	
ring buffer in a CPU Description Table
(CDT) on each processor board

•	 a	doorbell	interrupt

SLOT NUMBER

At the hardware level, each processor in a system
is identified for ICC communications by a unique 8
bit slot number. Slot numbers range from a high
of 77h to a low of 20h.

Inter-CPU Communication 30-3

The slots in the base enclosure are numbered 70 to
77. As viewed from the back of the enclosure, 70
is the leftmost slot, slot 77 the rightmost. The
enclosure closest to the base enclosure has slots
60 through 67, the next enclosure in the line has
slots 50 through 57, and so on. (See the CTOS
System Administrator's Guide for details on slot
numbering conventions.)

The slot number is used by certain operating
system operations to identify a particular proces-
sor and by the hardware to accomplish interboard
addressing.

You can use the GetProcInfo and the GetSlotInfo
operations to retrieve such hardware information
and, thereby, explicitly control ICC routing. You
would use these operations if using one of the SRP
routing types defined below is not sufficient.

SRP ROUTING TYPES

Table 30-1 describes each of the SRP routing types
used to define requests on the SRP. If you are
writing a system service for the SRP, you will
need to include an SRP routing type in your system
service request definition(s). (For details, see
Chapter 31, "System Services Management.")

SRP LINEAR ADDRESSING

SRP linear addressing becomes important if you are
writing programs that will run on multiple boards.
For example, if a client requires a system service
located on a processor board other than the one
that the client is on, you cannot use equivalent
addresses in your program logic.

30-4 CTOS/VM Concepts

Table 30-1

SRP Request Routing Types
Page 1 of 2

Field Description

rLocal* The request is to be served on the
same board. The service exchange is
indicated by the service exchange
field in the operating system request
routing table.

The request is to be routed remotely,
however, if a file specification for
a remote board is included in the
request block. In this case, a file
system filter calls RequestRemote and
routes the request to the board
specified by a slot number in the
Master Processor global slot number
table.

rRemote* Same as rLocal if the request is
served locally. If the request is
not served locally, it is searched
for in the Master Processor global
slot number table.

When a system service calls ServeRq
during installation, ServeRq updates
the Master Processor global slot
number table to reflect the system
service's slot number. (For details
on system service installation, see
Chapter 31, "System Services Manage-
ment.")

*This type is frequently used.

Inter-CPU Communication 30-5

Table 30-1

SRP Request Routing Types
Page 2 of 2

Field Description

rMasterFP The request is to be routed to the
Master FP.

rHandle* The request is to be routed by an
indexed field in the file handle.

rFileId The first byte of control informa-
tion in the request block contains
the slot number of the board to which
the request is to be routed.

fMasterCp (Unused)

rLine# The request is to be routed to
the cluster Processor (CP) that
handles this line. This routing type
is used by the operation
MegaFrameDisableCluster.

Each CP has two lines. For example,
CP000 has lines 1 and 2; CP001 has
lines 3 and 4; and so on. (For
details, see Chapter 39, "Cluster
Management.")

*This type is frequently used.

30-6 CTOS/VM Concepts

LINEAR POINTER

The SRP describes structures to be read by the
Intel 80x86 family of processors and by multiple
boards using a linear pointer. A linear pointer
is a 4 byte quantity in which the most significant
byte is at the lowest address. A linear pointer
(for example the Motorola or IBM format) is
absolute, not segment-based.

LINEAR OFFSET

Like a linear pointer, a linear offset has the
most significant byte at the lowest address, but
it is a 2 byte quantity. The byte ordering is
opposite to the Intel 80x86 processor convention,
which puts the most significant byte at the
highest address. Linear offsets are often said to
be byte-swapped.

Linear offsets are used on the SRP to describe
structures that must be read by the Intel pro-
cessors and by multiple boards. A linear offset
within a structure is always taken to be the
offset relative to the base of the structure.

BLOCKS

Blocks are areas of memory allocated for ICC and
for cluster communication.

Y-blocks and Z-blocks are used for holding ICC
messages. A Z-block is used if the message can
fit into a small number of bytes; otherwise, a
Y-block is used. The size and number of these
blocks are determined at system initialization.
(See the CTOS System Administrator's Guide.)

Inter-CPU Communication 30-7

CPU DESCRIPTION TABLE

Each processor in an SRP contains a CPU Descrip-
tion Table (CDT). The CDT describes the processor
to other processors, contains the offsets of the
ring buffers used by other processors to send ICC
requests and responses, and contains some routing
information.

One processor description table, that of the Mas-
ter Processor, contains rRemote request code slot
number tables and tables used to translate line
and terminal numbers into particular slot number-
port number pairs. (See Table 4-5 in the CTOS/VM
Reference Manual for the format of the CDT.)

DOORBELL INTERRUPT

Each processor in an SRP can send an interrupt,
called a doorbell interrupt, to any other proces-
sor board in the system.

For example, during inter-CPU communication, the
Kernel on a processor board sends a doorbell in-
terrupt to alert the ICC Server Agent on the
target processor board that a request or response
has been registered in a ring buffer and, thus,
needs processing.

INTERBOARD ROUTING

Each processor board provides for sending and
receiving messages. In the description of inter-
board routing that follows, the actions for
sending messages and for receiving messages are
described separately.

30-8 CTOS/VM Concepts

HOW A MESSAGE IS SENT

Sending a message is summarized in Figure 30-1

Figure 30-1. How a Message Is Sent

Inter-CPU Communication 30-9

Sending Requests

In Figure 30-1, a client calls Request(pRq). The
Kernel uses the request code (Rq) as an index into
the routing table to determine the SRP routing
type. The routing type tells the Kernel where to
route the request. (For details, see "SRP Routing
Types," earlier in this chapter.)

Local Routing? If request routing indicates that
the request is to be served locally and a local
server exists, ICC is not used. The request is
routed using the normal procedures of IPC. (For
details, see Chapter 29, "Interprocess Communi-
cation.")

In Figure 30-1, pRq for a request served locally
is a logical memory address. (For details on
memory addresses, see Chapter 24, "Memory Manage-
ment.")

Off-board Routing? If request routing indicates
that the request is to be served off board, ICC is
used to send the request.

To send the request, the Kernel

1. Enters the client's return address into
the CDT request ring buffer on the re-
ceiving board.

 The ring buffer entry consists of 5 bytes
that describe the client's return ad-
dress: 1 byte defines the client board's
enclosure and slot number,- 4 bytes define
the client's request block linear ad-
dress.

2. Sends a doorbell interrupt to the receiv-
ing board.

30-10 CTOS/VM Concepts

Sending Responses

Figure 30-1 also shows sending responses.

A response to a request originated off-board must
be sent back to the client on the requesting
board.

The Kernel recognizes a response to be routed
off-board by the request block response exchange
number.

To return the off-board response, the Kernel takes
the following actions:

1. copies the pb/cb response buffers and a
status code to the client's request block
memory on the client's board

2. frees the Z-block (or Y-block) holding a
copy of the client's request block (in
the server's processor memory)

3. places the client's return address in the
CDT response ring buffer on the client's
board

4. sends a doorbell interrupt to the cli-
ent's board

HOW A MESSAGE IS RECEIVED

Receiving a message is summarized in Figure 30-2.

In Figure 30-2, the doorbell interrupt from the
sending board alerts the ICC Server Agent on the
receiving board that it has received an off-board
message in one of its CDT ring buffers.

The ICC Server Agent examines the ring buffer
entry to see if it is a request or a response.

Inter-CPU Communication 30-11

Figure 30-2. How a Message Is Received

Request?

If the ring buffer entry is a request, the ICC
Server Agent

1. Calculates the size of the request by
examining the size of the client's
request block memory. The ICC Server
Agent uses the size to reserve a Z-block
(or a Y-block) in the ICC board's
memory.

30-12 CTOS/VM Concepts

2. Copies the request block contents and
the client's return address into the
Z-block.

3. Calls Request, providing the memory ad-
dress of the Z-block (or Y-block).

 In Figure 30-2, Request(pZBlock) repeats
the sending requests procedure in Figure
30-1.

The Kernel on the receiving board routes the
request to the specified service exchange. The
message is processed using IPC.

Response?

If the ring buffer entry is a response, the ICC
Server Agent calls Respond (pRq) to alert the
Kernel on the receiving board to route the
response back to the client's local response ex-
change.

SENDING AND RECEIVING MESSAGES

Figure 30-3 shows the interaction of client A on a
Cluster Processor (CP) board and system service B
on a File Processor (FP) board.

In Figure 30-3, client A on the CP board requests
(Al) a service provided by system service B on the
FP board. The Kernel on the CP board places the
request block return address in the FP board's CDT
request ring buffer and rings the FP's doorbell.

Inter-CPU Communication 30-13

Figure 30-3. Interaction of Client and System
Service Using ICC

The ICC Server Agent on the FP board copies the
request block contents to a Z-block (or Y-block)
in the FP processor and calls Request (A1'). The
Kernel on the FP board examines Request (A1'), and
sends it to system service B's service exchange,
satisfying system service B's Wait (B2). System
service B processes the request and responds (B3).

The Kernel on the FP board acts on the Respond
(B3) by copying the response back to client A's
request block, placing an entry in the CP's CDT
response ring buffer, and ringing the CP's door-
bell.

The ICC Server Agent on the CP board examines the
response ring buffer and calls Respond (B31). The
Kernel on the CP board sends Respond (B3') to
client A's response exchange, satisfying the cli-
ent's Wait (A3).

Note that Request and Respond function in two ways
in Figure 30-3. One Request and Respond send
information to another board; the other Request
and Respond are queued at an exchange.

30-14 CTOS/VM Concepts

OPERATIONS

The ICC operations are described below. Opera-
tions are arranged in a most to least frequent use
order. (See the CTOS/VM Reference Manual, Chapter
3, "Operations," for a complete description of
each operation.)

RequestRemote Requests a system service from a
remote processor by sending the
request to the ICC Server Agent of
that remote processor.

GetProcInfo Returns the name of the processor
on which the caller is running.

GetSlotInfo Determines the slot numbers of
other processors in the SRP system.

RemoteBoot Causes another dormant processor to
be bootstrapped with a specified
System Image.

System Services Management 31-1

31 SYSTEM SERVICES MANAGEMENT

System services management provides for the man-
agement of services to be used by programs re-
questing them.

A system service is a software program that pro-
vides a service to other programs. Examples of
services include opening and closing disk files,
sending output to a printing device, or accepting
input from the keyboard. A service can manage
access to a resource, such as a file or a printer.

The program requesting the service is the client.
Any program, including another system service, can
be a client.

INTERPROCESS COMMUNICATION

A system service does not communicate with a
client directly. All correspondence is by means
of interprocess communication (IPC). IPC is de-
scribed in detail in Chapter 29, "Interprocess
Communication." In the following description of
how a system service functions, some of the IPC
concepts are summarized.

A system service receives IPC messages from
clients. The message is a special IPC message
called a request block.

A request block is a data structure containing the
specification and the parameters of the chosen
system service. The request block includes fields
for the request code and the client's response ex-
change in addition to other fields that describe
the request. (For details, see "Request Block
Format" in Chapter 29, "Interprocess Communica-
tion.")

31-2 CTOS/VM Concepts

The request code is a 16 bit value that uniquely
identifies the desired system service. For
example, the request code for the OpenFile
operation is 4.

A request code is used both to route the request
to the exchange of the appropriate system service
and to specify which of its several functions the
request is for.

The system service waits at its service exchange
until it receives a request block from a client.
(See Figure 31-1.)

Figure 31-1. Interaction of Client and System
Service Processes

System Services Management 31-3

The client uses either of two methods to send a
request block to the system service's exchange.
The client can

•	 use	 the	 request	 procedural	 interface,	
which builds the request block and calls
Request

•	 call	 Request	 directly,	 in	 which	 case	 the	
client builds its own request block

Request signals the Kernel to examine its request
routing table. The Kernel uses the request code
as an index into the table to locate the system
service's exchange.

Upon receipt of a request block, the system
service verifies the information it contains.

If the information is valid, the system service
performs its service and answers the client's
request by filling in the request block with its
response and a 0 status code (ercOK). If the
request is invalid, however, it places a status
code (in the request block) to indicate an error.

Upon completion of these functions, the system
service calls Respond. Respond routes the request
block back to the client's exchange as specified
in the request block.

Figure 31-2 compares the program model of a system
service to that of a client.

In the figure, the system service initializes.
Then, it spends its time waiting. Upon receipt of
a request block from a client, the system service
processes the message and then loops back to its
wait.

31-4 CTOS/VM Concepts

This is a different model than that of a normal
application program. An application spends its
time computing, waiting only as required for
a service to be performed so it can continue
computing.

Figure 31-2. Processing Flow of Client and System
Service Processes

TYPES OF SYSTEM SERVICES

Some system services can be built into the operat-
ing system; others are dynamically installable.

BUILT-IN SYSTEM SERVICES

A built-in system service is one that is linked
into the System Image so that it is present when
the operating system is bootstrapped. Examples
include the file system and the keyboard.

System Services Management 31-5

The differences between the various types of
operating system are a function of the built-in
services each has to offer. A cluster workstation
operating system, for example, includes the
Cluster Workstation Agent. A cluster workstation
with a local file system includes a file manage-
ment service in addition to the Cluster Agent.
(For details, see "Workstation Operating Systems"
in Chapter 2, "Overview of Operating System Con-
cepts.")

DYNAMICALLY INSTALLABLE SYSTEM SERVICES

A dynamically installable system service is a
service that can be added to the System Image
without regenerating the operating system. This
type of system service is created as an applica-
tion program. It becomes become part of the
operating system during its initialization.

CT-Net and Mouse Services are examples of instal-
lable system services. You also can write your
own installable services. (See "Guidelines for
Writing a System Service," later in this chapter.)

Dynamically installable services extend operating
system functionality. You can install and dein-
stall them at any time without altering the system
in any way. While installed, they function in the
same way as built-in system services.

REQUEST ROUTING TABLE

The operating system contains a request routing
table for its built-in system services. Request
routing tables are used by the Kernel to determine
where to send request blocks.

31-6 CTOS/VM Concepts

An entry in the request routing table typically
includes the following information about a re-
quest:

•	 the	request	parameters

•	 the	 system	 service	 exchange	 of	 the	 re-
quested system service

The Kernel uses the request code as an index into
the table to locate the system service's exchange.
(See Figure 31-3.)

Figure 31-3. Request Routing Table Fields

When a system service is dynamically installed,
the request routing table is extended.

You may decide, for example, to install the
CT-Mail service at your cluster workstation. The
CT-Mail package updates the request routing table
to reflect the CT-Mail service exchanges.

System Services Management 31-7

WHAT REALLY HAPPENS

In its simplest form, a dynamically installable
system service package consists of two software
components: the request definitions for the sys-
tem service and the system service itself.

To allow updating of the request routing table,
each of these components is designed in a special
way.

REQUESTS

The request definition includes the request code,
the request parameters, the system service ex-
change, and various other fields. (For details,
see "Guidelines for Defining System Service Re-
quests," later in this chapter.)

The requests served are defined in a loadable
request file. The contents of this loadable
request file are merged into already defined load-
able requests in a file called Request.sys. The
merge occurs during installation of the system
service onto the system disk.

When bootstrapped, the operating system reads the
Request.sys file, loads it into memory, and adds
the new requests to the basic request routing
table.

By reading Request.sys, the operating system thus
receives acknowledgment that the new requests
exist. The operating system sets the service
exchange field for each new request according to
the request file.

31-8 CTOS/VM Concepts

THE SYSTEM SERVICE

After the operating system is bootstrapped, the
system service also is loaded into memory. This
is usually done by an entry in the SysInit.jcl
batch file. (For details, see the CTOS System
Administrator's Guide.)

As part of initialization, the system service
calls ServeRq for each request it will serve.
ServeRq updates the service exchange field (in the
request routing table) for each request code to
reflect the system service exchange.

If the system service is to be able to deinstall
itself later or if it is a filter, it must call
QueryRequestInfo, which determines the exchanges
to be served, before calling ServeRq.

A filter substitutes its exchange for that of
another system service. (See "Guidelines for
Writing a System Service," and "Filters," later in
this chapter.)

GUIDELINES FOR WRITING A SYSTEM SERVICE

NOTE: These guidelines for writing a system service apply to CTOS/VM
operating systems. See the CTOS Operating System Manual, Volume 1,
for certain additional guidelines that apply to system services to be run
on previous operating system versions.

INITIALIZATION AND CONVERSION TO A SYSTEM SERVICE

A system service begins as an application program
when it is first loaded into memory. (See Figure
31-4.)

System Services Management 31-9

Figure 31-4. Before Conversion to a System
Service

The typical operating sequence of a system service
initializing itself and converting to a system
service is described as follows:

1. Use ChangePriority if desired. A system
service priority normally should be in
the range of 10 to 64.

2. Use all required initialization opera-
tions, such as AllocExch, AllocMemorySL,
and CreateProcess, to get required re-
sources before converting to a system
service.

31-10 CTOS/VM Concepts

3. Use the QueryRequestInfo operation to
find out the current exchanges for all of
the requests to be served. This is re-
quired if the system service is to be
able to deinstall itself later or if the
system service is going to filter mes-
sages destined to other system services.
(For details, see "Deinstallation of a
System Service" and "Filters," later in
this chapter.)

4. Optionally use the SetMsgRet operation to
provide the exit run file with an infor-
mative message indicating success or
failure of the installation.

5. Use the ConvertToSys operation to become
part of the operating system.

 (Figure 31-5 compares system memory
before and after the ConvertToSys
operation.)

6. Use the ServeRq operation for each re-
quest code to be served. In addition,
the ServeRq operation must be used for
each system request to be filtered. (See
"System Requests," later in this
chapter.) Note that it is best not to
use the default response exchange or else
the server will be unable to use the
request procedural interface.

System Services Management 31-11

7. Use the Exit, ErrorExit, or Chain opera-
tion to reload the exit run file into
memory. Note that since the program is
now a part of the operating system, these
calls will return to the new system
service (for normal application programs,
these calls never return).

8. Use the SetPartitionName operation to set
an identifiable (up to 12 character) name
for the partition. SysServiceXX is the
default name, where XX is the user
number.

Figure 31-5. Conversion to a System Service

31-12 CTOS/VM Concepts

SYSTEM SERVICE MAIN PROGRAM

The program model of a system service is shown in
Figure 31-6.

Figure 31-6. System Service Program Model

After initialization and conversion to a system
program, the system service enters its main
program. In the main program, it calls Wait and
waits at its exchange. This gets the system ser-
vice into its normal state: waiting to do work.

The loop in Figure 31-6 signifies the program
instructions the system service executes when it
performs a service for a client. After executing
these instructions, the system service calls Re-
spond and loops back to its waiting state.

System Services Management 31-13

RESTRICTIONS AND REQUIREMENTS OF OPERATION

As part of the operating system, a system service
is a special type of program. It must adhere to
the following specific rules to function correct-
ly.

•	 It	 	 must	 	 not	 	 allocate	 	 or	 	 deallocate	
memory.

•	 It	cannot	write	to	the	video	or	read	from	
the keyboard, or call the ErrorExitString
operation after calling ConvertToSys suc-
cessfully.

All system services must perform some common func-
tions in the system, by serving termination,
abort, and swapping requests. (For details, see
"System Requests," later in this chapter.)

GUIDELINES FOR DEFINING SYSTEM SERVICE REQUESTS

The information needed for defining a request is
contained in RequestTemplate.txt, a special text
file. This file is supplied as part of Standard
Software. Note that you can also use a different
file, Request.0.asm, which is part of Standard
Software for earlier operating system versions.

Either file works. RequestTemplate.txt, however, is
friendlier:

•	 It	is	a	text	file	you	can	edit.

•	 You	 use	 the	 Make Request Set utility
program, which is much faster than the
assembler (used with Request.0.asm) and
provides more comprehensive error check-
ing. (For details on Make Request Set,
see the CTOS System Administrator's
Guide.)

Table 31-1 describes the fields in this text file.

31-14 CTOS/VM Concepts

Table 31-1

REQUESTTEMPLATE.TXT FIELDS
Page 1 of 2

Field Description

:RequestCode: Uniquely identifies the
request. (For details, see
"Request Codes" in Chapter 29,
"Interprocess Communication.")

:RequestName: Identifies the request to a
user. This entry is optional
but strongly recommended.

:Version: Indicates whether a request has
been updated (default = 0).
Requests are generally not
updated.

:LclSvcCode: Is used by the operating sys-
tem for a special case but is
not generally used in writing
system services (default = 0).

:ServiceExch: Indicates the exchange to which
the request is routed. This
field is changed when a system
service calls the ServeRq
operation, which provides the
exchange to which the request
is routed.

:sCntInfo: Indicates the number of bytes
of control information (default
= 6).

:nReqPbCb: Indicates the number of request
pb/cb pairs.

System Services Management 31-15

Table 31-1

REQUESTTEMPLATE.TXT FIELDS
Page 2 of 2

Field Description

:nRespPbCb: Indicates the number of re-
sponse pb/cb pairs.

:Params: Defines the request procedural
interface. This field is used
by the operating system for
validation of request blocks.

:NetRouting: Describes file system request
routing. (See "Routing by File
Handle" and "Routing by File
Specification" in Chapter 29,
"Interprocess Communication.")

:SrpRouting: Describes how requests are
routed among boards on the
Shared Resource Processor
(SRP). (See Chapter 30, "Inter-
CPU Communication.")

:WsAbortRq: Is the request code for the
abort system request.*

:TerminationRq: Is the request code for the
termination system request.*

:SwappingRq: Is the request code for the
swapping system request.*

*This is a special system request. For details,
see "System Requests," later in this chapter.

31-16 CTOS/VM Concepts

System services for the SRP must serve either lo-
cal or global requests. Local requests are served
on the same processor board as the system service.
Global requests are served on any SRP processor
board.

SRP system services must serve requests of the
same SRP routing type. SRP routing types are de-
scribed in Chapter 30, "Inter-CPU Communication."

GUIDELINES FOR CREATING A LOADABLE REQUEST FILE

To create a loadable request file, use either the
RequestTemplate.txt or the Request.0.asm template
file. (See "Guidelines for Defining System Ser-
vice Requests," earlier in this chapter.) Using
these templates to create a loadable request file
is described below:

1. Copy the template to a file identifying
the system service.

•	 If	 you	 use	 RequestTemplate.txt,	 copy	
the template to a file, such as
RequestServer.txt.

•	 If	 you	 use	 Request.0.asm,	 copy	 the	
template to a file, such as
Request.X.asm, where X identifies a
group of requests for the system
service.

2. Use the Editor to edit your file
according to the instructions provided.

System Services Management 31-17

3. To build the request file,

•	 If	you	used	Request.0.asm,	assemble	and	
link your file to create the binary
file, Request.X.sys.

•	 If	 you	 used	 RequestServer.txt,	 run	
your text file through the Make
Request Set utility, which reads your
text file, checks for errors, and
creates a binary file,
RequestServer.bin.

4. Use the Install New Request utility to
merge your request(s) with the system
file, Request.sys. (For details on Make
Request Set and Install New Request, see
the CTOS System Administrator's Guide.)

5. Bootstrap the operating system. Boot-
strapping results in the operating
system reading the single system request
file, Request.sys, and adding the
loadable requests to the request
routing table.

Table 31-2 compares and summarizes the templates.

31-18 CTOS/VM Concepts

Table 31-2

CREATING A LOADABLE REQUEST FILE

RequestTemplate.txt Request.0.asm

Copy template to
RequestServer.txt

Copy template to
Request.X.asm

Edit the text file Edit the macros

Use Make Request Set Assemble and link to
build Request.X.sys

Use Install New
Request to merge your
request(s) into a
single system file,
Request.sys

Use Install New
Request to merge your
request(s) into a
single system file,
Request.sys

Bootstrap system Bootstrap system

SYSTEM REQUESTS

System requests are issued by the operating system
to system services. These requests notify system
services of clients that are terminating or being
swapped to a disk file.

The system requests are

•	 termination

•	 abort

•	 swapping

System Services Management 31-19

(See the system request fields in Table 31-2.
Also see RequestTemplate.txt file included with
Standard Software for examples of how to define
these requests.)

TERMINATION AND ABORT REQUESTS

Termination and abort requests function similarly
in that they notify system services that clients
have terminated. Upon notification, system ser-
vices can release resources, such as open files
and locked ISAM records, allocated to the termi-
nating clients.

The operating system issues termination requests
whenever a client terminates for the following
reasons:

•	 The	 client	 called	 Chain,	 Exit,	 or	
ErrorExit.

•	 A	user	pressed	Action-Finish.

•	 A	 partition	 managing	 program	 called	 the	
TerminatePartitionTasks operation to ter-
minate the client.

In addition to termination requests, the operating
system issues abort requests at a master

•	 when	 the	 master	 detects	 that	 it	 cannot	
communicate with a cluster workstation

•	 when	 a	 partition	 is	 vacated	 with	 the	
VacatePartition operation or through
lack of an exit run file

31-20 CTOS/VM Concepts

These requests are issued to

•	 ensure	 that	 no	 requests	 will	 be	 returned	
to the program after it has been
terminated and replaced in memory by
another program

•	 inform	 servers	 that	 resources	 allocated	
to the program should be freed

System services must respond to outstanding re-
quests before responding to termination or abort
requests. Although a terminating client does not
need the response, certain operating system struc-
tures the client was using, such as Z-blocks for
interboard routing on the SRP, may be made un-
available for future use.

TERMINATION REQUEST TO THE FILE SYSTEM

The following is an example of how the file system
service uses the termination request. The example
also indicates the consequences of a file system
not calling ServeRq to serve a termination
request.

When a user initiates the Copy command in the Exe-
cutive, the Executive makes requests to the file
manager to read and write files to disk.

During execution of these requests, the user
presses the key combination, Action-Finish. This
terminates the Copy program and results in the
operating system issuing a termination request to
the file system process.

In response to the termination request, the file
system process terminates any outstanding read or
write requests initiated by the Copy program.

System Services Management 31-21

If the file system did not serve the termination
request, the Copy program's exit run file, the
Executive, would be reloaded into memory. An
outstanding Write request responded to by the file
system process at this time would result in the
response data being written to the Executive's
memory rather than to the Copy program's memory.

SWAPPING REQUESTS

Swapping requests are issued to system services
whenever the operating system is going to suspend
a program and swap it to disk. Swapping requests
ensure that no responses are made to clients in a
program that is not resident in memory.

When a system service receives a swapping request,
it is required to respond to all outstanding
requests with the same client user number and then
to respond to the swapping request.

The system service can use either of the following
strategies:

•	 It	 can	 hold	 the	 swapping	 request	 until	
all outstanding requests for the client
are completed and then respond normally
to the swapping request.

•	 It	 can	 respond	 to	 all	 outstanding	
requests for the client with status code
37 ("Service not completed"). The
operating system intercepts this special
response status code and the program is
swapped to disk. Later, when the program
is swapped back into memory, the
operating system reissues the original
outstanding requests to the system
service.

31-22 CTOS/VM Concepts

It is transparent to the program that it is being
swapped out of memory or that any of its requests
are being handled other than in the usual manner.

[See the CTOS/VM Reference Manual, Chapter 3,
"Operations," for the specific formats of (and
additional information regarding) each of the
system requests.]

FILTERS

A filter process is a system service that is
interposed between a client and a system service
process that operate as though they were communi-
cating directly with each other. The filter does
this by substituting its exchange for that of the
original system service in the operating system
request routing table.

If your system service acts as a filter, it can
intercept requests intended for another system
service, and either service them itself, or re-
issue them to the original service after per-
forming filtering or some other function.

TYPES OF FILTERS

Filters are of three types: replacement, one-way
pass-through, and two-way pass-through.

REPLACEMENT

A replacement filter intercepts requests (using
the Wait or Check Kernel primitive), performs a
service based on the intercepted request, and then
responds to the request. In this case the filter
replaces the original system service.

System Services Management 31-23

ONE-WAY PASS-THROUGH

A one-way pass-through filter intercepts requests
and then sends the request on to the system
service exchange. It uses the ForwardRequest
Kernel primitive to forward a request block to a
system service for further processing.

Figure 31-7 shows how this type of filter is used.

Figure 31-7. One-Way Pass-Through Filter

The sequence of events shown in Figure 31-7 is as
follows:

1. The client issues a Request.

2. The filter proceeds from its Wait.

3. The filter issues ForwardRequest (or
Send) to the original system service's
exchange.

4. The system service proceeds from its
Wait.

31-24 CTOS/VM Concepts

5. The system service calls Respond.

6. The client proceeds from its Wait.

To be compatible in protected mode, one-way
pass-through filters must use ForwardRequest,
instead of Send.

TWO-WAY PASS-THROUGH

A two-way pass-through filter intercepts requests
and reissues them to the original system service
exchange using the RequestDirect Kernel primitive.
It also intercepts the Respond and responds back
to the client.

Figure 31-8 shows how this type of filter is used.

Figure 31-8. Two-Way Pass-Through Filter

System Services Management 31-25

The following sequence of events is shown in
Figure 31-8:

1. The client issues a Request.

2. The filter proceeds from its Wait.

3. The filter changes the exchResp field to
its own exchange and then issues
RequestDirect to the original system
service's exhange, then Wait.

4. The system service proceeds from its
Wait.

5. The system service issues a Respond.

6. The filter proceeds from its Wait.

7. The filter changes the exchResp field
back to the client's exchange and issues
a Respond.

8. The client proceeds from its Wait.

SYSTEM REQUESTS FOR FILTERS

A filter that uses only the replacement method
should have its own system requests for ter-
mination, abort, and swapping. (For details, see
"System Requests," earlier in this chapter.) In
this case the filter is the same as a normal
system service.

A filter process that uses one of the pass-through
methods of filtering must filter the system re-
quests of the original system service(s). If the
filter uses the two-way pass-through method for
any requests, it also must use that method for the
system requests.

31-26 CTOS/VM Concepts

USE OF FILTERS

Filters can be used in many ways. A filter, for
example, might be used between the file management
system and its client process to perform special
password validation on all or some requests.
Filters are commonly used by the keyboard service
to filter keystrokes for various accounting
purposes.

Cluster Agents and CT-Net Agents act as filters in
directing IPC messages to other destinations for
further IPC processing. (For details, see Chapter
29, "Interprocess Communication.")

EXAMPLE OF A FILTER NOT SERVING A SWAPPING REQUEST

The following example describes the consequences
of a keyboard filter not performing a ServRq on
keyboard swapping requests.

The Context Manager maintains an outstanding
ReadActionKbd request to the keyboard manager to
receive Action key combinations. The key combina-
tion, Action-Next, for example, alerts the Context
Manager to switch to a different context (user
number).

The two-way pass-through filter has been installed
to intercept the ReadKbd requests.

Under the Context Manager, a user is running an
Executive program as the current context. The
Executive is issuing a series of ReadKbd requests
while the user is typing characters onto the
command line. The user types the characters C, O,
and P, followed by the key combination,
Action-Next.

System Services Management 31-27

The Context Manager, whose priority is higher than
the Executive, receives the Action-Next key combi-
nation before the filter receives the P. In re-
sponse, the Context Manager initiates a swap to
bring in the chosen context.

A swapping request is issued by the operating
system. The request bypasses the filter and goes
directly to the keyboard process, which responds.

The filter, which was not notified of the context
switch, holds onto the ReadKbd request. As a
result, the swap file fails with status code 813
("Cannot swap out this partition").

DEINSTALLATION OF A SYSTEM SERVICE

A system service may deinstall itself. To do
this, you must write a utility program that runs
at the same workstation as the system service and
that issues a deinstallation request to the system
service.

The deinstallation request should have the user
number of the system service as one of the
response parameters. Deinstallation should follow
these steps:

1. The utility program issues a deinstalla-
tion request to the system service.

2. The system service performs a ServeRq on
all of its requests to restore them to
their original values.

3. The system service checks all of its ex-
changes and internal queues and responds
to all requests it may still have, except
the deinstallation request.

31-28 CTOS/VM Concepts

4. The system service calls
SetPartitionLock(0).

5. The system service calls GetUserNumber to
find its user number.

6. The system service copies its user number
to the memory address of the deinstal-
lation request response field and then
responds to the request with 0 (ercOK) in
the ercRet field.

7. The system service calls Wait and waits
for the removal of the partition at one
of its exchanges.

8. The utility program receives the response
to its request. If the ercRet field is 0
(ercOK), it calls VacatePartition fol-
lowed by RemovePartition, using the user
number returned by the system service.

System Services Management 31-29

OPERATIONS

The system services management operations de-
scribed below are categorized as basic or special.
Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

BASIC REQUESTS USED BY ALL SYSTEM SERVICES

QueryRequestInfo
Determines the exchange to which a
request and its local service code
are routed.

ConvertToSys Converts all processes, short-lived
memory, and exchanges in an appli-
cation partition to system service
processes, system memory, and sys-
tem exchanges, respectively, in a
system partition.

ServeRq Is used by a dynamically installed
system service process to declare
its readiness to serve the speci-
fied request code.

SetPartitionName
Changes the name of the caller's
partition.

SystemCommonConnnect
Installs the memory address of a
system-common procedure in the Sys-
tem Common Address Table at the
specified reserved location.

GetNodeName Obtains the node name of the local
node where this request is issued.

31-30 CTOS/VM Concepts

SYSTEM REQUESTS

System requests include termination, abort, and
swapping requests (discussed earlier in this
chapter).

Program and Partition Management 32-1

32 PROGRAM AND PARTITION MANAGEMENT

Program and partition management provides you with
information on how the operating system uses its
memory resource.

The program management operations are used by a
program to self-load into memory, to self-exit
from memory, and to handle error conditions.
These same operations are described in Chapter 4,
"Program Management." This chapter, however, in-
cludes additional program management operations
used by partition managing programs, such as the
Context Manager, to facilitate program management
within partitions under their control.

This chapter also introduces the partition manage-
ment operations. These operations are typically
used by partition managing programs to create and
to remove partitions, for example.

AN EXECUTABLE PROGRAM

An executable program can consist of code, data,
and one or more processes in a memory partition.

A program is loaded into a partition in memory
from a disk-resident file or run file. Run files
are created by compiling and/or assembling source
language modules into object modules and linking
the object modules together into code and data
segments. (See Figure 32-1.)

32-2 CTOS/VM Concepts

Figure 32-1. From Source Language Modules to
Program in Memory

SEGMENTS

A code segment contains only processor instruc-
tions (code) and is never modified once it is
loaded into memory. Several processes can execute
instructions from the same code segment. (See
"Code, Static Data, and Dynamic Data Segments" in
Chapter 24, "Memory Management.")

A static data segment contains initial values of
program data structures and is constantly being
changed once in memory. Every invocation of a
program gets a new static data segment.

Program and Partition Management 32-3

LINKER

The Linker reads the object module(s) and combines
them according to their segment names, class
names, and directives from the user.

Segments can be combined based on a series of
different segmentation models. Most operating
system languages use the medium model, although
the operating system also supports the small and
large model. (For details, see the CTOS Program-
mer's Guide.)

A run file created by linking object modules
produced by the Pascal compiler, for example, con-
sists of one code segment for each object module
included in the link and a single static data
segment. The single static data segment, or
DGroup, combines the static data and stack re-
quirements of all the object modules.

A run file of this form is considered standard;
assembly language programmers are urged to adopt
this standard unless other considerations are
overriding. The COBOL compiler and BASIC inter-
preter do not produce object modules. (For de-
tails, see the Linker/Librarian Manual.)

CODE SHARING

The program's code can be shared by another
instance of the same program in a different
partition (protected mode operating systems only).
For example, if you were running the Executive in
two different partitions concurrently under the
Context Manager, the code from the Executive run
file would be shared.

32-4 CTOS/VM Concepts

PROGRAM SIZING

You can size a program at link time (protected
mode operating systems only). Sizing a program
means controlling both

•	 the	 maximum	 amount	 of	 memory	 it	 can	 al-
locate

•	 the	 minimum	 amount	 of	 memory	 that	 the	
operating system will allocate for it
before attempting to run the program

(For details, see the Linker/Librarian Manual.)

MULTIPROGRAMMING AND PARTITION MANAGEMENT

One of the features of the operating system is
that it supports multiprogramming or the simul-
taneous execution of several programs in memory,
each in its own partition. Partition management
accomplishes this by coordinating programs. Par-
tition managing programs, such as the Context
Manager, provide this feature.

TYPES OF PARTITIONS

System memory consists of two types of partitions:

•	 System partitions: A system partition
can contain the operating system or a
dynamically installed system service. A
system service manages resources that can
be accessed by application programs or
other system services.

•	 Application partitions: An application
partition can contain an application
program.

Program and Partition Management 32-5

FIXED AND VARIABLE PARTITIONS

A partition can be a fixed partition or a variable
partition. A fixed partition always uses a fixed
amount of memory.

A variable partition (protected mode operating
systems only) grows with a program's needs. It
can use up to the maximum amount of memory you
specified when you sized your program. (See
"Program Sizing," earlier in this chapter.)

In addition, a variable partition permits code to
be shared by another program of the same type in
another variable partition. (See "Code Sharing,"
earlier in this chapter.)

USER NUMBER

A user number (historically the same as a parti-
tion handle) is a 16 bit integer that uniquely
identifies the program and/or the resources as-
sociated with a partition. Resources include file
handles, short-lived memory, long-lived memory,
and exchanges. User number is not associated with
a partition's particular size or physical location
in memory. This is because partitions are not
static memory cells into which programs are
loaded: a partition is created at the time a
program is loaded into memory and is removed when
the program is terminated. (Also see "Partition
Swapping," later in this chapter.)

When a partition managing program, such as the
Context Manager, calls the CreatePartition opera-
tion to create a partition, the user number for
the partition is returned. The partition managing
program can use the user number to refer to the
partition in subsequent operations such as
GetPartitionStatus, LoadPrimaryTask, and
RemovePartition.

32-6 CTOS/VM Concepts

A previously assigned user number can be obtained
by supplying the partition name to the
GetPartitionHandle operation. The user number is
subsequently used in calls such as
GetPartitionStatus or GetPartitionExchange.

A partition is removed using the RemovePartition
operation. The specified user number is dealloca-
ted by the operating system and becomes available
to be reissued in response to a CreatePartition
call.

A program can obtain the user number of its own
partition by calling the GetUserNumber operation.

OBTAINING PARTITION STATUS

A program can obtain status information about a
specified application partition and the program
executing in it (such as the user number and
whether the program is sized) by using the
GetPartitionStatus operation. (For details, see
the GetPartitionStatus operation in the CTOS/VM
Reference Manual, Chapter 3, "Operations.")

COMMUNICATION BETWEEN APPLICATION PARTITIONS

The Intercontext Message Server (ICMS) provides
for communication between application partitions
managed by partition managing programs. (For de-
tails, see Chapter 29, "Interprocess Communica-
tion." Also see the Context Manager/VM Manual.)

NOTE: This manual generally describes a logical model of the operating
system rather than a particular implementation (such as real mode or
protected mode). For implementation details, see the Release Notice for
your version of the operating system.

Program and Partition Management 32-7

MEMORY ORGANIZATION OF AN APPLICATION PARTITION

The memory organization of an application parti-
tion is shown in Figure 32-2. An application
partition can contain

•	 application	program	code

•	 short-lived	memory

•	 common	pool	of	unallocated	memory

•	 long-lived	memory

•	 Local	 Descriptor	 Table	 (LDT)	 (protected	
mode only)

Figure 32-2. Memory Organization of an
Application Partition

32-8 CTOS/VM Concepts

A program can allocate and deallocate the memory
of its own partition. Long-lived memory is
allocated from the low-address end and short-lived
memory from the high-address end of the partition.
A program cannot allocate or deallocate memory in
other partitions. System data structures describ-
ing the partition and its current program can be
located in separate memory.

PROGRAM LOADING INTO MEMORY

When a program is loaded into memory, the run file
is read into the short-lived memory of the appli-
cation partition. For real mode programs, any
logical memory addresses existing in either the
code or data segments (intersegment references)
are adjusted to reflect the memory address at
which the program is loaded. For protected mode
programs, the Loader adjusts the base addresses in
each LDT descriptor.

The Virtual Code Management facility allows you to
run a program that is larger than the available
memory in an application partition. If the
Virtual Code Management facility is in use, all
the static data segments and the resident code
segment are loaded into memory. The nonresident
code segments are loaded into memory only as
needed. (For details, see Chapter 34, "Virtual
Code Management.")

The program is loaded by the Chain, Exit,
ErrorExit, LoadPrimaryTask, or LoadInterActiveTask
operation.

LoadPrimaryTask and LoadInteractiveTask must be
followed by a call to SwapInContext or
AssignKbdOwner if a program is to be loaded into
memory by a partition managing program.

Program and Partition Management 32-9

Additional run files can also be loaded into the
same partition in memory by the program management
LoadTask operation, but this is not as common an
occurrence. (For details, see "Application Par-
tition with More Than One Run File," later in this
chapter.)

EXIT RUN FILE

When the currently executing program exits, the
exit run file is the next program that is loaded
into the partition. Exit run files are user-
specified. Each application partition has its
own. For example, the Executive sets itself as
the exit run file: The user starts the applica-
tion from the Executive, and when the application
is done, the Executive is reloaded.

A program can specify an exit run file for its
partition by calling the SetExitRunFile operation.
QueryExitRunFile can be called to determine the exit
run file.

If no exit run file is specified in a partition,
the partition becomes vacant.

TERMINATING PROGRAMS

The application program terminates itself by using
the Chain, Exit, or ErrorExit operation.

In addition, a partition managing program can use
the TerminatePartitionTasks and VacatePartition
operations to terminate an application program in
another partition. Both operations function in
the same way in terminating the program in the
partition.

32-10 CTOS/VM Concepts

They differ in that TerrainatePartitionTasks also
loads and activates the partition's exit run file,
if one is specified. If no exit run file is spec-
ified, TerminatePartitionTasks and VacatePartition
are equivalent.

When a program terminates, the operating system
issues termination requests. Termination requests
(system requests) are messages that notify system
services of a program's termination. Upon receipt
of a termination request, system services release
resources, such as open files, that may be alloca-
ted to the terminating program. (For details, see
Chapter 31, "System Services Management.")

REMOVING PARTITIONS

An existing vacant application partition can be
removed by using the RemovePartition operation.

An application partition is vacant when one of the
following is true:

•	 It	is	first	created.

•	 The	 current	 application	 	 program	 exits	
with no exit run file specified.

•	 The			VacatePartition				operation				is	
performed.

Program and Partition Management 32-11

DEALLOCATION OF SYSTEM RESOURCES

Only the resources allocated to an exiting program
are deallocated when that program terminates.

The resources that are deallocated include

•	 Short-lived	 memory.	 	 (See	 Chapter	 24,	
"Memory Management.")

•	 Exchanges.	 	 (See	 Chapter	 29,	 "Interpro-
cess Communication.")

•	 Files	 opened	 by	 the	 OpenFile	 operation	
(except long-lived files). (See Chapter
11, "File Management.")

•	 Timer	 Request	 Blocks	 allocated	 by	 the	
OpenRTCClock operation. (See Chapter 33,
"Timer Management.")

•	 Communications	 channels	 allocated	 by	 the	
InitCommLine operation. (See Chapter 15,
"Serial Port Management.")

•	 Global	 Descriptor	 Table	 selectors	 (SGs)	
(protected mode) (See the iAPX 286 Pro-
grammer's Reference Manual, the 80286
Architecture, and the 80386 Programmer's
Reference Manual.)

32-12 CTOS/VM Concepts

PARTITION ORGANIZATION IN MEMORY

AT SYSTEM INITIALIZATION

When a system is initialized, the operating system
is loaded into the low address and high address
ends of memory in system partitions. Dynamically
installed system services are loaded into system
partitions located at the high address end of
memory. All remaining memory is defined initially
as free memory. Figure 32-3 shows how memory is
organized at system initialization for protected
mode and real mode operating systems.

Programs executing in system partitions are system
service programs. Such programs (other than the
operating system) start as ordinary application
programs and then use the ConvertToSys operation
to change the status of their partition from
application partition to system partition. A
program can call ConvertToSys as long as memory
consists of a single application partition;
otherwise, status code 810 ("Invalid request") or
status code 206 ("Invalid user number") is re-
turned. (System services are described in Chapter
31, "System Services Management.")

SINGLE APPLICATION PARTITION IN MEMORY

An application partition is a partition in memory
in which an application program can be executed.
Application programs can use the keyboard and
video display, and can allocate memory dynamical-
ly. If the program is an interactive command
interpreter, such as the Executive, you can use
the program to load other programs, such as the
Editor, Document Designer, or Multiplan, into the
partition.

Program and Partition Management 32-13

Figure 32-3. Memory Organization at System
Initialization

Figure 32-4 shows typical memory organization when
a single application partition containing a program
is in memory.

32-14 CTOS/VM Concepts

Figure 32-4. Memory Organization Showing a Single
Application Partition Containing a
Program

MORE THAN ONE APPLICATION PARTITION IN MEMORY

A partition managing program is designed to create
and to manage other partitions, more than one
of which can be in memory at once. The Context
Manager is such a program and is used in the
following discussion of multiple partitions.

You must install all system services before
installing the Context Manager. For example, you
cannot use the Executive commands to install
system services from an Executive program in a
partition under context management.

Program and Partition Management 32-15

Figure 32-5 Part A shows what memory looks like
when the Context Manager is first loaded into
memory. The Context Manager is at the high
address end.

When the user selects an application to start, the
Context Manager dynamically creates a fixed or a
variable application partition using the
CreatePartition operation. The new partition is
created just beneath the Context Manager, which
remains in memory at the high address end. The
Context Manager then loads the selected appli-
cation program into that partition using the
LoadPrimaryTask operation. The remaining unused
memory is free memory. (See Figure 32-5 Part B.)

Each additional program started from the Context
Manager is loaded just under the last until memory
is full. Figure 3 2-5 Part C shows what memory
looks like with the addition of a second program
in memory.

When a user finishes a program, the partition that
it was in becomes free memory as shown in Figure
32-5 Part D.

Partition Swapping

When the user chooses to start a program from the
Context Manager and there is not enough free
memory available to create a partition into which
to load the program, the operating system selects
which partition(s) to swap out to a file on disk
or to extended memory (above the first megabyte).
To do this, the operating system uses an algo-
rithm, which takes into consideration

•	 whether	 the	 program	 is	 capable	 of	 swap-
ping

•	 whether	 the	 program	 is	 currently	 using	
the video display (real screen) and
keyboard

32-16 CTOS/VM Concepts

Figure 32-5. Memory Organization with More Than
One Application Partition in Memory

When program(s) are swapped out of memory, the
memory where the program(s) was located becomes
free memory. This free memory is available

•	 to	 the	 Context	 Manager	 to	 create	 a	 new	
partition into which to load a new pro-
gram

•	 to	 the	 operating	 system	 to	 swap	 a	
program back into memory from disk or
extended memory

Program and Partition Management 32-17

Figure 32-6 shows the following example sequence
of what memory looks like when swapping occurs:

1. Figure 32-6 Part A shows Program W,
Program X, and Program Y in memory par-
titions.

2. The operating system selects to swap
Program X out to a disk file. The mem-
ory area where Program X's partition was
located becomes free memory, as shown in
Figure 32-6 Part B.

3. Figure 32-6 Part C shows memory after
Program Z is swapped in.

Figure 32-6. Swapping

32-18 CTOS/VM Concepts

Note that Program Z's partition is occupying a
memory location that was previously occupied by
Program X's partition. Program X and Program Z
have unique user numbers associated with their
partitions. This example illustrates that a user
number does not indicate a unique physical loca-
tion in memory. (See "User Number," earlier in
this chapter.)

You can create a swap file or use the operating
system swap file by default. (For details, see
the CTOS System Administrator's Guide.)

APPLICATION PARTITION WITH MORE THAN ONE RUN FILE

Occasionally (but rarely), an application parti-
tion will contain more than one run file. This
occurs when the original program in a memory par-
tition calls the LoadTask operation to load an
additional run file into the same partition.

In this situation, the original program is a pri-
mary task. Any subsequent run files are secondary
tasks. These tasks have a very special relation-
ship in that they share the partition's system
data structures and resources. Because these
tasks are interwoven and function as a group, each
is not a program, but a dependent part of the
overall program in the partition. Figure 32-7
shows the relationships of these tasks to the
program in a partition. In this manual program
can mean one or more run files in a partition.

Program and Partition Management 32-19

Figure 32-7. Program Consisting of More Than One
Run File in an Application
Partition

32-20 CTOS/VM Concepts

OPERATIONS

The program and partition management operations
described below are categorized according to use.
Operations are arranged in a most to least frequent
use order. (See the CTOS/VM Reference Manual,
Chapter 3, "Operations," for a complete description
of each operation.)

PROGRAM MANAGEMENT

The program management operations described below
are categorized as operations used for error
handling or for normal program loading and exiting
from the same partition.

Error Handling

FatalError Terminates operation of the appli-
cation program after a catastrophic
event.

CheckErc Checks status codes. If CheckErc
is called with a non-zero status
code, FatalError is called with
that value.

ErrorExit* Terminates the current application
program in an application partition
and passes an abnormal status code
to the exit run file.

*Dynamically installed system services use these
operations at a certain time during installation.
(For details, see Chapter 31, "System Services
Management.")

Program and Partition Management 32-21

ErrorExitString*
Returns a string to the exit run
file, which is usually printed.

Crash Causes operating system operation
to terminate, a crash dump to be
written, the operating system to be
reloaded, and SignOn to display the
cause of the crash when it is
restarted.

SetMsgRet Same as ErrorExitString except the
program does not exit.

Normal Program Loading and Exiting

Exit* Terminates the current application
program in an application partition
and passes a normal status code to
the exit run file.

Chain* Replaces the current application
program in an application partition
with the specified run file.

SetExitRunFile
Establishes a new exit run file for
an application partition.

QueryExitRunFile
Returns the name, password, and
priority of the exit run file of an
application partition.

*Dynamically installed system services use these
operations at a certain time during installation.
(For details, see Chapter 31, "System Services
Management.")

32-22 CTOS/VM Concepts

TASKS

The operation below is used to load additional run
file(s) into a partition that contains an existing
run file(s). (For details, see "Application Par-
tition with More Than One Run File," earlier in
this chapter.)

LoadTask Loads and activates an additional
(secondary task) run file as part
of the current program in the ap-
plication partition.

PARTITION MANAGEMENT

Basic Operations

GetUserNumber Allows a process to determine its
own user number (which is histori-
cally the same as a partition
handle).

GetPartitionHandle
Returns the user number of a
specified partition. The request-
ing process must supply the name of
the requested user number's par-
tition as a parameter to this
operation.

GetPartitionStatus
Returns status information about a
specified application partition and
the program currently executing in
it.

SetPartitionName
Changes the name of the requesting
process's partition. (Note that
SetPartitionName can change the
name of any partition, but it is
normally used to set the partition
name of the caller.)

Program and Partition Management 32-23

Program Swapping

SetSwapDisable Allows a program to specify that it
can or cannot be swapped.

SwapInContext Requests that a specified user num-
ber's partition be swapped into
memory.

Partition Creation Under Program Control

AssignKbd Assigns the keyboard to a parti-
tion.

AssignVidOwner Assigns the screen to a partition.

CreatePartition
Creates a new application parti-
tion, assigns its name, and returns
a user number.

CreateBigPartition
Is the same as CreatePartition, ex-
cept that CreateBigPartition allows
you to create a new application
partition that is larger than 1
megabyte (protected mode only).

CreateUser Creates a variable partition, spe-
cifying the size of the partition
system data structures.

The program management operations described below
are used by partition managing programs for load-
ing programs into memory and for program exiting.

ExitAndRemove Terminates the current application
program and removes the specified
vacant partition. The user number
is deallocated and becomes avail-
able to be reissued.

32-24 CTOS/VM Concepts

LoadPrimaryTask
Loads and activates the run file
specified by the file specification
in a vacant application partition.

LoadInteractiveTask
Is the same as LoadPrimaryTask but
provides the additional option (by
means of an fDebug parameter) to
indicate whether or not the run
file is to be debugged when it is
loaded into the partition.

VacatePartition
Terminates the program in the
application partition specified by
the user number but does not load
and activate the exit run file.
The partition is left vacant.

RemovePartition
Removes the specified vacant appli-
cation partition.

TerminatePartitionTasks
Terminates the program in the ap-
plication partition specified by
the user number and loads and
activates the partition's exit run
file.

Communication Between Partitions

SetPartitionLock
Declares whether a program execut-
ing in the specified application
partition is locked. The locked
partition cannot be vacated with
the VacatePartition operation.

Timer Management 33-1

33 TIMER MANAGEMENT

The Timer Management facility provides for two
types of system timers: a Realtime Clock (RTC) and a
Programmable Interval Timer (PIT).

The RTC has a message-based interface you can use
for accurate timing over long periods.

The PIT has a pseudointerrupt interface you can
use for timing short intervals.

REALTIME CLOCK

The Realtime Clock (RTC) provides both the current
date and time of day and the timing of intervals
(in units of 100 milliseconds). (For a cluster
workstation without a local file system, the cur-
rent date and time are maintained at the master.
For a cluster workstation with a local file
system, the current date and time are maintained
at both the master and at the cluster work-
station.)

A client can request that a message be sent to a
specified exchange either once after a specified
interval or repetitively with a specified constant
interval between send operations. The first time
a message is sent to an exchange can be up to 100
milliseconds earlier than specified. Subsequent
intervals are timed exactly.

PROGRAMMABLE INTERVAL TIMER

The Programmable Interval Timer (PIT) uses a 50
microsecond, high-resolution timing source. The
PIT is controlled by a 16 bit counter and there-
fore has a maximum interval of approximately 3
seconds.

33-2 CTOS/VM Concepts

The PIT is used for high-resolution, low-overhead
activation of user pseudointerrupt handlers. A
client or an interrupt handler can request that a
pseudointerrupt handler be activated after a
specified interval.

TIMER MANAGEMENT OPERATIONS

There are three classes of timer management opera-
tions: Delay, Realtime Clock (RTC), and Program-
mable Interval Timer (PIT).

DELAY

The Delay operation allows a process to suspend
execution for a specified interval (in units of
100 milliseconds).

REALTIME CLOCK

The OpenRTClock operation initiates the use of a
data structure provided by a client for control of
complex RTC services. This data structure, the
Timer Request Block (TRB), is shared by the client
and timer management. The CloseRTClock operation
terminates sharing of the TRB.

The TRB defines the interval after which a message
is sent to a specified exchange. The message can
be sent either once after the specified interval
or repetitively with the specified constant inter-
val between send operations. The message is the
memory address of the TRB itself.

Timer Management 33-3

The client must acknowledge receipt of the TRB (as
described below) before timer management will send
the same TRB again. This ensures that system
resources (link blocks) are not consumed by queu-
ing the same TRB at the same exchange many times.
The client can also dynamically modify other
fields of the TRB.

(See Table 4-29 in the CTOS/VM Reference Manual
for the TRB format.)

Timer Management

Every 100 milliseconds, the timer management RTC
interrupt handler performs the following sequence
of operations on each active TRB. This sequence
ensures that timer management will not send the
same TRB again until the client decrements the
cEvents field to 0.

1. If the counter field is 0, do nothing.

2. Decrement the counter field by 1.

3. If the counter field has not become 0,
do nothing more.

4. If the cEvents field is 0, send a
message to the exchange specified by the
exchResp field. The message is the mem-
ory address of the TRB itself (not a
copy of the TRB).

5. Increment the cEvents field by 1.

6. Copy the counterReload field to the
counter field.

33-4 CTOS/VM Concepts

Timing a Single Interval

A client should use the sequence below to initial-
ize a TRB to time a single interval.

1. Set the counter field to 0.

2. Call the OpenRTClock operation.

3. Set the cEvents field to 0.

4. Set the counterReload field to 0.

5. Set the counter field to the chosen in-
terval.

Use the Wait or Check Kernel primitive (specifying
the exchange specified by the exchResp field) to
receive the indication that the interval expired.
(Wait and Check are described in Chapter 29,
"Interprocess Communication.") Remember that the
RTC only operates in units of 100 milliseconds.
Thus, if the counter field is set to 3, the TRB
can be sent to the exchResp exchange in as few as
200 milliseconds or as many as 300 milliseconds.
To reuse the TRB to time another single interval,
repeat the sequence above from step 3.

Repetitive Timing

A client should use the sequence below to initial-
ize a TRB for repetitive timing.

1. Set the counter field to 0.

2. Call the OpenRTClock operation.

3. Set the cEvents field to 0.

Timer Management 33-5

4. Set the counterReload field to the
chosen interval.

5. Set the counter field to the chosen
interval.

The first time that the TRB is sent to the
exchResp exchange can be up to 100 milliseconds
earlier than specified. Subsequent intervals are
timed exactly. Exact timing is guaranteed because
the counter field of the TRB is decremented even
if the client has not finished processing the pre-
vious event. The cEvents field provides a con-
tinuous count of the events that have occurred but
are not yet processed. If the client is too slow,
the count in the cEvents field becomes ever
larger. Under these circumstances, the count in
the cEvents field provides a measure of how far
behind processing has fallen.

The client should use the sequence below to process
the TRB. This sequence avoids a race condition and
yet processes the correct number of events.

1. Receive indication that the interval expired
by using either the Wait or Check primitive
and specifying the exchange specified by
the exchResp field.

2. If the cEvents field is 0, processing
is complete; return to step 1. (In this
sequence, it is possible to receive a TRB
in which cEvents is 0; thus it is necessary
to perform this test before processing the
event.)

3. Process the event. Processing is
application-specific.

33-6 CTOS/VM Concepts

4. Decrement the cEvents field by 1. (It
is not necessary to decrement the
cEvents field in a single instruction
unless the client is keeping a count of
events.)

5. Repeat the processing sequence from
step 2.

PROGRAMMABLE INTERVAL TIMER

The Programmable Interval Timer (PIT) is accessed
through the SetTimerInt and ResetTimerInt opera-
tions.

The SetTimerInt operation establishes a pseudoin-
terrupt handler in the application program to
receive a pseudointerrupt after a specified
interval (in units of 50 microseconds). (Pseudo-
interrupts are described in Chapter 36, "Interrupt
Handlers.") The SetTimerInt operation specifies
the memory address of a Timer Pseudointerrupt
Block (TPIB) in user memory that must be allocated
by the application.

(See Table 4-28 in the CTOS/VM Reference Manual
for the TPIB format.)

NOTE: Other interrupt activity may result in a slightly longer PIT timed
interval than requested. Very short requested intervals are particularly
susceptible to this effect and can cause significant system overhead.

Timer Management 33-7

It is sometimes convenient to have a single pseu-
dointerrupt handler service the pseudointerrupts
associated with multiple TPIBs. To do this, the
pRqBlkRet field of each TPIB must be the memory
address of the same 4 byte memory area (or
pRqBlkRet can be 0), and the SetTimerInt operation
must be invoked for each TPIB. The pseudointer-
rupt handler must examine this 4 byte memory area
to determine which TPIB caused activation of the
pseudointerrupt handler. Even when the pseudo-
interrupt handler is serving only a single TPIB,
pRqBlkRet must still be the memory address of the
otherwise unused 4 byte memory area (or pRqBlkRet
can be 0).

The ResetTimerInt operation terminates a previous
SetTimerInt operation.

33-8 CTOS/VM Concepts

OPERATIONS

The timer management operations are described
below. Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

DELAY

Delay Delays the execution of the client
for the specified interval.

REALTIME CLOCK

OpenRTClock Establishes a TRB between the cli-
ent and timer management.

CloseRTClock Terminates the use of the specified
TRB.

PROGRAMMABLE INTERVAL TIMER

SetTimerInt Establishes a PIT pseudointerrupt
handler.

ResetTimerInt Terminates the TPIB initiated by a
SetTimerInt call.

Virtual Code Management 34-1

34 VIRTUAL CODE MANAGEMENT

The Virtual Code Management facility (commonly
known as the "Swapper") allows you to run a
program that is larger than the available memory
in an application partition. The Virtual Code
Management facility is a set of object module pro-
cedures in the standard operating system library,
CTOS.lib. These modules are linked with the
program and become part of the run file. For
protected mode, part of the Virtual Code Manage-
ment facility also is in the operating system
itself.

This chapter presents the Virtual Code Management
facility from a theoretical point of view. It
describes how the operating system handles the
movement of program segments between disk and
memory. For practical guidelines on how to incor-
porate the Virtual Code Management facility into
your programs, see the CTOS Programmer's Guide.

Each application program using the Virtual Code
Management facility is divided into variable-
length code segments. The segments contain one or
more complete procedures in object modules. One
or more code segments are resident in memory. The
others reside on disk in a run file. The Virtual
Code Management facility brings them into memory
as they are needed.

A code segment in memory that is no longer needed
is discarded, and another code segment (called an
overlay) is read into memory. When the first code
segment is needed again, it is reread from the run
file. Under this system, only code segments, and
not data segments, are read into memory and
discarded as necessary. Nothing is written back
to disk, so there is no need for a disk swap file.

34-2 CTOS/VM Concepts

You can write a program with the intention of
using the Virtual Code Management facility, or you
can rather easily retrofit an existing program to
use it. Few, if any, source program changes are
needed: using the Virtual Code Management faci-
lity mainly involves specifying to the Linker your
desired grouping of object modules into code
segments.

The "Virtual Code Segment Management" section in
the CTOS Programmer's Guide provides an overview
of how to specify the modules you want to place in
overlays. (Additional information is contained in
the Linker/Librarian Manual, Section 1, "Using the
Linker (Binder)." Also see Section 4, "Further
Information About Linker Options," in the same
manual.)

MODEL OVERVIEW

The Virtual Code Management facility allows the
execution of programs whose code size exceeds the
size of the partition in which they are run. To
achieve this, only portions of the code exist in
memory at any given time; the remainder are on
disk. It is the job of the Virtual Code Manage-
ment facility to ensure that the portions of the
code that are currently needed for execution are
actually in memory.

The code in the run file of a program using the
Virtual Code Management facility either is part of
one of several overlays, or is resident. (Here-
after, a program that uses the Virtual Code
Management facility is called an overlay program.)
When the overlay program begins execution, the
resident code is loaded into memory, where it
remains for the duration of the program's execu-
tion. At some point in the program's execution,
when a call is made to a procedure in one of the
overlays, the Virtual Code Management facility
reads that overlay into memory into an area of
memory called the overlay zone so that the program
can continue execution.

Virtual Code Management 34-3

The Virtual Code Management facility keeps as many
overlays as possible in memory at once. When
another overlay that would exceed the available
space is called into memory, the Virtual Code
Management facility uses a least-recently-used
(LRU) algorithm to determine which currently
resident overlay to discard.

The Virtual Code Management facility is designed
to run in both real mode and protected mode and
participates with the compatible run file format.
That is, if an application program is written
following the rules for protected mode programs,
a single overlay program run file can be created
that will run in both real mode and protected
mode. Which mode it actually runs in depends on
which operating system is present. (Guidelines
for writing protected mode programs are contained
in the Engineering Update for 2.0 CTOS/VM.)

The Virtual Code Management facility operates
quite differently in protected mode than in real
mode.

DATA STRUCTURES

The Virtual Code Management facility uses several
data structures to keep track of the current
locations of all of an overlay program's
procedures (in memory or on disk, and in what
overlay).

When an overlay program is linked, the Linker
builds several data structures within it for use
by the Virtual Code Management facility. When the
program is running, the arrangement of its parts
is as shown in Figure 34-1. The program's
resident code and data are in high memory.

34-4 CTOS/VM Concepts

To show all aspects of the arrangement, the figure
depicts the memory layout at some point during
program execution, after several overlays have
been brought into memory and discarded.

Figure 34-1. Virtual Code Facility Data
Structures and Their Locations

Virtual Code Management 34-5

OVERLAY ZONE HEADER

The overlay zone header is at the low end of the
overlay zone. This structure describes the over-
lay zone, indicating how much space is used by
overlays and (for real mode only) how much by
return overlay descriptors (RODs). (For details
on using RODs, see "Intercepting Returns," later
in this chapter.) It also contains other refer-
ence information, including the locations of the
StaticsDesc data structure and some of its sub-
structures (described next).

STATICSDESC

The StaticsDesc structure is in the data segment
(DGroup) of the overlay program. It consists of
the following:

•	 a	self-descriptive	header

•	 an	array	of	overlay	descriptors	(rgOD)

•	 an	array	of	stubs	(rgStubs)

•	 a	ProcInfoRes	structure

The overlay descriptors array (rgOD) contains an
entry for each overlay in the program, indexed by
overlay number. Each overlay descriptor identi-
fies the location and size of the overlay in the
run file.

34-6 CTOS/VM Concepts

The stubs array (rgStubs) contains a stub for each
program procedure. In protected mode, the proce-
dure's stub contains the protected mode selector
(SL) and the offset of the procedure. (For de-
tails on protected mode SLs, see Chapter 3, "Using
CTOS/VM Operations," and Chapter 24, "Memory
Management.") In real mode, the stub for a proce-
dure contains either the address of the proce-
dure's current address in memory or, if the stub's
procedure is not resident in memory, the address
of the OverlayFault procedure.

The ProcInfoRes structure describes those proce-
dures that are in the permanently resident portion
of program code. Its header tells how many proce-
dures are present in the resident code segments
and identifies the index of the stub corresponding
to the first public procedure in the resident. A
public procedure is a procedure that can be
accessed by other modules.

RETURN OVERLAY DESCRIPTORS

The return overlay descriptors (RODs) are overlay
identifiers used by the Virtual Code Management
facility in real mode when a return is done to a
procedure that was discarded after it issued the
corresponding call. (For details, see "Intercept-
ing Returns," later in this chapter.) RODs are
not used in protected mode.

Virtual Code Management 34-7

PROCINFONONRES

All code segments in overlays reside in the
overlay program's run file on disk. The
ProcInfoNonRes structure is at the head of each
overlay code segment. It contains the index of
the corresponding overlay descriptor (for example,
what overlay this is) and its size. It also
contains a time-stamp field for use with the LRU
algorithm.

Like the ProcInfoRes structure, ProcInfoNonRes
identifies the index in the stubs array of the
stub corresponding to the first procedure in this
overlay that can be accessed by other modules.
Additionally, it tells the number of procedures in
the overlay. Finally, it identifies these proce-
dures as near or far:

•	 A	 near procedure is referenced by the
offset (IP) of the procedure's memory
address. Near procedures can be called
only by other procedures within the same
module.

•	 A	far procedure is referenced by both its
code segment (CS) and its offset (IP).
Far procedures can be called by proce-
dures within the same or from within a
different module.

(For details on how the Virtual Code Management
facility handles these procedures, see "Intercept-
ing Returns," later in this chapter.)

In real mode, the Virtual Code Management facility
needs the information provided by the
ProcInfoNonRes structure when it traces the stack
to discard an overlay.

34-8 CTOS/VM Concepts

The stubs array contains one stub for each program
procedure. The Linker changes all program proce-
dural calls from Call Direct to Call Indirect as
follows:

CALL DWORD PTR [stub + 1]

Thus, each procedure is called through its
corresponding stub.

A stub has the 5 byte structure shown in Figure
34-2. In real mode, the first byte is either a
JMP or a CALL instruction (opcode); in protected
mode, the first byte always is a JMP. The remain-
ing 4 bytes (in either mode) are a procedural
address.

Figure 34-2. Stub Structure

Virtual Code Management 34-9

PROTECTED MODE OPERATION

In protected mode, because each overlay is a
separate segment, each overlay has a unique
descriptor in the Local Descriptor Table (LDT).
(See the iAPX Programmer's Reference Manual and
the 80386 Programmer's Reference Manual for
details.) The present bit within the descriptor
indicates whether or not the segment is in memory.
When an overlay program is first loaded into
memory, the operating system marks the descriptors
for all the overlays as not present.

Whenever any of the discarded overlays are refer-
enced (whether a procedure is being called or
being returned to), a segment not present fault
will occur. A segment not present fault is an
interrupt from which control is passed to the
segment not present fault interrupt handler. (For
details, see Chapter 36, "Interrupt Handlers.")
The segment not present fault interrupt handler is
the part of the Virtual Code Management facility
that resides in the operating system.

The segment not present handler must determine
which overlay is needed before it can read it into
memory. The processor supplies to the handler the
selector (SL) that caused the fault. The Virtual
Code Management facility knows the SL of the first
overlay in the LDT. It, therefore, can determine
the overlay number for the desired overlay. It
then uses the overlay number to index into the
overlay descriptors array to find the address of
the overlay on the disk. The Virtual Code Manage-
ment facility then

1. makes room in the overlay zone

2. reads in the overlay

3. updates the descriptor to reflect the
overlay address

34-10 CTOS/VM Concepts

4. sets the descriptor present bit

5. restarts the instruction

REAL MODE OPERATION

INTERCEPTING CALLS

In real mode, the stub contains the address of the
OverlayFault procedure for each nonresident proce-
dure (which, when the program is loaded, includes
all procedures in overlays).

When a nonresident procedure is called, the call
goes indirectly by means of the stub to
OverlayFault. The OverlayFault procedure

•	 determines	 which	 overlay	 it	 should	 bring	
into memory by analyzing its own address,
which is constructed using a flexible
additive address mechanism

•	 examines	the	last	2	bytes	of	the	original	
Call Indirect instruction to determine
which stub the call came through, and
therefore which procedure within the
overlay is desired

Virtual Code Management 34-11

INTERCEPTING RETURNS

NOTE: The following discussion assumes knowledge of stack format.
(See the "Languages, Stack, and Calling Conventions" section in the
CTOS Programmer's Guide for details.)

In real mode, the Virtual Code Management facility
also intercepts returns to calling procedures. A
calling procedure may be discarded from memory
before it receives a return. A fatal error would
occur if a return were made to a memory location
previously occupied by a procedure that had since
been discarded.

When the Virtual Code Management facility has
chosen an overlay to discard, it performs the fol-
lowing procedures:

1. It traces the stack.

2. It finds the return address of the
procedure being discarded.

3. It overwrites the return address with
the OverlayReturnFault procedure's ad-
dress.

This trace (exemplified below) is possible because
the current stack base pointer (BP) is the memory
address of the stack containing the BP address of
the previous frame. (A frame is all of the
information that is pushed on the stack when a
procedure is called. The frame includes the
parameters passed to the procedure and the
information the procedure itself pushes on the
stack during the course of execution.)

34-12 CTOS/VM Concepts

The BP of the previous frame, in turn, contains
the previous BP, and so on, in a chain. The Vir-
tual Code Management facility follows the chain of
BPs, checking the return addresses as it goes, and
overwriting any in the discarded procedure with
the OverlayReturnFault address.

At this time, a return overlay descriptor (ROD)
also is created for the discarded overlay, if the
discarded overlay has any returns outstanding.

When the return occurs, it goes to
OverlayReturnFault, the address of which now ap-
pears as the return address on the stack. The ROD
identifies the overlay needed and the procedure
within that overlay. OverlayReturnFault then
brings this overlay into memory and passes control
to the procedure, thus completing the call/return
cycle.

OverlayReturnFault now marks the ROD as free so
that RODs do not accumulate. (The number of
existing RODs at any given time always equals the
number of nonresident procedures with outstanding
calls.)

Figure 34-3 illustrates stack tracing when an
overlay is discarded.

Virtual Code Management 34-13

Figure 34-3. Tracing the Stack When an Overlay Is
Discarded

34-14 CTOS/VM Concepts

The scenario leading up to Figure 34-3 is de-
scribed as follows.

When Procedure A (in the resident portion of code)
calls Procedure B (in an overlay), the Overlay
Manager brings B into memory. B, in turn, calls
Procedure C (also in an overlay), and C is brought
into memory. Now Procedure C attempts to call
Procedure D, but there is not enough room for D's
overlay in the overlay zone.

The Virtual Code Management facility examines its
statistics and concludes that Procedure B is in
the LRU overlay and should therefore be discarded.
(Procedure B still expects a return from Procedure
C.) The Virtual Code Management facility discards
the overlay containing B, creating a ROD to iden-
tify B. During this process, the Virtual Code
Management facility must trace the stack to
overwrite the return address of B with the
OverlayReturnFault address.

Figure 34-3 shows the stack format at this point.
By convention, the BP register contains the
addresses of variables that are local to the cur-
rent procedure. It is therefore necessary that
the program save the BP of the calling procedure
so that it can be restored at the return. The
positions of the BPs and the return addresses of
the procedures are shown in Figure 34-3. Each BP
contains the address of the previous BP. The
Virtual Code Management facility can jump from BP
to BP, examining each return address and over-
writing any return address belonging to the
overlay that is being discarded.

When the Virtual Code Management facility reaches
a BP containing an address that matches the saved
address of the initial stack pointer (SP), it
terminates the trace.

Virtual Code Management 34-15

Figure 34-3 is a simplification showing only far
calls and returns. The structures, ProcInfoRes
and ProcInfoNonRes, identify each procedure within
their overlays as near or far. The Virtual Code
Management facility refers to these structures to
determine whether it should read both a CS and an
IP as a procedure's address (for a far procedure)
or only an IP (for a near procedure).

After the overlay has been discarded, the Virtual
Code Management facility compresses the remaining
overlays toward the low end of the zone and brings
in D.

Procedure D now executes and then returns to C,
which is straightforward because C is still in
memory. C, however, returns to the address on the
stack where B's return address normally would be,
but the return now goes to OverlayReturnFault.

OverlayReturnFault analyzes this return address,
accesses the correct ROD, and determines that the
overlay that contains Procedure B is must be
brought back into memory. It then swaps B in,
discarding another overlay if necessary. (Note
that it is perfectly acceptable to discard the
returning procedure to bring in the procedure
receiving the return.)

34-16 CTOS/VM Concepts

IMPORTANCE OF CALL/RETURN CONVENTIONS

Because of this stack-tracing scheme, you must ad-
here to accepted call/return conventions. If the
stack format is not what the tracing algorithm
expects, the overlay program fails during the
process of discarding an overlay. Note that this
is important to the Virtual Code Management faci-
lity only if your program executes in real mode.
The Virtual Code Management facility does no stack
tracing in protected mode. Nevertheless, you
should follow these conventions to create a
compatible run file (that is, a run file that
allows your program to operate correctly in pro-
tected mode and real mode.

REAL AND PROTECTED MODE OPERATION

CALLS TO PROCEDURAL ADDRESSES

In some programs, it is necessary to call a vari-
able that is a procedure address rather than the
actual procedure. The actual procedure to be used
may be determined only at run time.

The Virtual Code Management facility can handle
such calls as well as standard procedure calls.
The first byte of the stub is either a JMP or a
CALL instruction.

Virtual Code Management 34-17

In an overlay program, the Linker assigns the
address of the stub's first byte to all memory
locations within a program that contains refer-
ences to the procedure. If the procedure to be
called is

•	 Resident	in	memory.,	this	byte	is	the	JMP	
instruction, and the remaining 4 bytes
are the address to which the jump should
occur.

•	 Not	 resident	 in	 memory,	 there	 are	 two	
cases. For protected mode, the stub's
first byte is the JMP instruction, and
the remaining 4 bytes are the address of
the procedure. The referenced descriptor
is marked "not present." For real mode,
the stub's first byte is the CALL
instruction, and the remaining 4 bytes
are the address of the OverlayFault pro-
cedure, which in turn brings the needed
overlay into memory.

For real mode nonresident procedures, OverlayFault
knows from what stub it was called and thus can
determine what procedure is needed.

ADJUSTING ADDRESSES

In real mode, once an overlay has been brought
into memory, the Overlay Manager overwrites the
stub address of a frequently called procedure with
that procedure's actual current address in memory.
Thereafter, performance is improved as calls to
that procedure go to it directly until that over-
lay is discarded.

The Overlay Manager keeps track of calls to an overlay
while the overlay is in memory. By doing this,
the Overlay Manager can determine the most active
overlays, which are retained in memory.

34-18 CTOS/VM Concepts

In real mode, however, once a procedure stub
address has been overwritten with the procedure's
actual memory address, calls to the procedure no
longer go through OverlayFault and are not logged.
To compensate for this omission, your program can
call the MakeRecentlyUsed operation, which pre-
vents an overlay from being inadvertently discard-
ed from memory. This operation is unnecessary in
protected mode: if it is called, it will perform
no function other than to return status code 0
(ercOK).

When several overlays are in memory and the Over-
lay Manager needs to bring in another one for
which there is not enough room, it uses this
call-frequency data with its LRU algorithm to
choose an overlay to swap out.

To enable reinitialization of its frequency-of-use
log and to determine the new pattern of overlay
use, the following compression procedure is per-
formed:

•	 All	 remaining	 overlays	 are	 compressed	
toward low addresses.

•	 For	 real	 mode,	 the	 actual	 addresses	 of	
procedures within the overlays change.
For protected, the descriptors for each
moved overlay are updated to reflect
their new locations.

•	 For	 real	 mode,	 all	 stubs	 are	 readjusted	
to the OverlayFault's address.

After this compression, the new overlay is brought
into memory just above the highest existing over-
lay.

Virtual Code Management 34-19

Overlays are available to programs that consist of
more than one run file in an application par-
tition. (For details, see Chapter 32, "Program
and Partition Management.") The first run file
contains the primary task and is loaded by the
Chain, ErrorExit, Exit, LoadInterActiveTask, or
the LoadPrimaryTask operation. A subsequent
run file loaded into the same partition contains
a secondary task and is loaded by the LoadTask
operation. A secondary task, however, cannot be
virtual if the primary task already uses Virtual
Code Management.

34-20 CTOS/VM Concepts

OPERATIONS

The Virtual Code Management operations described
below are categorized as basic or advanced. Oper-
ations are arranged in a most to least frequent
use order. (See the CTOS/VM Reference Manual,
Chapter 3, "Operations," for a complete descrip-
tion of each operation.)

BASIC

InitOverlays Initializes the Virtual Code Man-
agement facility.

InitLargeOverlays
Initializes the Virtual Code Man-
agement facility for large over-
lays.

ADVANCED

GetOvlyStats Returns the size of the largest
overlay, the size of the second
largest overlay, and the total size
of all overlays.

GetCParaOvlyZone
Returns the size of the overlay
buffer measured in paragraphs.

ReInitOverlays Allows the user to change the size
of the overlay buffer to recover
memory or extend the overlay buffer
for better performance.

ReInitLargeOverlays
Is identical to ReInitOverlays, ex-
cept the user describes the length
of the overlay buffer as a count of
paragraphs instead of bytes.

Virtual Code Management 34-21

MoveOverlays Changes the location of the overlay
zone.

MakePermanent Makes the overlay permanently resi-
dent in memory until it is released
with a call to ReleasePermanence.

MakePermanentP
Makes an arbitrary overlay per-
manently resident in memory until
it is released with a call to
ReleasePermanence.

ReleasePermanence
Releases all overlays from per-
manent residence in memory.

MapIOvlyCs Takes an overlay index and returns
the address in memory of where the
overlay is currently located.

MapCsIOvly Takes the CS part of a memory
address and returns the overlay in
which that address is currently
contained.

MapPStubPProc Returns the last 4 bytes of a stub,
which contain the address of a
procedure.

MakeRecentlyUsed
Prevents an overlay from being in-
advertently swapped out.

UpdateOverlayLRU
Is called from within one overlay
to prevent any other overlay from
being swapped out by updating the
time of its most recent use so that
it appears to have 0 age.

34-22 CTOS/VM Concepts

EnableSwapperOptions
Allows an arbitrary operation to be
called each time OverlayFault is
called. This call works in real
mode only.

DeallocateRods Removes outstanding RODs when the
stack is unwound in an assembly
language program.

ReInitStubs Sets all stubs, as a one-time
reset, to contain the OverlayFault
address.

Queues and Queue Management 35-1

35 QUEUES AND QUEUE MANAGEMENT

QUEUES

A queue is a linked list of priority-ordered queue
entry records. A file that contains a queue is
called queue entry file. Queues are used by
application programs and system services to
communicate data within a workstation or between
workstations. Because queues are disk-based, the
data is preserved across system reboot or a power
failure. Note that data is not preserved in simi-
lar circumstances when interprocess communication
(IPC) or inter-CPU communication (ICC) is used.

Each queue entry file contains information for a
single type of processing, such as spooled print-
ing, BSC 3270 remote job entry (RJE), or SNA RJE.
This information is created, accessed, and
modified by both clients and servers, such as the
spooler, BSC 3270 RJE, or SNA RJE.

To take advantage of queues, you must install the
Queue Manager. The Queue Manager can be installed
on a master or a standalone workstation.

The queue entry file consists of a header record
followed by a series of queue entry records.

•	 The	 queue header contains all data that
the Queue Manager needs to control the
file.

•	 Each	queue entry record consists of Queue
Manager control information followed by
specific data created and read by the
client.

35-2 CTOS/VM Concepts

QUEUE MANAGER

The Queue Manager is a system service that main-
tains queues. It provides services such as adding
or deleting queue entries, setting queue entries
to be in service, or returning queue status
information.

RUN FILES

The Queue Manager consists of two run files:

•	 The	 InstallQMgr.run run file is the
program that installs the Queue Manager.

•	 The	 DeinstallQMgr.run run file is the
program used to deinstall the Queue Man-
ager.

INSTALLATION/DEINSTALLATION

The Queue Manager can be installed on a master or
on a standalone workstation.

In a cluster configuration, the Queue Manager must
be installed at the master. The servers that use
the Queue Management facility, however, can be
installed at cluster workstations as well as at
the master. Multiple servers in different cluster
workstations can serve the same queue simulta-
neously.

Queues and Queue Management 35-3

To install the Queue Manager, you can use

•	 A	batch	or	Command	Line	Interpreter	(CLI)	
utility when the system is bootstrapped.
(See the CTOS System Administrator's
Guide for details on the batch/CLI
utilities.)

•	 The	 	 Executive	 	 Install Queue Manager
command. This command allows you to
configure use of the Queue Manager for
greater flexibility. (See the Executive
Manual for details.)

•	 The	 Print	 Manager.	 	 (See	 the	 Printing
Guide for details.)

The Queue Manager can be deinstalled by running
the program, DeinstallQMgr.run, or by using the
DeInstallQueueManager operation.

OVERVIEW OF QUEUE MANAGEMENT

The queues used in the system can be defined by
the administrator, application programs, or ser-
vers. Each queue is assigned a unique name and a
queue entry file specification.

Clients can then add queue entries by using
operations that reference a queue name. The cli-
ent need not specify the location of the queue
server. The first available server in the cluster
can serve the queue entry.

Figure 35-1 shows an example of a cluster config-
uration with the Queue Management facility, a
client, and a server (spooler).

The Queue Management facility acts as a central
switch between clients and servers.

35-4 CTOS/VM Concepts

Figure 35-1. Example of a Configuration with the
Queue Management Facility

CLIENTS

Clients submit requests for processing services,
such as printing and transmission of files, to the
Queue Manager. By using the Queue Management
facility, clients can

•	 access	 	 queue	 	 entry	 	 files	 	 by	 	 using	
operations that specify the queue name

•	 submit	entries	to	the	appropriate	queue

•	 delete	previously	queued	entries

•	 obtain	a	list	of	entries	queued

Queues and Queue Management 35-5

SERVERS

Servers (such as the spooler, BSC 3 270 RJE, and
SNA RJE) serve the queue entry files. The Queue
Management facility allows the server to

•	 specify	the	queue(s)	they	will	serve

•	 process	entries	in	the	specified	queue(s)

•	 request	 the	 removal	 of	 processed	 queue	
entries

SEQUENCE FOR USING QUEUE MANAGEMENT

A simplified sequence for installing and using the
Queue Management facility is described below.

1. If an application program or a system
service does not create queues
dynamically, the system administrator can
create a Queue Index File in the master.
The Queue Index File is a text file that
defines queues to be used in the system.
The Queue Index File assigns to each
queue a queue entry file for storing
queue entries submitted by clients, the
size of the queue entry, and the queue
type.

 If queues are created dynamically,
creation of the Queue Index File can be
omitted. Dynamically installed queues
are defined in the same way as queues
defined by the Queue Index File. (For
details, see "Dynamically Manipulating
Queues," later in this chapter.)

35-6 CTOS/VM Concepts

2. The Queue Manager is installed on the
master or the standalone workstation with
a batch/CLI utility, the Executive
Install Queue Manager command, or the
Print Manager. The system administrator
can choose to specify a maximum number of
queues at installation time.

3. If a Queue Index File exists, the
installed Queue Manager opens the queues
in the Queue Index File. The queues are
maintained in the master.

4. At any time after the Queue Manager is
installed, servers or application
programs can add queues with the AddQueue
operation. The Queue Manager adds queues
created by AddQueue to its tables, and it
creates, if necessary, and opens a queue
entry file. The number of running queues
must not exceed the maximum number
specified when the Queue Manager was
installed.

5. A server (such as a spooler or RJE)
intending to serve a particular queue
uses the EstablishQueueServer operation
to establish itself as an active queue
server.

6. A client adds queue entries to the
specified queue with the AddQueueEntry
operation.

Queues and Queue Management 35-7

7. The server obtains a particular queue
entry for processing with the operation
MarkKeyedQueueEntry (or the next
available queue entry with the
MarkNextQueueEntry operation). The Queue
Manager marks the queue entry as being in
use to prevent other servers from
operating on it. The marked queue entry
remains in the queue entry file until it
is removed (next step).

8. The server services the marked queue
entry and then removes the processed
entry from the queue entry file using the
operation RemoveMarkedQueueEntry.

9. To discontinue serving a queue, the
server removes itself from the list of
active servers with the
TerminateQueueServer operation.

QUEUE INDEX FILE

The Queue Index File is a text file that defines
queues to be used in the system. It contains
information such as the name of each queue to be
used in the system and the associated queue entry
file.

Queues also can be defined by the AddQueue
operation. Both methods of defining queues can be
used. (For details, see "Dynamically Manipulating
Queues," later in this chapter.)

If required, the system administrator creates the
Queue Index File [Sys]<Sys>Queue.Index in the
master.

35-8 CTOS/VM Concepts

The Queue Index File is created with the Text
Editor, Word Processor, or Document Designer. A
record of the following format is required for
each queue:

queueName/fileSpec/entrySize/queueType <RETURN>
.
.
.

where

queueName Is a user-defined queue name that
is unique to the installation. The
name can be any name of up to 50
characters, except the following
system device names: COMM, KBD,
LPT, NUL, PTR, TAPE, QIC, VID, and
X25. Examples of acceptable names
are SpoolerA, SPL, PrinterX, Cen-
tronix, Diablo, and RJEtoBoston.

fileSpec Is the file specification of the
queue entry file in which queue
entries submitted by clients
are stored. An example would be
[Winl]<Sys>SpoolerAQueueEntryFile).

entrySize Is the size of an entry for the
queue entry file. The size is the
number of 512 byte sectors per
entry. For example, to define 1K
byte entries, specify an entry size
of 2. In this case, 984 bytes are
usable, and 40 are reserved for the
Queue Manager.

Queues and Queue Management 35-9

queueType Is the type of the queue (an
integer less than or equal to 255),
which enables a consistency check.
The Queue Manager checks the type
against the type in operations to
add entries to the queue and to
establish servers for the queue.
Types 0 through 80 are reserved for
internal use. Types 1, 2, and 3
are assigned as follows:

Type Assignment

1 Spooler queue
2 RJE queue
3 Batch queue

An example of a Queue Index File is shown in
Figure 35-2.

Figure 35-2. Example of a Queue Index File

DYNAMICALLY MANIPULATING QUEUES

Application programs or servers can add queues
dynamically by calling the AddQueue operation and
supplying the same information that is contained
in the Queue Index File record fields. (See the
AddQueue operation in Chapter 3, "Operations," in
the CTOS/VM Reference Manual.)

35-10 CTOS/VM Concepts

AddQueue can be used to add queues whether or not
the system administrator created a Queue Index
File.

A queue that is dynamically added has the addi-
tional feature of being able to be manipulated,.
It can be either

•	 reset	 	 to	 	 empty	 	 by	 	 the	 	 CleanQueue	
operation

•	 removed	by	the	RemoveQueue	operation

The AddQueue operation has a queue handle param-
eter that allows the queue to be accessed by
CleanQueue and RemoveQueue.

Queues in the Queue Index File do not have the
same flexibility. The Queue Index File can be
edited at any time, but changes to it do not take
effect until the Queue Manager is reinstalled.

With the exception of the advantages described
above for dynamically installed queues, all queues
work the same way, as described in the remainder
of this chapter.

QUEUE ENTRY FILE

Clients add entries to queue entry files (queues).
In the case of RJE, entries are added to the
transmit queue and removed from the receive queue.
The control and status queues are used internally
by the servers for control and status purposes.

Queues and Queue Management 35-11

For further information on the queues required in
the Queue Index File, see

•	 Appendix	A	of	this	manual	for	the	spooler

•	 the	 	 2780/3780 RJE Terminal Emulator
Manual for RJE

Each queue-oriented service generally requires
more than one type of queue, although only one
queue entry file is illustrated for each queue
name in Figure 35-2. (See Table 35-1.)

The client specifies the queue name when submit-
ting a queue entry for processing. The queue
entry is automatically placed in the appropriate
queue by the Queue Manager.

If a Queue Index File exists, the installed Queue
Manager opens the queues specified in the Queue
Index File. If a queue does not exist, it is
created.

If a queue has insufficient space for adding an
entry, the Queue Manager expands that queue by an
increment sufficient to contain 30 entries.

QUEUE ENTRY FILE FORMAT

A queue entry file contains information for a
single type of processing such as spooled printing
or RJE.

Each queue entry file consists of a header record
followed by a series of queue entry records.

35-12 CTOS/VM Concepts

The header contains all data that the Queue
Manager needs to maintain the file. This data in-
cludes

•	 the	queue	type,	such	as	spooler	or	RJE

•	 the	queue	version

•	 a	listing	of	all	queue	servers

•	 two	 sets	 of	 head	 and	 tail	 pointers	 to	 a	
doubly linked list of queue entries

As a consistency check, the Queue Manager matches
the queue type against the type in all client and
server requests.

The queue version checks the queue entry file ver-
sion against the Queue Manager version. A match
ensures correct queue interpretation.

Two sets of head and tail pointers contain memory
addresses in a doubly linked list of queue en-
tries.

•	 One	 set	 contains	 the	 addresses	 of	 the	
first and last entries available for use.

•	 The	 other	 contains	 the	 addresses	 of	 the	
first and last entries currently being
served or waiting to be served.

The entries are priority-ordered such that new
entries are inserted after the last entry of
higher priority, and before the first entry of
lower priority.

Queues and Queue Management 35-13

QUEUE ENTRY FILE EXAMPLES

More than one type of queue entry file is general-
ly required for each queue-oriented service. (For
example, scheduling, control, and status queues
are required for a spooler queue.) Table 35-1
shows examples of typical queues.

Table 35-1
EXAMPLES OF QUEUES

Server Type Number Required

Spooler Scheduling
Control
Status

One per print class
One per printer
One per cluster
configuration

Remote Job
Entry (RJE)
Receive

Transmit One per cluster
configuration
One per cluster
configuration

QUEUE ENTRY

A queue entry is a formatted request for proces-
sing that is added by clients to the specified
queue. Clients and servers communicate by means
of fields within the queue entries located at
fixed offsets known to both the clients and the
servers. When a server is available, it obtains a
queue entry for processing.

35-14 CTOS/VM Concepts

A queue entry is a number of contiguous 512 byte
sectors in a queue entry file. Each queue entry
consists of the following two parts:

•	 The	 first	 40	 bytes	 are	 reserved	 for	 the	
Queue Manager and include control
information, (For details, see "Queue
Status Block," later in this chapter.)

•	 The	 remaining	 bytes	 are	 type-specific,	
that is, they are specific to the type of
the queue. (See Tables A-1 through A-3
in Appendix A, "Spooler Management," for
examples of spooler queue entries.)

CLIENT OPERATIONS

A client can add entries to queues, read queue
entries (typically, to determine the sequence and
status of entries), and delete specific queue
entries.

ADDING AN ENTRY TO A QUEUE

A client adds an entry to the specified queue with
the AddQueueEntry operation. The client specifies
information, including

•	 A	 queue	 name	 that	 must	 correspond	 to	 an	
already created queue.

•	 A	 priority	 level	 (0	 to	 9	 with	 0	 the	
highest), at which the entry is queued.

•	 The	memory	address	of	a	buffer	containing	
the type-specific portion of the queue
entry.

Queues and Queue Management 35-15

•	 An	 optional	 time	 specification	 for	 the	
earliest time the entry is serviced,

•	 An	 optional	 time	 interval	 for	 requeuing	
of the entry after its removal from the
queue entry file. The time interval is
added to the time specification for
servicing the entry.

Before adding a new entry to the queue, the Queue
Manager checks the number of active servers. If
no servers are actively serving the queue, some
clients may select not to queue a new entry.

READING QUEUE ENTRIES

A client reads queue entries with the
ReadNextQueueEntry operation for each entry to be
read. ReadNextQueueEntry is typically used to
list the contents of all entries by using commands
such as the Spooler Status command. (See the
Executive Manual.)

The client specifies the queue name, queue entry
handle, and memory addresses of buffers to which
the queue entry and Queue Status Block are re-
turned. (See the following sections.)

Queue Entry Handle

A queue entry handle is a 32 bit integer that
uniquely identifies a queue entry. The control
portion of the queue entry (the first 40 bytes
that are reserved for the Queue Manager) contains
the queue entry handle of the logically following
queue entry.

35-16 CTOS/VM Concepts

Queue Status Block

The MarkKeyedQueueEntry, MarkNextQueueEntry, and
ReadQueueEntry operations accept a parameter that
is the memory address of a Queue Status Block.
These operations use the Queue Status Block to
report a queue entry's server user number,
priority, and the buffers in which the queue entry
handles for the queue entry and the logically
following queue entry are stored.

(See Table 4-21 in the CTOS/VM Reference Manual
for the structure of the Queue Status Block.) The
Queue Status Block is part of the control portion
of the queue entry (the first 40 bytes that are
reserved for the Queue Manager).

REMOVING AN ENTRY

A client removes a specific queue entry from the
queue with the RemoveKeyedQueueEntry operation.
The queue entry is identified by one or two key
fields.

A key is a particular field or combination of
fields in a data record upon which the search
process is performed. The RemoveKeyedQueueEntry
operation can specify that up to two key fields
must match corresponding fields in the queue entry
before the queue entry is removed.

Queues and Queue Management 35-17

SERVER OPERATIONS

A server can do all of the following:

•	 establish	 itself	 as	 an	 active	 server	 for	
the specified queue(s)

•	 mark	 	 and	 	 obtain	 	 queue	 	 entries	 	 for	
processing

•	 unmark	queue	entries	or	remove	itself	as	an	
active server

ESTABLISHING SERVERS

A server must establish itself as a server for
a specific queue with the EstablishQueueServer
operation before it can serve the queue.

EstablishQueueServer enables the Queue Manager to
keep a count of the number of servers serving each
queue. The Queue Manager checks the count of servers
before adding entries to a queue. If no servers
are active, a client may select not to queue a new
entry.

MARKING QUEUE ENTRIES

The server obtains a queue entry on which to
operate with either of two operations:

•	 the	 	 MarkNextQueuedEntry	 	 operation	 	 to	
specify the next available queue entry

•	 the	 	 MarkKeyedQueueEntry	 	 operation	 	 to	
specify a specific queue entry

The Queue Manager marks the specified queue entry
as being in use to prevent other servers from
operating on it.

35-18 CTOS/VM Concepts

The marking operations prevent interference among
multiple servers serving a single queue. When a
queue entry is marked, it is not returned in sub-
sequent marking operations.

UNLOCKING QUEUE ENTRIES

Entries are reset to the unmarked (not in use)
state when

•	 The	Queue	Manager	is	installed.

•	 A	 server	 terminates	 operation	 for	 any	
reason, including malfunction of a
cluster workstation. The Queue Manager
searches all queues affected and resets
any queue entries marked by servers from
the malfunctioning workstation.

•	 A	 server	 no	 longer	 wishes	 to	 serve	 a	
queue and issues a TerminateQueueServer
operation. The Queue Manager decrements
the count of active servers for that
queue and resets all entries previously
marked by the terminating server.

QUEUE ENTRY FORMATS

(See Tables A-1 through A-3 in Appendix A,
"Spooler Management," for the formats of the
spooler scheduling, status, and control queues,
respectively.) The queue entry format also can be
used for user-defined servers. Queue entries must
be large enough to accommodate the control portion
of the queue entry (40 bytes that are reserved by
the Queue Manager).

Queues and Queue Management 35-19

OPERATIONS

The Queue Management operations described below
are categorized by user group. (See the CTOS/VM
Reference Manual, Chapter 3, "Operations," for a
complete description of each operation.)

CLIENT GROUP

AddQueueEntry Adds an entry to the specified
queue for processing by the
appropriate queue server.

ReadKeyedQueueEntry
Obtains the first queue entry
in the specified queue with up
to two key fields equal to the
values specified, reads it into
a buffer, and returns the Queue
Status Block.

ReadNextQueueEntry
Reads an entry from the spe-
cified queue into a buffer and
returns the queue entry handle
of the next queue entry.

RemoveKeyedQueueEntry
Locates an unmarked entry in
the specified queue with up to
two key fields equal to the
values specified and removes it
from the queue.

SERVER GROUP

EstablishQueueServer
Establishes that a server in-
tends to service the specified
queue.

35-20 CTOS/VM Concepts

MarkKeyedQueueEntry
Locates the first unmarked en-
try in the specified queue with
up to two key fields equal to
the values specified, marks it
as being in use, reads it into
a buffer, and returns a queue
entry handle for use in a sub-
sequent RemoveMarkedQueueEntry
operation.

MarkNextQueueEntry
Leads the first unmarked entry
in the specified queue into a
buffer, marks it as being in
use, and returns a queue entry
handle. Entries are marked in
order of priority.

RemoveMarkedQueueEntry
Removes a previously marked
entry from the specified queue.

RewriteMarkedQueueEntry
Rewrites the specified marked
queue entry with a new queue
entry.

TerminateQueueServer
Notifies the Queue Manager that
a server is no longer serving
the specified queue.

UnmarkQueueEntry Resets the specified queue en-
try as unmarked (not in use).

Queues and Queue Management 35-21

CLIENT/SERVER GROUP

The operations below can be used by any client or
server.

AddQueue Activates a new queue.

CleanQueue Resets a queue to empty.

DeInstallQueueManager
Terminates operation of the
Queue Manager and frees its
memory partition.

GetQMStatus Interrogates the Queue Manager
about usage statistics, as well
as the queues of the specified
type.

RemoveQueue Removes a queue dynamically.

Interrupt Handlers 36-1

36 INTERRUPT HANDLERS

To most programmers, interrupts are invisible
events, handled automatically by system software.
This chapter will be of interest primarily to
systems programmers, communications programmers,
and others concerned with handling low-level
devices or program instruction errors.

TERMINOLOGY

The Intel microprocessors, upon which the oper-
ating system is based, support an interrupt
handling mechanism that can be used for a variety
of different purposes. For this reason, CTOS/VM
supports a number of interrupt handling styles,
some of which are only very distantly related.

To clarify differences, the following terms are
used throughout this manual wherever interrupt
handling is discussed. Note that these terms are
not specifically CTOS concepts: they are terms used
for the Intel family of microprocessors.

An interrupt is one of several types of control
transfers initiated by the processor because of an
event that requires immediate attention.

An Interrupt Vector Table (IVT) is an array of
program addresses maintained by the operating
system. When an interrupt occurs (in real mode),
the processor hardware consults this table to
decide where to transfer control. The table has
256 entries, each of which can correspond to a
different interrupt source. All real mode in-
terrupts are directed to an interrupt handling
routine by means of this table.

36-2 CTOS/VM Concepts

An Interrupt Descriptor Table (IDT) is the
protected mode equivalent of the IVT. For the
purposes of this chapter, the two types of
interrupt table are equivalent: each table is a
256-entry array that functions to direct
interrupts to interrupt handling routines. The
table used depends on whether the processor is in
real mode or protected mode when the interrupt
occurs. If the operating system does not support
the use of both modes, only one or the other
actually is present.

An interrupt handler is the code that receives
control when an interrupt occurs. The entries in
the IVT (or IDT) identify interrupt handlers.

An interrupt number is an integer in the range 0
to 255 that identifies the interrupt type (source
of the interrupt). When an interrupt occurs, the
hardware recognizes the interrupt type and the
applicable interrupt number. The processor uses
this number as an index into the IVT (or IDT).

Figure 36-1 shows the interrupt hierarchy. Each
interrupt category includes one or more interrupt
types.

The top-level categories are external interrupts
and internal interrupts.

An external interrupt is an event triggered by a
condition external to the processor. A peripheral
device in need of service and a key pressed on the
keyboard are examples of conditions that result in
external interrupts. An external interrupt occurs
asynchronously with the execution of the proces-
sor's instructions. It, therefore, can occur at
an unpredictable time and usually is not related
to the currently executing program.

A device interrupt is synonymous with an external
interrupt. This is because an external interrupt
results from an external device signal.

Interrupt Handlers 36-3

Figure 36-1. Interrupt Hierarchy

Note in Figure 36-1 that a programmable timer and
a DMA controller are categorized as external
devices (even if they are integrated into the
processor chip). These devices are considered
external to the processor because they operate
asynchronously (in parallel to the processor's
instruction stream). Floating-point coprocessors
also are considered external devices for this same
reason.

An internal interrupt is an immediate result of an
instruction the processor tried to execute.
Internal interrupts occur because instruction
execution cannot, or should not, be allowed to
proceed normally. An invalid opcode and an erro-
neous divide instruction are examples of condi-
tions that result in internal interrupts.

36-4 CTOS/VM Concepts

Internal interrupts are unrelated to external
events and have fewer conceptual implications.
They can involve one process encountering an
unexpected condition in a program, such as a
divide by 0, or a deliberate process action, such
as the explicit use of the INT instruction. In
principle, an internal interrupt appears to be no
different from a subroutine call.

EXTERNAL INTERRUPT HANDLING MODEL

An external interrupt generally is used to alert
the processor to service an external device in a
timely manner. Under CTOS/VM, external interrupts
are managed by a general model that provides
device handling and control over interrupt occur-
rence.

DEVICE HANDLING

Device handling is accomplished by a device hand-
ler program. Device handlers perform the hardware
I/O to and from an external device. Handlers for
some devices are included in the CTOS Kernel;
others are part of system services or application
programs.

Device handlers usually consist of a device hand-
ler process, which manages the device and
initiates I/O, and a device interrupt handler,
which executes when operations complete or status
conditions change at the device. Figure 36-2
shows a typical device handler.

Interrupt Handlers 36-5

Figure 36-2. Device Handler

36-6 CTOS/VM Concepts

Although they execute asynchronously (as if they
were two processes), the device handler process
and the interrupt handler are two closely related
parts of the same program. Communication and
synchronization are accomplished by using the
PSend Kernel primitive and, optionally, some
shared memory, such as buffers and control infor-
mation.

The device interrupt handler executes when the
external interrupt occurs. If necessary, it may
call PSend to start execution of the device
handler process, which has been waiting at an
exchange. PSend is effectively the only way the
interrupt handier process and interrupt handler
can synchronize. Only the device handler process
(not the interrupt handler) may call the Kernel
primitive Wait to wait at an exchange, so it is
impossible for the device handler process to use
PSend to send a message to the interrupt handler.
Synchronization, therefore, is one-directional
(from the interrupt handler to the process),
although data communication can flow in either
direction if shared memory is employed.

Device Handler Process

A typical device handler process spends most of
its time idle. It waits at an exchange for either
of two kinds of messages to reach it: commands
from some program in the system that has work for
the device, or messages (from its interrupt hand-
ler) that represent status or data from the device
itself.

As such, the device handler process is both a
clearing house for information related to the
device and the agent responsible for determining
what the device should do next. It is positioned
between a client program using the device and the
interrupt handler. (The interrupt handler, in
turn, is positioned between the device handler
process and the actual device.)

Interrupt Handlers 36-7

The device handler process does not run
immediately when an interrupt occurs. It executes
only if the interrupt handler sends it a message.
Some interrupt handlers will send messages to
their device handler processes each time an
interrupt occurs; others do so only after a
succession of interrupts have filled or emptied a
data buffer. Devices that interrupt frequently
enough can impede program performance to the
extent that it would be prohibitively expensive to
execute the device handler process after each
interrupt. To maintain an acceptable performance
level, the amount of work performed at each
interrupt must be minimized. An an example,
RS-232-C serial port devices cause frequent inter-
rupts and, therefore, use an interrupt handler
designed to optimize performance by avoiding the
use of PSend on each interrupt. (For details, see
"CRIHs and CMIHs," later in this chapter.)

Device Interrupt Handler

The device interrupt handler executes when an
external interrupt occurs. It performs the fol-
lowing functions:

•	 as	 the	 primary	 responsibility,	 transfers	
data to or from the device or initializes
DMA hardware that, in turn, performs such
transfers

•	 checks	error	and	status	conditions	in	the	
device after each interrupt

•	 in	some	cases,	processes	data

•	 in	 some	 cases	 (such	 as	 with	 RS-232-C	
serial port handlers), performs low-level
protocol functions

•	 decides	 when	 to	 start	 the	 device	 handler	
process executing (by calling PSend) to
get further assistance

36-8 CTOS/VM Concepts

Because a device is prevented from causing addi-
tional interrupts while its interrupt handler is
executing, the handler must service an interrupt
expediently. Work that can be postponed (on
input) or accomplished in advance (on output)
should be performed by the device handler process,
rather than the interrupt handler. Device handler
processes typically can be interrupted, even by
their own device interrupt handler, except during
execution of critical code regions when the
interrupt flag is turned off, disabling all
external interrupts. As a result, device handler
processes can take longer (than their interrupt
handlers) to do their processing, without causing
interrupts for the device to be lost. (See "Pend-
ing and Lost Interrupts," later in this chapter.)
The interrupt handler often is programmed to
buffer the I/O, effectively extending the time
during which the device can transfer data before
assistance from the device handler process is
required.

CONTROLLING WHEN EXTERNAL INTERRUPTS OCCUR

An external interrupt can occur after any instruc-
tion the processor executes. External interrupts,
however, can be controlled by the interrupt flag
and the Programmable Interrupt Controller (PIC).

The Interrupt Flag

Most external interrupts are maskable, which means
that the processor can prevent them from occur-
ring. This type of interrupt control is used, for
example, to prevent interrupts while critical code
regions are executing. Masking an interrupt is
accomplished by clearing the interrupt flag in the
flag word (disabling interrupts). Maskable inter-
rupts can occur only when this flag is set
(enabling interrupts).

Interrupt Handlers 36-9

When an external interrupt occurs, the processor
hardware disables interrupts automatically. Cer-
tain interrupt handler styles allow the operating
system to enable interrupts again before executing
the interrupt handler,- other styles keep inter-
rupts disabled until the interrupt handler exits.
(For details, see "CTOS/VM Interrupt Handler
Styles," later in this chapter.)

The Programmable Interrupt Controller

The Programmable Interrupt Controller (PIC), a de-
vice closely associated with the CPU, extends in-
terrupt enabling and disabling as implemented in
the processor's interrupt flag to multiple levels.
It can be viewed as a part of the processor's
interrupt mechanism rather than a separate exter-
nal device. (In some Intel microprocessors, the
PIC is packaged as part of the same chip as the
processor).

The PIC prioritizes interrupt signals from exter-
nal interrupt generating devices and associates
these sources with interrupt numbers. Each device
is wired to the PIC at a separate PIC input pin
associated with a priority. Thus, hardware design
fixes device priority. [Note that nonmaskable
interrupt (NMI) sources are the only type that is
not wired to the PIC. For details, see "Nonmask-
able Interrupts (NMI)," later in this chapter.]

Devices with less patience are given a higher
priority. Patience is the amount of time that can
safely elapse before an interrupt is serviced by
its interrupt handler. As an example, a hard disk
drive has infinite patience. It can revolve for-
ever while waiting to service an interrupt; the
only penalty is increased rotational delay. On
the other hand, a keyboard controller would re-
quire that the interrupt handler empty a
one-character hardware buffer of a typed character
before the operator pressed another key. Other-
wise, an overrun would occur, because the buffer
could not hold an additional character.

36-10 CTOS/VM Concepts

PIC management typically is an operating system
function. Certain interrupt handler styles, how-
ever, require that the programmer issue PIC
commands.

By issuing PIC commands, devices can be masked
selectively. When an external interrupt occurs,
the PIC automatically masks interrupts from the
device causing the interrupt and from any other
lower priority devices. Another interrupt from
the same source cannot occur until the interrupt
handler exits (even in cases where the operating
system enables interrupts again before executing
the interrupt handler). When the interrupt hand-
ler is ready to exit, the device is unmasked by
sending an end-of-interrupt (EOI) command to the
PIC. In some interrupt handler styles, the oper-
ating system sends the EOI command/ in others, the
command is sent by the user-written interrupt
handler. (For details, see "CTOS/VM Interrupt
Handler Styles," later in this chapter.)

If the processor interrupt flag is set, the PIC's
selective masking can result in nesting of inter-
rupt handlers for interrupts generated by devices
of different priorities. Figure 36-3 shows an
example of how this works. In the figure, the
first interrupt (Int1) results in the PIC masking
that priority level and all lower priority
interrupt sources. When the first interrupt is
followed by a second, higher priority interrupt
(Int2), the PIC masks the higher priority level
and all lower priority levels for the duration of
the second interrupt handler's execution. At EOI
for the second interrupt, the second masking is
removed, but the first one remains in place until
EOI occurs for the first interrupt.

Interrupt Handlers 36-11

Figure 36-3. Interrupt Nesting

Device prioritization, therefore, ensures that
devices may interrupt other device interrupt
handlers with a lower priority, but not vice
versa.

Pending and Lost Interrupts

If an event occurs that would cause an interrupt
while that interrupt is masked or interrupts as a
whole are disabled, that interrupt is not
prevented entirely. It is merely deferred until
it is enabled. Such an interrupt is called a
pending interrupt.

Generally, one interrupt signal per device can be
held pending at a time. If more than one inter-
rupt signal occurs for the same device while the
interrupt is disabled, only one of the interrupts
ultimately occurs. Those that do not occur are
lost interrupts. Such interrupts result in an
overrun or underrun condition.

36-12 CTOS/VM Concepts

Most device controllers have special hardware to
detect lost interrupts so that the device handler
can report an I/O error. To prevent such errors,
interrupts should only be masked for brief
periods.

Nonmaskable Interrupts (NMIs)

A few external interrupt sources cause NMIs. An
NMI will occur regardless of the state of the
interrupt flag or the PIC. It always causes in-
terrupt number 2, which is dedicated to servicing
NMIs on Intel microprocessors. All other inter-
rupt numbers are maskable when caused by an exter-
nal source.

On CTOS/VM processors, NMI sources include memory
parity errors and bus ready timeouts. (The latter
are caused by addressing a nonexistent peripheral
device, or by a device for which initialization is
programmed erroneously.) Even these NMI sources
can be masked by writing appropriate commands to
specific external hardware that controls them.
Thus, there actually are no nonmaskable external
interrupts.

Internal interrupts are never maskable.

CTOS/VM INTERRUPT HANDLER STYLES

CTOS/VM supports two styles of interrupt handlers:
raw and mediated. The two styles have different
calling conventions and programming rules. They
allow the programmer to decide between convenience
or performance.

Interrupt Handlers 36-13

A raw interrupt handler offers performance over
convenience in the following ways:

•	 The	 processor	 hardware	 transfers	 control	
directly to the user-written handler,
which must be written in assembly lan-
guage. (Coding in a high-level language
defeats the purpose of writing the raw
handler.)

•	 The	 handler	 must	 leave	 processor	 inter-
rupts disabled. Because an RIH cannot be
interrupted, nesting of interrupts can-
not occur while it is executing.

Caution: In real mode, a raw interrupt handler executes on the stack of
the currently running process. For this reason, a raw interrupt handler
must carefully control its stack depth. A handler that uses in excess of
64 words of stack space can overwrite the memory of another process
and cause system crashes with status code 22 ("Bus timeout"), 28
("Invalid Opcode"), or 91 ("Operating system checksum error"). In
protected mode, each interrupted process (interrupt task) has its own
stack.* Stack overflow causes the system to crash with status code 92
("Interrupt stack overflow").

Raw interrupt handlers are used for servicing high-
speed, non-DMA devices.

* A process is called a task in the iAPX 286
Programmer's Reference Manual and the 80386
Programmer's Reference Manual.

36-14 CTOS/VM Concepts

A mediated interrupt handler provides convenience
over performance in the following ways:

•	 It	 can	 be	 written	 in	 a	 high-level	 lan-
guage as well as assembly language.

•	 It	permits	automatic	nesting	of	interrupt	
handlers by priority since processor
interrupts are enabled during its exe-
cution. This means that a mediated
interrupt is designed to be interrupted,
if necessary, by higher priority device
interrupt handlers.

•	 The	operating	system	performs	part	of	the	
handler's work by saving and restoring
all registers and performing some or all
of the EOI processing.

Mediated interrupt handlers are recommended except
for devices where interrupts occur so frequently
that they would significantly impede program per-
formance. Keyboard interrupts, for example, are
serviced by mediated handlers.

There is also a difference in style between
interrupt handlers for RS-23 2-C serial port com-
munications devices and all other interrupt
handlers. RS-232-C devices require special
interrupt handling, because they cause frequent
interrupts and, typically, several devices share
an interrupt number. For these reasons and
others, RS-23 2-C interrupt handlers have unique
calling conventions and programming rules.

Differences in interrupt handling result in the
four styles of CTOS/VM interrupt handler shown in
Figure 36-4.

Interrupt Handlers 36-15

Figure 36-4. Interrupt Handler Styles

Programmers concerned with RS-23 2-C devices should
read the "Communications Programming" section in
the CTOS Programmer's Guide as well as the next
section.

36-16 CTOS/VM Concepts

CRIHs AND CMIHs

Figure 36-5 shows the program logic of a CRIH and
a CMIH. The InitCommLine operation establishes
the interrupt vector and the communications chan-
nel on that vector for the interrupt handler.

Figure 36-5. CRIHs and CMIHs

Interrupt Handlers 36-17

The Comm Nub shown in Figure 36-5 is a part of the
operating system that dispatches CRIHs and CMIHs.
A single hardware interrupt vector (PIC input pin)
can support multiple communications channels be-
longing to different application programs. The
Comm Nub directs the interrupt to its proper
handler. It queries the serial controller's
status to determine which channel is servicing the
interrupt. Then, it determines whether the inter-
rupt is a CRIH or a CMIH.

If the channel is serviced by

•	 A	CRIH,	the	Comm	Nub	transfers	control	to	
the appropriate user-written CRIH. The
user-written CRIH returns to the Comm Nub
when it has completed processing the
interrupt.

•	 A	 CMIH,	 the	 Comm	 Nub	 transfers	 control	
to the operating system, which in turn
transfers control to the appropriate
user-written CMIH. The user-written CMIH
returns to the operating system, which
then returns to the Comm Nub.

Guidelines for writing RS-232-C RIHs and RS-232-C
MIHs are described in the following sections.

GUIDELINES FOR WRITING A CRIH

To write efficient CRIHs, observe the following
guidelines:

1. Interrupts must remain disabled for the
duration of the interrupt.

36-18 CTOS/VM Concepts

2. In real mode, all processing is done on
the stack of whatever process happened
to be running at the instant the inter-
rupt was taken, unless the CRIH requests
that the Comm Nub call PSend to activate
the device handler process. In such a
case, after the CRIH returns, the Comm
Nub switches to the operating system's
interrupt stack before calling PSend.
(The interrupted process is not resumed
immediately if the awakened device
handler process has a higher priority.)

3. A CRIH should use PSend to activate a
device handler process only when neces-
sary (not on every interrupt). This is
because PSend overhead (process sche-
duling and context switching) usually
exceeds the overhead of the rest of the
Comm Nub and the CRIH itself. (See
"Device Handler Process," earlier in
this chapter.)

 The CRIH should communicate with its
device handler process only as much as
required. Usually the receive CRIH has
a multicharacter buffer that it fills,
and the transmit CRIH has a buffer that
it empties before the device handler
process is dispatched.

 A typical error is to have the transmit
CRIH activate the transmitting device
handler process (which is waiting for
buffer space) as soon as 1 byte of space
is available. A better scheme is to
have the transmit CRIH wait until the
buffer is one-third to one-half empty.
This avoids dispatching the transmitting
process after each character sent, once
the buffer is full.

Interrupt Handlers 36-19

4. Code a CRIH as tightly as possible.
This code runs every time a character is
sent or received: a few instructions
can make a visible difference at a high
baud rate or when multiple channels are
in use simultaneously. Let the Comm Nub
set up DS and BX so you can quickly lo-
cate the data structure needed to ser-
vice the interrupt.

Figure 36-6 summarizes the guidelines for writing
a CRIH.

Figure 36-6. User-Written CRIH Summary

36-20 CTOS/VM Concepts

GUIDELINES FOR WRITING A CMIH

The CMIH is very similar to an MIH. (For details,
see "Guidelines for Writing an MIH," later in this
chapter.) The following are a few ways in which
the CMIH differs:

•	 The	 InitCommLine	 operation	 is	 used	 to	
allocate the interrupt vector (rather
than SetIntHandler, which is used by
MIHs).

•	 The	 entry	 in	 the	 IVT	 (or	 IDT)	 does	 not	
direct the interrupt to the entry point
of the CMIH. Instead, the interrupt is
directed to the Comm Nub.

•	 In	 real	 mode,	 the	 Comm	 Nub	 switches	
control to the operating system's stack.
(In protected mode, each interrupted pro-
cess executes on its own stack.)

•	 The	 user-written	 CMIH	 can	 use	 both	 the	
ReadCommLineStatus operation and the
WriteCommLineStatus operation, as
well as the PSend, SetTimerInt, and the
ResetTimerInt operations (used by MIHs).

•	 When	the	user-written	CMIH	is	called,	one	
parameter is supplied. The parameter,
pDsBx, is user-defined but normally indi-
cates which of the communications chan-
nels is being serviced by the CMIH.

Figure 36-7 summarizes the guidelines for writing
a CMIH.

Interrupt Handlers 36-21

Figure 36-7. User-Written CMIH Summary

36-22 CTOS/VM Concepts

RIHs and MIHs

Figure 36-8 shows the program logic of an RIH and
an MIH. The SetIntHandler operation is used to
allocate the interrupt vector.

Figure 36-8. RIHs and MIHs

GUIDELINES FOR WRITING AN RIH

The RIH must conform to the following rules. When
an interrupt occurs, the RIH does the following:

1. In real mode it saves any registers that
will be used.

2. It handles the device that generated the
interrupt and processes as necessary.

Interrupt Handlers 36-23

3. It issues an EOI command to the device
controller (if required by the device)
and also an EOI command to the master
PIC.

4. In real mode, it restores the saved
registers,

5. It uses the IRET instruction to reenable
processor interrupts while returning to
the point of interrupt. In protected
mode, the JMP instruction must follow
IRET to transfer control to the begin-
ning of the RIH.

The only operation an RIH can use is
MediateIntHandler. It is used to convert the RIH
to an MIH if the RIH determines that the device
handler process needs notification for some
reason. (For details, see "Guidelines for Writing
an MIH," later in this chapter.) In this case,
the RIH does not perform steps 4 and 5, above.

Figure 36-9 summarizes the guidelines for writing
an RIH.

36-24 CTOS/VM Concepts

Figure 36-9. User-Written RIH Summary

Interrupt Handlers 36-25

GUIDELINES FOR WRITING AN MIH

Figure 36-10 summarizes the guidelines for writing
an MIH.

Figure 36-10. User-Written MIH Summary

36-26 CTOS/VM Concepts

EXAMPLES OF CTOS/VM EXTERNAL INTERRUPT HANDLERS

PARALLEL PORT INTERRUPT HANDLERS

The SetLpISR operation establishes the printer
interrupt handler [also called a printer interrupt
service routine (PISR)] to process interrupts
generated by parallel printer port interfaces.
(For details, see Chapter 16, "Parallel Port
Management.")

PISRs can be linked to the System Image and
declared at system build. Alternatively, they can
be linked with a dynamically installed system
service or an application program and declared
through the use of the SetLpISR operation.

X-BUS INTERRUPT HANDLERS

Three levels of interrupt handlers are provided
for X-Bus modules: XINT0, XINT1, and XINT4. XINT0
and XINT1 are nonshareable. XINT4 is share-
able.

XINT0 And XINT1

XINT0 and XINT1 are for X-Bus modules that require
a fast interrupt handler. The interrupt handler
can be either raw or mediated by the operating
system, as specified in the SetIntHandler
operation.

Since the XINT0 and XINT1 interrupts are non-
shareable, a system can be configured to have at
most two modules that require these interrupts.
X-Bus modules that require these fast interrupt
levels must be able to use either, as instructed
by software.

Interrupt Handlers 36-27

XINT4

XINT4 is set up for modules that can tolerate a
slower latency.

This interrupt level is implemented by the Xbif
system service as a chain of interrupt handlers
that are invoked in a round-robin fashion whenever
an XINT4 occurs.

Each interrupt handler is of type Boolean and
returns FALSE (0h) or TRUE (0FFh) in the AL regis-
ter of the microprocessor. TRUE is returned if
the XINT4 was generated by the module that the
interrupt handler services.

This protocol means that the interrupt handler for
any X-Bus module must have a way to determine
whether or not its module generated an interrupt.

The SetXbusMISR operation is used to establish an
XINT4 multiplexed interrupt handler [also called a
multiplexed interrupt service routine (MISR)].
Additionally, SetXbusMISR controls dedicated XINT1
interrupt handler allocation.

PSEUDOINTERRUPTS

A pseudointerrupt shares an interrupt vector among
several application programs.

Pseudointerrupts are implemented in software rath-
er than in hardware. In this sense, they are not
really interrupts. However, they are similar to
interrupts in that they result in an interrupt
handler being executed.

An interrupt handler activated by a pseudointer-
rupt executes in the same environment and has the
same responsibilities and privileges as an inter-
rupt handler activated directly by a hardware
interrupt.

36-28 CTOS/VM Concepts

The Programmable Interval Timer (PIT) uses a
pseudointerrupt mechanism. The SetTimerInt opera-
tion establishes a PIT pseudointerrupt handler to
service timer pseudointerrupts. (For details, see
Chapter 33, "Timer Management.") Pseudointer-
rupts, in this case, allow each of several
software routines to function as though it has
exclusive use of the high-resolution PIT.

In a master, for example, the Cluster Line Pro-
tocol Handler, the 3270 Terminal Emulator, and a
user-written device handler for realtime data
acquisition equipment would need high-resolution
interval timing concurrently. Each of the three
pseudointerrupt handlers performs the same logical
(but not device-dependent) processing as if it
were servicing an external interrupt from the PIT
itself.

The XBif system service uses the pseudointerrupt
mechanism for interrupts generated by X-Bus
modules. The XINT4 interrupt handler is imple-
mented as a chain of interrupt handlers invoked in
a round-robin fashion whenever an XINT4 interrupt
occurs. (For details, see "X-Bus Interrupt
Handlers," earlier in this chapter.) The QIC tape
system service, CT-Net Ethernet media system
service, and Telephone Server are examples of
programs that use Xbif.

INTERNAL INTERRUPTS

An internal interrupt is caused by instruction
execution. Depending upon the type of internal
interrupt, the instruction may or may not have
completed successfully.

There are three major types of internal interrupt:
software interrupts, program exceptions, and
faults.

Interrupt Handlers 36-29

(Internal interrupts are sometimes referred to as
exceptions. See the iAPX 286 Programmer's Refer-
ence Manual and the 80386 Programmer's Reference
Manual.)

SOFTWARE INTERRUPTS

A software interrupt is caused by the program
explicitly using the INT instruction. In some
operating systems (notably MS-DOS), this is the
standard way to transfer control to the operating
system to request services. A software interrupt
is simply a specialized type of subroutine call:
typically, different interrupt numbers correspond
to different services, and arguments and results
are passed in registers.

Application programs do not use software inter-
rupts to request services of the operating
system. However, some versions of CTOS make use of
software interrupts internally, and software
interrupts are used when MS-DOS is run under CTOS.

PROGRAM EXCEPTIONS

An program exception is the processor's response
to an invalid instruction that cannot be executed.
Program exceptions include

•	 divide	error

•	 overflow	(INTO	instruction)

•	 bounds	check

•	 invalid	opcode

A program exception usually indicates a program
error.

36-30 CTOS/VM Concepts

FAULTS

A fault occurs in protected mode only when the
processor detects a condition that calls for
operating system intervention. There may be
nothing wrong with the instruction being executed.
It fact, it is sometimes possible for the fault
handler to resume execution of the program after
attending to the condition that caused the fault.

Faults include

•	 general	protection	fault

•	 segment	not	present

•	 stack	exception

•	 page	fault

The segment not present fault is an example of a
processor-supported fault used for segment swap-
ping. The operating system arranges for applica-
tion programs to cause segment not present faults
when they attempt to access code segments cur-
rently not in memory. The fault signals the
operating system to read the missing segment into
memory. After the segment is read in, the program
is resumed as if nothing had happened. (For
details, see Chapter 36, "Virtual Code Manage-
ment.")

It is possible to restart a program after most
types of faults, because the instruction that
caused the fault was not executed. The saved
CS:IP is the memory address of that instruction,
not the one after it. After servicing the fault,
the operating system returns to the program (using
the IRET instruction), and the instruction is
restarted. Provided the faulting condition has
been removed, program execution proceeds normally.

Interrupt Handlers 36-31

Because faults are potentially restartable, fault
handlers are transparent to a program; program
exceptions, on the other hand, generally are
fatal. Note that certain kinds of general pro-
tection faults do not follow this rule, because a
general protection fault indicates a program
error.

Faults usually fall into the category of internal
interrupts that are handled by the operating
system. Fault handlers are rarely user-written.

TRAP HANDLERS

Program exceptions and software interrupts are
often handled by system services or application
programs. The usual way of creating the handler
is to install a trap handler.

A trap handler is an interrupt handler that is in
effect only for the program installing it. Other
programs may install their own trap handlers,
which perform different functions. A trap handler
applies to all processes in the program.

As an example, some programming language run time
packages include trap handlers to handle divide
error program exceptions. When a program written
in such a language causes a divide error, the run
time package prints an error message or takes
other action appropriate to the language.

The SetTrapHandler operation is used to establish
a trap handler for the currently executing program
in real or protected mode.

In protected mode, SetTrapHandler uses an 80286
trap gate. A trap gate is an interrupt structure
in the IDT that references the interrupt handling
procedure. The Set386TrapHandler operation estab-
lishes a local handler using an 80386 trap gate.
An 80386 trap gate supports virtual 8086 mode.

36-32 CTOS/VM Concepts

In real mode, the trap handler of the last program
that established a local handler remains in
effect. Other programs must not use this handler,
or unpredictable results will occur.

In protected mode, system default trap handlers
exist for use by programs that do not establish
their own local handlers. A system service may
replace a system default handler by using the
SetDefaultTrapHandler operation.

Not all internal interrupts are handled by trap
handlers. As an example, fault handlers, like ex-
ternal interrupts, usually are installed by the
operating system using SetIntHandler. This results
in a handler that is in effect system-wide.

PACKAGING OF INTERRUPT HANDLERS

Additional interrupt handlers can be linked either
with an application program or with a system
service. The system service can be linked with
the System Image at system build, or it can be
dynamically installed.

The following operations are used to inform the
operating system of the existence of an interrupt
handler in an application program or in a dy-
namically installed system service:

InitCommLine
SetIntHandler
SetDefaultTrapHandler
Set386TrapHandler
SetTrapHandler
SetLpISR
SetXbusMISR
SetTimerInt

Interrupt Handlers 36-33

APPLICATION PROGRAM

Packaging an interrupt handler with an application
program permits the interrupt handler to occupy
memory only when the application program that
needs it is in memory. Also, somewhat less effort
is required to package the interrupt handler with
an application program. Generally, an interrupt
handler that is used only by one application
program should be packaged with that program.

SYSTEM SERVICE

If an interrupt handler must be available contin-
uously, even while one application program is
being replaced with another, the interrupt handler
must be packaged with a system service. An inter-
rupt handler that supports a device attached to a
master (on behalf of application programs execut-
ing in cluster workstations) must be packaged with
a system service in the master (and also must use
the formal Request/Respond model of interprocess
communication). Packaging an interrupt handler
with a system service reduces application program
run file size, which would otherwise include the
interrupt handler. Generally, an interrupt hand-
ler that is used by all or most application
programs should be packaged with a system service.

36-34 CTOS/VM Concepts

OPERATIONS

The interrupt handler operations described below
are presented alphabetically. (See the CTOS/VM
Reference Manual, Chapter 3, "Operations," for a
complete description of each operation.)

InitCommLine Establishes an interrupt vector and
the communications channel on that
vector for a CRIH or CMIH.

MediateIntHandler
Converts an RIH to an MIH.

PSend Is a Kernel primitive that func-
tions identically to the Send pri-
mitive but is used instead of Send
in interrupt handlers.

ReadCommLineStatus
Can be used by a CRIH, CMIH, or an
application process to query cer-
tain RS-232-C signals not defined
in the serial communications con-
troller.

ResetTimerInt Can be used by a CMIH or MIH to
terminate the Timer Pseudointerrupt
Block (TPIB) initiated by a
SetTimerInt call.

Set386TrapHandler
Establishes a trap handler for
80386 microprocessor-based systems
using an 80386 trap gate.
Set386TrapHandler is always raw and
is part of the process context for
all processes in a partition (as
opposed to being system-wide).

Interrupt Handlers 36-35

SetDefaultTrapHandler
Establishes a system default trap
handler in protected mode to handle
program exceptions and software
interrupts identified by the iTrap
parameter. The system default
handler is accessible by any user
number that has not used
SetTrapHandler to establish a local
trap handler.

SetIntHandler Establishes an RIH or MIH. Unlike
SetTrapHandler, SetIntHandler dis-
ables swapping of the caller and is
always in effect system-wide.

SetLdtrDS Sets the Local Descriptor Table
register (LDTR) and DS registers of
the caller in protected mode.
SetLdtrDS also updates the LDT
field in the caller's Task State
Segment so that the LDT selector is
preserved across a task switch.
(See the iAPX 286 Programmer's
Reference Manual and the 80386
Programmer's Reference Manual.)

SetLpMISR Establishes the printer interrupt
handler to process interrupts gene-
rated by parallel printer port
interfaces.

SetTimerInt Can be used by a CMIH or MIH to
establish a PIT pseudointerrupt
handler.

36-36 CTOS/VM Concepts

SetTrapHandler Establishes a trap handler in real
or protected mode. In protected
mode, SetTrapHandler uses an 80286
trap gate. SetTrapHandler is al-
ways raw and is part of the process
context for all processes in a
partition (as opposed to being
system-wide).

ResetXbusMISR Purges an interrupt handler
previously established using
SetXbusMISR.

SetXbusMISR Establishes an XINT4 multiplexed
interrupt handler. SetXbusMISR
also controls the allocation of
dedicated XINT1 interrupt handlers.

WriteCommLineStatus
Can be used by a CRIH, CMIH, or an
application process to raise or
lower certain RS-232 signals not
defined by the serial communica-
tions controller.

X-Bus Management 37-1

37 X-BUS MANAGEMENT

The intermodule, general-purpose expansion bus
(X-Bus) management provides a high-speed bus for
the interaction of various system modules with
each other and with the workstation processor
module.

X-BUS OVERVIEW

The X-Bus originates at the processor module.
System modules are linked to the X-Bus to the
right of the processor module as shown in
Figure 37-1.

The system modules are linked to and interact with
the workstation processor module by means of the
X-Bus.

The X-Bus provides the necessary signals for

•	 memory	and	I/O	transfer

•	 direct	memory	access	(DMA)

•	 interrupt	programming

(See the hardware manuals for details on the
X-Bus.)

37-2 CTOS/VM Concepts

Figure 37-1. X-Bus Configuration

X-BUS MODULE IDs AND BASE I/O ADDRESSES

Each X-Bus module or input device for a work-
station has a module or input device ID associated
with it. The ID is a 16 bit number that uniquely
identifies the module type. The bootstrap ROM in
the main processor polls each module on the X-Bus
and each device on the input device bus (I-Bus)
and builds a table of IDs that describes the
workstation hardware configuration.

The bootstrap ROM also assigns blocks of base I/O
addresses to each module in the following way:

•	 100h		through		1FFh		are		for		the		first	
module on the right of the processor.

•	 200h		through		2FFh		are		for		the		next	
module, and so on.

The base I/O address is used for I/O access to the
module.

X-Bus Management 37-3

Once a program has identified a particular module
from the module's ID, that module's base I/O
address can be computed from the position of the
module on the X-Bus using the formula

base I/O address=100h*(position-1)

where position is 1 for the processor module, 2
for the next module to the right, and so on.

If a system service, for example, is installed to
interface with a controller on the X-Bus, the
system service first determines if the right type
of controller is present. To do this, the system
service calls the QueryModulePosition operation.
QueryModulePosition calls GetModuleID repeatedly,
incrementing the X-Bus position value by 1 each
time GetModuleID is called until either the chosen
ID is located or status code 35 ("No such module")
is returned. If the module is located successful-
ly, the system service then can compute its base
I/O address.

X-BUS MODULE/PROCESSOR MEMORY ACCESS

There are three memory usage classes of X-Bus
modules: master, slave, and master/slave.

An X-Bus memory master is a device that can access
the processor RAM, but the processor cannot access
the module's memory address space.

An X-Bus memory slave is a device that cannot
access the processor RAM, but the processor can
access the module's memory address space.

An X-Bus memory master/slave is a device that can
access the processor RAM and in which the pro-
cessor can access the module's memory address
space.

37-4 CTOS/VM Concepts

ACCESSING X-BUS MODULE MEMORY

In most cases, the application programmer will be
concerned with accessing X-Bus module memory. As
an example, if you are writing a program that will
manipulate the pixels of a bit map workstation
video display, some of your program instructions
will require manipulation of the Graphics Control-
ler memory.

Using X-Bus Operations to Access Module Memory

To access X-Bus module memory, your program must
call the MapXBusWindowLarge operation, specifying
the module and the amount of module memory needed
to be accessed in that module. MapXBusWindowLarge
returns the memory address(es) of the required
number of contiguous, 64K-byte segments.

MapXBusWindowLarge must be called at least once
before the program attempts to access the module's
memory. It must by called again if the program
accesses a different module.

MapXBusWindowLarge is compatible in real mode and
in protected mode. There are, however, a few dif-
ferences that you need to be aware of. These are
described in the following sections later in this
chapter:

•	 "Specifying	a	Window	Size"

•	 "Accessing	Modules	in	Protected	Mode"

•	 "Accessing	Modules	in	Real	Mode"

MapXBusWindow is an older operation that performs
the same function of providing access to X-Bus
module memory. It returns the address of only one
64K byte segment, however. Because MapXBusWindow
can result in programs that are not compatible in
protected mode, it is recommended that you use
MapXBusWindowLarge for all new programs.

X-Bus Management 37-5

Specifying a Window Size

Each X-Bus module that contains memory accessible
by the processor must have an X-Bus window entry
in the system generation prefix files. (For de-
tails, see the CTOS System Administrator's Guide.)
The window may be 480K, 224K, or 96K bytes. At
system initialization, the operating system deter-
mines the X-Bus window size of each X-Bus module.

For real mode, the operating system reserves a
region of addresses at the end of the 1 megabyte
processor address space at system initialization.
The size of this region is the maximum X-Bus
window size of all X-Bus modules attached to the
workstation.

ACCESSING MODULES IN PROTECTED MODE

Calling MapXBusWindowLarge in protected mode
allows your program to access an X-Bus module's
memory, as described earlier in "Accessing X-Bus
Module Memory."

From the viewpoint of the programmer, protected
mode implementation of MapXBusWindowLarge is
totally transparent. MapXBusWindowLarge returns
selectors (SLs) for the amount of memory that your
program specifies based on the sWindow parameter.
Because protected mode provides a 16 megabyte
address space (or greater), it can accommodate
mapping of X-Bus module memory to addressable
memory regions above the first megabyte without
the use of the extended address register (EAR),
described next in this chapter.

37-6 CTOS/VM Concepts

ACCESSING MODULES IN REAL MODE

In real mode, calling MapXBusWindowLarge to access
X-Bus module memory requires that the processor
set up an extended address register (EAR). The
EAR is used to map a portion of the main
processor's address space into the X-Bus memory
address space instead of its own (and therefore
decreases the address space of the processor).
The real mode processor generates a 20 bit address
(1 megabyte address space). To this address, the
EAR adds an extra 4 bits. The X-Bus module is
programmed to respond to this 24 bit address.
Each module responds to a different 1 megabyte
base address range out of the total 16 megabyte
range, depending on its position in the X-Bus.

(For details on the EAR, see the hardware manual
for your processor module.)

From the viewpoint of the programmer, real mode
implementation of MapXBusWindowLarge reduces the
address space available to the processor by the
size of the largest memory window in the system.
If, for example, the module with the largest win-
dow has a 480K byte window, the maximum memory
available is 512K bytes. Additional memory beyond
512K bytes is invisible to the processor, as
memory addresses between 80000h and F8000h are
mapped to the X-Bus.

X-BUS DMA

A DMA controller in the processor module controls
the transfer of data over the X-Bus from a memory
master or master/slave to the main processor's
memory.

All X-Bus memory master or master/slave modules
other than disk and graphics devices use channel
1, mode 3 DMA (verify mode) when accessing the
main processor's memory.

X-Bus Management 37-7

This arrangement is required for operation with
CTOS/VM and other Convergent X-Bus modules. The
operating system initializes channel 1 DMA in this
mode on powerup. Channel 0 is used by communica-
tions and channel 3 by the hard disk.

COMMUNICATION AND START-UP PROTOCOLS

An X-Bus module may communicate with a program on
the processor module through its I/O space and/or
by using memory either in the module's address
space or in the processor's address space.

If the communication is through I/O space or
through a structure in the module's memory address
space, additional programming steps are necessary
to set up the communication.

If the communication is through a memory structure
in the processor address space, the module must be
informed of the structure address, as such struc-
tures cannot be at fixed memory locations.

The communications structure location can be given
to the X-Bus module either by using the module I/O
space, or by using a protocol that uses the X-Bus
Initialization Structure (XBIS), described next.

XBIS

The XBIF System Service provides a standard way
that intelligent modules can use to establish com-
munication with software running on the processor.

The XBIS, a 16 byte structure at memory location
400h, provides an area in the main processor's
memory in which a program can communicate with a
memory master module. In general, the program

•	 reserves	 	 the	 XBIS	 	 using	 	 the	 LockXBIS	
operation

•	 initializes	the	memory	master	module

•	 frees	 	 the	 	 XBIS	 	 structure	 	 using	 	 the	
UnlockXBIS operation

37-8 CTOS/VM Concepts

This general procedure is exemplified below using
Voice/Data services and the Voice Processor mod-
ule.

The Voice Processor module uses a private data
structure for communication. To establish commu-
nication, Voice/Data services

1. call LockXBIS

2. place the Voice Processor module number in
the XBIS data structure using the memory
address returned from LockXBIS

3. place the physical memory address (ob-
tained by using PaFromP) of the Voice
Processor's private data structure in the
XBIS data structure

4. write a value to the Voice Processor module
base I/O address space (using GetModuleID
to obtain the base I/O address)

This causes the Voice Processor module to read
location 400h to

1. obtain the address of the private data
structure

2. write a status byte to location 400h

3. interrupt the CPU in the main processor
module

Voice/Data services then free the XBIS with
UnlockXBIS.

X-BUS INTERRUPTS

Three interrupt levels are provided for X-Bus
modules: XINT0, XINT1, and XINT4. (For details,
see Chapter 36, "Interrupt Handlers.")

X-Bus Management 37-9

OPERATIONS

The X-Bus management operations are described
below. Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

QueryModulePosition
Determines the bus position of a
module. The X-Bus or input device
bus (I-Bus), type code, and module
number (if there is more than one
module of the same type) are speci-
fied and the position is returned.

GetModuleID Provides access to the workstation
module identification tables that
are constructed by the boot ROM for
the X-Bus and the I-Bus.

MapXBusWindowLarge
Returns memory addresses for acces-
sing the memory within an X-Bus
module.

SwapXBusEAR Returns the word value that was
previously written to the EAR. Any
program using this operation is
responsible for restoring the pre-
vious value when finished accessing
X-Bus memory. (SwapXBusEAR is
needed in real mode only.)

SetXbusMISR Establishes an XINT4 multiplexed
interrupt handler.

37-10 CTOS/VM Concepts

ResetXbusMISR Purges a previously established in-
terrupt handler using SetXbusMISR.

LockXbis Reserves the XBIS structure at lo-
cation 400h. LockXbis returns the
memory address 400h.

UnlockXbis Frees the XBIS structure for use by
other programs.

Mode3DmaReload
Sets up and programs DMA to and
from X-Bus memory master devices
using X-Bus mode 3 DMA.

MapXBusWindow Is the same as MapXBusWindowLarge.
For protected mode compatibility,
MapXBusWindowLarge should be used
in all new programs.

Configuration Management 38-1

38 CONFIGURATION MANAGEMENT

Configuration management instructs you in setting
up the operating system.

The following references describe system adminis-
trative actions primarily:

•	 Chapter	 39,	 "Cluster	 Management,"	 de-
scribes cluster configurations and how
the cluster works. It includes the
cluster operations used in exercising
administrative control over the cluster.

•	 The	 CTOS System Administrator's Guide
lists and describes the files that you
need to create a bootable volume.

The following references involve programmer ac-
tions to reconfigure the operating system (rather
than administrative actions):

•	 Chapter	 40,	 "Native	 Language	 Support,"	
presents ways you can nationalize pro-
grams using the Native Language Support
(NLS) tables. It also describes message
files.

•	 The	CTOS System Administrator's Guide and
the operating system Release Notice
describe generating a system (SysGen).
SysGen consists of changing the default
parameter values and/or removing func-
tionality to build a customized operating
system version.

Cluster Management 39-1

39 CLUSTER MANAGEMENT

Cluster management enables communication among
cluster workstations and the master with which it
is connected.

The master can be a master workstation or a Shared
Resource Processor (SRP).

CLUSTER ENVIRONMENT

One high-speed, RS-422 channel is standard on each
workstation. In cluster configurations connected
to a master workstation, the master and all of the
workstations connected to it use this channel for
intercluster communications. For large clusters
with an SRP master, multiple RS-422 channels are
provided.

Each RS-422 channel is called a line and has a
number associated with it. In a cluster configu-
ration connected to a master workstation, there is
one line, line 0. SRP clusters, however, have two
lines per Cluster Processor board installed. The
first board has line 1 and line 2, the second has
line 3 and line 4, and so on. (There is no line 0
for an SRP cluster.)

The RS-422 channel operates at either 307K bytes
or 1.8 megabytes. (See the CTOS System Adminis-
trator's Guide for details on configuring cluster
line speed.)

39-2 CTOS/VM Concepts

STATUS

The master keeps statistics about errors and nor-
mal operational parameters. The GetClusterStatus
operation makes these statistics available to any
program at any workstation.

The GetClusterStatus operation should be used
instead of GetWsUserName to obtain the same as
well as additional information about user statis-
tics.

POLLING

The master uses a technique called polling to
check workstations that seek to use the RS-422
line for intercluster communications.

Polling starts every 1/20 of a second (one poll
cycle) when a timer interrupt goes off, or when-
ever a response is ready to be returned to the
workstation that initiated the request.

This method of polling

•	 guarantees	 that	 a	 workstation	 will	 be	
polled at least once every 1/20 of a
second when the cluster is not busy

•	 polls	active	workstations	more	often	than	
those not active

ROLL CALL

The master takes roll call by sending a message to
each workstation that is currently online. If a
workstation has a request to send to the master,
it sends the message at this time; otherwise it
informs the master that it has nothing to send.

Cluster Management 39-3

The master notes which workstations had data to
send during roll call.

REPOLL

When the master gets to the end of the list of
workstations it is polling, it checks to see if
there is any time left in the poll cycle.

If there is time left, the master polls each
workstation that was active again.

Repoll is repeated until a new poll cycle starts
or no workstations were active in the last poll.

Polling is totally transparent to the programmer
or workstation user. It appears, however, that
the programmer/user is in control.

REQUEST ROUTING ACROSS THE CLUSTER

Request routing depends upon how the request is
defined and where the system service is installed.
For further information, see

•	 Chapter	29,	"Interprocess	Communication,"	
for request routing by file handle and
file specification

•	 Chapter	 30,	 "Inter-CPU	 Communication,"	
for request routing between processor
boards on the SRP

•	 Chapter	31,	"System	Services	Management,"	
for defining requests to be used with
user-written system services

39-4 CTOS/VM Concepts

If you follow the conventions for routing requests
described in the chapters above, not only will
routing work correctly at your workstation, it
will also work across the cluster or CT-Net.

To have a request served locally, you must install
the system service at your workstation, or status
code 33 ("Service not available") is returned.

The cluster operations described at the end of
this chapter are used only in programs, such as
the Cluster Status Utility (described in the CTOS
System Administrator's Guide), to exercise admi-
nistrative control over the cluster.

A request, such as Read or Write to a file server
in a cluster, uses the interprocess communication
(IPC) request/response model. (For details, see
Chapter 29, Interprocess Communication.") The
same requests are used throughout the cluster.
(Note that they differ only in the way routing is
defined for them.) For this reason, there are no
explicit operations in this chapter for communica-
tion over the cluster.

Cluster Management 39-5

OPERATIONS

The cluster management operations are described
below. Operations are arranged in a most to least
frequent use order. (See the CTOS/VM Reference
Manual, Chapter 3, "Operations," for a complete
description of each operation.)

GetClusterStatus
Returns usage statistics for each
communications channel and the
workstations attached to it.

QueryWsNum Returns the number of the cluster
workstation. QueryWsNum returns 0
if executed on a standalone work-
station.

DisableCluster
Allows an application program on
the master workstation to disable
polling of the cluster workstations
after a specified time period.
DisableCluster is also used to
resume polling of the cluster work-
stations.

MegaFrameDisableCluster
Allows an application program on
the SRP to disable polling of all
cluster workstations (except those
on the line specified to stay up)
after a specified time period.
MegaFrameDisableCluster also is
used to resume polling of cluster
workstations on the SRP.

Native Language Support 40-1

40 NATIVE LANGUAGE SUPPORT

Native Language Support (NLS) supports interna-
tionalization and nationalization of software.
Additionally, NLS operations can be used by appli-
cation programs to store messages in a separate
message file.

Internationalization means language independence.
Source code is internationalized when it is
written in such a way that the resulting program
can run in different languages without modifying
the run file itself.

A language definition includes those requirements
of a language that are unique to that language.
French is different from German or English in ways
that are obvious. Examples of other language
requirements include currency symbols, such as the
English pound sign or the U.S. dollar, and date/
time formats with various arrangements for the
month, day, and year.

Nationalization results in software that runs
using a single language definition.

External modifications can be made to an operating
system so that the resulting system is nation-
alized.

Application programs typically display messages to
the screen in a particular language. Operations
are provided that allow messages to be removed
from an application and instead be placed in a
message file. The resulting program code remains
language-independent. Other features of the
message file itself allow for flexibility in dis-
playing messages in different ways.

40-2 CTOS/VM Concepts

INTERNATIONALIZATION

To provide for internationalization, NLS includes
a set of NLS tables.

The NLS tables control a number of different
internationalizable aspects of software. Included
among the tables, for example, are an uppercase to
lowercase characters table, a date/time formats
table, and a symbols table for number and cur-
rency. The NLS tables allow you to nationalize
operating systems in different ways.

The NLS tables are in the Standard Software source
file, [Sys]<Sys>Nls.asm.

As shipped, Nls.asm defines the proper tables for
the United States. Using these tables, you can

•	 make	any	changes	you	want	to	Nls.asm

•	 assemble	Nls.asm	to	create	Nls.obj

•	 link	 Nls.obj	 to	 create	 the	 NLS	 configu-
ration file [Sys]<Sys>Nls.sys

(See the Nls.asm file as released with Standard
Software for details.)

When the operating system is bootstrapped, it
searches for [Sys]<Sys>Nls.sys. If present, the
operating system loads the contents of this file
into memory, making these tables available to
application programs by means of programmatic
calls.

THE NLS TABLES

Table 40-1 shows the NLS tables contained in
Nls.sys.

Native Language Support 40-3

Table 40-1
NLS TABLES

 Table Name Code Signature
 Size
 (bytes)*

Keyboard Mapping 0 KE Variable

File System Case† 1 FS 258

Lowercase to
Uppercase† 2 XT 258

Video Byte
Streams

3

VS

Variable

(166 max.)

Uppercase to
Lowercase† 4 LW 258

Keycap Legends 5 KC Variable

Date and Time
Formats 6 DT Variable

Number and
Currency Formats 7 NC 9 to 11

Date Name
Translations 8 NT Variable

Collating
Sequence 9 CT Variable

Character Class† 10 CC 258

Yes or No Strings 11 YN Variable

* Includes the 2 byte signature.
† Is an n-element array; n = size (bytes)

40-4 CTOS/VM Concepts

Each of the NLS tables begins with a two-character
(2 byte) signature to ensure validity of the
table. The data for the table follows immediately
thereafter.

When the operating system loads the NLS tables at
boot time, it verifies that the signatures of the
tables it knows about (0 through 11) are correct.
Other tables can be added if desired.

If the table address is obtained by using the
table code (ID code), the address returned is the
signature address.

The NLS operations provided in the standard oper-
ating system library, Ctos.lib, give your programs
access to the functionality of the NLS tables.
(These operations are listed as utility operations
in "Operations," at the end of this chapter.)

The NLS operations provide a layer of software
that returns nationalized results depending on the
values provided in the NLS tables.

In most cases, the programmer does not need to
know the actual structure of any of the tables.
If an application program is written using the
appropriate NLS operations, proper results are
returned to the program for French, if there is a
French Nls.sys, or German, if there is a German
Nls.sys. If there is no Nls.sys file, all of the
operations return the U.S. standard.

The NLS tables contain the selections for all of
the NLS options except for fonts and message text.
(Messages are described in "Message File Cre-
ation," later in this chapter.)

Native Language Support 40-5

NLS TABLE DESCRIPTIONS

KEYBOARD MAPPING

The Keyboard Mapping table is used to map keys
pressed by the user to their character codes. If
no table is present in the configuration file, the
keyboard table as defined during system generation
(SysGen) is used. The memory address of the
Keyboard Encoding table is altered to reflect the
address of the NLS Keyboard Mapping table, if
present. The formats of the Keyboard Encoding
table and the NLS Keyboard Mapping table are the
same, ensuring backward compatibility. (See Chap-
ter 10, "Keyboard Management," for details on
keyboard mapping.)

The basic NLS Keyboard Mapping table (that is,
no diacritical key handling) is 386 bytes: the
signature is 2 bytes, and the table is 384.

A diacritical key handling portion of the table is
provided for displaying characters with diacri-
tical marks, such as the German a with an umlaut.
The first key of a diacritical key pair enables
diacritical mode; the second key displays the dia-
critical result.

The length of the diacritical key handling portion
of the table can vary. It is determined by the
following:

•	 the	 total	 count	 of	 diacritical	 keys	 (2	
bytes)

•	 the	 diacritical	 key	 sequences	 [diacritic	
key pairs and their resultant values (3
bytes for each sequence)]

40-6 CTOS/VM Concepts

The Nls.asm file provides an example of the
diacritical portion of the Keyboard Mapping table.
The example shows how to edit the table to assign
diacritical control to any keys you choose.

The total length of the Keyboard Mapping table is
variable. In practice, however, the table will
not ever be much larger than 400 bytes.

FILE SYSTEM CASE

The File System Case table is an optional table
used by the file system for case-insensitive
comparison and hashing. If the table is not
present, lowercase roman letters are mapped to
uppercase roman letters. No other characters are
mapped.

It is recommended that you use only one such table
definition on all systems because problems can
occur if you interchange file systems, such as
floppy disks, between systems with different
language definitions.

LOWERCASE TO UPPERCASE

The Lowercase to Uppercase table is used by
NlsCase for case-insensitive comparisons and by
other application programs, which must force a
conversion of case. The Document Designer Replace
command, for example, allows replacement control.
If your application program requires collation,
you should use the NlsCollate operation rather
than using this table.

Native Language Support 40-7

VIDEO BYTE STREAMS TEXT

The Video Byte Streams Text table is used by video
byte streams to allow translation of the prompts

Press NEXT PAGE or SCROLL UP to continue

and

Press NEXT PAGE to continue

which are displayed from within video byte
streams. Each string should be 80 bytes or fewer.

This table should need to be accessed only by
video byte streams.

UPPERCASE TO LOWERCASE

The Uppercase to Lowercase table is used by
programs, such as NlsCase and NlsULCMPB, which
must force a conversion of case.

This table can be used by programmers to translate
characters.

KEY CAP LEGENDS

GetNlsKeycapText uses the Key Cap Legends table to
specify the text strings to be displayed by
programs when making reference to any of the key
caps that commonly contain legends.

(For a description of the key cap values, see the
GetNlsKeycapText operation in Chapter 3, "Opera-
tions," in the CTOS/VM Reference Manual.)

40-8 CTOS/VM Concepts

Part or all of the key cap text may be translated.
The maximum size allowed is 15 bytes of text (plus
the 1 byte text string length). Any character
codes can be used within the key cap names.
(Character codes are described in Chapter 10,
"Keyboard Management.") It is recommended, how-
ever, that your program continue using the conven-
tion of displaying all uppercase letters for key
cap text.

DATE AND TIME FORMATS

The Date and Time Formats table is used to specify
format templates to control date and time con-
struction. This table allows variations of date
and time by country and by application program.

The format strings serve as templates for the
NlsStdFormatDateTime operation. This NLS opera-
tion substitutes the actual date and time for con-
trol letters embedded in the format strings. (For
details, see Appendix G, "NLS Templates," in the
CTOS/VM Reference Manual.) Ten control letters
denote the various types of information used to
construct the resultant date and time string. The
control letters are listed and defined in
Appendix G.

Control letter order is significant. For example,
whichever control letter appears first in the list
is used to select am, pm, noon, or midnight.
Table entries should be the lowercase version of
the intended letter.

NUMBER AND CURRENCY FORMATS

The Number and Currency Formats table is used by
GetNlsDateName and NlsParseTime to control the
formatting of numbers and currency fields.

Key elements in the table are presented in
Table 40-2.

Native Language Support 40-9

Table 40-2

NUMBER AND CURRENCY FORMATS KEY ELEMENTS
(Page 1 of 2)

 Element Description

DecimalCh A single ASCII character, either
2Ch (,) or 2Eh (.), used to in-
dicate the decimal point in num-
bers. The default is 2Eh (.).

TriadCh A single ASCII character, either
2Ch (,), 2Eh (.), or 20h (space),
used to indicate the separation of
numbers into triads (that is,
thousands, millions, and so on).
The default is 2Ch (,) . Note that
use of space is not fully supported
at this time, and thus its use may
be ignored by some programs, or it
may cause substitution of one of
the other characters.

fFirstTriad A flag that controls the rules for
placing the triad character in the
thousands position. If TRUE, the
triad separator in the thousands
position always appears when the
number contains four or more digits
to the left of the decimal. If
FALSE, the thousands triad
separator is suppressed when no
more than one additional digit
appears to the left. This notation
is commonly used in France.

The default is TRUE.

40-10 CTOS/VM Concepts

Table 40-2

NUMBER AND CURRENCY FORMATS KEY ELEMENTS
(Page 2 of 2)

 Element Description

Note that some application programs
never use triad characters, and
others use them selectively or
optionally. This flag merely
controls the formatting when the
program is using triad characters.

ListSepCh A single ASCII character, either
2Ch (,) or 3Bh (;), used to
indicate the separation of numbers
within a list.

The default is 2Ch (,).

Note that this specification is
used only by application programs
that would otherwise have a
conflict with the use of 2Ch (,) as
the decimal point character.

iCurrency-
Pos

A value to control the position of
the currency symbol. Zero (0)
indicates the leading currency
symbol; 1 indicates the trailing
currency symbol. Other values are
reserved for future expansion.

Note that embedded currency sym-
bols, such as 5$33 to indicate
$5.33, are not currently sup-
ported.

sbCurrency-
Symbol

A string of up to 4 bytes
containing the currency symbol.
The first byte is the length of the
string; the remaining 1 to 3 bytes
contain the currency symbol.

Native Language Support 40-11

DATE NAME TRANSLATIONS

The Date Name Translations table is used by
GetNlsDateName and NlsParseTime to translate names
of the months and days of the week.

More than one set of names can be defined. The
format templates given to NlsStdFormatDateTime
allow selection of which set of date names to use.

The maximum length of the date name string is 20
bytes.

(For a description of the index values used to
reference the date names, see the GetNlsDateName
operation in Chapter 3, "Operations," in the
CTOS/VM Reference Manual.) Names in this table
should be lowercase. The format templates can be
used to control selective conversion to uppercase.

COLLATING SEQUENCE

The Collating Sequence table actually consists of
four tables used by the NlsCollate operation.

The first table uses a simple substitution of
character codes. This allows for reordering of
the sort order including the mapping of uppercase
and lowercase letters onto the same code values.

A second table defines 2-for-1 substitutions.
Examples are the German "ß" which collates as ss
and a with an umlaut, which collates as AU.

A third table defines of 1-for-2 substitutions.
For example, the Spanish ch collates after c.

40-12 CTOS/VM Concepts

The last (256 byte) table determines character
priority. This table is used only when all prior
tests have resulted in equality. This table is
sometimes used for case differences, such as
collating lowercase after uppercase only when
otherwise equal; however, it is used more commonly
for accent mark priorities. The vowel e, for
example, is considered equal in all its forms
except for priority, which alternates between
uppercase and lowercase versions, first with no
accents, then with acute, grave, circumflex, and
umlaut.

CHARACTER CLASS

The Character Class table is used by NlsClass to
indicate the class of the character with the
corresponding code.

Possible classes and their code values are as
follows:

Class Code

Numeric 0
Alphabetic 1
Special 2
Graphic 3
Blind 4

Graphic indicates that the character is used for
line drawing or other special graphic purposes.
Blind means that the character is not generally
intended for display purposes.

YES OR NO STRINGS

The Yes or No Strings table is actually two tables
used by the NLS operations, NlsYesOrNo and
NlsYesNoOrBlank. One table is a list of words
meaning "yes" in a particular language; the other
table is a list of words meaning "no."

Native Language Support 40-13

NLS OPERATIONS

Table 40-3 summarizes what NLS operations are
available to provide the functionality of each of
the NLS tables:

Table 40-3

NLS OPERATION SUMMARY

 Table Operation(s)

Keyboard Mapping None (used by operating
system keyboard pro-
cess)

File System Case None (used by operating
system file system)

Lowercase to Uppercase NlsCase

Video Byte Streams None (used by video byte
streams)

Uppercase to Lowercase NlsCase
ULCMPB (or NlsULCMPB)

Key Cap Legends GetNlsKeyCapText

Date and Time Formats NlsStdFormatDateTime

Number and Currency Formats
NlsNumberAndCurrency

Date Name Translations GetNlsDateName
NlsParseTime

Collating Sequence NlsCollate

Character Class NlsClass

Yes or No Strings NlsYesOrNo
NlsYesNoOrBlank

40-14 CTOS/VM Concepts

INTERNATIONALIZING APPLICATION PROGRAMS

This section discusses the internationalization of
existing or new application programs.

Certain NLS operations exist for which there are
equivalents in the standard operating system
library, CTOS.lib. To internationalize your pro-
grams so that they work on any nationalized oper-
ating system, you must use the operations for
internationalizable programs shown in Table 40-
4. The equivalent operations are provided only for
the purpose of programs that depend on using them.

Table 40-4

OPERATIONS FOR INTERNATIONALIZABLE PROGRAMS

Recommended
Operation(s)

Equivalent
Operation(s)

ULCMPB
NlsCollate (for a
richer set of rules)

NlsULCMPB

NlsStdFormatDateTime NlsFormatDateTime
FormatDateTime

EXISTING PROGRAMS

If you want to internationalize an existing pro-
gram, you need to identify those operations for
which there are internationalizable versions, as
shown in Table 40-4. The effort that is required
to make these changes is reasonably minor when
compared to the benefits attained by being able to
run the program on any nationalized operating
system.

Native Language Support 40-15

NEW PROGRAMS

If you are considering writing a new application
program, use the internationalizable versions as
specified in Table 40-4.

QUERYING THE NLS TABLES

The NLS operations allow you to query the NLS
tables. The first parameter to each NLS operation
is pNlsTableArea. This is the memory address of
the NLS tables to be used for the call.

Typically, you want to use the NLS tables loaded
at boot time. These tables can be used by all
programs in the system. They are located in a
system-common NLS table area.

The easiest way to access the system-common NLS
table area is to pass NIL as the value of
pNlsTableArea. NIL is interpreted as the begin-
ning address of this area.

You could alternately pass the memory address of a
different set of NLS tables that you created and
linked with your application program. This might
be useful if you want to have a single program
that works correctly in two or more languages at
the same time.

40-16 CTOS/VM Concepts

NATIONALIZATION

Nationalization allows operating systems to re-
flect a particular language definition.

You can modify NLS.asm to reflect the requirements
of a particular language. To do this, you must
change the applicable table(s) in the source file,
NLS.asm, to meet your requirements before you
assemble and link to create [Sys]<Sys>Nls.sys.
(For details on the Nls.asm file, see "Interna-
tionalization," earlier in this chapter.) There-
after, the operating system is nationalized for
the modifications you made.

The Keyboard Mapping table, for example, can be
changed to reflect the key positions of a French
AZERTY or an English QWERTY keyboard. The Date
and Time Formats table can show a date/month/year
arrangement rather than a month/day/year as the
standard representation.

You can also use the NLS tables selectively. If,
for example, the only nationalization requirement
is to change the currency symbol from the U.S.
dollar sign to the English pound sign, you would
include only the Number and Currency Formats table
in the NLS table area. This eliminates the work
of including unnecessary tables and saves oper-
ating system memory.

Native Language Support 40-17

In addition, you can link additional sets of
nationalized NLS tables with your application
program. This might be useful if you want to have
a single application that would work correctly in
two or more languages at the same time.

MESSAGE FILE CREATION

Messages can be removed from an application and
instead be placed in a message file. The result-
ing program code remains language-independent.

To take advantage of message files, use the
message operations in CTOS.lib. (For a list of
the message operations, see "Operations," at the
end of this chapter.) The message operations re-
trieve the messages from the file.

Message files eliminate linking strings with your
program. You can nationalize program strings
simply by editing the message file.

The message file actually exists in two forms:
text and binary. The text form is designed to be
human-readable and consists of entries of the form

<colon>number<colon> <delim>TestString<delim>

for example,

:2000: "This is a sample text message."

By convention, a text file has the name
PackageMsg.txt. Once the text file has been
created, it must be converted to a binary form to
be used by the program.

40-18 CTOS/VM Concepts

To convert to a binary file, use the Create
Message File in the Executive. (See the Executive
Manual for details.) Fill out the command form as
shown below:

Create Message File

 Text file PackageMsg.txt

 [Message file]

By convention, the name of the binary file is the
same name as the text file, except that the .txt
extension is replaced with .bin. This is the
default of Create Message File.

The binary file created above is thus

PackageMsg.bin

USING MESSAGE FILES

There are two ways to use message files.
Application programs that may have a large number
of messages can use macros within messages.
Alternately, a separate set of message operations
can be used for system services or application
programs that may need fewer messages.

Native Language Support 40-19

Macros

To provide added flexibility to the messages
created, each message may have one or more macros
embedded in the text. A macro is identified by a
leading percent sign (%), followed by one or more
characters with no spaces.

Macros are expanded at run time with data supplied
by the ExpandLocalMsg, GetMsg, or PrintMsg oper-
ation, or with data supplied by programs using any
of these operations. The GetMsgUnexpanded opera-
tion can be used to retrieve a message from the
message file and to place the unexpanded message
in memory (that is, it does not expand any macros
that may be present in the message).

(See Appendix H in the CTOS/VM Reference Manual
for details on defining message file macros.)

Using a Small Number of Messages

The OpenServerMsgFile, CloseServerMsgFile, and
GetServerMsg operations are provided for when a
system service or an application program requires
using very few messages. With these operations,
the entire contents of the message file are copied
into a memory buffer, and the messages are
extracted from that buffer. These operations do
not support macro expansion.

40-20 CTOS/VM Concepts

OPERATIONS

The NLS operations described below are categorized
as utility or message-related. Operations are
arranged in a most to least frequent use order.
(See the CTOS/VM Reference Manual, Chapter 3,
"Operations for a complete description of each
operation.)

UTILITY

GetNlsDateName
Returns a string containing the
names of the months and the week-
days, as well as the strings: Am,
Pm, Noon, and Midnight.

GetNlsKeyCapText
Returns a string that contains the
text to be displayed by programs
when reference to a labeled key is
desired.

GetpNlsTable Returns the memory address of an
NLS data table located in the NLS
table area.

NlsCase Translates a given character from
lowercase to uppercase, or from up-
percase to lowercase.

NlsClass Takes a given character and returns
the class of that character.

NlsCollate Compares two strings to determine
if they are equal or if one is
greater than the other. Programs
should use this operation rather
than NlsULCMPB or ULCMPB for a
richer set of collation rules.

Native Language Support 40-21

NlsFormatDateTime
Converts from date/time format to
textual string format. This oper-
ation employs a user-supplied for-
mat template in an alternate set of
NLS tables linked with an applica-
tion program (rather than the NLS
tables loaded at boot time).

NlsNumberAndCurrency
Returns the address of the Number
and Currency Formats table.

NlsParseTime Converts a string into an expanded
date/time structure.

NlsStdFormatDateTime
Converts from date/time format to
text string format. This operation
uses an index into a set of tem-
plate strings in the Date and Time
Formats table loaded at boot time.
Programs should use this operation
rather than NlsFormatDateTime or
FormatDateTime for ease in nation-
alization.

NlsULCMPB Same as ULCMPB.

ULCMPB Compares two strings, using the
lowercase to uppercase conversion
table, if present, to carry out the
case-insensitive comparison. ULCMPB
returns 0FFFFh if the two strings
are equal; otherwise, it returns a
word containing the index of the
first two characters in the strings
that are different. Programs
should use ULCMPB instead of
NlsULCMPB for ease in nationali-
zation.

40-22 CTOS/VM Concepts

NlsVerifySignatures
Validates an alternate set of NLS
tables (that is, it ensures that
the signatures embedded within the
alternate table area provided match
those expected to be there).

NlsYesNoOrBlank
Performs a case-insensitive string
comparison against nationalized
words meaning yes or no and also
checks for a null string.

NlsYesOrNo Performs a case-insensitive string
comparison against nationalized
words meaning yes or no.

MESSAGES

CloseMsgFile Closes an open message file.

CloseServerMsgFile
Closes a message previously opened
by a call to OpenServerMsgFile.

ExpandLocalMsg Expands any macro definitions con-
tained in a message that resides in
local memory.

GetMsg Retrieves a message from the mes-
sage file and places the expanded
message in memory.

GetMsgUnexpanded
Retrieves a message from the mes-
sage file and places the unexpanded
message in memory (that is, it does
not expand any macros that may be
present in the message).

Native Language Support 40-23

GetServerMsg Extracts a particular message
(string) from a message file that
was previously initialized by
InitServerMsgFile.

InitMsgFile Opens a binary message file for
subsequent retrieval of numbered
messages.

OpenServerMsgFile
Initializes a message file for use
by a system service or an appli-
cation program that is using a
relatively small message file.

PrintMsg Retrieves a message from the
message file and places the ex-
panded message in a user-supplied
video byte stream.

Glossary G-1

GLOSSARY

<$> directories. An area of memory on disk in
which temporary files can be created. When a
request with the directory name of <$> is given as
part of a file specification, the operating system
expands the directory name to the form
<$000>nnnnn>, where nnnnn is the user number asso-
ciated with the application partition. The
scratch volume should contain the <$> directory.
See also User number.

Abort request. Notifies system services that
clients have terminated. Upon notification, sys-
tem services can release resources, such as open
files and locked ISAM records, allocated to the
terminating clients. Issuing an abort request
ensures that no requests are returned to the
program after it has been terminated and replaced
in memory by another program. The abort request
also informs system services that resources allo-
cated to the program should be freed.

Accessed bit. See Access rights byte.

Access rights byte. One byte of a descriptor that
contains information about a segment, such as
whether the segment is present in memory, what the
privilege level is, and whether the segment con-
tains code or data. The segment descriptor access
rights byte contains, in addition, an accessed bit
for use by least-frequently-used algorithms in
virtual memory management.

G-2 CTOS/VM Concepts

Action code. The keyboard code generated when a
key (Cancel, Help, 0 through 9, or F1 through F10)
is pressed in conjunction with Action. Programs
can call ReadActionCode or ReadActionKbd to obtain
the action code of a specified key combination.
See also Action key.

Action key. This key is processed specially, even
in unencoded mode. The interpretation of all
other keys is modified while Action is depressed.
The key combination Action-Finish terminates the
execution of the application program and invokes
the Executive. Action-A and Action-B invoke the
Debugger if the Debugger is included in the system
at system build. Key combinations that include
Action are available for application program
interpretation. This allows the program to test
for special operator intervention without prevent-
ing type ahead. Key combinations that include
Action are processed immediately when they are
typed. This processing is independent of charac-
ters or keyboard codes stored in the type-ahead
buffer. See also Action code.

AL. Accumulator general register low byte.

Allocation bit map. Controls the assignment of
disk sectors. It consists of 1 bit for every
sector on the disk. The bit is set if the sector is
available. The allocation bit map is disk-
resident.

Alphanumeric style RAM. The video hardware con-
troller for character attributes, such as blink-
ing, half-bright, reverse video, and underlining,
which are present on monotone graphics work-
stations.

Glossary G-3

Alternate request procedural interface. A
convenient way to issue a request that uses a user
number other than that of the caller. This frees
the client from having to construct a request
block. The alternate request procedural interface
is constructed by prefixing the name of an oper-
ation with Alt and supplying the chosen user
number as the first parameter to the procedure.
For example, to issue a CloseFile request with
user number 5 and file handle (fh), the request
would be written as AltCloseFile(5, fh).

Application partition. A partition of user memory
in which an application program can execute. A
workstation can have any number of application
partitions, with an application program executing
concurrently in each. See also System partition.

Application process. Executes code in the appli-
cation program. It is not a system service
process. See also System service process.

Application program. Can consist of code, data,
and one or more processes executing in an applica-
tion partition. If the program is executing in a
variable partition, the program's code can be
located anywhere in memory and can be shared by
the same type of program in a different variable
partition.

Application System Control Block (ASCB). Com-
municates parameters, the termination code, and
other information between an exiting application
program and a succeeding application program in
the same partition. See also Variable Length Pa-
rameter Block.

Application Workstation. See AWS Workstation.

G-4 CTOS/VM Concepts

ASCB. See Application System Control Block.

Asynchronous mode. See Asynchronous operation.

Asynchronous operation. Asynchronous operation is
a procedure or protocol that allows for a response
within a window of time rather than at an exact
time interval.

Asynchronous Terminal Emulator. The Asynchronous
Terminal Emulator (ATE) command allows a worksta-
tion to emulate an asynchronous, character-
oriented ASCII terminal (glass TTY). (See the
Executive Manual for details.)

ATE. See Asynchronous Terminal Emulator.

AVR. Automatic Volume Recognition.

AWS. See AWS Workstation.

AWS Workstation. A workstation that has no multi-
bus slots. AWS workstations are supported on
prior operating system versions with which CTOS/VM
is cluster-compatible.

Bad sector file. Contains an entry for each un-
usable sector of a disk. The bad sector file is 1
sector in size.

Banner page. Optionally printed by the spooler
before the printing of each file. The banner page
is visually distinctive and also identifies the
file being printed. The banner page can contain
the text of a notice file. See also Notice file
and Spooler.

Glossary G-5

Base I/O address. An address on the X-Bus as-
signed to an X-Bus module by the bootstrap ROM. A
base I/O address is used for I/O access to that
module.

Binary mode. One of three printing mode options
in the printer: Generic Print System, pre-GPS
spooler, and communications byte streams. Binary
mode does not print the banner page before each
file, send extra code not in the file to the
printer, or recognize the escape sequence. See
also Image mode and Normal mode.

Bit map workstation. Uses video software to emu-
late a character map to support character-only
application programs. See also Character map,
Character map workstation, and Video refresh.

Block. An area of memory allocated for use by
Inter-CPU or cluster communications. See also
X-Block, Y-Block, and Z-Block.

Blocked. A record file with several records per
physical sector. See also Record Sequential
Access Method and Spanned.

Boot block. The area of memory that contains the
information passed to the operating system by the
bootstrap ROM.

Bootstrap. To start (to boot) the system by re-
loading the operating system from disk. On other
systems, this is often known as initial program
load (IPL).

BP. Base Pointer general register.

G-6 CTOS/VM Concepts

BSWA. See Byte Stream Work Area.

Buffer management modes. The Direct Access Method
provides two modes of buffer management,
write-through and write-behind. See also
Write-behind mode and Write-through mode.

Byte stream. A character-oriented, readable
(input) or writable (output) sequence of 8-bit
bytes used by the Sequential Access Method to
transfer data to or from a device. An input byte
stream can be read until either the program
chooses to stop reading or it receives status code
1 ("End of file"). An output byte stream can be
written until the program chooses to stop writing.
See also Byte Stream Work Area, Communications
byte stream, Disk byte stream, Generic Print
System byte stream, Keyboard byte stream, Pre-GPS
Spooler byte stream, Printer byte stream,
Sequential Access Method, Tape byte stream, Video
byte stream, and X.25 byte stream.

BSWA. See Byte Stream Work Area.

Built-in. A program is built-in if it is part of
the operating system core, which is always in
memory. A dynamically installed program, on the
other hand, is a program that can be added or
removed at any time without regenerating the
operating system. The file system is an example
of a built-in system service. The Queue Manager
is dynamically installed.

BX. Base general register.

Glossary G-7

Byte Stream Work Area. A 130 byte memory work
area for the exclusive use of Sequential Access
Method procedures. Any number of byte streams can
be open concurrently, using separate Byte Stream
Work Areas.

Case value. A value used to identify which
command invoked the current command when more than
one possibility exists. The case value is held in
the Variable Length Parameter Block and can be
queried by a run file to determine which command
actually invoked it.

cb. A variable prefix that indicates the count of
bytes in a string of bytes.

Character attribute. Controls the presentation of
a single character. The standard character attri-
butes are reverse video, blinking, half-bright,
underlining, bold, and struck-through. See also
Screen attribute.

Character cell. The pattern of illuminated dots
(or pixels) on the video display of a workstation.
The character cell size can be used by a program
that calls the QueryVidHdw or QueryVideo operation
to obtain other information describing the level
of video capability of the workstation.

Character Class table. An NLS table used by the
NlsClass operation to indicate the class of a
given character. The class can be numeric,
alphabetic, special (nonalphanumeric but commonly
displayed), graphic, or blind (not generally dis-
played). See also NLS table.

G-8 CTOS/VM Concepts

Character code. In character mode, the 8 bit byte
returned by certain keyboard management operations
(in contrast to the keyboard code returned when
the keyboard is in unencoded mode). The character
code signifies the depression of a key other than
Shift, Code, Lock, or Action. Depression of
Shift, Code, and Lock does not generate a charac-
ter code, but influences the character codes
generated for other keys depressed simultaneously.
Action has a special, system-wide meaning. See
also Character mode.

Character map. The area of memory that holds the
coded representation of the characters displayed
on the video display of a character map work-
station. See also Video refresh.

Character map workstation. Contains video hard-
ware that supports the character map for the video
display of characters. The hardware reads charac-
ters and attributes from memory and converts them
from the extended ASCII (8 bit) representation to
a pattern of dots (or pixels) that it displays on
the video display of a workstation. During this
translation, the video hardware references a font
that is loaded into memory under program control.
See also Bit map workstation and Character map.

Character mode. In character mode (the default
mode), the client process receives an 8 bit
character when a key other than Shift, Code, Lock,
or Action is pressed. See also Character code and
Unencoded mode.

Character set. See Standard character set.

Glossary G-9

Check. A Kernel primitive used by a client to de-
termine if a message is queued at a specified
exchange. If one or more messages are queued, the
message that was first queued is removed from the
queue, and its memory address is returned to the
client. If no messages are queued, status code 14
("No message available") is returned.

CLI. See Command Line Interpreter.

CISR. See Communications Interrupt Service
Routine.

Client process. A process that makes a request of
a system service. Any process, even a built-in
operating system process, can be a client process,
since any process can request system services.
See also Queue Manager and System service process.

Cluster configuration. A local resource-sharing
network consisting of a master connected to clus-
ter workstations. One high-speed RS-422 channel
is standard on each workstation. In cluster
configurations connected to a master workstation,
the master and all of the workstations connected
to it use this channel for intercluster communica-
tions. For large clusters with an SRP master,
multiple RS-4 22 channels are provided. The oper-
ating system executes in each cluster workstation
and in the master. Also see Cluster workstation,
CT-Net, Master, and Master workstation.

Cluster workstation. A workstation in a cluster
configuration, connected to a master. See also
Cluster configuration and Master.

G-10 CTOS/VM Concepts

Cluster Workstation Agent. The Cluster Work-
station Agent converts interprocess requests to
interstation messages for transmission to the
master. The Cluster Workstation Agent service
process is included at system build in a system
image that is to be used on a cluster workstation.
See also Master and Master Workstation Agent.

Context Manager. See Context Manager/VM.

Context Manager/VM. A partition managing program.
See Partition managing program. (See also the
Context Manager/VM Manual.)

Code segment. A variable-length (up to 64K bytes)
logical entity consisting of reentrant code and
containing one or more complete procedures. See
also Data segment, Segment, and Virtual Code
Management facility.

Collating Sequence table. The Collating Sequence
table actually consists of four NLS tables used by
the NlsCollate operation for collating strings.
See also NLS table.

Color control structure. Used by programs to
set the color in any of the three palettes of the
color palette structure and to switch the graphics
bit map to use either of the two graphics
palettes. In addition, a program can turn the
alpha character map and graphics bit map on or off
independently. To set values for fields in the
color control structure, the program must call the
ProgramColorMapper operation. See also Color
palette, Character map, and Graphics bit map.

Glossary G-11

Color mapper. A portion of the memory into which
the color palette is loaded. The color mapper
thus determines what colors are visible on the
screen. See also Color palette.

Color palette. The color palette structure con-
tains three palettes: one for characters (alpha)
and two for graphics (graphics1 and graphics2). A
set of eight colors can be used for color specifi-
cation on certain workstations. See also Color
mapper.

Command Line Interpreter. A software program on
an SRP processor that reads the Job Control Lan-
guage (initialization) file to install the proces-
sor's system services.

Command name. The string a user types on the com-
mand line in the Executive to call a program.
When the user presses Return, the Executive is
given the command and responds by displaying the
appropriate command form to the screen.

Comm nub. The part of the operating system that
dispatches RS-232-C communications interrupts.
The comm nub passes control from the hardware
interrupt to a user-written RS-232-C communica-
tions interrupt handler (also called an interrupt
service routine) according to the instructions in
an InitCommline operation. When the interrupt
handler has completed processing the interrupt, it
passes control back to the comm nub.

Common unallocated memory pool. A single contigu-
ous area of memory in each application partition
from which long-lived and short-lived memory seg-
ments are allocated.

G-12 CTOS/VM Concepts

Communications byte stream. A byte stream that
uses a communications channel. See also Byte
stream, Byte Stream Work Area, Disk byte stream,
Generic Print System byte stream, Keyboard byte
stream, Pre-GPS spooler byte stream, Printer byte
stream, Sequential Access Method, Tape byte
stream, Video byte stream, and X.25 byte stream.

Communications Interrupt Service Routine (CISR).
Similar to a mediated interrupt handler, except
that a CISR serves only one of the two communica-
tions channels of the SIO communications control-
ler (also called a communications interrupt hand-
ler). See also Mediated interrupt handler.

Communications status buffer. A system structure
that contains statistics for the master and the
workstations connected to it.

Configuration file. Specifies data to be used by
the operating system, a utility, or an application
program. Example configuration files are
Config.sys and the device configuration files cre-
ated by the Create Configuration File command
through the Executive. (See the Executive Man-
ual.)

Conforming code/expand-down data segment bit. One
of the bits in the access rights byte. See Access
rights byte.

Context switch. Occurs when a process is inter-
rupted and its register contents are saved. When
a process is preempted by a process with a higher
priority, the operating system saves the hardware
context of the preempted process in that Process
Control Block. When the preempted process is
rescheduled for execution, the operating system
restores the content of the registers.

Glossary G-13

The context switch permits the process to resume
as though it were never interrupted. See also
Process, Process context, and Process Control
Block.

Control information. The data after the request
block header and before the first request
address/size (pb/cb) pair.

CP. Cluster Processor.

CPU. The CPU (central processing unit) is the
microprocessor.

Crash dump area. The crash dump area (the file
[Sys]<Sys>CrashDump.Sys) contains a binary memory
dump in the event of a system failure.

CRC. Cyclic Redundancy Check.

CS. Code segment.

Current. A current user number is the one that is
presently executing.

CT-Net Agent. Receives requests over CT-Net
destined for system services located at remote
nodes and forwards these requests to the remote
nodes. See also CT-Net and CT-Net Server.

CT-Net configuration. See CT-Net.

G-14 CTOS/VM Concepts

CT-Net. A network consisting of nodes connected
by communications lines over long distances. A
node is a junction in CT-Net (such as a
workstation or a processor board on the SRP).
CT-Net provides access to the system services of
interconnected cluster configurations.

CT-Net Server. Responds to requests from CT-Net
Agents. The Net Server receives a request block
from the Net Agent, executes the request on behalf
of the remote client, and returns the response to
the originating Net Agent. See also CT-Net Agent
and CT-Net.

CTOS. Convergent Technologies' operating system,
which runs on the Intel 8086 Microprocessor.

CTOS/VM. Convergent Technologies' operating
system for "virtual machine" workstations and the
SRP.

Cursor RAM. Part of the advanced video capa-
bility, which allows software to specify a 10 by
15 bit array as a pattern of pixels in place of
the standard cursor (a blinking underline). The
cursor bit array is superimposed on the character
and blinks.

CWS. See Cluster Workstation.

DAM. See Direct Access Method.

Data block. Either a quarter-inch (QIC) tape
fixed-sized (512 byte) physical record or a
half-inch tape variable-sized record.

Glossary G-15

Data segment. Contains data; it can also contain
code, although this is not recommended. If a data
segment is shared among processes, concurrency
control is the responsibility of those processes.
A data segment that is automatically loaded into
memory when its containing run file is loaded is
called a static data segment, to differentiate it
from a dynamic data segment that is allocated by a
request from the executing process to the memory
management facility. See also Code segment and
Segment.

Date/time format. Provides a compact representa-
tion of the date and the time of day that pre-
cludes invalid dates and allows simple subtraction
to compute the interval between two dates. The
date/time format is represented in 32 bits to an
accuracy of 1 second.

Date and Time Formats table. An NLS table used to
specify format templates to control date and time
construction. This table provides for variations
of date and time by country and by application
program. See also NLS table.

Date Name Translations table. An NLS table used
by GetNlsDateName and NlsParseTime to translate
names of the months and days of the week. See
also NLS table.

DAWA. See Direct Access Work Area.

DCB. See Device Control Block.

DCE. Data communications equipment.

G-16 CTOS/VM Concepts

Default response exchange. Each process is given
a unique default response exchange when it is
created. This special exchange is automatically
used as the response exchange whenever a client
process uses the request procedural interface to a
system service. For this reason, the direct use
of the default response exchange is not recom-
mended. The use of the default response exchange
is limited to requests of a synchronous nature.
That is, the client process, after specifying the
exchange in a Request, must wait for a response
before specifying it again (indirectly or direct-
ly) in another Request. See also Exchange and
Response exchange.

Descriptor privilege level. A feature of protec-
ted mode that indicates the privilege level of a
segment. See also Access rights byte.

Device. A physical hardware entity. Printers,
tape, floppy disks, and hard disks are examples of
devices.

Device Control Block. There is a Device Control
Block (DCB) for each physical device. The DCB
contains information, generated at system build,
about the device. For a disk, the information
includes how many tracks are on a disk, the number
of sectors per track, and so forth. The DCB con-
tains the memory address of a chain of I/O blocks.
The DCB is memory-resident.

Device-dependent. Describes program interfaces
closest to the actual hardware. A device depen-
dent program is limited to performing I/O to a
limited number of devices. See also
Device-independent.

Glossary G-17

Device-independent. Describes program interfaces
that are not close to the hardware. A
device-independent program can perform I/O to a
variety of devices. The Sequential Access Method
operations, such as OpenByteStream,
ReadByteStream, and CloseByteStream, are
device-independent operations. See also
Device-dependent.

Device password. Protects a device.

Device specification. Consists of a devname (de-
vice name).

Devname. Device name; the only element of a de-
vice specification.

Diacritical key handling. Part of a keyboard
map-ping table that provides for the display of
characters with diacritical marks, such as the
German a with an umlaut. See also Diacritical key
pair, Keyboard Encoding table, and Keyboard
Mapping table.

Diacritical key pair. A pair of keys that
provides diacritical key handling. The first key
of a diacritical key pair enables diacritical
mode; the second key displays the diacritical
result. See also Diacritical key handling.

Direct Access Method. Provides random access to
disk file records identified by record number.
The record size is specified when the DAM file is
created. DAM supports COBOL relative I/O, but can
also be called directly from any of the Convergent
languages. See also Direct Access Work Area.

G-18 CTOS/VM Concepts

Direct Access Work Area (DAWA). A 64 byte memory
work area for the exclusive use of the Direct
Access Method procedures. Any number of DAM files
can be open simultaneously using separate DAWAs.
See also Direct Access Method.

Direct Memory Access (DMA). Access to memory that
does not require processor intervention. A DMA
controller in the processor module controls the
transfer of data over the X-Bus from a memory
master or master/slave to the main processor's
memory.

Direct printing. Transfers text directly from
application program partition memory to the spe-
cified parallel or serial printer interface of the
workstation on which the application program is
executing. Direct printing is always accessed
through the Sequential Access Method (disk byte
streams). See also Disk byte stream, Spooled
printing, and Pre-GPS spooler byte stream.

Directory. A collection of related files on one
volume. A directory is protected by a directory
password.

Directory password. Protects a directory on a
volume.

Directory specification. Consists of a node (node
name), volname (volume name), and a dirname (di-
rectory name).

Dirname. Directory name; the third element of a
directory specification or a full file specifica-
tion.

Glossary G-19

Disk byte stream. A disk byte stream is a byte
stream that uses a file on disk. See also Byte
stream, Byte Stream Work Area, Communications byte
stream, Generic Print System byte stream, Keyboard
byte stream, Pre-GPS spooler byte stream, Printer
byte stream, Sequential Access Method, Tape byte
stream, Video byte stream, and X.25 byte stream.

Disk extent. One or more contiguous disk sectors
that compose all or part of a file.

DMA. See Direct Memory Access.

Doorbell interrupt. A handshake protocol in which
a device interrupts another device by writing to a
doorbell interrupt location. The device being in-
terrupted responds by servicing the interrupt and
resetting the interrupt request on the device
generating the interrupt. A timeout may or not be
implemented. A doorbell interrupt is used on the
SRP for notifying a processor board that it has
received a message from a remote processor board.

DP. Data processor.

DS. Data segment.

DTE. Data terminal equipment.

Dynamic data segment. See Data segment.

G-20 CTOS/VM Concepts

Dynamically installed system service. A program
that was loaded as an application program and
converted itself into a system service using the
ConvertToSys operation. (See Chapter 31, "System
Services Management.") Once installed, a dynami-
cally installed system service has the same capa-
bilities as a system service that was linked with
the System Image during system build. A dynami-
cally installed system service must use CTOS/VM
operations (rather than system build parameters)
to identify the request codes that it serves,
specify its execution priority, establish its
interrupt handlers, and so forth.

EAR. See Extended Address Register.

EOF. End of File.

EOI. End of Interrupt.

EOM. End of Medium.

EOT. End of Tape.

Erc. A status (error) code.

ES. Extra Segment.

Escape sequence. A special sequence of characters
that invokes special functions. See also Spooler
escape sequence, Submit file escape sequence, and
Multibyte escape sequence.

Event. In the context of timer management, an
event occurs when an interval elapses. See also
System event.

Glossary G-21

Event-driven priority scheduling. When processes
are scheduled for execution based on their
priorities and system events, not on a time limit
imposed by the scheduler. See also Process and
System event.

Exchange. The path over which messages are commu-
nicated from process to process (or from interrupt
handler to process). An exchange consists of two
first-in, first-out queues: one of processes
waiting for messages and the other of messages for
which no process has yet waited. An exchange is
referred to by a unique 16 bit integer. See also
Default response exchange and Response exchange.

Executive. An interactive application program
that accepts commands from the workstation user
and requests the operating system to load programs
to execute those commands. This function can be
performed by the Convergent Executive or by a
user-written Executive. The Executive is loaded
from the file [Sys]<Sys>Exec.Run if specified as
the SignOnExitFile. (See the Release Notice for
the current operating system version.) The file
[Sys]<Sys>Exec.Run usually contains the Convergent
Executive; however, it can contain a user-written
Executive.

Exit run file. A user-specified file that is
loaded and activated when an application program
exits. Each application partition has its own
exit run file.

Extended partition descriptor. Located in each
application partition and contains specifications
for the current application file and exit run
file.

G-22 CTOS/VM Concepts

Extended User Control Block. Located in each ap-
plication partition and contains the offset of the
Partition Descriptor. See also Partition Descrip-
tor.

Extension File Header Blocks. Required for each
file that contains more than 32 disk extents. See
also File Header Block.

External interrupt. Caused by conditions that are
external to the processor and are asynchronous to
the execution of processor instructions. There
are two kinds of external interrupts: maskable
and nonmaskable. See also Internal interrupt,
Maskable interrupt, and Nonmaskable interrupt.

FAB. See File Area Block.

FALSE. Represented in a flag variable as 0.

Far procedure. Referenced by the procedure's code
segment (CS) and offset (IP). A far procedure can
be called by procedures within the same or from
within a different module.

FCB. See File Control Block.

fh. File handle.

FHB. See File Header Block.

FIFO. First-in-first-out.

Glossary G-23

File. A set of related bytes (on disk) treated as
a unit.

File Area Block. There is a File Area Block for
each disk extent in an open file. The FAB spe-
cifies where the sectors are and how many there
are in the disk extent. The FAB is pointed to by
a File Control Block or another FAB. The FAB is
memory-resident. See also Disk extent.

File System Case table. The File System Case
table is an optional NLS table used by the file
system for case-insensitive comparison and hash-
ing. See also NLS table.

File Control Block. There is a File Control Block
(FCB) for each open file. The FCB contains
information about the file such as the device on
which it is located, the user count (that is, how
many file handles currently refer to this file),
and the file mode (modify, peek, or read). The
FCB is pointed to by a User Control Block and
contains a pointer to a chain of File Area Blocks.
The FCB is memory-resident.

File handle. A 16 bit integer that uniquely
identifies an open file. It is returned by the
OpenFile operation and is used to refer to the
file in subsequent operations such as Read, Write,
and DeleteFile.

File Header Block. There is a File Header Block
(FHB) for each file. The FHB of each file
contains information about that file such as its
name, password, protection level, the date/time it
was created, the date/time it was last modified,
and the disk address and size of each of its Disk
Extents. The FHB is disk-resident and one sector
in size. See also Extension File Header Block.

G-24 CTOS/VM Concepts

File password. Protects a file in a directory on
a volume.

File protection level. Specifies the access al-
lowed to a file when the accessing process does
not present a valid volume or directory password.

Filename. File name; the fourth element of a full
file specification.

Filter process (user-defined). A user-written
system service process that can be included in the
System Image at system build or dynamically
installed at any time. A filter process is inter-
posed between a client process and a system
service process that operate as though they are
communicating directly with each other. The Ser-
vice Exchange table is adjusted to route requests
through the desired filter process.

Filter process (local file system). See Local
file system.

Fixed partition. Always uses a fixed amount of
memory. See also Variable partition.

Font. A bit array for each of the 256 characters
in the character set that defines the represen-
tation of each character when displayed on the
video display.

Font RAM. For the video, contains a bit array for
each of the 256 characters in the character set.
The font RAM can be modified under software con-
trol.

Glossary G-25

ForwardRequest. A Kernel primitive that can be
used by a one-way pass-through filter to forward
a request block to a system service for further
processing. The system service responds directly
to the client.

FP. File Processor.

Frame. A separate, rectangular area of the screen.
A frame can have any desired width and height (up to
those of the entire screen).

Frame descriptor. A component of the Video
Control Block containing all information about one
of the frames. The number of frame descriptors in
the Video Control Block is specified at system
build. See also Video Control Block.

Free memory. Unused system memory.

Full file specification. Consists of a node (node
name), volname (volume name), dirname (directory
name), and filename (file name).

GDT. See Global Descriptor Table.

Generic Print System (GPS). The Generic Print
System is made up of a set of dynamically in-
stalled system services, which work together to
handle communication between application programs,
the operating system, and the printers and
plotters currently installed. GPS is the software
underlying the Print Manager. (For details, see
the Generic Print System Programmer's Guide and
the Printing Guide.)

G-26 CTOS/VM Concepts

Generic Print Access Method (GPAM). The Generic
Print Access Method provides high-level I/O for
complex documents that may include text, graphics,
or special text attributes. GPAM is an object
module library that provides device independent
formatting commands used for printing. GPAM is
used typically to add rich formatting characteris-
tics to text that is output to a printing device.
(For details, see the Generic Print System Pro-
grammer's Guide and the Printing Guide.)

Generic Print System byte stream. A byte stream
sent to a GPS printing device. See also Generic
Print System and Print Manager.

Global Descriptor Table. A protected mode struc-
ture that contains descriptors for segments, which
are shared by all programs. See also Local Des-
criptor Table (LDT) and Segment descriptor.

Global request. A request that can be served by a
system service on any SRP processor board. See
also Local request.

GPS. See Generic Print System.

Graphics bit map. The graphics bit map is a three
plane bit map that is manipulated by operations in
the graphics library. (See the Graphics Program-
mer's Guide.)

Glossary G-27

Graphics style RAM. The video hardware controller
of character attributes, color, and intensity on
color graphics workstations. Color and intensity
specifications are available with the attributes
of reverse video and underlining. An 8 byte mem-
ory work area is allocated to specify the entries
that are passed to the graphics style RAM. Each
byte uses the low-order 6 bits for color specifi-
cation and the high-order 2 bits for reverse video
and underlining, respectively. See also Character
attribute.

Hashing techniques. See Randomization techniques.

High-level interface. Programmatic interfaces,
which, when used exclusively, provide device-
independence to a program. See also Device-
independent and Low-level interface.

High-resolution. The video resolution of a
graphics controller that produces 12 X 20 pixel
(illuminated dot) characters on the screen. See
also Low resolution.

ICC. See Inter-CPU communication.

ICC Server Agent. On each SRP processor board,
issues requests on behalf of a client on a dif-
ferent processor board.

ICMS. See Intercontext Message Server.

IDT. See Interrupt Descriptor Table.

G-28 CTOS/VM Concepts

Image mode. One of three printing options in the
Generic Print System, pre-GPS spooler, printer,
and communications byte streams. Image mode
prints the banner page before each file and
recognizes escape sequences but performs no code
conversions. See also Normal mode and Binary
mode.

Intercontext Message Server (ICMS). Used by
application programs to communicate with programs
in other application partitions. The requesting
program sends an interprocess communication mes-
sage to ICMS. ICMS, in turn, uses interprocess
communication to forward the message to the
receiving program. ICMS prevents messages from
being sent to programs while they are swapped out
of memory.

Indexed Sequential Access Method (ISAM). Provides
efficient, yet flexible, random access to
fixed-length records identified by multiple keys
stored in disk files. (See the ISAM Manual.)

Input byte stream. See Byte stream.

Interactive. A program is that interfaces with
the user. The Executive is an example of an in-
teractive command interpreter.

Inter-CPU communication. Inter-CPU communication
is used by the Kernel on a processor board in an
SRP to send request and response messages between
boards.

Interface level. Implies the relative degree of
program control over a hardware device.

Glossary G-29

Internal interrupt. Caused by and is synchronous
with the execution of processor instructions.

Internationalization. Language independence.
Source code is internationalized when it is writ-
ten in such a way that the resulting program can
run in different languages without modifying the
run file itself.

Interrecord gap. The space between records in a
half-inch tape file.

Interrupt. External or internal; an event that
interrupts the sequential execution of processor
instructions. When an interrupt occurs, the cur-
rent hardware context (the state of the hardware
registers) is saved. This context save is per-
formed partly by the processor and partly by the
operating system. See also External interrupt,
Internal interrupt, Maskable interrupt, Non-
maskable interrupt, and Pseudointerrupt.

Interrupt Descriptor table. The protected mode
equivalent of the Interrupt Vector table. The
tables function similarly in that each directs
interrupts to the appropriate interrupt handling
routines.

Interrupt handler. A locus of computation that is
given control when an interrupt occurs. Since an
interrupt handler is not a process, it is permit-
ted to invoke only a few specific operations.
Operating system interrupt handlers are provided
for each interrupt type. Each interrupt handler
services all interrupts of a single type. The
operating system supports two kinds of interrupt
handlers, mediated and raw. Different styles of
mediated and raw interrupts exist for RS-232-C
communications and all other (non-RS-232-C) inter-
rupt types. See also Mediated interrupt handler
and Raw interrupt handler.

G-30 CTOS/VM Concepts

Interrupt number. Each potential source of inter-
rupt is assigned an interrupt number in the
range 0 to 255 that identifies the interrupt type
(source of the interrupt). When an interrupt
occurs, the hardware recognizes the interrupt type
and the applicable interrupt number. The proces-
sor uses this number as an index into the Inter-
rupt Vector table (real mode) or the Interrupt
Descriptor table (protected mode) to vector
(direct) the interrupt to the appropriate inter-
rupt handler. See also Interrupt and Interrupt
handler.

Interrupt service routine. An interrupt service
routine is an interrupt handler. See Interrupt
handler.

Interrupt Vector table. The Interrupt Vector
table is a real mode structure that contains a 4
byte entry for each interrupt type. Each 4 byte
entry contains the logical memory address (CS:IP)
of the first instruction to be executed when an
interrupt of that type occurs. See also Interrupt
number.

IOB. See I/O Block.

I/O Block (IOB). Used by the operating system as
temporary storage during Read, Write, and other
I/O operations. The IOB contains information
obtained from the request block. The number of
IOBs specified at system build must be adequate
for the maximum number of input/output operations
that will be in progress simultaneously. The IOB
is memory-resident.

IPC. Interprocess communication. (See Chapter
29, "Interprocess Communication Management.")

Glossary G-31

IPL. Initial Program Load.

ISAM. See Indexed Sequential Access Method.

IWS. See IWS Workstation.

IWS Workstation. A Convergent workstation that
has two (or optionally five) multibus slots. IWS
workstations are supported on prior operating
system versions with which CTOS/VM is
cluster-compatible.

Kernel. The most primitive and the most powerful
component of the CTOS/VM operating system. It
executes with a higher priority than any process
but it is not itself a process. The Kernel is re-
sponsible for the scheduling of process execution;
it also provides IPC primitives.

Keyboard byte stream. A byte stream that uses the
keyboard. See also Byte stream, Byte Stream Work
Area, Communications byte stream, Disk byte
stream, Generic Print System byte stream, Pre-GPS
spooler byte stream, Printer byte stream,
Sequential Access Method, System input process,
Tape byte stream, Video byte stream, and X.25 byte
stream.

Keyboard code. In unencoded mode, the 8 bit byte
returned by certain keyboard management opera-
tions. The keyboard code identifies the key in
the low-order 7 bits and indicates the direction
of key motion in the high-order bit. A 0
indicates key depression,- 1 indicates key
release. Also see Unencoded mode. (The keyboard
codes are in Appendix C of the CTOS/VM Reference
Manual.)

G-32 CTOS/VM Concepts

Keyboard Encoding table. Used in converting the
sequence of keyboard codes to 8 bit character
codes. The table controls several aspects of the
keyboard-code-to-character-code translation: the
character code to generate if Shift is/is not
depressed/ whether Lock has the effect of Shift
for a key; whether the key is typematic (repeats);
the initial delay before beginning typematic
repeating; the frequency of typematic repeating;
and whether a key responds to diacritical key
handling. The Keyboard Encoding table can be
modified dynamically, as well as at system build.
See also Keyboard Mapping table and Diacritical
key pair. (See Appendix B of the CTOS/VM Refe-
rence Manual for the default contents of the
Keyboard Encoding table.)

Key Cap Legends table. The Key Cap Legends table
is an NLS table used by the NlsKeycapText opera-
tion to specify the text strings to be displayed
by programs when making reference to any of the
key caps that commonly contain legends. See also
NLS table.

Keyboard Mapping table. An NLS table used to map
keys pressed by the user to their character codes.
If the NLS Keyboard Mapping table is loaded into
memory as part of the Nls.sys file, the memory
address of the Keyboard Encoding table defined
during system generation is altered to reflect the
address of the NLS Keyboard Mapping table.
Keyboard mapping is implemented by either table.
See also Keyboard Encoding table and NLS table.

Language definition. Includes those requirements
of a language, such as currency symbols and date/
time formats, that are unique to that language.

LDT. See Local Descriptor Table.

Glossary G-33

lfa. See Logical file address.

Limit checking. A protection feature of protected
mode that places limitations on the memory a
program can access.

Linear memory address. The linear memory
addresses are at relative distances from memory
address 0 in physical memory and can be compared
to each other on this basis. See also Linear
address space.

Linear address space. Begins at physical memory
address 0 and extends linearly to the maximum
amount of physical memory that actually can be
addressed by a program. Linear addresses thus are
a relative distance from the address 0 in physical
memory and can be compared to each other on this
basis. The linear address space is equivalent to
the physical address space. Unless paging is
enabled, a linear address also is equivalent to
its physical address. See also Linear address,
Physical address space, and Physical memory ad-
dress.

Link block. A system data structure that is used
to queue messages at exchanges. Each link block
contains the address of the message and the ad-
dress of the next link block (if any) that is
linked onto the exchange. Two pools of link
blocks are specified at system build, a general
pool and a special pool used only by the PSend
primitive. A call to the Request primitive
reserves 1 link block from the general pool for
the corresponding Respond primitive. For these
reasons, the number of link blocks in each pool
can be specified at system build.

G-34 CTOS/VM Concepts

Linker. Links one or more object files into a run
file to be loaded into memory. (See the Linker/
Librarian Manual.)

Loadable Request file. A file containing request
definitions for a system service(s). The Loadable
Request file is used to merge new requests with
the requests already defined in Request.sys. The
merge occurs during installation of the system
service(s) onto the system disk. When boot-
strapped, the operating system reads Request.sys,
loads it into memory, and adds the requests it
contains to the basic request routing table.

Local Descriptor Table (LDT). A protected mode
structure in memory that contains descriptors for
segments accessible to a run file. The operating
system constructs the LDT based on information
provided by the Linker.

Local file system. Allows a cluster workstation
to access files on a local hard disk(s) as
well as files on the hard disk(s) at the master. The
filter process of the local file system intercepts
each file access request and directs it to the
local file system or to the master workstation.

Local resource-sharing network. A cluster con-
figuration consisting of cluster workstations
connected to a master.

Local request. Served by a system service on the
same processor board of an SRP as the client.

Log file. An error-logging file. An entry is
placed in the Log File ([Sys]<Sys>Log.Sys) for
each recoverable and nonrecoverable device error.
This file can be used as a general-purpose logging
file, for example, to write entries for accounting
information for system services.

Glossary G-35

Logical file address. A logical file address
(lfa) is used to locate a particular sector of a
file. An lfa specifies the byte position within a
file; it is the number (the offset) that would be
assigned to a byte in a file if all the bytes were
numbered consecutively starting with 0. An lfa is
a 32 bit unsigned integer that must be on a sector
boundary and is therefore a multiple of 512. For
example, the lfa of the third sector of a file is
1024.

Logical memory address. The 3 2 bit memory address
(usually abbreviated as memory address) as viewed
by the application program. It consists of a 16
bit segment address (SA) and a 16 bit relative
address (RA) or offset. A byte of memory does not
have a unique logical memory address. The same
byte of memory can be referred to by many dif-
ferent combinations of SAs and RAs. See also
Offset and Segment address.

Long-lived memory. An area of memory in an appli-
cation partition. It is used for parameters or
data passed from an application program to a
succeeding application program in the same par-
tition. If a character map other than the one in
the system partition is needed, it must be
allocated in the long-lived memory area of the
application partition. See also Application par-
tition and System partition.

Low-level interface. A programmatic interface
that is close to the actual hardware. Programs
using low-level interfaces are device-dependent.

Low resolution. The video resolution of a
graphics controller that produces 9 X 12 pixel
(illuminated dot) characters on the screen. See
also High resolution.

G-36 CTOS/VM Concepts

Maskable interrupt. Given a priority and con-
trolled by the programmable interrupt controller
and can be masked (ignored) by the use of the
processor interrupt-enable flag. A maskable in-
terrupt can be masked selectively by programming
the programmable interrupt controller. See also
External interrupt and Nonmaskable interrupt.

Master. Either a master workstation or an SRP.

Master processor. Either a file processor or a
data processor on an SRP.

Master File Directory. There is an entry for
each directory on the volume in the Master File
Directory (MFD), including the Sys directory. The
position of an entry within the MFD is determined
by randomization (hashing) techniques. The entry
contains the directory's name, password,
location, and size. The Master File Directory is
disk-resident.

Master workstation. A master workstation can
serve a cluster configuration. The master work-
station provides file system, queue management
facility, and other services to all the cluster
workstations. In addition, it supports its own
interactive programs. See also Cluster worksta-
tion and Cluster configuration.

Master Workstation Agent. Reconverts a message
passed between workstations in a cluster to an
interprocess request and queues the request at the
exchange of the system service on the master that
actually performs the desired function. See also
Cluster Workstation Agent and Master.

Glossary G-37

Mediated interrupt handler (MIH). One of two pro-
cedural styles for handling an interrupt. The
other style is a raw interrupt handler. When com-
pared to a raw handler, a mediated interrupt hand-
ler executes more slowly. This is because it can
be written in a high level language, interrupts
are enabled during its execution (so that it can
be pre-empted), and it can communicate its results
to processes through certain Kernel primitives.
An example of a mediated interrupt handler is the
keyboard interrupt handler. See also Interrupt
handler and Raw interrupt handler.

Memory address. See Logical memory address.

Message. The entity transmitted between processes
by the interprocess communication facility. It
conveys information and provides synchronization
between processes. Although only a single 4 byte
data item is literally communicated between pro-
cesses, this data item is usually the memory
address of a larger data structure. The larger
data structure is called the message, while the 4
byte data item is conventionally called the
address of the message. The message can be in any
part of memory that is under the control of the
sending process. By convention, control of the
memory that contains the message is passed along
with the message.

MFD. See Master File Directory.

MIH. See Mediated interrupt handler.

Modify mode. One of three ways that a file can be
opened using an operation, such as OpenFile or
OpenFileLL, that can open a file. Modify mode is
used to write to the file. Access in modify mode
permits the returned file handle to be used as
an argument to all operations that expect a file
handle. See also Peek mode and Read mode.

G-38 CTOS/VM Concepts

Multibyte escape sequence. A special sequence of
characters that is available to disable video byte
stream interpretation of special characters except
0FFh. (See the Table J-7 in Appendix J in the
CTOS/VM Reference Manual for the video byte stream
interpretation of special characters. See Tables
J-1 through J-6 in the same appendix for the mul-
tibyte escape sequences that can disable the
special interpretations.)

Multiprogramming. The ability to run more than
one program in memory at the same time. Multipro-
gramming supports the independent invocation and
scheduling of multiple processes. In addition, it
provides for concurrent I/O and for multiple
processor implementations. See also Partition
managing program.

Multitasking. See Multiprocessing.

Multiprocessing. The ability for any program to
have more than one process (thread of execution).
Multiprocessing also is called multitasking.

Nationalization. Results in software that runs
using a single language definition. See also
Language definition.

Near procedure. Referenced by the offset (IP) of
the procedure's memory address. Near procedures
can be called only by other procedures within the
same module.

Network. See CT-Net.

Network routing. See CT-Net.

Glossary G-39

NGEN. See NGEN Workstation.

NGEN Workstation. A Convergent workstation that
has two (or optionally five) multibus slots.

NMI. See Nonmaskable interrupt.

NLS table. One of several (optional) internation-
alizable tables supplied as part of Standard
Software in the source file, [Sys]<Sys>Nls.asm.
Included among the NLS tables, for example, are a
table for uppercase to lowercase characters, a
date/time formats table, and a symbols table for
numbers and currency. The NLS tables can be
edited, assembled, and linked to create the NLS
configuration file [Sys]<Sys>Nls.sys. When the
operating system is bootstrapped, the contents of
this file are loaded into memory, making the NLS
tables available to application programs via NLS
operations. See also System-common NLS table
area.

Node. The first element (node name) of a full
file specification. A node is also a master or a
cluster workstation that is part of a CT-Net. See
also CT-Net.

Nonmaskable interrupt (NMI). Has a higher pri-
ority than a maskable interrupt. An NMI cannot be
masked through the use of the processor
interrupt-enable flag; however, bits in the I/O
Control register allow each of the four conditions
that cause NMI to be masked individually. These
conditions are write-protect violation, nonexis-
tent or device-addressed memory parity error, and
power failure detection. See also Maskable inter-
rupt.

Index I-1

INDEX

(Bolded page numbers represent primary discussions
of entries.)

$Directory, 11-43 to 11-44
!Sys, 11-6

Abbreviating file specifications, 11-12 to 11-13
Abort request, 31-19 to 31-20
Access methods. See Structured file access methods.
Accessing disk devices, 12-1
Accessing system services
 using alternate request procedural interface,
 29-34
 using Kernel primitives, 3-8, 29-34 to 29-36
 using request procedural interface, 3-7, 29-33 to
 29-34
AcquireByteStreamC, 14-6, 14-8
Action code. See Keyboard code.
Action key
 Action-A, 10-8
 Action-B, 10-8
 Action-Delete, 10-7
 Action-Finish, 10-8
 Action-Overtype, 10-7
 interpreting key combinations, 10-8
 invoking Debugger, 10-8
Action-Finish, 24-10
Addqueue, 35-9, 35-10, 35-21
AddQueueEntry, 35-19
Address translation, 3-11 to 3-14, 24-14 to 24-15
Addressing memory, 3-10 to 3-15, 24-2
Agent process
 Cluster Agent, 2-9, 11-42, 29-37 to 29-38, 29-42,
 29-50, 31-5, 31-26
 device handler process, 36-6
 ICC Server Agent, 30-2, 30-7, 30-10 to 30-14
 Kernel and agents, 29-29, 29-43
 Master Agent, 2-9, 2-11, 29-38
 Master RS-422 Agent, 2-10
 Net Agent, 11-42, 29-39 to 29-41, 29-50, 31-26
Alias management, 24-15
AllocAllMemorySL, 24-8, 24-11
AllocAreaSL, 24-8 to 24-9, 24-11

I-2 CTOS/VM Concepts

Allocating memory
 long-lived, 2-17 to 2-18, 24-1, 24-8 to 24-10
 short-lived, 2-17 to 2-18, 24-1, 24-8 to 24-10
Allocation Bit Map, 11-29, 11-33, 11-38. See also
 Volume control structures.
AllocExch, 29-52, 31-9
AllocMemoryFramesSL, 24-12
AllocMemoryLL, 24-8 to 24-9, 24-12
AllocMemorySL, 24-8 to 24-9, 24-11, 31-9
AllocMoverSegment, 24-16
Alternate request procedural interface, 29-34. See
 also Request procedural interface.
Application partition, 2-12, 32-4
Application partition memory organization, 32-7 to
 32-8
Application partition with more than one run file,
 32-18
Application System Control Block, 5-3 to 5-4, 26-2
Applications Debugger. See Programming tools, use
 of.
ASCB. See Application System Control Block.
Assembler. See Programming tools, use of.
Assembly language, 2-3, 2-6, 29-4. See also
 High-level languages.
 programming standard, 3-3, 24-6, 32-3
 syntax for logical memory address, 3-12
AssignKbd, 32-23
AssignKbdOwner, 4-4, 32-8, 32-23,
AssignVidOwner, 32-23
Automatic volume recognition, 11-4

Backup Volume, 11-17
Bad Sector File, 11-3 8. See also Volume control
 structures.
Base I/O addresses
 assigning, 37-2
 computing, 37-3
BASIC interpreter, 10-8, 32-3
Beep, 10-18
Binary file, 31-17, 40-17 to 40-18, 40-23
Binary mode, 7-6 to 7-8, 8-5, 14-9
Binary value, 11-22, 25-3, 25-7
Bit map workstation, 9-1
Blocked records, 20-1, 22-1, 23-2
Blocks
 Y-block, 30-6
 Z-block, 30-6
Boot Block, 26-2
BSWA. See Byte Stream Work Area.

Index I-3

Buffer
 changing size during program execution, 29-35 to
 29-36
 communications I/O, 14-5 to 14-6
 Communications Status Buffer, 26-2
 describing request data item, 29-32, 29-34
 device I/O, 8-4
 effect on quarter-inch tape movement, 18-8
 improving Record Sequential Access Method perfor-
 mance, 22-2
 Inter-CPU communications request /response ring,
 30-2, 30-7 to 30-13
 issuing multiple quarter-inch tape requests, 18-9
 maintaining tape movement, 18-8 to 18-9
 management modes, 23-4, 23-6
 managing as an I/O resource, 29-8 to 29-9
 message file, 40-19
 performing I/O to single quarter- inch tape file,
 18-9
 quarter-inch tape server internal buffer, 18-10,
 18-13, 18-19
 queue entry, 35-14 to 35-16, 35-19
 Queue Status Block, 26-3
 Redo keystroke, 5-6, 5-8
 short-lived memory use, 24-10
 specifying buffer size for Direct Access Method,
 23-2 to 23-3
 specifying tape buffer size, 18-16
 terminal output buffer, 17-2, 26-5
 Type ahead, 10-7 to 10-8, 10-17
 user-allocated buffer for opening byte stream, 7-4
 user-specified buffer in read/write request, 20-1
 user-specified tape buffer, 18-18
 using for parallel port operations, 16-1 to 16-2
 writing partially filled buffers, 7-19
Buffer management modes
 write-behind, 23-4
 write-through, 23-4
Byte Stream Work Area (BSWA), 7-4
Byte streams
 input, 7-3
 output, 7-3
 types of, 7-5 to 7-11. See also the name of the
 byte stream type.
 use, 7-4

Chain, 4-3, 4-7, 10-7, 24-10, 31-11, 32-8, 32-21
Change Volume Name, 11-15
ChangeCommLineBaudRate, 15-5, 15-7

I-4 CTOS/VM Concepts

ChangeFileLength, 11-9, 11-28 to 11-29, 11- 32 to
 11-33, 11-34, 11-35, 11-46, 11 48
ChangePriority, 28-8, 31-9
Channel, 39-1
Character map, 9-17
Character map workstation, 9-1
Check, 29-18, 29-52, 33-4 to 33-5
CheckErc, 4-6, 32-20
CheckForOperatorRestartC, 14-7, 14-9
CheckpointBS, 7-18
CheckPointBsAsyncC, 14-5, 14-10
CheckPointBsC, 14-5, 14-10
CheckPointBsLp, 16-2
CheckpointRsFile, 22-3
CheckPointSysIn, 10-19
CheckReadAsync, 11-31, 11-49, 12-1
Checksum
 bootstrapping operating system, 28-5
 excess stack space error, 36-13
CheckWriteAsync, 11-31, 11-4 9, 12-1
CleanQueue, 35-10, 35-21
ClearPath, 11-46
Client, 2-3, 29-1, 31-1
Client queue operations
 adding entries to queues, 35-14
 reading queue entries, 35-15
 removing queue entries, 35-16
CloseAllFiles, 11-27, 11-45
CloseAllFilesLL, 11-27, 11-48
CloseByteStream, 7-4, 7-17
CloseDaFile, 23-5
CloseFile, 11-9, 11-27, 11-34, 11-45, 12-1
CloseFileAllFiles, 11-34
CloseFilesLL, 11-34
CloseMsgFile, 40-22
CloseRsFile, 22-3
CloseRTClock, 33-2, 33-8
CloseServerMsgFile, 40-19, 40-22
CloseTape, 18-18
CloseTerminal, 17-2
Closing files
 using byte streams, 11-34 to 11-35
 using file management operations, 11-34
Cluster Agent, 2-9, 11-42, 29-37 to 29-38, 29-42,
 29-50, 31-5, 31-26
Cluster configuration, 2-7, 29-36 to 29-38, 35-3 to
 35-4, 39-1
Cluster management, 38-1, 39-1 to 39-5
Cluster Processor. See Shared Resource Processor.
Cluster Status, 39-2, 39-4
Cluster/network communication, 29-36 to 29-39
Clusters, 2-6 to 2-7

Index I-5

CMIH. See Communications interrupt handlers.
Code sharing, 1-2,. 1-5,- 2-11, 2-18, 32-3, 32-5
Color graphics, 9-20
Command Line Interpreter, 35-3. See also Executive.
Common unallocated memory pool, 24-8 to 24-10
Communication between application partitions, 3 2-6
Communications byte streams, 7-9
Communications channels, 7-13 to 7-14, 14-3
Communications interrupt handlers
 guidelines for writing mediated handlers (CMIHs),
 36-17 to 36-19
 guidelines for writing raw handlers (CRIHs), 36-17
 to 36-19
 program logic, 36-16 to 36-17
Communications programming
 applications, 14-1 to 14-2
 interface levels, 14-1
 using asynchronous requests, 14-5
 using communications byte streams, 14-3
 using communications operations, 14-4 to 14-7
 using PSend, 14-5
 using synchronous requests, 14-5
Communications Status Buffer, 26-2
CompactDateTime, 25-2, 25-6
Comparing strings, 25-2 to 25-3
Compatible programming, 26-6 to 26-7, 34-3
Components, operating system, 1-5
Configurable command interpreter, 2-5
Configuration files, parsing, 25-4 to 25-5
Configuration management, 1-10
Configuring cluster line speed, 39-1
Console. See Workstation.
Consumer process. See Client.
Conventions, naming, 3-1 to 3-2
ConvertToSys, 31-10, 31-29, 32-12
CParams, 5-5, 5-10
CPU. See Microprocessor.
CPU Description Table, 30-7
Crash, 4-7, 32-21
Create Directory, 11-16
Create Message File, 40-18
CreateAlias, 24-13, 24-15
CreateBigPartition, 32-23
CreateDir, 11-8, 11-10, 11-47
CreateFile, 11-9 to 11-10, 11-28, to 11-29, 11-45
CreatePartition, 32-5 to 32-6, 32-23
CreateProcess, 28-1, 28-8, 31-9
CreateUser, 32-23
Creating and accessing files (program interface
 levels), 11-25 to 11-26
Creating bootable volumes, 38-1

I-6 CTOS/VM Concepts

Creating files
 operating system function, 11-29
 using byte streams, 11-29
 using file management operations, 11-28
Creating message files, 40-17 to 40-19
CRIH. See Communications interrupt handlers.
CS:IP, 36-30
CSubParams, 5-5, 5-10
CT-Net configuration, 29-36, 29-38 to 29-39
CTOS features. See also CTOS/VM enhancements.
 event-driven, priority scheduling, 1-3
 message-based operation, 1-3
 multiprogramming, 1-2. See also Multiprocessing.
 multitasking, 1-2
CTOS.lib, 1-6, 25-1
CTOS/VM enhancements, 1-2. See also CTOS features.
 code sharing, 1-2, 1-5, 2-11, 2-18, 32-3, 32-5
 protected mode operation, 1-2, 1-4
 Real Mode Operating System, 1-2, 1-4
 variable partitions, 1-2, 1-5, 2-18, 32-5
 virtual 8086 mode, 1-2, 1-5
CTOS/VM operations, 1-7, 3-1
Current PSW. See CS:IP.
CurrentOSVersion, 26-9
Customization, 1-3

DAM. See Direct Access Method.
Data block, 18-7, 18-15
Data preservation across reboot, 35-1
Data Processor. See Shared Resource Processor.
Data segment (DGroup), 4-3, 24-6, 34-5
Date/time management, 25-1 to 25-2
DAWA. See Direct Access Work Area.
DeallocateRods, 34-22
Deallocating memory
 long-lived, 2-17 to 2-18, 24-1, 24-8 to 24-10
 short-lived, 2-17 to 2-18, 24-1, 24-8 to 24-10
Deallocating resources, 32-11
DeallocExch, 29-53
DeallocMemoryLL, 24-8, 24-12
DeallocMemorySL, 24-8, 24-11
DeallocMoverSegment, 24-16
Debugger. See Programming tools, use of.
Default response exchange, 29-19. See also
 Exchanges.
Defining requests, 31-13 to 31-16
DefineInterLevelStack, 24-13
DefineLocalPageMap, 24-13
DeInstallQueueManager, 35-21

Index I-7

Delay, 33-2, 33-8
DeleteDaRecord, 23-5
DeleteDir, 11-8, 11-47
DeleteFile, 11-9, 11-45
Descriptor, 34-9, 34-18
Device Control Block, 26-2
Device-dependent interface, 7-2
Device-dependent SAM, 8-1 to 8-3
Device handler, 2-6
Device handler process, 36-6 to 3 6-7
Device I/O, 1-7
Device independence, 11-26
Device independent interface, 7-1
Device interrupt handler, 36-7 to 36-8
Device password, 12-2
Device specification, 12-2
Device/file specifications
 string parsing, 7-16
 strings, 7-11 to 7-15
Direct Access Method (DAM), 20-3, 23-3 to 23-6
Direct Access Work Area (DAWA), 23-2
Directory, 11-8
DisableActionFinish, 10-8, 10-18
DisableCluster, 39-5
DiscardInputBsC, 14-9
DiscardOutputBsC, 14-9
Disk byte streams, 7-5, 11-25
Disk device, 12-2
Disk extent, 11-3 9. See also Volume control
 structures.
Disk file hierarchy. See File management system
 organization.
Disk management, 12-1 to 12-3
Disk swap file, 34-1
DismountVolume, 12-3
Displaying mail message, 25-5
Distributed environment, 2-6 to 2-7
Doorbell interrupt, 30-7
Doubly linked list, 35-12
DrainTerminalOutput, 17-2

EAR. See Extended Address Register.
Editing, text, 25-5
Editor. See Programming tools, use of.
Effects of termination on keyboard management, 10-17
EnableSwapperOptions, 34-22
Encryption. See File system.
ErrorExit, 4-3, 4-6, 10-7, 24-10, 31-11, 32-8, 32-20
ErrorExitString, 4-6, 32-21

I-8 CTOS/VM Concepts

Escape sequences, 7-8
Escape sequences, multibyte. See Multibyte escape
 sequences.
EstablishQueueServer, 35-19
Event-driven priority scheduling, 1-3, 28-2. See
 also Process management.
Events, system, 1-3, 28-2. See also Process
 management.
Exchanges
 allocating, 29-20
 default response exchange, 29-19
 queues, 29-24 to 29-25
 response exchange, 29-19
 sending messages, 29-21 to 29-22
 service exchange, 29-20
 waiting for messages, 29-23
Execution, thread of, 1-2
Executive
 activating submit files, 10-4
 as exit run file, 4-4, 32-9
 Backup Volume, 2-6, 11-17
 calling Chain, 24-10
 calling SetSysInMode, 10-12
 Change Volume Name, 11-15
 command form, 5-4 to 5-5
 Copy, 14-2, 31-20
 Create Directory, 11-16
 Create Message File, 40-18
 deallocating long-lived memory, 24-1
 displaying mail to user, 25-5
 encrypting passwords, 11-23
 establishing video frame 0, 7-16
 Install Queue Manager, 35-6
 installing Queue Manager, 35-3
 installing system services, 32-14
 interaction with workstation operator, 2-5
 IVolume, 2-18, 11-6, 11-15, 11-17, 11-23, 11-37
 loading other application programs, 3 2-12
 Maintain File, 20-5
 matrix of Variable Length Parameter Block, 5-6 to
 5-7
 passing answers to yes/no options, 25-3
 Path, 11-15, 11-17
 process perceived by end user, 28-1
 process perceived by Kernel, 28-2
 process perceived by programmer, 28-1
 program processes, 1-2 to 1-3
 QicRetension, 18-14
 querying Application System Control Block, 5-4
 recognizing wild card characters, 11-43
 refreshing volumes, 11-39
 required passwords for commands, 11-11

Index I-9

 resetting LEDs, 10-17
 respecifying video characteristics, 9-12
 Set Directory Protection, 11-16, 11-20
 Set Protection, 11-16
 shared code, 32-3
 Spooler Status, 35-15
 submit file code for user-entered data, 10-15 to
 10-16
 swapping requests, 31-26
 termination requests, 31-20
 using current screen setup, 9-4
 using Parameter Management, 5-1 to 5-2
 using SAMC through SAM, 14-4
 using tape, 18-1
 using ULCMPB, 25-3
Exit, 4-3, 4-7, 24-10, 31-11, 32-8, 32-21
Exit run file, 4-4
ExitAndRemove, 32-23
ExpandAreaLL, 24-9, 24-12
ExpandAreaSL, 24-9, 24-12
ExpandDateTime, 25-2, 25-6
Expanded date/time format, 25-2, 26-2
Expanding segments, 24-9
ExpandLocalMsg, 40-19, 40-22
Extended Address Register (EAR), 37-5, 37-6
Extension File Header Block, 11-39. See also Volume
 control structures.
External interrupt handler model
 controlling when interrupts occur, 36-8 to 36-12
 device handling, 36-4 to 36-8

Far procedure, 34-7
FatalError, 4-6, 32-20
FComparePointer, 25-3, 25-7
File access modes. See Opening files.
File handle, 11-7 to 11-8, 11-27, 11-29, 11-37, 12-1,
 26-3. See also Volume control structures.
File management system organization
 directory, 11-8
 file, 11-9
 node, 11-5
 password, 11-9 to 11-11
 volume, 11-6 to 11-8
File Processor. See Shared Resource Processor.
File protection, 11-14 to 11-24
File specifications, 11-5 to 11-12
File system
 hierarchical organization, 2-5
 password encryption, 2-5
 password protection, 2-5
 protection level number, 2-5
 volume control structures, 2-5

I-10 CTOS/VM Concepts

File system, local, 11-4 to 11-5, 11-35 to 11-36
File system capabilities
 convenience, 11-3
 efficiency, 11-2
 reliability, 11-2
File system protection applications, 11-22
File, 11-9
FillBufferAsyncC, 14-5, 14-8
FillBufferC, 14-5, 14-8
FilterDebugFInterrupts, 26-9
Filters, 2-4, 26-9, 29-47
 not serving swapping requests, 31-26
 one-way pass-through, 31-23 to 31-24
 replacement, 31-22
 system requests, 31-25
 two-way pass-through, 31-24 to 31-25
 using, 31-26
Fixed length records, 20-1 to 20-4, 21-1, 22-1, 23-1
Fixed partition, 2-18, 32-5
Floating-point coprocessor, 36-3. See also
 Floating-point instruction execution.
Floating-point instruction execution
 math coprocessor, 26-10. See also Floating-point
 coprocessor.
 Math server, 26-10
 software floating-point emulator, 26-10
FlushBufferAsyncC, 14-5, 14-8
FlushBufferC, 14-5, 14-8
FlushBufferLp, 16-2
Format, 12-3
FormatDateTime, 25-6
FormatTime, 25-6
FormatTimeDt, 25-6
FormatTimeTm, 25-6
Forms-oriented interface, 5-1 to 5-2
ForwardRequest, 29-17, 29-53
Foundation software, 1-1
FProcessorSupportsProtectedMode, 26-9
FProtectedMode, 26-9
Fragmenting disk space, 11-33
Frame descriptor, 26-3
Free memory, 32-12
FRmos, 26-9. See also Real Mode Operating System.
FRmosUser, 26-9. See also FRmos.
FsCanon, 25-7

GDT. See Global Descriptor Table.
Generic Print Access Method (GPAM), 19-1
Generic Print System (GPS)
 components, 13-1
 interface levels, 13-2

Index I-11

Generic Print System byte streams, 7-7
GetBsLfa, 7-5, 8-3, 8-5
GetClusterStatus, 26-8, 39-2, 39-5
GetCoProcessorStatus, 26-10. See also
 QueryCoprocessor.
GetCParaOvlyZone, 34-20
GetDateTime, 25-2, 25-6
GetDirStatus, 11-23 to 11-24, 11-47
GetFhLongevity, 11-4 8
GetFileStatus, 11-23 to 11-24, 11-46
GetFRmosUser, 26-10. See also FRmosUser.
GetModuleID, 37-3, 37-9
GetMsg, 40-19, 40-22
GetMsgUnexpanded, 40-19, 40-22
GetNlsDateName, 40-8, 40-11, 40-13, 40-20
GetNlsKeycapText, 40-7, 40-13, 40-20
GetNodeName, 26-10, 31-29
GetOvlyStats, 34-20
GetPartitionExchange, 32-6
GetPartitionHandle, 32-6, 32-22
GetPartitionStatus, 26-10, 32-5 to 32-6, 32-22
GetpASCB, 26-6, 26-10,
GetpNlsTable, 40-20
GetProcInfo, 30-3, 30-14
GetpStructure, 25-1, 26-6, 26-7
GetQMStatus, 35-21
GetServerMsg, 40-19, 40-23
GetSlotInfo, 30-3
GetStamFileHeader, 20-7
GetUCB, 11-46, 26-6, 26-8
GetUserNumber, 31-28, 32-22
GetUserStatus, 26-11 GetVHB, 11-49, 26-6, 26-8
GetWsUserName, 26-11
Global Descriptor Table (GDT), 3-13, 24-3
Global Descriptor Table selector, 4-5
Global request, 31-16
Global variable, 28-1
GPAM. See Generic Print Access Method.
GPS. See Generic Print System.

Half-inch tape, 18-14 to 18-17
handle
 file, 11-7 to 11-8, 11-27, 11-29, 11-37, 12-1, 26-3
 partition. See User number.
 queue, 35-10
 queue entry, 35-15 to 35-16, 35-19 to 35-20
Hashing, 11-2, 40-6

I-12 CTOS/VM Concepts

High-level languages
 BASIC, 29-4
 BASIC interpreter, 10-8, 24-3, 32-3
 C, 29-4
 COBOL, 29-4
 COBOL compiler, 4-3, 24-6, 32-3
 coding strings in PL/M, 25-4
 FORTRAN, 29-4
 Pascal, 2-3, 29-4
 Pascal compiler, 4-3, 24-6, 32-3
 Pascal heap, 24-10
 PL/M, 29-4
High-resolution timing, 33-2. See also Programmable
 Interval Timer.
High-speed data link, 29-38

I/O, device, 1-7
ICC. See Inter-CPU communication.
ICC Server Agent, 30-2, 30-7, 30-10, 30-11 to 30-14
ICMS. See Intercontext Message Server.
IDT. See Interrupt Descriptor Table.
Image mode, 7-6 to 7-9, 8-2, 14-9
Indexed Sequential Access Method (ISAM), 20-2 to
 20-3, 21-1
InitCharMap, 9-23
InitCommLine, 15-3, 15-7, 36-16, 36-20, 36-32, 36-34
Initial stack pointer (IP), 36-24
InitLargeOverlays, 34-20
InitLocalPageMap, 24-14
InitMsgFile, 40-23
InitOverlays, 34-20
InitVidFrame, 9-23
Input/Output, 6-1 to 6-4
Install New Request, 31-17 to 31-18
Install Queue Manager, 35-3 to 35-6
Inter-CPU communication (ICC)
 receiving messages, 30-10 to 30-12, 30-13
 sending messages, 30-8 to 30-10, 30-13
Interactive command interpreter. See Executive.
Interboard routing, 30-2. See also Inter-CPU
 communication.
Intercontext Message Server (ICMS), 29-5, 32-6
Interface levels, 3-9 to 3-10
Interfaces
 device-dependent, 7-2
 device-independent, 7-1
 high level, 6-1
 low level, 6-1

Index I-13

Intermodule, general purpose expansion bus (X-Bus),
 37-1
Internal interrupts
 defined, 36-28
 faults, 36-30
 program exceptions, 36-29
 software interrupts, 36-29
Internationalization. See also Nationalization.
 installing software, 40-lb
 internationalizing application programs, 40-14 to
 40-15
 internationalizing operating systems, 40-1
Interprocess communication, 29-50 to 29-51
Interprocess communication applications
 between application partitions, 29-5 to 29-6
 process synchronization, 29-6 to 29-7
 resource management, 29-7 to 29-8
 within an application partition, 29-5
Interprocess communication extension. See Inter-CPU
 communication.
Interrecord gap, 18-15
Interrupt
 defined, 36-1
 device, 36-2
 doorbell, 30-7
 external, 36-2
 handler, 36-2
 hierarchy, 36-3
 internal, 36-3 to 36-4
 lost, 36-11
 Nonmaskable, 36-12
 number, 36-2
 pending, 36-11
Interrupt Descriptor Table (IDT), 36-2, 36-20, 36-31
Interrupt handler, 1-6
 CTOS/VM styles, 36-12 to 36-15
 defined, 36-2
 external handler model, 36-4 to 36-11
 packaging, 36-32 to 36-33
 parallel port, 36-26
 style differences for communications device
 interrupts, 36-14
 X-Bus, 36-26
Interrupt Vector Table (IVT), 36-1 to 36-2, 36-20
Intervals, timing. See Timers.
IPC. See Interprocess communication.
ISAM. See Indexed Sequential Access Method.
IVolume, 11-6, 11-10, 11-15, 11-23, 11-37
IVT. See Interrupt Vector Table.

I-14 CTOS/VM Concepts

Kernel
 accessing system services, 29-33 to 29-35
 context switching, 28-8
 expanding file specifications, 11-42
 function in device handler, 2-6
 functions, 2-1
 interprocess communication, 29-1
 locating system service exchange, 31-3, 31-5 to
 31-6
 managing processor time, 28-2
 operating system components, 1-5 to 1-6
 primitives, 2-2, 2-4, 3-5, 3-7 to 3-8, 9-9, 11-32,
 14-5, 18-2, 18-9, 27-2, 28-5 to 28-6, 29-11,
 31-22, 33-4
 receiving messages, 29-17
 request routing, 29-29, 29-51, 30-1, 30-8 to 30-10,
 30-12 to 30-13
 route code, 29-4 3
 scheduling, 1-3, 2-2
 scheduling queues, 29-51
 sending doorbell interrupt, 30-7
 sending messages, 29-12 to 29-13, 29-18
 ServeRq, 29-51
 Shared Resource Processor, 2-10
 Shared Resource Processor request routing, 29-46
 using filters, 31-23 to 31-24
Kernel Debugger. See Programming tools, use of.
Kernel functions
 event-driven priority scheduling, 2-1
 Inter-CPU Communication, 2-1
 Interprocess Communication, 2-1
Keyboard byte streams, 7-9
Keyboard code, 10-1, 10-6, 10-8
Keyboard mapping table, 10-2 to 10-3, 40-16
Keyboard, physical, 10-5 to 10-6

LAN. See Cluster configuration.
Language definition, 40-1
Language independence, 40-1
Languages, high-level. See High-level languages.
LDT. See Local Descriptor Table.
LDTR. See Local Descriptor Table register.
Least-recently-used (LRU), 34-3
Lfa. See Logical file address.
LfsToMaster, 11-36
Library, standard operating system, 1-6
Line, 39-1
Linear addressing, Shared Resource Processor 30-3,
 30-6
Linear memory address, 3-14
Linear offset, 30-6
Linear pointer, 30-6

Index I-15

Link blocks, 29-24, 33-3
Linked list, 35-1
Linker, 32-3. See also Programming tools, use of.
Loadable request file creation, 31-16 to 31-18
Loadable requests, 31-7
LoadColorStyleRam, 9-24
LoadFontRam, 9-22
LoadInteractiveTask, 4-3, 32-8, 32-24
LoadPrimaryTask, 4-3, 32-5, 32-8, 32-24
LoadTask, 32-22
Local Area Network (LAN). See Cluster configuration.
Local Descriptor Table (LDT), 3-13, 24-3, 34-9
Local Descriptor Table register, 3 6-3 5
Local file system, 11-4 to 11-5, 11-35 to 11-36
Local request, 31-16
Local resource sharing networks, 2-6
LockVideo, 9-25
LockVideoForModify, 9-25
LockXBIS, 37-7 to 37-8, 37-10
Logical file address (lfa), 11-26 to 11-27
Logical memory address, 3-11 to 3-13, 24-3, 25-3
Long-lived memory
 allocating, 2-17 to 2-18, 24-1, 24-8 to 24-10
 deallocating, 2-17 to 2-18, 24-1, 24-8 to 24-10
 uses, 24-10
LookUpField, 25-5, 25-10
LookUpNumber, 25-5, 25-10
LookUpReset, 25-5, 25-10
LookUpString, 25-5, 25-10
Lost interrupt, 36-11
LRU. See Least-recently-used.

Macros
 in Request.0.asm, 31-18
 using to expand messages, 40-19
 within messages, 40-18 to 40-19
Mailbox. See Message.
Main memory. See Physical address space. See also
 X-Bus module memory.
Main storage. See Physical address space. See
 also X-Bus module memory.
Maintain File, 20-5 to 20-6
Maintaining quarter-inch tape movement. See Tape
 Operation.
Maintenance of quarter-inch cartridge tape, 18-14
Make Request Set, 31-13, 31-17 to 31-18
MakePermanent, 34-21
MakePermanentP, 34-21
MakeRecentlyUsed, 34-18 to 34-19, 34-21

I-16 CTOS/VM Concepts

MapCsIOvly, 34-21
MapIOvlyCs, 34-21
MapPStubPProc, 34-21
MapXBusWindow, 37-4, 37-10
MapXBusWindowLarge, 37-4 to 37-6, 37-9
MarkKeyedQueueEntry, 35-16, 35-20
MarkNextQueueEntry, 35-16, 35-20
Master
 Shared Resource Processor, 2-7
 workstation, 2-7
Master Agent, 2-9, 2-11, 29-38
Master File Directory, 11-7, 11-39. See also Volume
 control structures.
Master Processor global slot number table, 30-4
Math coprocessor, 26-10. See also Floating-point
 coprocessor.
Math server, 26-10
Mediated interrupt handler
 features, 36-14
MediateIntHandler, 36-23, 36-34
MegaFrameDisableCluster, 39-5
Memory address, 24-3
Memory address, linear, 3-14
Memory address, logical, 3-11 to 3-13, 24-3, 25-3
Memory address, physical, 3-10, 3-14, 24-2
Memory addressing, 3-10 to 3-15
Memory organization
 at system initialization, 2-12, 32-12
 single application in memory, 32-12 to 32-13
 with more than one application in memory, 32-12 to
 32-13
 within application partitions, 2-17, 24-7 to 24-8
Memory region. See Partition.
Memory types
 long-lived, 2-17 to 2-18, 24-1, 24-8 to 24-10
 short-lived, 2-17 to 2-18, 24-1, 24-8 to 24-10
Message, 2-2, 29-12, 29-25 to 29-26
Message files, 40-1
 creating, 40-17 to 40-19
Microprocessor
 address mapping (protected mode), 24-13
 context switching (protected mode), 28-8
 establishing trap handler (protected mode), 36-34
 Intel family, 36-1, 36-9, 36-12, 36-27
 keyboard, 10-1, 10-5 to 10-6
 page mapping (protected mode), 24-14
 protected mode, 1-1, 26-9
 real mode, 1-1
 virtual 8086 mode, 1-5
MIH. See Noncommunications interrupt handlers.
Mode3DmaReload, 37-10
Modify mode, 11-18 to 11-19, 11-21. See also Opening
 files.

Index I-17

Module IDs, 37-2
MountVolume, 12-3
Mouse system service, 10-17
MoveFrameRectangle, 9-22
MoveOverlays, 34-21
Multibyte escape sequences
 automatic pause between full frames of text, 9-8
 controlling character attributes, 9-7
 controlling screen attributes, 9-6
 controlling scrolling and cursor positioning, 9-7
 dynamically redirecting video byte streams, 9-7
 performing miscellaneous functions, 9-9
Multiprocess program, 28-1 to 28-2
Multiprogramming, 1-1, 1-4, 1-10, 27-1 to 27-3, 32-4
Multitasking, 1-1. See also Multiprocessing.

Naming conventions, 3-1 to 3-2
Nationalization, 1-1, 1-4, 38-1, 40-1. See also
 Internationalization.
 linking additional NLS.asm files, 40-17
 modifying NLS.asm, 40-16
 reflecting language definitions, 40-16
 selectively using NLS.asm files, 40-17
Native Language Support, 1-4, 38-1, 40-1 to 40-13
Native Language Support operation summary, 40-13
Native Language Support tables
 Character Class, 40-11
 Collating Sequence, 40-11 to 40-12
 Date and Time Formats, 40-8
 Date Name Translations, 40-11
 general description 40-2 to 40-4
 Key Cap Legends, 40-7 to 40-8
 Keyboard Mapping, 40-5 to 40-6
 Lowercase to Uppercase, 40-6
 Number and Currency Formats, 40-8 to 40-10
 Uppercase to Lowercase, 40-7
 Video Byte Streams Text, 40-7
 Yes or No Strings, 40-12
Near procedure, 34-7
Net Agent, 11-42, 29-39 to 29-41, 29-50, 31-26. See
 also Net Server.
Net Server, 29-39. See also Net Agent.
NLS. See Native Language Support.
Nls.asm, 40-2, 40-6, 40-16
Nls.sys, 40-2, 40-4, 40-16
NlsCase, 40-6 to 40-7, 40-13, 40-20
NlsClass, 40-12 to 40-13, 40-20
NlsCollate, 40-6, 40-11, 40-13 to 40-14, 40-20
NlsFormatDateTime, 25-7, 40-14, 40-21

I-18 CTOS/VM Concepts

NlsNumberAndCurrency, 40-13, 40-21
NlsParseTime, 25-7, 40-11, 40-13, 40-21
NlsStdFormatDateTime, 25-7, 40-8, 40-11, 40-13 to
 40-14, 40-21
NlsULCMPB, 25-8, 40-7, 40-13 to 40-14, 40-20 to 40-21
NlsVerifySignatures, 40-22
NlsYesNoOrBlank, 25-3, 25-8, 40-12 to 40-13, 40-22
NlsYesOrNo, 25-3, 25-8, 40-12, 40-13, 40-22
Nodes, 29-36
Non-communications interrupt handlers
 guidelines for writing mediated handlers (MIHs),
 36-25
 guidelines for writing raw handlers (RIHs), 36-22
 to 36-24
 program logic, 36-22
Nonmaskable interrupts, 36-12 Normal mode
 printing, 7-6 to 7-8, 8-5, 14-9
 system input, 10-10 to 10-11
NPrint, 25-4, 25-9
Nucleus. See Kernel.

Object module procedure, 1-6. See also the name of
 the object module procedure.
Obtaining system information, 26-6 to 26-7
Offset, 3-13, 24-3
One-way pass-through filter, 31-23 to 31-24
OpenByteStream, 7-4, 7-17, 14-8
OpenByteStreamLp, 16-2
OpenDaFile, 23-5
OpenFile, 11-9 to 11-10, 11-23 to 11-24, 11-27,
 11-30, 11-36, 11-45, 12-1
OpenFileLL, 11-27, 11-30, 11-36, 11-48
Opening files
 modify mode, 11-18 to 11-19, 11-21
 operating system function, 11-30 to 11-31
 peek mode, 11-18 to 11-19, 11-21
 read mode, 11-18 to 11-19, 11-21
 using byte streams, 11-30
 using file management operations, 11-3 0
OpenRsFile, 22-3
OpenRTClock, 33-4, 33-8
OpenServerMsgFile, 40-19, 40-22 to 40-23
OpenTape, 18-18
OpenTerminal, 17-2
Operating system
 administration, 1-8
 components, 1-5
 features, 1-7
 initialization, 2-12 to 2-14

Index I-19

Operating system (cont.)
 logical model, 2-12
 structure, 1-5, 2-1
 theory, 1-7
 types, 2-8 to 2-10
Operating system routing table, 29-14
Operating system, loading, 2-12 to 2-14
Operation, message-based, 1-1
Operation, modes of
 protected, 1-1 to 1-2, 1-4
 real, 1-1
Operation types
 Kernel primitives, 3-5, 3-7 to 3-8
 object module procedures, 3-5
 system-common procedures, 3-5 to 3-6
 using request procedural interface, 3-5, 3-7
Optimization
 of disk arm scheduling, 2-5, 11-1
 of interrupt handler performance, 36-7
 of Virtual Code management, 2-18
OsVersion, 26-10 Output routines, 25-4
OutputBytesWithWrap, 25-4, 25-9 OutputQuad, 25-4, 25-
9
OutputToVid0, 7-17
OutputWord, 25-4, 25-9
Overhead
 effect of, from interrupt activity, 33-6
 effect of, when using PIT, 33-2
 minimizing, 2-2, 28-2, 29-19
 PSend, 36-18
Overlay
 defined 34-1 to 34-2
 not present, 34-9
 specifying modules to place in, 34-2
Overlay program, 34-2. See also Overlay.
Overlay zone, 34-2
OverlayFault, 34-10

PA. See Physical memory address.
Packed strings, 29-9
PaFromP, 24-14
PaFromSn, 24-14
Paging, 3-14
Paragraph, 24-2
Parallel port interfaces, 16-1 to 16-2
Parameter, 5-2 to 5-3
Parameter Management, 5-1
ParseTime, 25-7
Parsing configuration files, 25-4 to 25-5

I-20 CTOS/VM Concepts

Partition
 application, 2-12, 32-4
 fixed, 2-18, 32-5
 removing, 3 2-10
 system, 2-12, 32-4
 vacant, 32-10
 variable, 2-18, 32-5
Partition handle. See User number.
Partition Management, 27-3
Partition managing program, 1-7, 2-14, 32-1, 32-5,
 32-8 to 32-9, 32-14 to 32-18
Partition swapping, 32-15
Password protection
 Device password, 11-17
 Directory password, 11-16
 File password, 11-16
 Volume password, 11-15
Passwords, 11-9 to 11-11. See also Password
 protection and Protection level protection.
Path, 11-15, 11-17
Peek mode, 11-18 to 11-19, 11-21. See also Opening
 files.
Pending interrupt, 36-11
Performing file I/O, 11-28 to 11-35
Physical address space, 24-2, 3-10 to 3-11
Physical keyboard, 10-5 to 10-6
Physical memory address (PA), 3-10, 3-14, 24-2
Physical record, 20-6
PIC. See Programmable Interrupt Controller.
PIT. See Programmable Interval Timer.
Pointer. See also Logical memory address.
Polling
 checking for messages, 2-2, 29-19
 disabling and resuming of, by application on master
 workstation, 39-4
 disabling and resuming of, by application on Shared
 Resource Processor, 39-5
 of cluster workstations by master, 39-2 to 39-3
 of X-Bus modules by bootstrap ROM, 37-2
 queued messages, 29-19
Port structure, 26-3
Portability. See Internationalization.
PosFrameCursor, 9-21
Pre-GPS spooler byte streams, 7-7 to 7-8
Preempting processes, 28-3, 28-5, 28-7
Primary memory. See Physical address space. See
 also X-Bus module memory.
Primary task, 32-18, 34-19
Primitives. See Kernel.
Printer byte streams, 7-5 to 7-7
Printing modes
 binary, 7-6 to 7-8
 image, 7-6 to 7-8
 normal, 7-6 to 7-8

Index I-21

PrintMsg, 40-19, 40-23
Priority, process, 1-3
Procedural interface
 format, 3-2
 using in program statements, 3-3 to 3-5
Process, 1-2, 2-1, 27-2, 28-1 to 28-2
Process management
 context switch, 28-3 to 28-4
 events, system, 28-2
 multiprocess program, 28-1 to 28-2
 null process, 28-5
 priority, 28-2
 process context, 28-3
 Process Control Block, 28-3
 process states, 28-6
 process suspension, 28-6
 ready state, 28-6
 recommended process priorities, 28-4
 relationships of process states, 28-6 to 28-7
 running state, 28-6
 scheduling, 28-2, 28-4
 system events, 28-2
 waiting state, 28-6
Process priority, 2-1 to 2-2, 28-2. See also Process
 management.
Process scheduling, 1-1, 28-2. See also Process
 management.
Processor boards. See Shared Resource Processor.
Processor registers, 2-1
Processor slot number, 30-2 to 30-3
Producer process. See System service process.
Program
 defined, 2-11, 4-1, 32-18
 device-dependent, 6-3
 device-independent, 6-1
 exit run file, 32-9, 4-4
 loading into memory, 4-3, 24-5 to 24-7, 32-8
 loading into memory by partition managing program,
 32-8
 multiprocess, 28-1 to 28-2
 termination, 4-4 to 4-5, 32-9, 32-11
Program performance
 as function of system-common procedures, 3-6
 Direct Access Method (file access), 20-3
 effect of frequent device interrupts, 36-7
 effect of Kernel scheduling on operating system,
 2-2
 features of raw interrupt handler, 36-11 to 36-12
 improving RSAM (file access) through large buffers,
 22-2
 optimizing through interrupt handler design, 36-7
 optimizing through programmer control of Virtual
 Code management, 2-18
Program sizing, 32-4

I-22 CTOS/VM Concepts

Program status word, current. See CS:IP.
Program, 2-11, 27-3, 4-1
Program/video interaction
 advanced text processing, 9-13
 forms-oriented interaction, 9-13
Program/video interaction (cont.)
 multibyte escape sequences, 9-6 to 9-9
 QueryVidBs, 9-9
 reinitializing video subsystem, 9-11
 using current screen setup, 9-4
 using SAM directly, 9-4
 using Screen Setup command to respecify video
 characteristics, 9-12
 Video Access Method, 9-9
 Video byte streams' interpretation of special
 characters, 9-6
 Video Display Management, 9-10
ProgramColorMapper, 9-24
Programmable Interrupt Controller (PIC)
 issuing commands, 36-10
 prioritizing interrupt signals, 36-9
Programmable Interval Timer (PIT), 33-1, 33-6 to
 33-7, 36-28. See also Timers.
Programmatic interface, 3-2
Programming standards
 assembly language, 3-3, 24-6, 32-3
Programming tools, use of
 Assembler, 3-1, 31-1
 assembling files, 31-17 to 31-18
 assembling Nls.asm, 40-2, 40-16
 assembly language, 2-3, 2-6, 29-4
 Assembly Language Manual, 24-6, 3-1
 assembly language programming standard, 3-3, 24-6,
 32-3
 assembly language syntax for logical memory
 address, 3-12
 Debugger Manual, 3-1
 editing configuration files, 7-3, 14-3
 editing message files, 40-17
 editing Keyboard Mapping table, 10-10
 editing Nls.asm, 40-6
 editing Queue Index File, 35-10
 editing Request.0.asm, 31-18
 editing RequestTemplate.txt, 31-13, 31-18
 editing text line, 25-5, 25-11
 Editor, 10-2, 10-4, 10-14, 31-16, 32-1, 35-8
 fDebug option, 3 2-24
 invoking Debugger, 10-8
 Linker, 3-1, 4-2, 24-6, 32-3
 Linker's DS allocation option, 24-9, 24-12
 Linker/Librarian Manual, 2-18, 3-1, 20-1, 20-6,
 24-9, 32-3 to 32-4, 4-2 to 4-3
 linking additional sets of nationalized NLS tables,
 40-17

Index I-23

Programming tools, use of (cont.)
 linking file access methods, 20-1
 linking files, 31-17 to 31-18
 linking interrupt handlers, 36-3 2
 linking level 0 requests, 29-10
 linking NLS tables with applications, 25-7
 linking Nls.obj, 40-2
 linking object modules, 1-6, 2-11, 3-5, 4-1, 4-3,
 7-3, 24-5 to 24-6, 32-1, 32-3
 linking parallel port interrupt handlers, 36-26
 linking programs, 3-1
 linking SAMC, 14-2
 linking tape byte streams, 18-2
 loading resident Debugger, 2-13
 options provided by SAMC, 14-4
 program sizing at link time, 32-4
 running applications without relinking, 1-4
 single stepping (debugging), 26-9
Protected mode addressing, advantages of
 extended memory, 3-15
 protection, 3-15
Protected mode operation, 1-2, 1-4 Protection by
volume encryption, 11-23
Protection level protection
 how protection levels work, 11-18
 protection levels, 11-19
PSend, 29-53
Pseudointerrupt handler, 33-7
Pseudointerrupts, 33-6 to 33-7, 36-27
PSW, current. See CS:IP.
Pushed on stack, 34-11
PutBackByte, 8-3, 8-5
PutByte, 25-4, 25-9
PutChar, 25-4, 25-9
PutFrameAttrs, 9-21
PutFrameChars, 9-21
PutFrameCharsandAttrs, 9-21
PutPointer, 25-4, 25-9
PutQuad, 25-4, 25-9
PutWord, 25-4, 25-10

QIC tape. See Quarter-inch cartridge tape.
QicRetension, 18-14
QICSync, 18-12 to 18-14, 18-19
Quarter-inch cartridge (QIC) tape, 18-6 to 18-14
QueryBigMemAvail, 24-14
QueryCoprocessor, 26-10. See also
 GetCoProcessorStatus.
QueryDaStatus, 23-5
QueryDCB, 12-3, 26-6, 26-8
QueryDefaultResponseExch, 29-52

I-24 CTOS/VM Concepts

QueryExitRunFile, 4-7, 32-9, 32-21
QueryFrameBounds, 9-22 to 9-23
QueryFrameChar, 9-21
QueryFrameCharsandAttrs, 9-21
QueryFrameCursor, 9-22
QueryKbdLeds, 10-18
QueryKbdState, 10-12, 10-19
QueryLdtr,- 26-11
QueryMail, 25-11, 25-5
QueryMemAvail, 24-14
QueryModulePosition, 37-3, 37-9
QueryProcessNumber, 28-8
QueryRequestInfo, 31-8, 31-10, 31-29
QueryVidBs, 7-18, 8-3, 8-5
QueryVideo, 9-22, 26-11
QueryVidHdw, 9-22, 26-11
QueryWsNum, 39-5
Queue entry, 35-14 to 35-15, 35-18. See also Queues.
Queue entry files, 35-1. See also Queues.
Queue entry record, 35-1
Queue entry handle, 35-15 to 35-16, 35-19 to 35-20
Queue handle, 35-10
Queue header, 35-1
Queue Index File, 35-5, 35-6
 comparison to dynamically created queues, 35-10
 creating, 35-7 to 35-8
 example, 35-9
 format, 35-8 to 35-9
 queues required for spooler and RJE, 3 5-11
Queue Management facility
 client uses, 35-4, 35-6, 35-14
 sequence for using, 35-5 to 35-7
 server uses, 35-5 to 35-7
Queue Manager
 deinstalling, 35-2
 installing, 35-2 to 35-3, 35-6
 run files, 35-2
Queue server operations
 establishing servers, 35-17
 marking queue entries, 35-17
 unlocking queue entries, 35-18
Queue Status Block, 26-3, 35-16
Queues, 1-8. See also Queue entry files.
 adding queue entries, 35-14 to 35-15
 advantages of dynamically created, 3 5-10
 client operations, 35-14 to 35-16
 defined, 35-1
 dynamically created, 35-5, 35-9 to 35-10
 format of queue entry file (queue), 35-11 to 35-13
 in Queue Index File, 35-10 to 35-11
 reading queue entries, 35-15
 removing entries, 35-16
 server operations, 35-14 to 35-16

Index I-25

RA. See Relative address.
Randomization, 11-2
Raw interrupt handler features, 36-13
Read, 11-31, 11-45, 12-1
Read mode, 11-18 to 11-19, 11-21. See also Opening
 files.
Read-only file access. See Opening files.
ReadActionCode, 10-8, 10-19
ReadActionKbd, 10-8, 10-19
ReadAsync, 11-31, 11-49, 12-1
ReadBsRecord, 7-4, 7-17
ReadByte, 7-17
ReadBytes, 7-18
ReadByteStreamParameterC, 14-9
ReadCommLineStatus, 15-5, 15-7, 36-22, 36-34
ReadDaFragment, 23-5
ReadDaRecord, 23-5
ReadDirSector, 11-47
Reading and writing files
 using asynchronous file management operations,
 11-31
 using byte streams, 11-34
 using Kernel primitives, 11-32
 using Read and Write, 11-31
Reading and writing to tape
 half-inch tape, 18-17
 quarter-inch cartridge tape, 18-9 to 18-13
ReadKbd, 10-6, 10-12, 10-18
ReadKbdDirect, 10-6, 10-13, 10-18
ReadKeyedQueueEntry, 35-19
ReadQICHeader, 18-13, 18-19
ReadQueueEntry, 35-16
ReadRsRecord, 22-3
ReadStatusC, 14-9
ReadTapeRecords, 18-12, 18-18
ReadTerminal, 17-2
ReadToNextField, 25-5, 25-11
Real memory. See Physical address space. See also
 X-Bus module memory.
Real mode interrupt vectoring, 26-3
Real Mode Operating System (RMOS), 1-2, 1-4
Realtime Clock operation, 33-2 to 33-5. See also
 Timers.
Realtime Clock (RTC), 33-1, 33-2 to 33-5
Record fragment, 23-2
Record Sequential Access Method (RSAM), 20-3, 22-1 to
 22-3
Recording keyboard input to files. See System input
 process.
Redo keystroke buffer, 5-6
Referring to an open file. See File Handle.
Registers
 AL, 36-27
 AX, 36-19, 36-21, 36-25

I-26 CTOS/VM Concepts

Registers (cont.)
 BP, 34-14
 CS, 36-24
 DS, 36-35
 Extended Address, 37-5 to 37-6
 flags, 36-24
 hardware control, 15-4
 IP, 36-24
 Local Descriptor Table, 36-35
 passing arguments, 36-29
 process, 2-1, 27-2, 28-3
 restored, 36-19, 36-21, 36-23, 36-25
 restoring, 36-14, 36-24
 saved, 36-19, 36-21 to 36-22, 36-25
 saving, 36-24
 segment, 24-6
ReInitLargeOverlays, 34-20
ReInitOverlays, 34-20
ReInitStubs, 34-22
Relative address (RA), 3-12 to 3-13, 24-3
ReleaseByteStream, 7-18
ReleaseByteStreamC, 14-10
ReleaseByteStreamLp, 16-2
ReleasePermanence, 34-21
ReleaseRsFile, 22-3
RemakeFh, 11-4 8
Remote job entry (RJE), 35-1, 35-5 to 35-6, 35-9 to
 35-13
RemoteBoot, 30-14
RemoveKeyedQueueEntry, 35-16, 35-19
RemoveMarkedQueueEntry, 35-20
RemovePartition, 32-5 to 32-6, 32-10, 31-28, 32-24
RemoveQueue, 35-10, 35-21
RenameFile, 11-9, 11-45
ReOpenFile, 11-36, 11-48
Replacement filter, 31-22
Request block format
 control information, 29-29
 example, 29-31 to 29-33
 request data item, 29-30
 response data item, 29-30 to 29-31
 routing code, 29-29
 standard header, 29-27 to 29-29
Request block, 29-1, 29-12, 31-1
Request code, 29-8 to 29-11, 31-2
Request code levels, 29-10 to 29-11
Request definition, 31-7
Request, global, 31-16
Request, local 31-16
Request procedural interface, 2-3 to 2-4, 29-1, 29-2
 to 29-4. See also Alternate request procedural
 interface.

Index I-27

Request/response model, 39-4 Request routing
 between processor boards, 39-3. See also Inter-CPU
 communication.
 by file handle, 29-39 to 29-41
 by file specification, 29-41 to 29-43, 39-3
 network routing 29-44 to 29-50
 over cluster, 39-3 to 39-4
 over CT-Net, 3 9-4
 routing code 29-43 to 29-45
 routing logic 29-46, 29-48 to 29-49
Request routing table, 31-5 to 31-6
Request.0.asm, 31-13, 31-16, 31-18
Request.sys, 31-7
RequestDirect, 29-17, 29-53
Requesting input from keyboard
 character mode, 10-1 to 10-2
 unencoded mode, 10-1 to 10-2
RequestRemote, 30-14
Requests, 11-26, 11-32, 29-13 to 29-14, 29-52. See
 also the name of the request.
 defining, 31-13 to 31-16
 loadable, 31-7
RequestTemplate.txt, 31-13 to 31-17
RescheduleProcess, 28-8
ResetCommLine, 15-4, 15-7
ResetFrame, 9-23
ResetMemoryLL, 24-13, 24-8
ResetTimerInt, 33-6 to 33-8, 36-20, 36-34
ResetVideo, 9-23
ResetXbusMISR, 36-36, 37-10
Resources
 associated with Record Sequential Access Method
 files, 22-3
 associated with user number, 11-41, 2-15, 29-28,
 32-5
 deallocating, 4-5, 32-11
 initializing system services, 31-9
 link blocks, 33-3
 managed by system services, 27-3, 29-7, 32-4
 managing shared resources, 29-1
 managing system resources, 2-1
 provided by master, 2-7, 29-37
 releasing upon termination, 4-4, 31-19, 31-20,
 32-10
 sharing among secondary tasks, 3 2-18
 sharing by processes with same priority, 28-2, 28-5
 sharing over CT-Net, 2-7, 29-38
Respond, 29-13 to 29-15, 29-52
Response exchange, 29-19. See also Exchanges.
ReuseAlias, 24-15
ReuseAliasLarge, 24-15
RgParam, 5-5, 5-10

I-28 CTOS/VM Concepts

RgParamInit, 5-10
RgParamSetEltNext, 5 8, 5-10
RgParamSetListStart, 5-8, 5-10
RgParamSetSimple, 5-8, 5-10
RIH. See Noncommunications interrupt handlers.
RJE. See Remote job entry.
RMOS. See Real Mode Operating System.
RQDs. See Virtual Code Management data structures.
RSAM. See Record Sequential Access Method.
RTC. See Realtime Clock.
Routing types, Shared Resource Processor, 30-3 to
 30-5
Run file, 2-11, 4-1 to 4-3, 24-5 to 24-6, 32-1, 32-3

SA. See Segment address.
SAM. See Sequential Access Method.
SAMC. See Communications programming.
SAMGen. See Sequential Access Method Generation.
SbPrint, 25-10, 25-4
ScanToGoodRsRecord, 22-3
Scheduler, 1-3
Scheduling
 event-driven priority, 1-3, 2-2
 time-based, 1-3, 2-2
Scr, 11-7
Scratch volume, 11-7. See also File management
 system organization.
Screen output. See Program/video interaction.
ScrollFrame, 9-22
Secondary task, 32-18, 34-19
Sector, 2-5, 12-1, 12-3, 20-1, 20-6, 22-1 to 22-2,
 23-1 to 23-2, 23-4, 29-32, 35-8, 35-14
Segment, 3-11, 24-2 to 24-6, 32-1 to 32-3
 code, 4-1
 element, 4-2
 static data, 4-1
Segment address (SA), 3-12 to 3-13, 24-3
Segment base address, 3-12 to 3-13, 24-3
Segment descriptor, 3-13, 24-3, 34-9
Segment not present fault, 34-9
Segment not present interrupt handler, 34-9
Segment types
 code, 24-4
 dynamic data, 24-4
 static data, 24-4
Segmentation models, 24-6, 32-3
Segments, expanding, 24-9
Selector, 3-12 to 3-13, 24-3, 34-9
Selectors returned by MapXBusWindowLarge, 37-5
Send, 29-16, 29-53
SendBreakC, 14-10

Index I-29

Sequential Access Method (SAM)
 customizing. See Sequential Access Method
 Generation (SAMGen).
 selectively supporting devices, 7-2
 supported default devices, 7-2
Sequential Access Method Generation (SAMGen)
 customizing, 7-3
 uses, 7-3
Serial port interfaces, 15-1 to 15-7
ServeRq, 31-8, 31-10, 31-27, 31-29
Service exchange, 29-20. See also Exchanges.
Session, 29-41
Set Directory Protection, 11-16, 11-20
Set Protection, 11-16
Set386TrapHandler, 36-31 to 36-32, 36-34
SetAlphaColorDefault, 9-24
SetBsLfa, 7-5, 8-3, 8-5
SetDaBufferMode, 23-6
SetDateTime, 25-2, 25-7
SetDefaultTrapHandler, 36-32, 36-35
SetDeltaPriority, 28-8
SetDevParams, 12-3
SetDirStatus, 11-23 to 11-24, 11-47
SetDispMsw287, 28-8
SetExitRunFile, 4-7, 32-9, 32-21
SetFhLongevity, 11-27, 11-48
SetFileStatus, 11-10, 11-23 to 11-24, 11-33, 11-35,
 11-46
SetImageMode, 7-6, 7-8, 8-3, 8-5
SetImageModeC, 14-9
SetIntHandler, 36-20, 36-22, 36-26, 36-32, 36-35
SetKbdLed, 10-18
SetKbdUnencodedMode, 10-7, 10-12, 10-18
SetLdtrDS, 36-35
SetLpISR, 16-2
SetLpMISR, 36-35
SetMsgRet, 4-7, 31-10, 32-21
SetNode, 11-46
SetPartitionLock, 31-28, 32-24
SetPartitionName, 31-11, 31-29, 32-22
SetPath, 11-11 to 11-13, 11-46
SetPrefix, 11-13, 11-46
SetPStructure, 26-11
SetRsLfa, 22-3
SetScreenVidAttr, 9-23
SetSegmentAccess, 24-16
SetSlotInfo, 30-14
SetStyleRam, 9-24
SetStyleRamEntry, 9-24
SetSwapDisable, 32-23
SetSysInMode, 10-12, 10-19
SetTerminal, 17-2
SetTimerInt, 33-6 to 33-8, 36-20, 36-28, 36-32, 36-34
 to 36-35

I-30 CTOS/VM Concepts

SetTrapHandler, 36-31 to 36-32, 36-35 to 36-36
SetUnencodedMode, 10-6
SetVideoTimeOut, 9-23
SetWsUserName, 26-11
SetXbusMISR, 36-27, 36-32, 36-36, 37-9
SG. See Global Descriptor Table selector.
SgFromSa, 24-14
Shared Resource Processor (SRP), 1-1, 2-8, 30-1
Shared Resource Processor linear addressing, 30-3,
 30-6
Shared Resource Processor request routing types, 30-3
 to 30-5
Shared Resource Processor terminal interfaces, 17-1
 to 17-3
Sharing interrupt vectors, 36-27
Sharing master run files, 11-36
Short-lived memory
 allocating, 2-17 to 2-18, 24-1, 24-8 to 24-10
 deallocating, 2-17 to 2-18, 24-1, 24-8 to 24-10
 uses, 24-10
ShrinkAreaLL, 24-9, 24-13
ShrinkAreaSL, 24-9, 24-12
Slot number, processor, 30-2 to 30-3
SN. See Selector.
SnFromSr, 24-15
Software development utilities. See Programming
 tools, use of.
Software floating-point emulator, 26-10
Spanned records, 20-1, 22-1, 23-2
Sparse array, 5-4 to 5-5, 5-8
Special care for quarter-inch cartridge tape, 18-14
Specifying directories and files, 11-11 to 11-13
Spooled printing, 7-7, 35-1, 35-11
Spooler, 35-3, 35-5 to 35-6, 35-9, 35-11 to 35-14,
 35-18
Spooler management, 1-8
Spooler Status, 35-15
SrFromSn, 24-15
SRP. See Shared Resource Processor.
Stack
 client process, 2-3, 29-33
 communications raw interrupt handler (CRIH)
 processing, 36-18
 controlling depth of, 36-13
 exception, 36-30
 format, 34-11
 initializing stack segment (SS), 24-13
 operating system, 36-18, 36-20
 parameters provided on, 36-19, 36-21
 part of DGroup, 4-3, 24-6, 32-3
 process, 28-2 to 28-3
 removing return overlay descriptors (RODS), 34-22
 tracing in overlay programs, 34-11 to 34-17
Standard file header, 20-6, 26-4
Standard operating system library, 1-6

Index I-31

Standard record header, 20-6, 26-4
Standard record trailer, 20-6, 26-4
Standard Software, 40-2
Start/stop mode, 18-16
Storage Processor. See Shared Resource Processor.
Stream-oriented I/O. See Sequential Access Method.
Streaming mode, 18-8, 18-16
Strings, comparing, 25-2, 25-3
Strings, packed , 29-9
StringsEqual, 25-2 to 25-3, 25-8
Structured file access methods, 20-1 to 20-7
 Direct Access Method, 11-4
 Indexed Sequential Access Method, 11-4
 Record Sequential Access Method, 11-4
Stub, 34-8, 34-16 to 34-18. See also Virtual Code
 Management data structures.
Submit file escape sequences, 10-4
Submit files, 10-3 to 10-4
Subparameter, 5-2 to 5-3
Subroutine. See Object module procedure.
SwapInContext, 4-4, 32-8, 32-23
Swapper, 34-1 Swapping
 partition, 32-15 to 32-17
 partition managed programs, 2-14
 program calls, 32-22
 system requests, 31-13, 31-15, 31-18, 31-21, 31-25,
 31-26 to 31-27, 31-30
Swapping request, 31-21 to 31-22, 31-26
SwapXBusEAR, 37-9
Sys, 11-6. See also File management system
 organization.
SysGen, 38-1
System administration, 38-1
System Configuration Block, 26-4
System data structures
 Device Control Block, 11-4 2
 User Control Block, 11-41
System date/time
 format, 25-1 to 25-2
 structure, 25-1, 26-4
System Debugger. See Programming tools, use of.
System Directory, 11-40. See also Volume control
 structures.
System events, 2-2, 28-2. See also Process
 management.
System generation (SysGen), 38-1
System Image, 1-6, 2-13, 11-38, 26-4, 29-14, 29-37,
 29-38, 30-14, 31-4 to 31-5, 36-26, 36-32
System information, obtaining, 26-6 to 26-7
System initialization, 2-12 to 2-14, 29-10, 30-6,
 31-5, 32-12 to 32-13, 37-5
System input process, 10-3
System load. See System initialization.

I-32 CTOS/VM Concepts

System partition, 2-12, 32-4
System query, 26-1 to 26-11
System request, 31-15, 31-30
 abort, 31-19 to 31-20
 swapping, 31-21 to 31-22
 termination, 4-4, 31-18 to 31-21
System resources, deallocating, 4-5
System service, 27-3, 29-1, 29-3
 built-in, 31-4 to 31-5
 defined, 31-1
 deinstalling, 31-8, 31-27 to 31-28
 dynamically installable, 2-3, 31-5
 guidelines for writing, 31-8 to 31-11
 initializing sequence, 31-8 to 31-11
 interaction with client, 31-1 to 31-4
 operation requirements, 31-13
 program model, 31-3 to 31-4, 31-12
System service process, 2-1, 2-3. See also System
 Service.
System structures, 26-2 to 26-5
System-common procedures, 1-6. See also the name of
 the system-common procedure.
SystemCommonConnect, 31-29

Tape byte streams, 7-11
Tape drive, 18-5
Tape format
 half-inch tape, 18-14
 quarter-inch cartridge tape, 18-6
Tape header
 half-inch tape, 18-15
 quarter-inch cartridge tape, 18-7
Tape interface levels, 18-2 to 18-3
Tape I/O. See Reading and writing to tape.
Tape mark
 half-inch tape, 18-15
 quarter-inch cartridge tape, 18-6, 18-15
Tape naming, 18-3 to 18-6
Tape operation
 half-inch tape, 18-16 to 18-17
 quarter-inch cartridge tape, 18-8 to 18-9
Tape position, 18-4
Tape retensioning, 18-14
Tape utilities
Tape Backup Volume, 18-1
Tape Copy, 18-1
Tape Restore, 18-1
TapeOperation, 18-15, 18-18
TapeStatus, 18-18
Task. See Process.
Temporary directory. See $Directory.

Index I-33

Terminal Output Buffer, 26-5
Terminal Processor. See Shared Resource Processor.
TerminatePartitionTasks, 32-9 to 32-10, 32-24
TerminateQueueServer, 35-20
Termination requests, 4-4, 31-18 to 31-21, 32-10
Text editing, 25-5
Text file, 40-17
TextEdit, 25-11
Thread of execution, 1-2, 2-1, 27-2
Throughput capability, 11-1
Time slicing, 28-2, 28-5 to 28-6
Timer management, 27-3
Timer Pseudointerrupt Block (TPIB), 26-5
Timer Request Block (TRB), 26-5, 33-2
Timers
 accurate timing of long intervals, 33-1
 establishing timing intervals, 33-2
 Programmable Interval Timer, 33-1, 33-6 to 33-7
 Realtime Clock, 33-1, 33-2 to 33-5
 repetitive timing, 33-4 to 33-6
 timing short intervals, 33-1
 timing single intervals, 33-4
Timing intervals, 33-1 to 33-2. See also Realtime
 Clock.
TPIB. See Timer Pseudointerrupt Block.
Translating addresses, 24-14 to 24-15
Trap handlers, 36-31
TRB. See Timer Request Block.
TruncateDaFile, 23-5
Two-way pass-through filter, 31-24 to 31-25
Type-ahead buffer, 10-7

ULCMPB, 25-3, 25-8, 40-13 to 40-14, 40-20 to 40-21
UnLockVideo, 9-25
UnLockVideoForModify, 9-25
UnlockXBIS, 37-7 to 37-8, 37-10
UnmarkQueueEntry, 35-20
UpdateOverlayLRU, 34-21
User number, 2-15 to 2-16, 32-5 to 32-6, 32-18
Using aliases, 24-15
Using message files
 when requiring few messages, 40-19
 when requiring large numbers of messages, 40-18 to
 40-19
Using Keyboard Encoding table
 diacritical key handling, 10-9
 generating character codes, 10-10
 table translations, 10-9
Using keyboard modes
 character mode, 10-6
 unencoded mode, 10-6

I-34 CTOS/VM Concepts

Using passwords for file access, 11-17
Using system input process
 normal mode, 10-11
 recording file, 10-13
 recording mode, 10-11, 10-13
 submit file escape sequences, 10-13 to 10-16
 submit mode, 10-10 to 10-11
Utility operations, 25-1 to 25-11

VAM. See Video Access Method.
VacatePartition, 31-28, 32-9 to 32-10, 32-24
Variable, global, 28-1
Variable Length Parameter Block (VLPB), 5-3 to 5-4,
 5-6, 26-5
 initializing, 5-8
 parameter constructing, 5-8
 structure, 5-9
Variable partitions, 1-2, 1-5, 2-18, 32-5
Variable length records, 20-1 to 20-4, 22-1
VDM. See Video Display Method.
Video. See also Program/video interaction.
 capabilities, 9-1
 character attributes, 9-2
 character cell sizes, 9-16
 comparing character map to bit map, 9-17
 cursor, 9-18
 font, 9-18
 obtaining information on workstation video
 capability, 9-14
 screen attributes, 9-2
 use in programs, 9-1
video attributes, 9-17
Video Access Method (VAM), 9-3
Video byte streams, 7-10
Video Control Block, 26-5
Video Display Method (VDM), 9-3
Video interfaces
 device-dependent level, 9-3
 device-independent level, 9-3
Video refresh, 9-18
Video system data structures
 frame descriptor, 26-3
Video Control Block, 26-5
Virtual 8086 mode, 1-2, 1-5
Virtual Code Management data structures
 location in memory, 34-3 to 34-4
 overlay zone header, 34-5
 ProcInfoNonRes, 34-7
 return overlay descriptors (RODs), 34-6
StaticsDesc, 34-5 to 34-6

Index I-35

Virtual Code Management facility, 4-3, 32-8
 protected mode operation, 34-9 to 34-10, 34-16 to
 34-18
 real mode operation, 34-10 to 34-18
Virtual machine (VM), 1-1, 1-4
Virtual. See Virtual machine.
VLPB. See Variable Length Parameter Block.
VM. See Virtual machine.
Volume control structures
 Allocation Bit Map, 11-29, 11-33, 11-38
 Bad Sector file, 11-38
 Disk extent, 11-7, 11-39
 Extension File Header Block, 11-39
 File Header Block, 11-37 to 11-38
 location on disk, 11-8
 Master File Directory, 11-39
 System Directory, 11-4 0
Volume Home Block, 11-7, 11-37, 11-38
Volume encryption, 11-3, 11-6, 11-23
Volume Home Block, 11-7 to 11-8, 11-37. See also
 Volume control structures.
Volume, 11-6 to 11-8

Wait, 11-26, 11-32, 29-17 to 29-18, 29-52, 33-4 to
 33-5
WaitLong, 29-52
WhereTerminalBuffer, 17-2
Wild card, 11-42 to 11-43
WildCardInit, 11-43, 11-47
WildCardMatch, 11-43, 25-8
WildCardNext, 11-43, 11-47
Workstation
 accessing local files, 11-5, 11-35
 accessing master files, 11-5
 bit map, 9-1, 9-17
 bootstrapping from local, 11-36
 built-in services, 31-5
 character attributes supported, 9-7
 character map, 9-1, 9-17
 cluster, 2-7 to 2-8, 11-1, 11-4 to 11-6
 cluster communication, 39-1
 cluster with local file system, 2-8
 color, 9-20
 communications channels, 7-14
 compatibility with SRP, 2-4, 30-1
 connected to CT-Net, 2-7
 creating fonts, 9-18
 cursor, 9-18
 deinstalling system services, 31-27
 describing hardware configuration, 37-2
 determining video capability level, 9-11, 9-22
 device-independent interfaces, 7-2

I-36 CTOS/VM Concepts

 forms oriented interaction with user, 9-13
 installing Queue Manager, 35-1 to 35-2, 35-6
 interrupt handlers, 36-33
 LockIn, 15-7
 LockOut, 15-7
 maintaining current system date/time, 25-2, 33-1
 master, 2-7 to 2-8
 operating system features, 2-9
 operating system types, 2-8
 operating systems, 1-1
 printer interface, 7-6
 processor module, 37-1
 quarter-inch cartridge tape server, 18-1
 relationships of ports to access methods, 17-1
 resources available by user number, 2-15
 routing code, 29-29
 routing requests to master, 11-3 5
 sharing master files 11_36
 SignOn name, 26-11
 special video capabilities, 7-11, 9-5
 standalone, 2-6, 2-8, 11-5
 system volume, 11-6
 tape naming, 18-5
 turning off video refresh, 9-12
 usage statistics, 26-2, 26-8
 user name, 26-11
 using abort requests, 31-19
 using queues, 35-1
 video capabilities, 9-14
 video capability level, 26-11
 video character cell size, 9-16
 video refresh, 9-10, 9-18
 video types, 9-1
 writing programs that run on different models of,
 9-19
Workstation video capabilities, 9-14 to 9-18
Write, 11-31, 11-45, 12-1
Write-behind mode, 23-4, 23-6
Write-through mode, 23-4, 23-6
WriteAsync, 11-31, 11-49, 12-1
WriteBsRecord, 7-4, 7-17
WriteByte, 7-17
WriteByteStreamParameterC, 14-9
WriteCommLineStatus, 15-6 to 15-7, 36-20, 36-36
WriteDaFragment, 23-6
WriteDaRecord, 23-5
WriteLog, 25-11
WriteQICHeader, 18-13, 18-19
WriteRsRecord, 22-3
WriteStatusC, 14-9
WriteTapeRecords, 18-8 18-10, 18-12, 18-18
Writing programs for different workstation models,
 9-19

Index I-37

X-Bus management, 1-8
 accessing X-Bus module memory, 37-4 to 37-5
 accessing X-Bus modules in protected mode, 37-5
 accessing X-Bus modules in real mode, 37-6
 commmunication and start-up protocols, 37-7
 module IDs and base I/O addresses, 37-2
 specifying X-Bus size, 37-5
X-Bus DMA, 37-6 to 37-7
X-Bus interrupts, 37-8
X-Bus overview, 37-1
XBIF system service, 37-7 to 37-8
XBIS, 37-7
X-Bus module memory, 37-4 to 37-6
X-Bus module/processor memory access
 X-Bus memory master, 37-3
 X-Bus memory master/slave, 37-3
 X-Bus memory slave, 37-3
 X-Bus window size, 37-5
X.25 byte streams, 7-9
XBIF system service, 36-28, 37-7 to 37-8
XINT0, 36-26, 37-8
XINT1, 36-26, 37-8
XINT4, 36-27, 37-8

ZPrint, 25-4, 25-10

