
The

Be
Book

The Software Development Environment for the BeBoxTM
Release 1.1 d6

TM

The Be Book: The Software Development Environment for the BeBox
reference documentation for Be system software release 1.1 d6
revised December 1995
Copyright © 1995 by Be, Inc. All rights reserved.

Release 1.1d6 of Be software copyright © 1990-1995 by Be, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted—in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise—without the prior written permission of Be, Inc.

The contents of this book are furnished for informational use only; they are subject
to change without notice and should not be construed as a commitment by Be, Inc.
Be has tried to make the information in this book as accurate and reliable as possible,
but assumes no liability for errors or omissions.

Be, Inc. will from lime to time revise the software described in this book and reserves
the right to make such changes without notification. The software is furnished under
license and may be used or copied only in accordance with the terms of the license.

“Be,” the Be logo, “BeBox,” and “GeekPort” are trademarks of Be, Inc. ‘TrueType”
is a trademark of Apple Computer. All other trademarks mentioned belong to their
respective owners.

Be, Inc.
800 El Camino Real
Suite 300
Menlo Park, CA 94025
http://www.be.com

Introduction – 1

1 Introduction

Software Overview .3
Servers .4
Kits .5

Contents .7
Class Descriptions .8
Programming Conventions .9

Responsibility for Allocated Memory 9
Object Allocation. 10
Virtual Functions . 11

Naming Conventions . 12

2 – Introduction

Introduction – 3

1 Introduction

The BeBox™ is an integrated package of hardware and software. The hardware supports
the innovative design of the software, and the software exploits the extraordinary
capabilities built into the hardware. Among other things, the Be machine offers:

• Parallel processing on two high-performance CPUs.

• An operating system designed for efficient multitasking. It automatically splits
assignments between the CPUs and will give priority to applications that need
uninterrupted service.

• A built-in ability to connect to and interact with the telephone.

• An architecture that supports the real-time processing of data for audio and video
applications.

• An interface that lets applications and users view everything that’s stored on-disk as
if it were in a relational database.

Be system software is designed to make the features of the BeBox readily and efficiently
available to all applications. The application programming interface (API) is written in
the C++ language and takes advantage of the opportunities C++ offers for object-oriented
programming. It includes numerous class definitions from which you can take much of the
framework for your application.

Software Overview

System software on the BeBox lies in three “layers”:

• An microkernel that works directly with the hardware and device drivers.

• Several servers that can attend to the needs of any number of running applications.
The servers take over much of the low-level work that would normally have to be
done by each application.

• Dynamically-linked libraries that provide an interface to the servers and encapsulate
facilities for building Be applications.

4 – Introduction

Software Overview

Applications are built on top of these layers, as illustrated below:

The application programming interface (API) for all system software is organized into
several “kits.” Each software kit has a distinct domain—there’s a kit that contains the basic
software you’ll need to run an application on the BeBox, a kit for putting together a user
interface, one for organizing data stored on-disk, < another for interacting with a telephone
line >, and so on.

With the exception of the Kernel and Network Kits, which have ANSI C interfaces, all
the kits are written in the C++ language and make extensive use of class definitions. Each
kit defines an integrated set of classes that work together to structure a framework for
applications within its domain.

By incorporating kit classes in your application—directly creating instances of them,
deriving your own classes from them, and inventing your own classes to work with
them—you’ll be able to make use of all the facilities built into the BeBox. And you’ll find
that a good deal of the work of programming a Be application has already been done for
you by the engineers at Be.

Servers

Standing behind many of the software kits are servers—separate processes that run in the
background and carry out basic tasks for client applications. Servers serve Be
applications, not users; they have a programming interface (through the various kits) but
no user interface. They typically can serve any number of running applications at the same
time. A server can be viewed either as an extension of the kernel or as an adjunct to an
application. It’s really a little of both.

If you look inside the /system directory on the BeBox, you’ll see a number of servers
listed. The main ones that you should know about are the Storage Server and the
Application Server.

• The Storage Server coordinates access to “persistent data”—data that lives on long-
term storage media, such as a hard disk or floppy diskette. The Server keeps track of
data by enumerating its qualities (its type, size, where it’s located, and so on) in an
entry called a record. In some cases, the record can hold the data itself; it can be a
way of retaining data, not just of recording information about it. A database

MICROKERNEL

SOFTWARE KITS
(LIBRARIES)

APPLICATIONS

SERVERS

Introduction – 5

 Software Overview

 contains a collection of records; each medium (each hard or floppy disk) has its own
database.

 The Storage Server also manages the file system. A file, like any other distinct piece
of persistent data, is represented by a record in a database. Although you gain
access to files by referring to the records that represent them, Be software is
designed to make file access as “database-free” as possible.

 Your application can create new records, add them to a database, query a database
and access records, open files to read and write, traverse directories, and carry out
other storage and retrieval tasks through the classes defined in the Storage Kit. The
Kit is the programming interface to the Server.

• The Application Server handles most of the low-level user interface work. It
provides applications with windows, manages the interactions among windows,
renders images in windows on instructions from the application, and monitors
what the user does on the keyboard and mouse. It’s the application’s conduit for
both drawing output and event input. In addition to being a “window provider,” the
Server also maintains the global environment shared by all applications.

 An application connects itself to the Server when it constructs a BApplication
object (as defined in the Application Kit). This should be one of the first things
that every application does. Every BWindow object (defined in the Interface Kit)
also makes a connection to the Server when it’s constructed. Each window runs
independently of other windows—in its own thread and with its own connection to
the Server.

Kits

Some of the software kits will be used by all applications, others only by applications that
are concerned with the specific kinds of problems the kit addresses. Most applications will
need to open files and put windows on-screen, for example; fewer will want to process
audio data.

The kits currently available <and some of those currently under development> are
summarized below:

• The Application Kit is a small amount of software that is nevertheless essential
for all applications. It gives an application the ability to communicate with other
applications, to become known to the Browser, and to use software in the other kits.
It defines a messaging service that the system uses to report events to applications,
and that an application can use to organize activity among its threads.

 The Kit’s principal class is BApplication; every application must have one (and
only one) BApplication object to act as its global representative. Begin with this kit
before programming with any of the others.

• The Storage Kit is an interface for storing data on-disk, retrieving it, and keeping
abreast of changes that are made to it. It’s the client interface to the Storage Server.
Information can be stored with various attached properties, so that it can be

6 – Introduction

Software Overview

 retrieved, accessed, and organized according to those properties, not just according
to a file designation in a hierarchical directory structure.

 The Storage kit has two parts: One set of classes (BDatabase, BTable, BRecord,
and BQuery) provides typical database access to stored information. Another set
(BVolume, BDirectory, and BFile) provides an interface to the file system. The file-
system classes are build on top of the database classes—files and directories have
records in the database—but can be used with a minimum of “database” overhead.
In the easiest (and most typical) case, an application doesn’t need to know anything
about database techniques to read and write files.

• The Interface Kit is used to build and run a graphical and interactive user interface.
It structures the twin tasks of drawing in windows and handling the messages that
report user actions (like clicks and keystrokes) directed at what was drawn. Its
BWindow class encapsulates an interface to windows. Its BView class embodies a
complete graphics environment for drawing.

 Each window on (and off) the screen is represented by a separate BWindow object
and is served by a separate thread. A BWindow has a hierarchy of associated
BView objects; each BView draws one portion of what’s displayed in the window
and responds to user actions prompted by the display. The Interface Kit defines
a number of specific BViews, such as BListView, BButton, BScrollBar, and
BTextView—as well as various supporting classes, such as BRegion, BBitmap, and
BPicture.

 Every application that puts a window on-screen will need to make use of this kit.

• The Media Kit defines an architecture for the real-time processing of data—
especially audio and video data. It gives applications the ability to generate,
examine, manipulate, and realize (or “render”) medium-specific data in real time.
Applications can, for example, synchronize the transmission of data to different
media devices, so they can easily incorporate and coordinate audio and video
output.

• The Midi Kit is designed specifically for processing music data in MIDI (Musical
Instrument Digital Interface) format. < It will come under the umbrella of the Media
Kit in a future release. >

• < The Telephone Kit will be used to make connections to a telephone line, and to
read and write data over the connection. >

• The Kernel Kit is the one kit that’s not object-oriented. It defines an interface for
creating threads (the basic units of scheduling and execution on the CPUs) and the
attendant facilities that regulate threads and coordinate their interaction (such as
ports, priorities, and semaphores). It also defines a system of memory management,
including reserved and shared areas of memory. Applications that rely on the
higher-level kits won’t need to use much of the kernel interface.

Introduction – 7

 Contents

• The Device Kit provides programming interfaces to the various connectors
and devices that can be attached to a BeBox. It currently consists of only the
BSerialPort class.

• The Network Kit is for linking to and communicating with other computers
through the TCP/IP and UDP/IP protocols. With only a couple of exceptions, its
API is compatible with the BSD (Berkeley Software Distribution) UNIX socket
architecture.

• The Support Kit is a collection of various defined types, error codes, and other
facilities that support Be application development and the work of the other kits. It
includes basic type definitions, the BList class for organizing ordered collections of
data, and a system for having objects retain class information that they can reveal
at run time. You can pick and choose the parts of this kit that you want to adopt for
your application.

Contents

This manual documents system software for which a public API (application programming
interface) is currently available. The present version covers eight kits—the Application,
Storage, Interface, Media, Midi, Kernel, Device, and Support Kits summarized above. It
doesn’t yet cover the API for printing or for connecting to the telephone. Later releases
will document more software as the API is codified.

After the introductory chapter you’re now reading, there’s a chapter for each kit. The table
of contents is:

 1 Introduction
 2 The Application Kit
 3 The Storage Kit
 4 The Interface Kit
 5 The Media Kit
 6 The Midi Kit
 7 The Kernel Kit
 8 The Device Kit
 9 The Network Kit < undocumented >
 10 The Support Kit

We may, from time to time, issue updated versions of one chapter or another, as well as
add new chapters for new kits. So that page numbers won’t become totally confusing as
new documentation arrives, each chapter numbers its pages independently of die others.
Each chapter begins on page 1 and has its own table of contents.

8 – Introduction

Class Descriptions

Where it can, the documentation tries to let you know what might be changing. It
encloses temporary comments in angle brackets, <such as this>. Bracketed information
is sometimes speculative, anticipating planned changes to the software that have yet to
be implemented. Angle brackets sometimes also enclose information that’s true about the
present release, but is scheduled to change. Hopefully, language and context are enough to
distinguish the two cases.

Just as the software tries to simplify the work of programming an application for the
BeBox, this documentation tries to make it easy for you to understand the software. Your
comments on it, as on the software, are appreciated. Suggestions, bug reports, and notes on
what you found helpful or unhelpful, clear or unclear, are all welcome.

Class Descriptions

Since most Be software is organized into classes, much of the documentation you’ll
be reading in this manual will be about classes and their member functions. Each class
description is divided into the following sections:

Overview An introductory description of the class. The
overview is usually brief, but for the main
architectural classes, it can be lengthy. Start here to
learn about the class.

Data Members A list of the public and protected data members
declared by the class, if there are any. If this section
is missing, the class declares only private data
members, or doesn’t declare any data members at
all. Most data members are private, so this section is
usually absent.

Hook Functions A list of the virtual functions that you’re invited to
override (re-implement) in a derived class. Hook
functions are called by the kit at critical junctures;
they “hook” application-specific code into the generic
workings of the kit. Looking through the list will give
you an idea of how to adapt the kit class to the needs
of your application.

Constructor and Destructor The class constructor and destructor. Only
documented constructors produce valid members of a
class. Don’t rely on the default constructors promised
by the C++ compiler.

Member Functions A full description of all public and protected member
functions, including hook functions.

Introduction – 9

 Programming Conventions

Operators A description of any operators that are overloaded to
handle the class type.

If a section isn’t relevant for a particular class—if the class doesn’t define any hook
functions or overload any operators, for example—that section is omitted.

Rely only on the documented API. You may occasionally find a public function declared in
a header file but not documented in the class description. The reason it’s not documented is
probably because it’s not supported and not safe; don’t use it.

Programming Conventions

The software kits were designed with some conventions in mind. Knowing a few of
these conventions will help you write efficient code and avoid unexpected pitfalls. The
conventions for memory allocation, object creation, and virtual functions are described
below.

Responsibility for Allocated Memory

The general rule is that whoever allocates memory is responsible for freeing it:

• If your application allocates memory, it should free it.

• If a kit allocates memory and passes your application a pointer to it, the kit retains
responsibility for freeing it.

For example, a Name() function like this one,

char *name = someObject->Name();

would return a pointer to a string of characters residing in memory that belongs to the
object that allocated it. The object will free the string; you shouldn’t free it.

You should also not expect the string pointer to be valid for long. The object might modify
the string, change its location in memory, reallocate it, or free it at any time. If your
application needs continued access to the string, it should make a copy for itself or call
Name() each time the string is needed.

In contrast, a GetName() function would copy the string into memory that your
application provides:

char name[MAX_LENGTH + 1];
someObject->GetName(name);

Your application is responsible for the copy.

10 – Introduction

Programming Conventions

In some cases, you’re asked to allocate an object that kit functions fill in with data:

BPicture *picture = new BPicture;
someViewObject->BeginPicture(picture);
. . .
someViewObject->EndPicture();

Because your application allocated the object, it’s responsible for freeing it.

Be system software tries always to keep allocation and deallocation paired in the same
body of code—if you allocated the memory, free it; if you didn’t, don’t.

This general rule is followed wherever possible, but there are some exceptions to it.
BMessage objects (in the Application Kit) are a prominent exception. Messages are
like packages you put together and then mail to someone else. Although you create the
package, once you mail it, it no longer belongs to you.

Another exception is FindResource() in the BFile class of the Storage Kit. This function
allocates memory on the caller’s behalf and copies resource data to it; it then passes
responsibility for the memory to the caller:

long numbytes;
void *res = someFile.FindResource("name", B_RAW_TYPE, &numBytes);

The BFile object allocates the memory in this case because it knows better than the caller
how much resource data there is and, therefore, how much memory to allocate.

Exceptions like this are rare and are clearly stated in the documentation.

Object Allocation

All objects can be dynamically allocated (using the new operator). Some, but not all, can
also be statically allocated (on the stack). Static allocation is appropriate for certain kinds
of objects, especially those that serve as temporary containers for transient data.

However, many objects may not work correctly unless they’re allocated in dynamic
memory. The general rule is this:

If you assign one object to another (as, for example, a child BView in the Interface
Kit is assigned to its parent BView or a BMessage is assigned to a BMessenger),
you should always dynamically allocate the assigned object.

This is because there may be circumstances which would cause the other object to get rid
of the object you assigned it. For example, a parent BView deletes its children when it is
itself deleted. In the Be software kits, all such deletions are done with the delete operator.
Therefore, the original allocation should always be done with new.

Introduction – 11

 Programming Conventions

Virtual Functions

The software kits declare functions virtual for a variety of reasons. Most of the reasons
simply boil down to this: Declaring a function virtual lets you reuse its name in a derived
class. You can, for example, implement a special version of a function for one kind of
object and give it the same name as the version defined in the kit for other objects. Or, if
you always take certain steps when you call a particular kit function, you can reimplement
the function to include those steps. You don’t have to package your additions under a
different name.

However, there’s another, more important reason why some functions are declared
virtual. These functions reverse the usual pattern for library functions: Instead of being
implemented in the kit and called by the application, they’re called by the kit and
implemented in the application. They’re “hooks” where you can hang your own code and
introduce it into the on-going operations of the kit.

Hook functions are called at critical junctures as the application runs. They serve to notify
the application that something has happened, or is about to happen, and they give the
application a chance to respond.

For example, the BApplication class (in the Application Kit) declares a ReadyToRun()
function that’s called as the application is getting ready to run after being launched. It can
be implemented to finishing configuring the application before it starts responding to the
user. The BWindow class (in the Interface Kit) declares a WindowActivated() function
that can be implemented to make any necessary changes when the window becomes the
active window. By implementing these functions, you fit application-specific code into the
generic framework of the kit.

It’s possible to divide hook functions into three groups:

• Most hook functions are empty. As implemented by the declaring class, they don’t
do anything. It’s up to derived classes to give them substance. Like
WindowActivated() and ReadyToRun(), these functions are named for what they
announce—for what led to the function call—rather than for what they might be
implemented to do. They can be implemented to do almost anything you want.

• Some hook functions are given default implementations to cover the general case.
Like the functions in the first group, these functions are also named for the
occurrence that prompts the function call—for example, ScreenChanged() and
QuitRequested(). If you decide to implement your own version of the function,
you can choose either to replace the kit’s default version or to augment it, as
discussed below.

• A few hook functions are implemented to perform a particular task. You can call
these functions just as you would any ordinary non-hook function, but they’re also
called at pivotal points within the framework of the kits. They therefore do double
duty: They serve both as functions that you might call and as hooks that are called
for you. These functions are generally named for what they do—like MakeFocus()
or SetValue()- If you override any of them, you should always augment the original
version, never replace it.

12 – Introduction

Naming Conventions

If you override a hook function that has been implemented—either by the class that
declares it or by a derived class—it’s generally best to preserve what the function already
does by incorporating the old version in the new. For example:

void MyWindow::ScreenChanged(BRect grid, color_space mode)
{
 . . .
 BWindow::ScreenChanged(grid, mode);
 . . .
}

In this way, the new function augments the inherited version, rather than replaces it. It
builds on what has already been implemented. In some cases, each class in a branch of
the inheritance hierarchy will contribute a bit of code to a function. Because each version
incorporates the inherited version, the function has its implementation spread vertically
throughout the inheritance hierarchy.

Naming Conventions

As Be continues to develop system software and the API grows, there’s a chance that the
names of some new classes, constants, types, or functions added in future releases will
clash with names you’re already using in the code you’ve written.

To minimize the possibility of such clashes, we’ve adopted some strict naming
conventions that will guide all future additions to the Be API. By stating these conventions
here, we hope to give you a way of avoiding namespace conflicts in the future.

Most Be data structures and functions are defined as members of C++ classes, so class
names will be quite prominent in application code. All our class names begin with the
prefix “B”; the prefix marks the class as one that Be provides. The rest of the name is
in mixed case—the body of the name is lowercase, but an uppercase letter marks the
beginning of each separate word that’s joined to form the name. For example:

BTextView BFile
BRecord BMessageQueue
BScrollBar BList
BAudioSubscriber BDatabase

The simplest thing you can do to prevent namespace clashes is to refrain from putting the
“B” prefix on names you invent. Choose another prefix for your own classes, or use no
prefix at all.

Other names associated with a class—the names of data members and member
functions—are also in mixed case. (The names of member functions begin with an
uppercase letter—for example, AddResource() and UpdateIfNeeded(). The names of
data members begin with a lowercase letter—what and bottom, for example.) Member

Introduction – 13

 Naming Conventions

names are in a protected namespace and won’t clash with the names you assign in your
own code; they therefore don’t have—or need—a “B” prefix.

All other names in the Be API are single case—either all uppercase or all lowercase—and
use underbars to mark where separate words are joined into a single name.

The names of constants are all uppercase and begin with the prefix “B_”. For example:

B_NAME_NOT_FOUND B_BACKSPACE
B_OP_OVER B_LONG_TYPE
B_BAD_THREAD_ID B_FOLLOW_TOP_BOTTOM
B_REAL_TIME_PRIORITY B_PULSE

It doesn’t matter whether the constant is defined by a preprocessor directive (#define),
in an enumeration (enum), or with the const qualifier. They’re all uniformly uppercase,
and all have a prefix. The only exceptions are common constants not specific to the Be
operating system. For example, these four don’t have a “B_” prefix:

TRUE NIL
FALSE NULL

Other names of whatever stripe—global variables, macros, nonmember functions,
members of structures, and defined types—are all lowercase. Global variables generally
begin with “be_”,

be_app
be_roster
be_clipboard

but other names lack a prefix. They’re distinguished only by being lowercase. For
example:

rgb_color pattern
system_time() acquire_sem()
does_ref_conform() bytes_per_row
app_info get_screen_size()

There are few such names in the API. The software will grow mainly by adding classes
and member functions, and the necessary constants to support those functions.

To briefly summarize:

Category Prefix Spelling

Class names B Mixed case
Member functions none Mixed case, beginning with an uppercase letter
Data members none Mixed case, beginning with a lowercase letter
Constants B_ All uppercase
Global variables be_ All lowercase
Everything else none All lowercase

14 – Introduction

Naming Conventions

If you adopt other conventions for your own code—perhaps mixed-case names, or
possibly a prefix other than “B”—your names shouldn’t conflict with any new ones we add
in the future.

In addition, you can rely on our continuing to follow the lexical conventions established
in the current API. For example, we never abbreviate “point” or “message,” but always
abbreviate “rectangle” as “rect” and “information” as “info.” We use “begin” and “end,”
never “start” or “finish,” in function names, and so on.

Occasionally, private names are visible in public header files. These names are marked
with both pre- and postfixed underbars—for example, _entry_ and _remove_volume_().
Don’t rely on these names in the code you write. They’re neither documented nor
supported, and may change or disappear without comment in the next release.

Pre- and postfixed underbars are also used for kit-internal names that may intrude on an
application’s namespace, even though they don’t show up in a header file. For example,
the name the Interface Kit assigns to a window’s root view is “_topview_”. If you were
to assign the same name to one of your own views, it might conflict with Kit code. Since
you can’t anticipate every name used internally by the kits, it’s best to avoid all names that
begin and end in underbars.

The Application Kit – 1

2 The Application Kit

Introduction 5
Messaging .6

Messages .6
Message Protocols 7
Message Ownership 7

Message Loops .8
System Messages. .8

Kinds of System Messages9
Specialized BLoopers 9
Message-Specific Dispatching 10
Default Dispatching 10

Posting Messages . 11
Posting System Messages 11
Linking Receivers to Loopers 11

Sending Remote Messages . 12
Two-Way Communication 12
The Roster . 13

Application Messages . 13
Hook Functions for Application Messages 15
Message Protocols . 15

Application-Activated Events 16
Argv-Received Events 16
Refs-Received Events 16
Panel-Closed Events 17
Volume-Mounted Events 17
Volume-Unmounted Events 17

Setting Up an Application . 17
Icons . 18
Application Information 18

Signatures. 18
Launch Information 19
Other Information 20

2 – The Application Kit

BApplication 21
Overview. 21

Derived Classes . 21
Constructing the Object and Running the Message Loop . . 22

be_app . 22
main . 22
Configuration Messages Received on Launch . . . 23
Quitting . 24

Locking. 24
Hook Functions . 25
Constructor and Destructor . 26
Member Functions . 26

BClipboard 43
Overview. 43

Using the Clipboard . 43
Example 1: Adding Data to the Clipboard 44
Example 2: Retrieving Data from the Clipboard . . 44

Member Functions . 45

BLooper 49
Overview. 49

Running the Loop . 49
Posting and Receiving Messages 49
Acting as the Receiver . 50

Hook Functions . 50
Constructor and Destructor . 51
Member Functions . 52

BMessage 61
Overview. 61

Message Contents . 61
Message Constants . 62
Type Codes . 63
Publishing Message Protocols 64
Error Reporting. 64

Data Members . 65
Constructor and Destructor . 65
Member Functions . 66
Operators. 77

BMessageQueue 79
Class Description . 79
Constructor and Destructor . 79
Member Functions . 80

The Application Kit – 3

BMessenger 83
Overview. 83
Constructor and Destructor . 84
Member Functions . 85

Operators 86
BReceiver . 87
Overview. 87
Hook Functions . 87
Constructor and Destructor . 88
Member Functions . 88

BRoster 91
Overview. 91
Constructor and Destructor . 92
Member Functions . 92

Global Variables, Constants, and Defined Types 97
Global Variables . 97
Constants. 98
Defined Types . 101

4 – The Application Kit

Application Kit Inheritance Hierarchy

BObject
(Support Kit)

BWindow
(InterfaceKit)

BMessage

BReceiver

BMessenger

BClipboard

BRoster

BLooper

BMessageQueue

BApplication

The Application Kit – 5

2 The Application Kit

The Application Kit is the starting point for all applications. The classes in this Kit
establish an application as an identifiable entity—one that can cooperate and communicate
with other applications (including the Browser). It lays a foundation for the other kits.
Before designing and building your application, you should secure a breathing familiarity
with this basic Kit.

There are four parts to the Application Kit:

• Messaging. The Kit sets up a mechanism through which an application can easily
make itself multithreaded, and a messaging service that permits the threads to talk
to each other. This same service also delivers messages from one application to
another—it’s used for both inter- and intra-application communication.

 The messaging mechanism is implemented by a set of collaborating classes:
BMessage objects bundle information so that it can be posted to a thread or sent
to another application. BLooper objects run message loops in threads, getting
messages as they arrive and dispatching them to BReceiver objects. BReceivers are
the ultimate message handlers.

 The system employs the messaging mechanism to carry basic input to
applications—from the keyboard and mouse, from the Browser, and from other
external sources; system messages drive what most applications do. Every
application will be on the receiving end of at least some of these messages and must
be prepared to respond to them.

 Applications can also use the mechanism to create threads with a messaging
interface, arrange communication among the threads, or exchange information with
and issue commands to other applications.

• The BApplication class. Every application must have a single instance of the
BApplication class—or of a class derived from BApplication. This object provides
a number of essential services. Foremost among them is that it establishes a
connection to the Application Server. The Server is a background process that takes
over many of the fundamental tasks common to all applications. It renders images
in windows, controls the cursor, reports what the user is doing on the keyboard and
mouse, and, in general, keeps track of system resources.

6 – The Application Kit

Messaging

 The BApplication object also runs the application’s main message loop, where
it receives remote messages from other applications and internal messages that
concern the application as a whole.

 Externally, this object represents the application to other applications; internally,
it’s the center where application-wide services and global information can be found.
Because of it’s pivotal role, it’s assigned to a global variable, be_app, to make it
easily accessible.

 Other kits—the Interface Kit in particular—won’t work until a BApplication object
has been constructed.

• The BRoster class. The BRoster object keeps track of all running applications. It
can identify applications, launch them, and provide the information needed to set up
communications with them.

• The BClipboard class. The BClipboard object provides an interface to the clipboard
where cut and copied data can be stored, and from which it can be pasted.

The messaging framework and the fundamentals of setting up a Be application are
described in the following sections of this introduction. The BApplication class is
documented beginning on page 21. The other classes follow in alphabetical order.

Messaging

At minimum, a messaging service must provide the means for:

• Putting together a parcel of information that can be delivered to a destination. In the
Be model, these parcels are BMessage objects.

• Delivering messages to a destination and handling them when they arrive. This task
is entrusted to BLooper objects.

• Letting applications define their own message-handling code. An arriving message
is dispatched by calling a “hook” function of a BReceiver object. Each application
can implement these functions as it sees fit.

• Making a connection to a remote application. BMessenger objects send messages to
remote destinations. The BRoster object helps by providing information about other
applications, launching them if necessary.

Messages

BMessage objects are containers for information that can be transferred between threads.
The message source constructs a BMessage object, adds whatever information it wants to
it, and then passes the parcel to a function that delivers it to a destination.

The Application Kit – 7

 Messaging

A BMessage can hold structured data of any type or amount. The data is stored in named
arrays along with information on the type, size, and number of items. When you add data
to a message, you assign it a name and a type code. If more than one item of data is added
with the same name and type, the BMessage creates an array of data for that name. The
name and an index into the array are used to retrieve the data from the message.

The object also contains a command constant that says what the message is about. It’s
stored as a public data member (called what). The constant may:

• Convey a request of some kind (such as B_ZOOM or BEGIN_ANIMATION),
• Announce an event (such as RECEIPT_ACKNOWLEDGED or B_WINDOW_RESIZED), or
• Label the information that’s being passed (such as PATIENT_INFO or NEW_COLOR).

Not all messages have data entries, but all should have a command constant. Sometimes
the constant is sufficient to convey the entire message.

Message Protocols

Both the source and the destination of a message must agree upon its format—the
command constant and the names and types of data entries. They must also agree on
details of the exchange—when the message can be sent, whether it requires a response,
what the format of the reply should be, what it means if an expected data item is omitted,
and so on.

None of this is a problem for messages that are used only within an application. However,
protocols must be published for messages that communicate between applications. You’re
urged to publish the specifications for all messages your application is willing to accept
from outside sources. The more that message protocols are shared, the easier it is for
applications to cooperate with each other, and take advantage of each other’s specialties.

The software kits define protocols for a number of system messages. They’re discussed
later in this and following chapters.

Message Ownership

Typically, when an application creates an object, it retains responsibility for it; it’s up to
the application to free the objects it allocates when they’re no longer needed. However,
BMessage objects are an exception to this rule. Whenever a BMessage is passed to the
messaging mechanism, ownership is passed with it. It’s a little like mailing a letter—once
you drop it at the post office, it no longer belongs to you.

The system takes responsibility for a posted BMessage object and will eventually
delete it—after the receiver is finished responding to it. A message receiver can assert
responsibility for a message—essentially replacing the system as its owner—by detaching
it from the messaging mechanism (with BLooper’s DetachCurrentMessage() function).

8 – The Application Kit

Messaging

Message Loops

In the Be model, messages are delivered to threads that run message loops. Arriving
messages are placed in a queue, and are then taken from the queue one at a time. After
getting a message from the queue, the thread decides how it should be handled and
dispatches it to an object that can respond. When the response is finished, the thread
deletes the message and takes the next one from the queue—or, if the queue is empty,
waits until another message arrives.

The message loop therefore dominates the thread. The thread does nothing but get
messages and respond to them; it’s driven by message input.

BLooper objects run these message loops. A BLooper spawns a thread and sets the loop
in motion. Posting a message to the BLooper delivers it to the thread (places it in the
queue). The BLooper removes messages from the queue and dispatches them to BReceiver
objects. BReceivers are the primary handlers for arriving messages. Everything that a
thread does begins with a BReceiver’s response to a message.

Two hook functions come into play in this process—one defined in the BLooper class and
one declared by BReceiver:

• BLooper’s DispatchMessage() function is called to pass responsibility for a
message to a BReceiver object. It’s fully implemented by BLooper (and kit classes
derived from BLooper) and is only rarely overridden by applications.

• MessageReceived() is the BReceiver function that DispatchMessage() calls
by default. It’s up to applications to implement MessageReceived() functions to
handle expected messages.

There’s a close relationship between the BLooper role of running a message loop and the
BReceiver role of responding to messages. The BLooper class inherits from BReceiver, so
the same object can fill both roles.

System Messages

Applications are typically designed to respond to external events, usually something the
user has done—moved the mouse, pressed a key, resized a window, selected a document to
open, or some other action of a similar sort.

These events are reported to applications as messages—BMessage objects. The system
produces these messages as it monitors <changes to the file system, the making and
breaking of connections on the telephone line,> user actions on the keyboard and mouse,
<the flow of real-time audio and video data,> and other basic events that can affect what
an application does and the environment in which it does it.

System messages have a defined format. The command constant and the names and types
of data entries are fixed for each kind of message. For example, the system message that
reports a user keystroke on the keyboard—a “key-down” event—has B_KEY_DOWN as the

The Application Kit – 9

 Messaging

command constant, a “when” entry for the time of the event, a “key” entry for the key that
was hit, a “modifiers” entry for the modifier keys that were down at the time, and so on.

Although the set of system-defined messages is small, they’re the most frequent messages
for most applications. For example, when the user types a sentence, the application
receives a series of B_KEY_DOWN messages, one for each keystroke.

Kinds of System Messages

System messages can be divided into two groups:

• Those that name an external event, such as B_KEY_DOWN, B_SCREEN_CHANGED,
and B_REFS_RECEIVED.

• Those that name an action the receiver is expected to take, such as B_ZOOM or
B_ACTIVATE.

Most system messages fall in the first group. Even those that fall in the second group
are prompted by an event of some kind—such as the user clicking the zoom button in a
window tab or picking an application to activate from the list of running applications.

Specialized BLoopers

System messages aren’t delivered to just any BLooper object. Each message is matched to
an object that’s concerned with the particular event it reports or the particular instruction it
delivers. Certain kinds of messages are delivered to certain BLoopers.

The software kits derive a few specialized classes from BLooper to give significant entities
in the application their own message loops. These objects are the ones that handle system
messages.

In particular, both the BApplication class in this kit and the BWindow class in the Interface
Kit derive from BLooper. The BApplication object runs a message loop in the main thread
and receives messages that concern the application as a whole—such as requests to quit
the application or to open a document. Each BWindow object runs in its own thread and
receives messages that report activity in the user interface—including notifications that the
user typed a particular character on the keyboard, moved the cursor on-screen, or pressed
a mouse button. Every window that the user sees is represented by a separate BWindow
object.

Each of these classes is concerned with only a subset of system messages—BApplication
with application messages (discussed on page 13 below) and BWindow objects with
interface messages (discussed in the chapter on the Interface Kit). Both classes arrange for
special handling of the system messages they receive.

10 – The Application Kit

Messaging

Message-Specific Dispatching

Every system message is dispatched by calling a specific virtual function, one that’s
matched to the message. For example, when the Application Server sends a B_KEY_DOWN
message to the window where the user is typing, the BWindow determines which
object is responsible for displaying typed characters and calls that object’s KeyDown()
virtual function. Similarly, a message that reports a user decision to shut down the
application— a “quit-requested” event—is dispatched by calling the BApplication
object’s QuitRequested() function. Messages that report the movement of the cursor
are dispatched by calling MouseMoved(), those that report a change in the screen
configuration by calling ScreenChanged(), and so on.

These “hook” functions are declared in classes derived from BReceiver and are often
recognizable by their names. In the introductory chapter, it was explained that hook
functions fall into three groups:

• Those that are left to the application to implement. These functions are named for what
they announce—for what led to the function call rather than for what the function might be
implemented to do. KeyDown() is an example.

• Those that have a default implementation to cover the common case. Like those in the
first group, these functions also are named for the occurrence that prompted the function
call. ScreenChanged() is an example.

• Those that are fully implemented to perform a particular task. These are functions that
you can call, but they’re also hooks that are called for you. Like most ordinary functions,
they’re named for what they do—like Activate()—not for what led to the function call.

The hook functions that are matched to system messages can fall into any of these three
categories. Since most system messages report events, they mostly fall into the first two
categories. The function is named for the message, and the message for the event it reports.

However, if a system message delivers an instruction for the application to do something
in particular, its hook function falls into the third group. The function is fully implemented
in system software, but can be overridden by the application. The function is named for
what it does, and the message is named for the function.

Default Dispatching

System messages are identified by their command constants alone (their what data
members). If a message is received and its command constant matches the constant for
a system message, the receiving BApplication or BWindow object will dispatch it by
calling the message-specific hook function—regardless what data entries the message may
have. However, if the constant doesn’t match one of those defined for a system message,
BApplication and BWindow objects dispatch it just like other BLoopers do—by calling
MessageReceived().

The Application Kit – 11

 Messaging

MessageReceived() is, therefore, reserved for application-defined messages. It’s
typically implemented to distribute the responsibility for received messages to other
functions. That’s something that’s already taken care of for system messages, since each of
them is mapped to its own function.

Posting Messages

Although the system creates and delivers most messages, an application can create
messages of its own and have them delivered to a chosen destination. Messages can either
be posted to a thread of the same application or sent to another application.

Messages are posted by calling a BLooper’s PostMessage() function. PostMessage()
inserts the message into the BLooper’s queue so that it will be handled in sequence along
with other messages the thread receives.

This is how one thread of execution transfers control to another thread in the same
application. Suppose, for example, that the main thread of an application (the BApplication
object) receives a message requesting it to show something on-screen— begin displaying
a video, say. It can create a window for this purpose, then post a message to the BWindow
object telling it what to do. The BWindow receives the message and acts on it within the
window’s thread. After posting the message, the main thread is free to receive and respond
to other messages while the window thread is busy with the video.

A thread might also post messages to itself, and thereby take advantage of the messaging
mechanism to arrange its activity. This is what menu items and control devices do when
they’re invoked; they translate a message that reports a click or a keystroke into another,
more specific message—one they could post anywhere, but typically deliver to the same
thread.

Posting System Messages

A posted message might even match one that the system defines. For example, an
application might interpret a user action such as clicking a “Quit” menu item as a “quit-
requested” event and post the appropriate system message to the BApplication object. As
will be noted under “Application Messages” on page 13 below, some system messages are
designed to be posted within the application. (Most, however, are posted by the system.)

Linking Receivers to Loopers

PostMessage() permits a message to be targeted to a particular BReceiver object. To
dispatch the message, the BLooper calls the targeted receiver’s MessageReceived()
function. The BLooper acts as the default receiver for untargeted messages. (Note,
however, that targeting works only for application-defined messages; a system message is
always dispatched to a BReceiver that’s chosen on the basis of the content of the message,
not to the target proposed by PostMessage().)

12 – The Application Kit

Messaging

A BReceiver can be tied to a particular message loop (by implementing a Looper()
function) and a BLooper can name the object it prefers to receive messages (by
implementing a PreferredReceiver() function). See the BLooper and BReceiver class
descriptions for details on these functions.

Sending Remote Messages

Messages can be posted only within an application—where the thread that calls
PostMessage() and the thread that responds to the message are in the same address space
(are part of the same “team”) and may even be the same thread.

To send a message to another application, it’s necessary to first set up a BMessenger object
that knows how to contact the remote application. Each BMessenger is linked to one
remote destination; it represents the remote application in the local address space.

A BMessenger’s SendMessage() function delivers messages to the main thread of the
remote application. There, the BApplication object receives the message and determines
how to respond to it, including whether to dispatch it to another object. All remote
messages are received first by the BApplication object.

Unlike PostMessage(), SendMessage() can’t name a receiver for the message; that’s left
up to the remote application.

Two-Way Communication

A BMessage sent to a remote destination carries the identity of the source application
with it. The receiver can send an answer back to the source by calling the BMessage’s
SendReply() function. SendReply() succeeds only if the message comes from a remote
source.

A message sender can ask for a reply when calling SendMessage(), for example:

BMessage *reply;
MyMessenger->SendMessage(original, &reply);
if (reply->what != B_NO_REPLY) {
 . . .
}

In this case, SendMessage() waits for the reply; it doesn’t return until one is received. (In
case the message receiver refuses to cooperate, a default reply is sent when the original
message is deleted.) If a reply isn’t requested, SendMessage() returns immediately.

A message receiver can discover whether the sender is waiting for a reply by calling the
BMessage’s IsSenderWaiting() function.

The receiver can send a reply even if the sender isn’t waiting for one. In this case,
the BApplication object receives the reply message and dispatches it by calling
ReplyReceived(). ReplyReceived() is an alternative to MessageReceived(); it’s called
only for reply messages that are matched to an original message.

The Application Kit – 13

 Application Messages

Thus, the messaging mechanism supports both synchronous and asynchronous messaging
protocols. Synchronous return messages are requested when calling SendMessage()
and are received by that function. Asynchronous return messages are received by the
BApplication object and handled by ReplyReceived().

The Roster

A global BRoster object, shared by all applications on the BeBox, maintains a roster of
running applications. It can provide you with any information you might need to set up a
BMessenger for a particular application. It can also find information about applications
that haven’t yet been launched and, if need be, launch them so that they can receive
messages.

The BRoster is accessed through a global variable, be_roster.

Application Messages

Although the Application Kit implements the messaging mechanism and defines all the
system messages, it handles only a few of them itself—eleven to be exact. The others are
handled by other kits, especially the Interface Kit, and are documented in the chapters on
those kits.

The eleven application messages are an assortment of various reports and requests. One
message delivers an instruction:

• An activate instruction tells the application to activate itself—to become the active
application. This message permits one application (usually the Browser) to activate
another.

All the other application messages report events. Two of them notify the application of a
change in its status:

• A ready-to-run event occurs when the application has finished launching and
configuring itself and its main thread is ready to respond to messages.

• An application-activated event occurs when the application becomes the
active application—the one that the user is currently engaged with—or when it
relinquishes that status to another application.

14 – The Application Kit

Application Messages

Two of the events are requests that the application usually makes of itself:

• A quit-requested event occurs when there’s a request that the application shut
itself down. An application that has a user interface usually lets the user make this
decision. It must interpret some user action (such as clicking a “Quit” menu item) as
a request to quit and, in response, post a B_QUIT_REQUESTED message to the
BApplication object. An application that serves at the pleasure of other applications
may get the request from a remote source.

• An about-requested event occurs when the user requests information about the
application, usually through an “About...” item in the application’s master menu.
The application should set up this item to post a B_ABOUT_REQUESTED message to
the BApplication object.

Other application messages report information from remote sources:

• An argv-received event occurs either on-launch or after-launch when the application
receives strings of characters the user typed on the command line. It also occurs
when the application is launched by another application and is passed a similar
array of character strings.

• A refs-received event occurs when the application is passed one or more references
to database records. Typically, this means the user has chosen some files from the
file panel, double-clicked a document icon in the Browser, or dragged the icon and
dropped in on the application icon.

• A panel-closed event occurs when the file panel is removed from the screen.

• A volume-mounted event occurs when a new volume (possibly a floppy disk) is
mounted.

• A volume-unmounted event occurs when a volume is about to be unmounted.

The system is the source of one event:

• Periodic pulse events occur at regularly spaced intervals. They can be used to
arrange repeated actions when precise timing is not critical.

The Application Kit – 15

 Application Messages

Hook Functions for Application Messages

All application messages are received by the BApplication object in the main thread.
The BApplication object dispatches them all to itself; it doesn’t delegate them to any
other receiver. The following charts list the hook functions that are called to initiate
the application’s response to system messages and the base class where the function is
declared:

Instruction type Virtual function Class

Activate Activate() BApplication

Event type Virtual function Class

Ready-to-run ReadyToRun() BApplication
Application-activated AppActivated() BApplication

Quit-requested QuitRequested() BLooper and BApplication
About-requested AboutRequested() BApplication

Argv-received ArgvReceived() BApplication
Refs-received RefsReceived() BApplication
Panel-closed FilePanelClosed() BApplication
Volume-mounted VolumeMounted() BApplication
Volume-unmounted VolumeUnmounted() BApplication

Pulse Pulse() BApplication

QuitRequested() is first declared in the BLooper class. It’s reinterpreted (and
reimplemented) by BApplication to mean a request to quit the whole application, not just
one thread.

Message Protocols

Each system message has a what data member that names the instruction it gives or the
event it reports:

B_ACTIVATE

B_READY_TO_RUN
B_APP_ACTIVATED

B_QUIT_REQUESTED
B_ABOUT_REQUESTED

B_ARGV_RECEIVED
B_REFS_RECEIVED
B_PANEL_CLOSED
B_VOLUME_MOUNTED
B_VOLUME UNMOUNTED

B_PULSE

16 – The Application Kit

Application Messages

The messages that report ready-to-run, quit-requested, about-requested, and pulse events
are empty, as is the message for an activate request. The entire message is conveyed by the
what constant.

The remaining messages contain data in the formats listed below.

Application-Activated Events

Data name Type code Description

active B_BOOL_TYPE TRUE if the application has just become
the active application, and FALSE if it just
gave up that status.

Argv-Received Events

Data name Type code Description

“argc” B_LONG_TYPE The number of items in the “argv”
array. This will be the same number that
GetInfo() for “argv” would report.

“argv’: B_STRING_TYPE The command-line arguments. Each
argument is stored as an independent
item under the “argv” name—that is,
there’s an array of data items, each of
type char *, rather than a single item of
type char **.

‘vol” B_LONG_TYPE The identifier for the current volume of
the message sender.

“dir” B_LONG_TYPE The identifier for the message sender’s
current directory.

The “vol” and “dir” entries can be used to interpret any relative pathnames in the “argv’’
array.

Refs-Received Events

Data name Type code Description

“refs” B_REF_TYPE One or more record_ref items referring
to database records. Typically, the
records are for documents the application
is expected to open.

The Application Kit – 17

 Setting Up an Application

Panel-Closed Events

Data name Type code Description

“frame” B_RECT_TYPE The frame rectangle of the panel in
screen coordinates at the time it was
closed. (The user may have resized it and
relocated it onscreen.)

“directory” B_REF_TYPE A record_ref reference to the last
directory displayed in the panel.

“marked” B_STRING_TYPE The item that was selected in the Filters
list when the panel closed.

“canceled” B_BOOL_TYPE TRUE if the panel was closed because the
user operated the “Cancel” button and
FALSE otherwise.

Volume-Mounted Events

Data name Type code Description

< “volume id”> B_LONG_TYPE The volume identifier.

< “db id” > B_LONG_TYPE The identifier for the database
corresponding to the volume.

Volume-Unmounted Events

Data name Type code Description

< “volume id”> B_LONG_TYPE The volume identifier.

Setting Up an Application

There are just a couple of things that an application must do if it’s to take its place as a
well-known and cooperative resident on the BeBox:

• Internally, it needs a BApplication object, and
• Externally, it needs to publicize information about itself.

The BApplication object is essential; every application must have one to handle messages
from other applications, particularly the Browser. However, it’s not sufficient by itself. In
addition, the application must provide:

• Icons that represent the application, and represent documents and other files
associated with the application.

18 – The Application Kit

Setting Up an Application

• An identifying signature for the application.

• Information about the application’s behavior, including a strategy for how it can be
launched.

The icons, signature, and behavioral information are all stored in resources associated with
the executable file. By locating them in resources, they become available even when the
application isn’t running.

Although these bits of information don’t strictly belong to the Application Kit, they’re
relevant to how parts of the Kit work and, possibly, to how you design your application.
They’re therefore discussed here.

Use the Icon World application to set up application resources, as described in The Be
User’s Guide, published separately.

Icons

Every application needs an icon to represent it (in a Browser window, for example). It
should provide a large (32 pixel x 32 pixel) version of the icon and a smaller (16 pixel x 16
pixel) version. This can be done by creating the icons in Icon World or by importing icons
created elsewhere. Either way, Icon World will construct highlighted versions of both
the small and large icons and install them all in resources of type ‘ICON’ (for the large
version) and ‘MICN’ (for the “mini-icon”).

If an application opens documents or has other associated files, it should provide large and
small icons for them as well.

Application Information

An application-information resource (named “app info” and typed ‘APPI’) holds other
information that needs to be available—especially to the Browser—whether or not the
application is running. This resource advertises the application’s signature and its launch
behavior, and possibly other behavioral idiosyncrasies as well. You can create it in Icon
World’s “App Info” menu.

Signatures

A signature is simply a long integer that identifies an application. No two applications
should have the same signature.

To make sure that the signature for your application is unique, you should register it
with—or obtain it from—Be’s Developer Support services (devsupport@be.com or,
in a pinch, 1 (415) 462-4118). We’ll try to make sure that no one else adopts the same
signature.

Use Icon World’s “App Info” menu to install the signature in the resource.

The Application Kit – 19

 Setting Up an Application

Launch Information

There are three possible launch behaviors that you can choose for your application. Each
possibility is represented by a constant:

B_MULTIPLE_LAUNCH Several instances of the application can be running at
once. It can be launched any number of times from
the same executable file.

 This is the normal behavior for most utilities, such as
the compiler, tar, or Heap Watch. It’s also appropriate
for an application that can deal with only one
document at a time, and therefore must be launched
anew each time it’s asked to handle another file.

B_SINGLE_LAUNCH Normally, only one instance of the application can be
running. However, if the user copies the executable
file for the application, it can be launched once from
each copy.

 This is the normal behavior for most applications,
including applications that can deal with more than
one document at a time.

B_EXCLUSIVE_LAUNCH When the application is running, no other instance
of the same application can be launched from any
source.

 This is appropriate for applications that require
exclusive ownership of a system resource, like the
telephone line.

In other words, B_EXCLUSIVE_LAUNCH applications are restricted by signature—only one
instance of an application with that particular signature can be running at any given time.
B_SINGLE_LAUNCH applications are restricted by executable file—there can be only one
instance of an application launched from that particular executable. B_MULTIPLE_LAUNCH
applications are unrestricted.

These categories affect how the Browser launches applications and communicates with
them. In the Browser, a user can launch an application by picking the application itself or
by picking one of its documents. For example, double-clicking an application icon picks
the application, and double-clicking a document icon picks the document. Dragging a
document icon and dropping it on the application icon picks both.

Whenever the user picks a B_MULTIPLE_LAUNCH application or picks one of its documents,
the Browser always launches it anew. It doesn’t matter whether another instance of the
application is already running or not.

However, when the user picks a B_SINGLE_LAUNCH application, the Browser launches
it only if an application launched from the same executable file isn’t already running.
Otherwise, it activates the running application. Similarly, when the user picks a document
for a B_SINGLE_LAUNCH application, the Browser matches the document to an executable

20 – The Application Kit

Setting Up an Application

file and launches it only if a running application hasn’t been launched from the same
file. If one has been launched from the file, the Browser merely activates it and sends it a
message identifying the document.

B_EXCLUSIVE_LAUNCH is even more restrictive than B_SINGLE_LAUNCH. When the user
picks a B_EXCLUSIVE_LAUNCH application, or the document for a B_EXCLUSIVE_LAUNCH
application, the Browser launches it only if an application with the same signature isn’t
already running.

Most applications don’t need the extreme restrictiveness of B_EXCLUSIVE_LAUNCH
and should choose between B_SINGLE_LAUNCH and B_MULTIPLE_LAUNCH. The choice
should be informed by whether the application can have more than one file open at a time,
whether multiple instances of the same application would make sense to the user and not
be confusing, and similar considerations.

The best place to choose a launch behavior for your application is in Icon World’s “App
Info” menu. If a choice isn’t made, B_MULTIPLE_LAUNCH is assumed.

Other Information

Resources can also publicize two other behaviors, similarly designated by constants:

B_ARGV_ONLY The application doesn’t participate in the messaging
system. Therefore, the only information it can receive
are command-line arguments, argc and argv, passed
to the main() function.

 B_ARGV_ONLY is assumed if the application doesn’t
have a BApplication object.

B_BACKGROUND_APP The application doesn’t have a user interface
and therefore shouldn’t appear in the Browser’s
application menu.

The Application Kit – 21

BApplication

Derived from: public BLooper

Declared in: <app/Application.h>

Overview

The BApplication class defines an object that represents and serves the entire application.
Every Be application must have one (and only one) BApplication object. It’s usually the
first object the application constructs and the last one it deletes.

The BApplication object has these primary responsibilities:

• It makes a connection to the Application Server. Any application that puts a window
on-screen or relies on other system services needs this connection. It’s made
automatically when the BApplication object is constructed.

• It runs the application’s main message loop. The BApplication object is a kind of
BLooper, but instead of spawning an independent thread, it runs a message loop in
the application’s main thread (the thread that the main() function executes in). This
loop receives and processes messages that are sent by other applications (including
the Browser), as well as “internal” messages that affect the entire application (such
as a message requesting the application to quit). Any application that’s known to the
Browser or that cooperates with other applications needs a main message loop.

• It’s the home for application-wide elements of the user interface. For example, it
sets up the application’s main menu and runs the file panel, which permits users to
navigate the file system and pick files to open. It also lets you set, hide, and show
the application’s cursor. The ability to define the look of the cursor is provided by
BApplication’s SetCursor() function.

 The user interface mainly centers on windows and is defined in the Interface Kit.
The BApplication object merely contains the elements that are common to all
windows and specific to the application.

Derived Classes

BApplication typically serves as the base class for a derived class that specializes it and
extends it in ways that are appropriate for a particular application. It declares (and inherits
declarations for) a number of hook functions that you can implement in a derived class to
augment and fine-tune what it does.

22 – The Application Kit

Overview BApplication

For example, your application might implement a RefsReceived() function to open a
document and display it in a window, or a ReadyToRun() function to finish initializing
the application after it has been launched and has started to receive messages. These two
functions, like a handful of others, are called in response to system messages that have
application-wide import. Hook functions for application messages were discussed in the
introduction on page 15.

If your application expects to get messages from remote sources, it should also implement
MessageReceived() and ReplyReceived() functions to sort through them as they arrive.

A derived class is also a good place to record the global properties of your application and
to define functions that give other objects access to those properties.

Constructing the Object and Running the Message Loop

The BApplication object must be constructed before the application can begin running
or put a user interface on-screen. Other objects in other kits depend on the BApplication
object and its connection to the Application Server. In particular, you can’t construct
BWindow objects in the Interface Kit until the BApplication object is in place.

Simply constructing the BApplication object forms the connection to the Server. The
connection is severed when you quit the application and delete the object.

be_app

The BApplication constructor assigns the new object to a global variable, be_app. This
assignment is made automatically—you don’t have to create the variable or set its value
yourself. be_app is declared in app/Application.h and can be used throughout the
code you write (or, more accurately, all code that directly or indirectly includes
Application.h).

The be_app variable is typed as a pointer to an instance of the BApplication class. If
you use a derived class instead—as most applications do—you have to cast the be_app
variable when you call a function that’s implemented by the derived class.

((MyApplication *)be_app)->DoSomethingSpecial();

Casting isn’t required to call functions defined in the BApplication class (or in the
BReceiver and BLooper classes it inherits from), nor is it required for virtual functions
defined in a derived class but declared by BApplication (or by the classes it inherits from).

main()

Because of its pivotal role, the BApplication object is one of the first objects, if not the
very first object, the application creates. It’s typically created in the main() function. The
job of main() is to set up the application and turn over its operation to the various

The Application Kit – 23

 BApplication Overview

message loops run by particular objects, including the main message loop run by the
BApplication object.

After constructing the BApplication object (and the other objects that your application
initially needs), you tell it to begin running the message loop by calling its Run() function.
Like the Run() function defined in the BLooper class, BApplication’s Run() initiates a
message loop and begins processing messages. However, unlike the BLooper function,
it doesn’t spawn a thread; rather, it takes over the main application thread. Because it
runs the loop in the same thread in which it was called, Run() doesn’t return until the
application is told to quit.

At its simplest, the main() function of a Be application would look something like this:

#include <app/Application.h>

main()
{
 . . .
 new BApplication(‘abcd’);
 . . .
 be_app->Run();
 delete be_app;
}

The number passed to the constructor (‘abed’) sets the application’s signature. This is
just a precautionary measure. It’s more common (and much better) to set the signature at
compile time in a resource. If there is a resource, that signature is used and the one passed
to the constructor is ignored.

The main() function shown above doesn’t allow for the usual command-line arguments,
argc and argv. It would be possible to have main() parse the argv array, but these
arguments are also packaged in a B_ARGV_RECEIVED message that the application gets
immediately after Run() is called. Instead of handling them within main(), applications
generally implement an ArgvReceived() function to do the job. This function can also
handle command-line arguments that are passed to the application after it has been
launched; it can be called at any time while the application is running.

Configuration Messages Received on Launch

When an application is launched, it may be passed messages that affect how it
configures itself. These are the first messages that the BApplication object receives after
Run() is called.

For example, when the user double-clicks a document icon to launch an application, the
Browser passes the application a B_REFS_RECEIVED message with information about the
document. When launched from the command line, the application gets a
B_ARGV_RECEIVED message listing the command-line arguments. When launched by the
BRoster object, it might receive an arbitrary set of configuration messages.

24 – The Application Kit

Overview BApplication

After all the messages passed on-launch have been received and responded to, the
application gets a B_READY_TO_RUN message and its ReadyToRun() hook function is
called. This is the appropriate place to finish initializing the application before it begins
running in earnest. It’s the application’s last chance to present the user with its initial
user interface. For example, if a document has not already been opened in response to an
on-launch B_REFS_RECEIVED message, ReadyToRun() could be implemented to place a
window with an empty document on-screen.

ReadyToRun() is always called to mark the transition from the initial period when the
application is being launched to the period when it’s up and running—even if it’s launched
without any configuration messages. The IsLaunching() function can let you know which
period the application is in.

Quitting

The main message loop terminates and Run() returns when Quit() is called. Because Run()
doesn’t spawn a thread, Quit() merely breaks the loop; it doesn’t kill the thread or destroy
the object (unlike BLooper’s version of the function).

Quit() is usually called indirectly, as a byproduct of a B_QUIT_REQUESTED message
posted to the BApplication object. The application is notified of the message through a
QuitRequested() function call. Quit() is called if QuitRequested() returns TRUE.

When Run() returns, the application is well down the path of terminating itself. main()
simply deletes be_app, cleans up anything else that might need attention, and exits.

Locking

Since a single BApplication object serves the entire application, and since different
parts of the application will be running in separate threads (windows, in particular), you
sometimes have to coordinate access to the BApplication object. Locking ensures that one
thread won’t change the state of the application while another thread is changing the same
aspect (or even just trying to examine it).

BApplication inherits the locking mechanism—the Lock() and Unlock() functions—from
BLooper. See that class for details.

The Application Kit – 25

 BApplication Hook Functions

Hook Functions

AboutRequested() Can be implemented to present the user with a window
containing information about the application.

Activate() Activates the application by making one of its windows
the active window; can be reimplemented to activate
the application in some other way.

AppActivated() Can be implemented to do whatever is necessary when
the application becomes the active application, or when
it loses that status.

ArgvReceived() Can be implemented to parse the array of command-
line arguments (or a similar array of argument strings).

FilePanelClosed() Can be implemented to take note when the file panel is
closed.

MenusWillShow() Can be implemented to update the menus in the
application’s main menu hierarchy, just before they’re
shown on-screen.

Pulse() Can be implemented to do something over and over
again. Pulse() is called repeatedly at roughly regular
intervals in the absence of any other activity in the main
thread.

ReadyToRun() Can be implemented to set up the application’s running
environment. This function is called after all messages
the application receives on-launch have been responded
to.

RefsReceived() Can be implemented to respond to a message that
contains references to database records. Typically, the
records are for documents that the application is being
asked to open.

VolumeMounted() Can be implemented to take note when a new volume (a
floppy disk, for example) is mounted.

VolumeUnmounted() Can be implemented to take whatever action is
necessary just before a volume is unmounted.

26 – The Application Kit

Constructor and Destructor BApplication

Constructor and Destructor

BApplication()

BApplication(ulong signature)

Establishes a connection to the Application Server, assigns signature as the application
identifier if one hasn’t already been set, and initializes the application-wide variable be_
app to point to the new object.

The signature that’s passed becomes the application identifier only if a signature hasn’t
been set in a resource file. It’s preferable to assign the signature in a resource at compile
time, since that enables the system to associate the signature with the application even
when it’s not running.

Every application must have one and only one BApplication object, typically an instance
of a derived class. It’s usually the first object that the application creates.

~BApplication()

virtual ~BApplication(void)

Closes the application’s windows, if it has any, without giving them a chance to disagree,
kills the window threads, frees the BWindow objects and the BViews they contain, and
severs the application’s connection to the Application Server.

You can delete the BApplication object only after Run() has exited the main message loop.
In the normal course of events, all the application’s windows will already have been closed
and freed by then.

See also: the BWindow class in the Interface Kit, QuitRequested()

Member Functions

AboutRequested()

virtual void AboutRequested(void)

Implemented by derived classes to put a window on-screen that provides the user with
information about the application. The window typically displays copyright data, the
version number, license restrictions, the names of the application’s authors, a simple
description of what the application is for, and similar information.

This function is called when the user operates the “About...” item in the main menu and a
B_ABOUT_REQUESTED message is posted to the application as a result.

The Application Kit – 27

 BApplication Member Functions

To set up the menu item, assign it a model message with B_ABOUT_REQUESTED as
the command constant and the BApplication object as the target, as illustrated in the
SetMenuMenu() description on page 38. The default main menu includes such an item.

See also: SetMenuMenu(), the BMenu class in the Interface Kit

Activate()

virtual void Activate(void)

Makes the application the active application by arbitrarily picking one of its windows and
making it the active window. If the application doesn’t have any windows, or if the chosen
window happens to be hidden, the attempted activation will fail. < A surer method of
activation will be provided in a future release. >

This function is called when the main thread receives a B_ACTIVATE message, which any
application can send to any other application. The Browser uses this method to activate a
running application when the user, for example, double-clicks its icon or selects it from the
application menu.

However, Activate() is not called when the application is first launched or when the user
makes one of its windows the active window. Therefore don’t rely on it as a way of being
notified that the application has become active. Rely on AppActivated() instead.

See also: Activate() in the BWindow class of the Interface Kit, AppActivated()

AppActivated()

virtual void AppActivated(bool isActive)

Implemented by derived classes to take note when the application becomes—or ceases to
be—the active application. The application has just attained that status if the isActive flag
is TRUE, and just lost it if the flag is FALSE. The active application is the one that owns the
current active window and whose main menu is accessible through the icon displayed at
the left top corner of the screen.

< Currently, this function is called only when the change in active application is a
consequence of a window being activated. It can be called while an application is being
launched, provided that the application puts a window on-screen. However, it’s always
called after ReadyToRun(), not before. >

See also: WindowActivated() in the BWindow and BView classes of the Interface Kit,
“Application-Activated Events” on page 16 of the chapter introduction

28 – The Application Kit

Member Functions BApplication

ArgvReceived()

virtual void ArgvReceived(int argc, char **argv)

Implemented by derived classes to respond to a B_ARGV_RECEIVED message that passes
the application an array of argument strings, typically arguments typed on the command
line, argv is a pointer to the strings and argc is the number of strings in the array. These
parameters are identical to those traditionally associated with the main() function.

When an application is launched from the command line, the command-line arguments
are both passed to main() and packaged in a B_ARGV_RECEIVED message that’s sent to
the application on-launch (before ReadyToRun() is called). When BRoster’s Launch()
function is passed argc and argv parameters, they’re similarly bundled in an on-launch
message.

An application might also get B_ARGV_RECEIVED messages after it’s launched. For
example, imagine a graphics program called “Splotch” that can handle multiple
documents and is therefore restricted so that it can’t be launched more than once (it’s a
B_SINGLE_LAUNCH or a B_EXCLUSIVE_LAUNCH application). If the user types

Splotch myArtwork

in a shell, it launches the application and passes it an on-launch B_ARGV_RECEIVED
message with the strings “Splotch” and “myArtwork”. Then, if the user types

Splotch yourArtwork

the running application is again informed with a B_ARGV_RECEIVED message. In both
cases, the BApplication object dispatches the message by calling this function.

To open either of the artwork files, the Splotch application will need to translate the
document pathname into a database reference. It can do this most easily by calling get_
ref_for_path(), defined in the Storage Kit.

See also: RefsReceived(), “Argv-Received Events” on page 16 of the chapter
introduction

CloseFilePanel() see RunFilePanel()

CountWindows()

long CountWindows(void) const

Returns the number of windows belonging to the application’s. The count includes only
windows that the application explicitly created. It omits, for example, the private windows
created by BBitmap objects.

See also: the BWindow class in the Interface Kit

The Application Kit – 29

 BApplication Member Functions

DispatchMessage()

virtual void DispatchMessage(BMessage *message, BReceiver *receiver)

Augments the BLooper function to dispatch system messages by calling a specific hook
function. The set of system messages that the BApplication object receives and the hook
functions that it calls to respond to them are listed under “Application Messages” on page
13 of the chapter introduction.

Other messages—those defined by the application rather than the Application Kit—are
forwarded to the receiver’s MessageReceived() function or to ReplyReceived(). Note
that the receiver is ignored for all system messages and for all replies.

See also: DispatchMessage() in the BLooper class, MessageReceived() in the
BReceiver class, ReplyReceived()

FilePanelClosed()

virtual void FilePanelClosed(BMessage *message)

Implemented by derived classes to take note when the file panel is closed. The message
argument contains information about how the panel was closed and its state at the time. It
has B_PANEL_CLOSED as its what data member and may include entries under the names
“frame” (the last frame rectangle of the panel), “directory” (the last directory it displayed),
“marked” (the item that was marked in its list of filters), and “canceled” (whether the user
closed the panel). Some of this information can be retained to configure the panel the next
time it runs.

See also: “Panel-Closed Events” on page 17 of the chapter introduction, RunFilePanel()

GetAppInfo()

long GetAppInfo(app_info *theInfo) const

Writes information about the application into the appinfo structure referred to by theInfo.
The structure contains the application signature, the identifier for its main thread, a
reference to its executable file in the database, and other information.

This function is the equivalent to the identically-named BRoster function—or, more
accurately, to BRoster’s GetRunningAppInfo()—except that it only provides information
about the current application. The following code

app_info info;

if (be_app->GetAppInfo(&info) == B_NO_ERROR)
 . . .

30 – The Application Kit

Member Functions BApplication

is simply a shorthand for:

app_info info;
if (be_roster->GetRunningAppInfo(be_app->Thread(),

 &info) == B_NO_ERROR)

GetAppInfo() returns B_NO_ERROR if successful, and an error code if not.

See the BRoster function for the error codes and for a description of the information
contained in an app_info structure.

See also: GetAppInfo() in the BRoster class

HideCursor(), ShowCursor(), ObscureCursor()

void HideCursor(void)
void ShowCursor(void)
void ObscureCursor(void)

HideCursor() removes the cursor from the screen. ShowCursor() restores it.
ObscureCursor() hides it temporarily, until the user moves the mouse.

See also: SetCursor(), IsCursorHidden()

IdleTime()

long IdleTime(void) const

Returns the number of seconds since the user last manipulated the mouse or keyboard.
This information isn’t specific to a particular application; in other words, the function tells
you when the user last directed an action at any application, not just yours.

IsCursorHidden()

bool IsCursorHidden(void) const

Returns TRUE if the cursor is hidden, and FALSE if not.

See also: HideCursor()

IsFilePanelRunning() see RunFilePanel()

The Application Kit – 31

 BApplication Member Functions

IsLaunching()

bool IsLaunching(void) const

Returns TRUE if the application is in the process of launching—of getting itself ready to
run—and FALSE once the ReadyToRun() function has been called.

IsLaunching() can be called while responding to a message to find out whether the
message was received on-launch (to help the application configure itself) or after-launch as
an ordinary message.

See also: ReadyToRun()

MainMenu() see SetMainMenu()

MenusWillShow()

virtual void MenusWillShow(void) const

Implemented by derived classes to make any necessary changes to the menus in the
hierarchy controlled by the application’s main menu before any of them is shown to the
user. MenusWillShow() is called each time the main menu is placed on-screen, just before
it’s made visible.

See also: MenusWillShow() in the BWindow class of the Interface Kit, SetMainMenu()

Modifiers()

ulong Modifiers(void)

Returns a mask indicating which modifier keys are down and which keyboard locks are on.
This function works just like the BView and BWindow functions of the same name. See
those functions for information on the modifiers mask.

See also: Modifiers() in the BWindow and BView classes of the Interface Kit

ObscureCursor() see HideCursor()

Pulse()

virtual void Pulse(void)

Implemented by derived classes to do something at regular intervals. Pulse() is called
regularly as the result of PULSE messages, as long as no other messages are pending. By
default, it’s called about every 500 milliseconds, but you can set a different frequency by
calling the SetPulseRate() function.

32 – The Application Kit

Member Functions BApplication

You can implement Pulse() to do whatever you want. However, pulse events aren’t
accurate enough to do something that requires precise timing.

The default version of this function is empty.

See also: Pulse() in the Window class of the Interface Kit, SetPulseRate()

Quit()

virtual void Quit(void)

Kills the application by terminating the message loop and causing Run() to return. You
rarely call this function directly; it’s called for you when the application receives a B_
QUIT_REQUESTED message and QuitRequested() returns TRUE to allow the application to
shut down.

BApplication’s Quit() differs from the BLooper function it overrides in four important
respects:

• It doesn’t kill the thread. It merely causes the message loop to exit after it finishes
with the current message.

• It therefore always returns, even when called from within the main thread.

• It returns immediately. It doesn’t wait for the message loop to exit.

• It doesn’t delete the object. It’s up to you to delete it after Run() returns. (However,
for some reason, Quit() does delete the BApplication object if it’s called when no
message loop is running.)

Before shutting down, the BApplication object responds to every message it received prior
to the Quit() call.

See also: Quit() in the BLooper class, QuitRequested()

QuitRequested()

virtual bool QuitRequested(void)

Overrides the BLooper function to decide whether the application should really quit when
requested to do so.

BApplication’s implementation of this function tries to get the permission of the
application’s windows before agreeing to quit. It works its way through the list of
BWindow objects that belong to the application and forwards the QuitRequested() call to
each one. If a BWindow agrees to quit (its QuitRequested() function returns TRUE), the
BWindow version of Quit() is called to destroy the window. If the window refuses to quit
(its QuitRequested() function returns FALSE), the attempt to destroy the window fails and
no other windows are asked to quit.

The Application Kit – 33

 BApplication Member Functions

If it’s successful in terminating all the application’s windows (or if the application didn’t
have any windows to begin with), this function returns TRUE to indicate that the application
may quit; if not, it returns FALSE.

An application can replace this window-by-window test of whether the application
should quit, or augment it by adding a more global test. It might, for example, put a
modal window on-screen that gives the user the opportunity to save documents, terminate
ongoing operations, or cancel the quit request.

This hook function is called for you when the main thread receives a B_QUIT_REQUESTED
message; you never call it yourself. However, you do have to post the B_QUIT_REQUESTED
message. Typically, the application’s main menu has an item labeled “Quit.” When
the user invokes the item, it should post a B_QUIT_REQUESTED message directly to the
BApplication object.

See also: QuitRequested() in the BLooper class, Quito, SetMainMenu()

ReadyToRun()

virtual void ReadyToRun(void)

Implemented by derived classes to complete the initialization of the application. This is a
hook function that’s called after all the messages that the application receives on-launch
have been handled. It’s called in response to a B_READY_TO_RUN message that’s posted
immediately after the last on-launch message. If the application isn’t launched with any
messages, B_READY_TO_RUN is the first message it receives.

This function is the application’s last opportunity to put its initial user interface on-screen.
If the application hasn’t yet displayed a window to the user (for example, if it hasn’t
opened a document in response to an on-launch B_REFS_RECEIVED or B_ARGV_RECEIVED
message), it should do so in ReadyToRun().

The default version of ReadyToRun() is empty.

See also: Run(), IsLaunching()

RefsReceived()

virtual void RefsReceived(BMessage *message)

Implemented by derived classes to do something with one or more database records that
have been referred to the application in a message. The message has B_REFS_RECEIVED
as its what data member and a single data entry named “refs” that contains one or more
record_ref (REF_TYPE) items.

Typically, the records are for documents that the application is requested to open. For
example, unless an alternative message is specified, the user’s selections in the file panel
are reported to the application in a B_REFS_RECEIVED message. Similarly, when the user
double-clicks a document icon in a Browser window, the Browser sends a

34 – The Application Kit

Member Functions BApplication

B_REFS_RECEIVED message to the application that owns the document. In each case, the
BApplication object dispatches the message by passing it to this function.

You can use the Storage Kit’s does_ref_conform() function to discover what kind of
record each item in the “refs” entry refers to. For example:

void MyApplication::RefsReceived(BMessage *message)
{
 ulong type;
 long count;
 . . .
 message->GetInfo("refs", &type, &count);
 for (long i = --count; i >= 0; i--) {
 record_ref item = message->FindRef("refs", i);
 if (item.database >= 0 && item.record >= 0) {
 if (does_ref_conform(item, "File")) {
 BFile file;
 file.SetRef(item);
 if (file.OpenData() == B_NO_ERROR)
 . . .
 }
 else {
 BRecord *record = new BRecord(item);
 . . .
 }
 }
 }
 . . .
}

REFS_RECEIVED messages can be received both on-launch (while the application is
configuring itself) or after-launch (as ordinary messages received while the application is
running).

See also: does_ref_conform() in the Storage Kit, ArgvReceived(), ReadyToRun(),
IsLaunching(), “Refs-Received Events” on page 16 of the chapter introduction

ReplyReceived()

virtual void ReplyReceived(BMessage *message, BMessage *original,
 ulong signature, thread_id thread)

Implemented by derived classes to respond to a remote message that was sent in reply to
an earlier message originating from your application. The original message is provided as
the second argument, so you can match it to the reply.

The reply comes from the application that’s identified both by its signature and its main
thread; these values can be used to construct a BMessenger so that you can continue
the exchange of messages. A reply to the reply can also be sent by calling the message’s
SendReply() function.

The Application Kit – 35

 BApplication Member Functions

ReplyReceived() is called only for messages that are sent as replies to an earlier message
(by calling the original message’s SendReply() function) and only if the original sender
isn’t waiting for a reply.

< Reply messages that match system messages are dispatched by calling this function,
rather than as system messages. >

See also: SendMessage() in the BMessenger class, SendReply() in the BMessage class

Run()

virtual thread_id Run(void)

Runs a message loop in the application’s main thread. This function must be called from
main() to start the application running. The loop is terminated and Run() returns when
Quit() is called, or (potentially) when a QUIT_REQUESTED message is received. It returns
the identifier for the main thread (not that it’s of much use once the application has stopped
running).

This function overrides BLooper’s Run() function. Unlike that function, it doesn’t spawn a
thread for the message loop or return immediately.

See also: the “Overview” to this class above, Run() in the BLooper class, ReadyToRun(),
QuitRequested()

RunFilePanel(), CloseFilePanel(), IsFilePanelRunning()

long RunFilePanel(const char *windowTitle = NULL,
 const char *buttonLabel = NULL,
 bool directoriesOnly = FALSE,
 BMessage *message = NULL)
void CloseFilePanel(void)

bool IsFilePanelRunning(void)

RunFilePanel() requests the Browser to display a window that lets the user navigate the
file system to find desired files and directories. Its arguments are all optional and are used
to configure the panel:

• If another windowTitle is not specified, the title of the window will be “Open”
preceded by the name of the application. For example:

WishMaker : Open

 This title reflects the fact that the panel is typically used to find files the application
should open and display to the user.

• If a buttonLabel isn’t provided, the principal button in the panel (the default button)
will be labeled “Open”. (The panel also has a “Cancel” button.)

36 – The Application Kit

Member Functions BApplication

• If the directoriesOnly flag is TRUE, the user will be able to select only directories,
not files. If the flag is FALSE, as it is by default, the user won’t be able to select
directories. Instead, their contents will be displayed in the panel as the user
navigates the file system.

• If a message is passed, it can contain entries that further configure the panel. It
also serves as a model for the message the file panel will send to the application to
report which files and directories the user selected. If a message isn’t provided, this
information will be reported in a standard B_REFS_RECEIVED message.

If the message has any of the following entries, they will be used to help set up the panel:

Data name Type code Description

“directory” B_REFTYPE The record_ref for the directory that the
panel should display when it first comes
on-screen. If this entry is absent, the
panel will initially display die current
directory of the current volume.

“frame” B_RECT_TYPE A BRect that sets the size and position
of the panel in screen coordinates. If this
entry is absent, the Browser will choose
an appropriate frame rectangle for the
panel.

“filter” B_STRING_TYPE An array of labels for items that should
be displayed in a “Filters” pop-up menu.
The items will be listed in the menu in
the same order that they’re added to the
array. If this item is absent, the file panel
won’t display a “Filters” list.

“marked” B_STRING_TYPE The label that should be marked in the
Filters menu. If this item is absent, the
first item in the list will be marked.

If the panel is to have a “Filters” menu, the message should have one additional entry for
each label in the “filter” array. This entry should list the file types associated with the label
and have the label as its name. For example:

BMessage *model = new BMessage(OPEN_THESE);

model->AddString("filter", "All files");
model->AddString("filter", "Picture files only");
model->AddString("filter", "Text files only");
model->AddString("filter", "Picture & text files");

model->AddLong("All files", 0) ;

model->AddLong("Picture files only" MY_IMAGE_B_FILE_TYPE)
model->AddLong("Picture files only" MY_IMAGE_A_FILE_TYPE)

The Application Kit – 37

 BApplication Member Functions

model->AddLong("Text files only", MY_TEXT_FILE_TYPE);

model->AddLong("Picture & text files", MY_IMAGE_A_FILE_TYPE);
model->AddLong("Picture & text files", MY_IMAGE_B_FILE_TYPE);
model->AddLong("Picture & text files", MY_TEXT_FILE_TYPE);

be_app->RunFilePanel(NULL, NULL, FALSE, model);

When the user selects a particular filter item, the file panel eliminates files of other types
from the display. It shows only files with types associated with the selected item (and
directories).

If an item is associated with a file type of 0—as is “All files” in the example above—it
won’t restrict the display. When the item is selected, the file panel shows every file in the
directory. Generally, “All files” should be the first item in the menu and the one that’s
initially marked.

When the user operates the “Open” (or buttonLabel) button, the file panel sends a message
to the BApplication object. If a customized message is provided, it’s used as the model for
the message that’s sent. If a message isn’t provided, a standard B_REFS_RECEIVED message
is sent instead. It has one data entry:

Data name Type code Description

“refs” B_REF_TYPE References to the database records for the
files or directories selected by the user.

If the user selects more than one file or directory, there will be more than one record_ref
item in the “refs” array.

A customized message works much like the model messages assigned to BControl objects
and BMenuItems in the Interface Kit. The file panel makes a copy of the model, adds
a “refs” entry (as described above) to the copy, and sends the copy to the BApplication
object. All other entries, including those used to configure the panel, remain unchanged.
The message can have any command constant you choose, including B_REFS_RECEIVED.

The file panel doesn’t automatically disappear when the user operates the “Open” (or
buttonLabel) button; it remains on-screen until CloseFilePanel() is called (or until
the application quits). You can choose to close the panel if the user makes a valid
selection, or you can leave it on-screen so the user can continue making selections.
IsFilePanelRunning() will report whether the file panel is currently displayed on-screen.

The user can close the file panel by operating the “Cancel” button. Whenever the panel
is closed, by the user or the application, a B_PANEL_CLOSED message is sent to the
application and the FilePanelClosed() hook function is called.

RunFilePanel() returns B_NO_ERROR if it succeeds in getting the Browser to put the file
panel on-screen. If the Browser isn’t running or the file panel is already on-screen, it
returns B_ERROR. If the Browser is running but the application can’t communicate with it,

38 – The Application Kit

Member Functions BApplication

it returns an error code that indicates what went wrong; these codes are the same as those
documented for BMessenger’s Error() function.

See also: RefsReceived(), FilePanelClosed()

SetMainMenu(), MainMenu()

void SetMainMenu(BPopUpMenu *menu)
BPopUpMenu *MainMenu(void)

These functions set and return the application’s main menu, the menu that’s accessible
through the icon that the Browser displays at the left top corner of the screen while
the application is the current active application. Because it isn’t under the control of a
BMenuBar, this menu must be a kind of BPopUpMenu (but one that doesn’t operate in
radio mode or mark the selected item).

The main menu contains items that affect the application as a whole, rather than ones that
affect operations within a particular window. The first item in the menu should be labeled
“About” plus the name of the application and the three dots of an ellipsis. The last item
should be “Quit”. A default main menu with just these two items is provided for every
application. You can set up your own menu in the following manner:

BMenuItem *item;
BPopUpMenu *menu = new BPopUpMenu("", FALSE, FALSE);

item = new BMenuItem("About <application name>...",
 new BMessage(B_ABOUT_REQUESTED));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Preferences",
 new BMessage(SET_PREFERENCES));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Open", new BMessage(SHOW_FILE_PANEL));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Quit", new BMessage(B_QUIT_REQUESTED));
item->SetTarget(be_app);
menu->AddItem(item);

be_app->SetMainMenu(menu);

B_ABOUT_REQUESTED and B_QUIT_REQUESTED are system messages that are dispatched
by calling the AboutRequested() and QuitRequested() hook functions. The other
messages in this example would be dispatched by calling MessageReceived().

See also: AboutRequested(), QuitRequested()

The Application Kit – 39

 BApplication Member Functions

SetCursor()

void SetCursor(const void *cursor)

Sets the cursor image to the bitmap specified in cursor. Each application has control over
its own cursor, and can set and reset it as often as necessary. The cursor on-screen will
have the shape specified in cursor as long as the application remains the active application.
If it loses that status and then regains it again, its current cursor is automatically restored.

The first four bytes of cursor data is a preamble that gives information about the image, as
follows:

• The first byte sets the size of the cursor image. The cursor bitmap is a square and
this byte states the number of pixels on one side. Currently, only 16-pixel-by-16-
pixel images are acceptable.

• The second byte specifies the depth of the cursor image, in bits per pixel. Currently,
only monochrome one-bit-per-pixel images are acceptable.

• The third and fourth bytes set the hot spot, the pixel within the cursor image that’s
used to report the cursor’s location. For example, if the cursor is located over a
button on-screen so that the hot spot is within the button rectangle, the cursor is
said to point to the button. However, if the hot spot lies outside the button rectangle,
even if most of the cursor image is within the rectangle, the cursor doesn’t point to
the button.

 To locate the hot spot, assume that the pixel in the upper left corner of the cursor
image is at (0, 0). Identify the vertical y coordinate first, then the horizontal x
coordinate. For example, a hot spot 5 pixels to the right of the upper left corner and
8 pixels down—at (5, 8)—would be specified as “8, 5.”

Image data follows these four bytes. Pixel values are specified from left to right in rows
starting at the top of the image and working downward. First comes data specifying the
color value of each pixel in the image. In a one-bit-per-pixel image, 1 means black and 0
means white.

Following the color data is a mask that indicates which pixels in the image square are
transparent and which are opaque. Transparent pixels are marked 0; they let whatever is
underneath that part of the cursor bitmap show through. Opaque pixels are marked 1.

The default cursor is the hand image that’s seen when the computer first boots. To reset the
cursor to this image, you can pass the constant B_HAND_CURSOR to SetCursor().

40 – The Application Kit

Member Functions BApplication

SetPulseRate()

void SetPulseRate(long milliseconds)

Sets how often Pulse() is called. By default, PULSE messages are posted every 500
milliseconds, as long as no other message are pending. Each message causes Pulse() to be
called once.

SetPulseRate() permits you to set a different interval. The interval set should be a multiple
of 100; differences less than 100 milliseconds will not be noticeable. A finer granularity
can’t be guaranteed.

See also: Pulse()

ShowCursor() see HideCursor()

VolumeMounted(), VolumeUnmounted()

virtual void VolumeMounted(BMessage *message)

virtual void VolumeUnmounted(BMessage *message)

Implemented by derived classes to take action when a volume (typically a floppy disk) is
mounted or unmounted. The volume is mounted just before VolumeMounted() is called
and unmounted just after VolumeUnmounted() returns.

The volume identifier is stored in the message as a long integer under the name
< “volume_id” >. It can be passed to volume_for() to get the corresponding BVolume
object.

Currently, there’s no way to prevent the volume from being mounted or unmounted.

< Don’t rely on these functions; they’re likely to change in a future release. >

See also: the BVolume class in the Storage Kit, “Volume-Mounted Events” and “Volume-
Unmounted Events” on page 17

WindowAt()

BWindow *WindowAt(long index) const

Returns the BWindow object recorded in the list of the application’s windows at index,
or NULL if index is out-of-range. Indices begin at 0, and there are no gaps in the list.
Windows aren’t listed in any particular order (such as the order they appear on-screen), so
the value of index has no ulterior meaning. The window list excludes the private windows
used by BBitmaps and other objects, but it doesn’t distinguish main windows that display
documents from palettes, panels, and other supporting windows.

The Application Kit – 41

 BApplication Member Functions

This function can be used to iterate through the window list:

BWindow *window;
long i = 0;

while (window = be_app->WindowAt(i++)) {
 if (window->Lock()) {
 . . .
 window->Unlock();
 }
}

This works as long as windows aren’t being created or deleted while the list index is being
incremented. Locking the BApplication object doesn’t lock the window list.

It’s best for an application to maintain its own window list, one that arranges windows in
a logical order, keeps track of any contingencies among them, and can be locked while it’s
being read.

See also: CountWindows()

42 – The Application Kit

Member Functions BApplication

The Application Kit – 43

BClipboard

Derived from: none

Declared in: <app/Clipboard.h>

Overview

The clipboard is a single, system-wide, temporary repository of data. In its normal use,
the clipboard is a vehicle for transferring data between applications, or between different
parts of the same application. An application adds some amount of data to the clipboard,
then some other application (or the same application) retrieves (or “finds”) that data.
This mechanism permits, most notably, the ability to cut, copy, and paste data items. For
example, the BTextView object, in the Interface Kit, uses the clipboard to perform just
such operations on text.

The BClipboard class represents the clipboard. As there is but a single clipboard per
system, the BClipboard class allows only one BClipboard object. You don’t create this
object directly in your application; it’s created automatically when you boot the machine
(so there’s no public constructor or destructor for the class). Each application knows
this object as be_clipboard. The be_clipboard variable in your application points
(ultimately) to the same object as does every other be_clipboard in all other applications.

Using the Clipboard

The central BClipboard functions are these:

• AddData() lets you add a new item of data to the clipboard. The data that’s added
is copied from an argument passed to the function. Each clipboard item is identified
(primarily) by its data type (which is represented by one of the standard type
constants, such as B_ASCII_TYPE or B_REF_TYPE, that are defined in app/AppDefs.h).

• FindData() retrieves data from the clipboard by providing the caller with a pointer
to a specific item. This pointer points to data that resides on the clipboard—the
function doesn’t copy the data.

You must bracket calls to AddData() and FindData() with calls to Lock() and Unlock().
This prevents other applications from accessing the clipboard while your application is
using it. Conversely, if some other application (or if another thread in your application)
holds the lock to the clipboard when you call Lock(), your application (or thread) will
hang until the current lock holder calls Unlock()—in other words, Lock() will always
succeed, even if it has to wait forever to do so. Currently, unfortunately, there’s no way to
tell if the

44 – The Application Kit

Overview BClipboard

clipboard is already locked, nor can you specify a time limit beyond which you won’t wait
for the lock.

AddData() calls should also be bracketed by calls to Clear() and Commit() (see the
example below for the calling sequence). Clearing the clipboard removes all data that it
currently holds. This may seem harsh, but somebody has to keep the clipboard tidy. The
Commit() function tells the clipboard that you’re serious about the item-additions that you
requested in the previous AddData() calls. If you don’t commit your additions, they’ll be
lost.

The Lock()/Unlock() and Clear()/Commit() calls can bracket groups of AddData() and
FindData() calls. The following code fragments demonstrate the expected sequences
of function calls with regard to adding and retrieving clipboard data (the arguments
to FindData() and AddData() aren’t fully shown in the examples; see the function
descriptions, below, for argument details).

Example 1: Adding Data to the Clipboard

/* Lock the clipboard. */
be_clipboard->Lock();

/* Clear the clipboard. */
be_clipboard->Clear();

/* Add some items. */
be_clipboard->AddData(B_DOUBLE_TYPE, . . .);
be_clipboard->AddData(B_FLOAT_TYPE, . . .);

/* Commit the additions and unlock the clipboard. */
be_clipboard->Commit();
be_clipboard->Unlock();

Example 2: Retrieving Data from the Clipboard

/* Lock the clipboard. */
be_clipboard->Lock();

/* Find a bool. */
bool *bp = (bool *)be_clipboard->FindData(B_BOOL_TYPE, . . .);

/* Copy the bool value (for reasons that are explained in the
 * FindData() description).
 */
bool yesOrNo = *bp;

/* Unlock the clipboard */
be_clipboard->Unlock();

It’s possible to mix AddData() and FindData() calls within the same “session,” but such a
pursuit doesn’t correspond to traditional manipulations on selected data.

The Application Kit – 45

 BClipboard Member Functions

Member Functions

AddData(), AddText()

void AddData(ulong type, const void *data, long numBytes)
void AddText(const char *string)

These functions add a buffer of data to the clipboard. The AddData() function copies
numBytes bytes of data starting at data. The clipboard thinks this data is of the type given
by the type argument (one of the data type constants—B_BOOL_TYPE, B_DOUBLE_TYPE,
B_FLOAT_TYPE, and so on—declared in AppDefs.h).

AddText() is a convenience function that adds a copy of string to the clipboard. Text items
are declared to be B_ASCII_TYPE.

You must call Lock() before calling AddData() or AddText(). If you don’t, your
application will visit the debugger. Furthermore, you must call Unlock() after you’ve
added your items. Multiple invocations of AddData() or AddText() (or both) can be
performed within the same Lock()/Unlock() pair. You can add any number of items of the
same or different types while you have the clipboard locked.

By convention, you should call Clear() immediately before calling AddData() or
AddText() (but after calling Lock()). This will remove all items that the clipboard is
currently holding.

After you’ve added your items to the clipboard (but before you call Unlock()), you must
commit the additions by calling Commit(). If you don’t commit before you unlock, your
additions won’t be recorded.

The FindData() and FindText() functions retrieve data that’s been added through
AddData() and AddText() calls.

Clear()

void Clear(void)

Erases all items that are currently on the clipboard. Normally, you call Clear() just before
you add new data to the clipboard (through invocations of AddData() and AddText()).
You must call Lock() before calling Clear(); if you don’t, the debugger will tap you on the
shoulder.

46 – The Application Kit

Member Functions BClipboard

Commit()

void Commit(void)

Forces the clipboard to notice the items you added. All calls (or sequence of calls) to
AddData() or AddText() must be followed by a call to Commit(), or you’ll lose the
additions. The call to Commit() must precede the call to Unlock() that balances the call to
Lock() that preceded the call to Clear() that worried the cat that killed the rat that ate the
malt. . .

CountEntries()

long CountEntries(ulong type)

Returns the number of items on the clipboard that are of the specified type. The type
argument must be one of the data type constants defined in app/AppDefs.h. If type is
B_ANY_TYPE, the function returns the total number of current clipboard items.

You must call Lock() before invoking this function; if you don’t, it returns NULL.

Lock(), Unlock()

void Lock(void)
void Unlock(void)

These functions lock and unlock the clipboard. Locking the clipboard gives your
application exclusive permission to invoke the other BClipboard functions. (More
accurately, the permission extends only to the very thread in which Lock() is called.) If
some other thread already has the clipboard locked when your thread calls Lock(), your
thread will wait until the lock-holding thread calls Unlock(). Your thread should also
invoke Unlock() when you’re done manipulating the clipboard.

See also: Lock() in the BLooper class

FindData(), FindText()

void *FindData(ulong type, long *numBytes, long index = 0)
const char *FindText(long *numBytes)

Returns a pointer to a particular item that lies on the clipboard. In the FindData() function,
the item is specified by the first and last arguments:

• type is one of the data type constants defined in AppDefs.h.

• index, if supplied, specifies the (zero-based) index of the item that you want to
retrieve. This is only important if the clipboard holds more than one item of the
specified type.

The Application Kit – 47

 BClipboard Member Functions

FindText() always searches for the first item of type B_ASCII_TYPE.

If the item is found, a pointer to it is returned directly by the function, and the number of
bytes of data that comprise the item is returned by reference in numBytes. Keep in mind
that this pointer points to data that lies on the clipboard; if you want a permanent copy of
the data, you must copy the data that the pointer points to before you unlock the clipboard
(as shown in the example in the section “Using the Clipboard” on page 43).

An individual call or sequence of calls to FindData() and FindText() must be bracketed by
invocations of Lock() and Unlock().

If the index argument (to FindData()) is out-of-bounds, the function returns a pointer
to NULL and, perhaps more tellingly, sets numBytes to 0. If you don’t lock the clipboard
before invoking either FindData() or FindText(), you’ll find the debugger.

Unlock() see Lock()

48 – The Application Kit

Member Functions BClipboard

The Application Kit – 49

BLooper

Derived from: public BReceiver

Declared in: <app/Looper.h>

Overview

A BLooper object runs a message loop in a thread that it spawns for that purpose. It offers
applications a simple way of creating a thread with a message interface.

Various classes in the Be software kits derive from BLooper in order to associate threads
with significant entities in the application and to set up message loops with special
handling for system messages. In the Application Kit, the BApplication object runs a
message loop in the application’s main thread. (Unlike other BLoopers, the BApplication
object doesn’t spawn a separate thread, but takes over the thread in which the application
was launched.) In the Interface Kit, each BWindow object runs a loop to handle messages
that report activity in the user interface.

Running the Loop

Constructing a BLooper object gets it ready to work, but doesn’t actually begin the
message loop. Its Run() function must be called to spawn the thread and initiate the loop.
Some derived classes may choose to call Run() within the class constructor,

MyLooper::MyLooper(int priority) : BLooper(priority)
{
 . . .
 Run();
}

so that simply constructing the object yields a fully functioning message loop. Other
classes may need to keep object initialization separate from loop initiation. (The BWindow
class in the Interface Kit is an example of the former approach, BApplication of the latter.)

Posting and Receiving Messages

Messages are posted to the BLooper’s thread by calling its PostMessage() function. This
simply puts the message in a queue. The thread takes messages from the queue one at a
time, in the order that they arrive, and calls DispatchMessage() for each one.

50 – The Application Kit

Hook Functions BLooper

DispatchMessage() hands the message to a BReceiver object; the BReceiver kicks off
the thread’s specific response to the message.

Posting a message to a thread initiates activity within that thread, beginning with the
DispatchMessage() function. Since DispatchMessage() immediately transfers
responsibility for incoming messages to BReceiver objects, BReceivers determine
what happens in the BLooper’s thread. Everything that the thread does, it does through
BReceivers responding to messages. The BLooper merely runs the posting and dispatching
mechanism.

Acting as the Receiver

When a message is posted to a thread, a specific BReceiver can be named for it. Messages
that aren’t posted to a specific receiver are handled by the BLooper itself—in other words,
the BLooper acts as the default receiver. (The BLooper class derives from BReceiver for
just this reason.)

Thus, a BLooper object can play both roles—the BLooper role of running the message
loop and the BReceiver role of responding to messages. For it to act as a receiver, you
must derive a class from BLooper and define a MessageReceived() function that can
respond to the messages dispatched to it.

However, it’s not necessary to derive a class from BLooper. A BLooper can be used
without change, as it’s defined in the Kit—as long as all messages are posted to a another
receiver.

Hook Functions

DispatchMessage() Dispatches messages to a BReceiver; can be overridden
to change the way certain messages or classes of
messages are handled.

PreferredReceiver() Can be implemented to indicate a preference for a
particular BReceiver to which messages should be
posted.

QuitRequested() Can be implemented to decide whether a request to
terminate the message loop and destroy the BLooper
should be honored or not.

The Application Kit – 51

 BLooper Constructor and Destructor

Constructor and Destructor

BLooper()

BLooper(long priority = B_DISPLAY_PRIORITY)

Initializes the BLooper object and sets up its message queue, but doesn’t spawn a thread
or begin the message loop. Call Run() to spawn the thread that the BLooper will oversee.
Run() creates the thread at the specified priority level and initiates its message loop.

The priority determines how much attention the thread will receive from the scheduler,
and consequently how much CPU time it will get relative to other threads. Four discrete
priority levels are defined (in kernel/OS.h), but intermediate priorities are also possible.
The defined priorities are:

Constant Value Usage

B_REAL_TIME_PRIORITY 40 For threads that control real-time
processes that shouldn’t be interrupted.

B_DISPLAY_PRIORITY 30 For threads associated with objects in the
user interface, including window threads.

B_NORMAL_PRIORITY 20 For all ordinary threads, including the
main thread.

B_LOW_PRIORITY 10 For threads that don’t have much
importance and shouldn’t interrupt other
threads.

Some derived classes may want to call Run() in the constructor, so that the object is set in
motion at the time it’s created. This is what the BWindow class in the Interface Kit does.
Other derived classes might want to keep a separation between constructing the object and
running it. The BApplication class maintains this distinction.

BLooper objects should always be dynamically allocated (with new), never statically
allocated on the stack.

See also: Run()

~BLooper()

virtual ~BLooper(void)

Frees the message queue and all pending messages, stops the message loop, and destroys
the thread in which it ran.

With the exception of the BApplication object, BLoopers should be destroyed by calling
the Quit() function (or QuitRequested()), not by using the delete operator.

See also: Quit()

52 – The Application Kit

Member Functions BLooper

Member Functions

CurrentMessage(), DetachCurrentMessage()

BMessage *CurrentMessage(void) const
BMessage *DetachCurrentMessage(void)

Both these functions return a pointer to the message that the BLooper’s thread is currently
processing, or NULL if it’s currently between messages.

In addition to returning the current message, DetachCurrentMessage() detaches it from
the message loop, so that:

• It will no longer be the current message. The current message will be NULL until the
thread gets another message from the queue.

• The thread won’t automatically delete the message when the message cycle
ends and the thread is ready to get the next message. It becomes the caller’s
responsibility to delete the message later (or to post it once more so that it will again
be subject to automatic deletion).

Since the message won’t be deleted automatically, you have time to reply to it later—
assuming the message sender is waiting for a reply. If a reply hasn’t already been sent by
the time the message is deleted, the BMessage destructor sends back a default B_NO_REPLY
message to indicate that a real reply won’t be forthcoming.

Detaching a message is useful only when you want to stretch out the response to it beyond
the end of the message cycle, perhaps passing responsibility for it to another thread while
the BLooper’s thread continues to get and respond to other messages.

Since the current message is passed as an argument to BLooper’s DispatchMessage()
and BReceiver’s MessageReceived() hook functions, you may never need to call
CurrentMessage() to get hold of it.

However, classes derived from BLooper (BApplication and BWindow, in
particular) dispatch system messages by calling a message-specific function, not
MessageReceived(). Typically, these functions are passed only part of the information
contained in the BMessage. In such a case, you will have to call CurrentMessage() to get
complete information about the instruction or event the BMessage object reports.

The Application Kit – 53

 BLooper Member Functions

For example, in the Interface Kit, a KeyDown() function might check whether the Control
key was pressed at the time of the key-down event as follows:

void MyView::KeyDown(ulong key)
{
 BMessage *message = Window()->CurrentMessage();
 if (message->FindLong("modifiers") & B_CONTROL_KEY) {
 . . .
 }
 . . .
}

See also: MessageReceived() in the BReceiver class

DispatchMessage()

virtual void DispatchMessage(BMessage *message, BReceiver *receiver)

Dispatches messages as they’re received by the BLooper’s thread. B_QUIT_REQUESTED
messages are dispatched by calling the QuitRequested() virtual function. All others are
forwarded to the receiver’s MessageReceived() function.

The receiver may be the BReceiver object that was named when the message was posted,
or it may be the BLooper (acting in its capacity as the default receiver). It is never NULL.

DispatchMessage() is the first stop in the message-handling mechanism. The BLooper’s
thread calls it automatically as it reads messages from the queue—you never call it
yourself.

You can override this function to dispatch the messages that your own application defines
or recognizes. Of course, you can also just wait for these messages to fall through to
MessageReceived()—the choice is yours. If you do override DispatchMessage(), you
should:

• Call the base class version of the function after you’ve handled your own messages,
and

• Exclude all messages that you’ve handled yourself from the base version call.

54 – The Application Kit

Member Functions BLooper

For example:

void MyLooper::DispatchMessage(BMessage *msg, BReceiver *rcvr)
{
 switch (msg->what) {
 case MY_MESSAGE1:
 . . .
 break;
 case MY_MESSAGE2:
 . . .
 break;
 default:
 BLooper::DispatchMessage(msg, rcvr);
 break;
 }
}

Don’t delete the messages you handle when you’re through with them; they’re deleted for
you.

See also: the BMessage class, MessageReceived() in the BReceiver class,
QuitRequested()

Lock(), Unlock()

bool Lock(void)
void Unlock(void)

These functions provide a mechanism for locking data associated with the BLooper,
so that one thread can’t alter the data while another thread is in the middle of doing
something that depends on it. Only one thread can have the BLooper locked at any given
time. Lock() waits until it can lock the object, then returns TRUE. It returns FALSE only if
the BLooper can’t be locked at all—for example, if it was destroyed by another thread.

Calls to Lock() and Unlock() can be nested. If Lock() is called more than once from the
same thread, it will take an equal number of Unlock() calls from that thread to unlock the
BLooper. (If Lock() is called from another thread, it waits until the thread that owns the
lock unlocks the BLooper. It then obtains the lock and returns TRUE.)

Locking is the basic mechanism for operating safely in a multithreaded environment.
It’s especially important for the kit classes derived from BLooper—BApplication and
BWindow.

However, it’s generally not necessary to lock a BLooper when calling functions defined in
the class itself or in a derived class. For example, BApplication and BWindow functions
are implemented to call Lock() and Unlock() when necessary. Functions you define in
classes derived from BApplication and BWindow should also call Lock() and Unlock().
In addition, you should employ the locking mechanism when calling functions of a class
that’s closely associated with a BLooper—for example, when calling functions of a BView
that’s attached to a BWindow.

The Application Kit – 55

 BLooper Member Functions

Although locking is important and useful, you shouldn’t be too blithe about it. While you
hold a BLooper’s lock, no other thread can acquire it. If another thread calls a function that
tries to lock, the thread will hang until you unlock. Each thread should hold the lock as
briefly as possible.

See also: LockOwner()

LockOwner()

inline thread_id LockOwner(void)

Returns the thread that currently has the BLooper locked, or -1 if the BLooper isn’t locked.

See also: Lock()

Looper()

virtual BLooper *Looper(void) const

Overrides the BReceiver version of this function to return the BLooper object itself. This
prevents the BLooper from acting as a receiver for messages posted to any other thread.
A BLooper can take on the role of message receiver only for messages posted to its own
thread.

See also: Looper() in the BView class of the Interface Kit and in the BReceiver class,
PostMessage()

MessageQueue()

BMessageQueue *MessageQueue(void) const

Returns the queue that holds messages posted (or sent, in the case of a BApplication
object) to the BLooper’s thread. You rarely need to examine the message queue directly;
it’s made available so you can cheat fate by looking ahead.

See also: the BMessageQueue class

56 – The Application Kit

Member Functions BLooper

PostMessage()

virtual long PostMessage(BMessage *message, BReceiver *receiver = NULL)
long PostMessage(ulong command, BReceiver *receiver = NULL)

Places a message in the BLooper’s message queue and arranges for it to be dispatched to
receiver. If a receiver isn’t mentioned, the message will be dispatched to the BLooper. The
BLooper acts as the default receiver for all messages not specifically targeted to another
object.

However, if the named receiver is associated with a different BLooper (if the receiver’s
Looper() function returns some other BLooper object), the posting fails and the message
is deleted. (If a BReceiver is associated with a particular BLooper, the only messages it
can receive are ones posted to that object. For example, BViews in the Interface Kit are
restricted to receiving messages posted to the BWindows to which they’re attached.)

Although the named receiver is passed through to DispatchMessage(), that function may
ignore the argument, especially if the message matches one defined by the system. System
messages are dispatched to a BReceiver that’s determined by the content of the message,
not by the value passed to PostMessage().

Once posted, the BMessage object belongs to the BLooper’s thread, so you should not
modify it, post it again, assign it to some other object, or delete it. It will be deleted
automatically after it has been received and responded to.

If a command is passed rather than a message, PostMessage() creates a BMessage object,
initializes its what data member to command, and posts it. This simply saves you the step
of constructing a BMessage when it won’t contain any data. For example, this code

myWindow->PostMessage(command, target);

is equivalent to:

myWindow->PostMessage(new BMessage(command), target);

To post the message, the command version of this function calls the virtual version—the
version that takes a full BMessage argument. Thus, if you override just the virtual version,
you’ll affect how both operate.

This function returns B_NO_ERROR if successful, B_MISMATCHED_VALUES if the posting
fails because the proposed receiver is invalid, and B_ERROR if it fails because the BLooper
itself is invalid.

See also: Looper() in the BReceiver class, DispatchMessage()

The Application Kit – 57

 BLooper Member Functions

PreferredReceiver()

virtual BReceiver *PreferredReceiver(void) const

Implemented by derived classes to return a preferred BReceiver for messages posted to
the BLooper. This function simply informs those who are about to post messages to the
BLooper who they might name as the message receiver. For example:

myLooper->PostMessage(msg, myLooper->PreferredReceiver());

The BLooper class itself doesn’t do anything with the preferred receiver; it’s not a default
value for any BLooper operation.

In the Interface Kit, BWindow objects name the current focus view as the preferred
receiver. This makes it possible for other objects—such as BMenuItems and BButtons—
to target messages to the BView that’s currently in focus, whatever view that may happen
to be at the time. For example, by posting its messages to the window’s preferred receiver,
a “Cut” menu item can make sure that it always acts on whatever view contains the current
selection. See the chapter on the Interface Kit for information on windows, views, and the
role of the focus view.

The BLooper version of this function simply returns NULL, to indicate that generic
BLoopers don’t have a preferred receiver. Note, however, that when a NULL receiver is
passed to PostMessage(), that function designates the BLooper itself as the receiver.
For example, if PreferredReceiver() returned NULL in the line of code shown above, the
message would be dispatched to myLooper by default. Thus, in effect, a generic BLooper
is its own preferred receiver, even though PreferredReceiver() returns NULL.

See also: SetTarget() in the BControl and BMenuItem classes of the Interface Kit,
PostMessage()

Quit()

virtual void Quit(void)

Exits the message loop, frees the message queue, kills the thread, and deletes the BLooper
object.

When called from the BLooper’s thread, all this happens immediately. Any pending
messages are ignored and destroyed. Because the thread dies, Quit() doesn’t return.

However, when called from another thread, Quit() waits until all previously posted
messages (all messages already in the queue) work their way through the message loop
and are handled. It then destroys the BLooper and returns only after the loop, queue,
thread, and object no longer exist.

Quito therefore terminates the BLooper synchronously; when it returns, you know that
everything has been destroyed. To quit the BLooper asynchronously, you can post a B_
QUIT_REQUESTED message to the thread (that is, a BMessage with B_QUIT_REQUESTED as

58 – The Application Kit

Member Functions BLooper

its what data member). PostMessage() places the message in the queue and returns
immediately.

When it gets a B_QUIT_REQUESTED message, the BLooper calls the QuitRequested()
virtual function. If QuitRequested() returns TRUE, as it does by default, it then calls
Quit().

See also: QuitRequested()

QuitRequested()

virtual bool QuitRequested(void)

Implemented by derived classes to determine whether the BLooper should quit when
requested to do so. The BLooper calls this function to respond to B_QUIT_REQUESTED
messages. If it returns TRUE, the BLooper calls Quito to exit the message loop, kill the
thread, and delete itself. If it returns FALSE, the request is denied and no further action is
taken.

BLooper’s default implementation of QuitRequested() always returns TRUE.

A request to quit that’s delivered to the BApplication object is, in fact, a request to quit the
entire application, not just one thread. BApplication therefore overrides QuitRequested()
to pass the request on to each window thread before shutting down.

For BWindow objects in the Interface Kit, a request to quit might come from the user
clicking the window’s close button (a quit-requested event for the window), from the
user’s decision to quit the application (a quit-requested event for the application), from a
“Close” menu item, or from some other occurrence that forces the window to close.

Classes derived from BWindow typically implement QuitRequested() to give the user a
chance to save documents before the window is destroyed, or to cancel the request.

If an application can be launched more than once (B_MULTIPLE_LAUNCH) and its entire
interface is essentially contained in one window, quitting the window might be tantamount
to quitting the application. In this case, the window’s QuitRequested() function should
pass the request along to the BApplication object. For example:

bool MyWindow::QuitRequested()
{
 . . .
 be_app->PostMessage(B_QUIT_REQUESTED);
 return TRUE;
}

After asking the application to quit, QuitRequested() returns TRUE to immediately dispose
of the window. If it returns FALSE, BApplication’s version of the function will again
request the window to quit.

The Application Kit – 59

 BLooper Member Functions

If you call QuitRequested() from your own code, be sure to also provide the code that
calls Quit():

if (myLooper->QuitRequested())
 myLooper->Quit();

See also: QuitRequested() in the BApplication class, Quit()

Run()

virtual thread_id Run(void)

Spawns a thread at the priority level that was specified when the BLooper was constructed
and begins running a message loop in that thread. If successful, this function returns the
thread identifier. If unsuccessful, it returns B_NO_MORE_THREADS or B_NO_MEMORY to
indicate why.

A BLooper can be run only once. If called a second time, Run() returns B_ERROR, but
doesn’t disrupt the message loop already running. < Currently, it drops into the debugger
so you can correct the error. >

The message loop is terminated when Quit() is called, or (potentially) when a
B_QUIT_REQUESTED message is received. This also kills the thread and deletes the
BLooper object.

See also: the BLooper constructor, the BApplication class, Quit()

Thread()

thread_id Thread (void) const

Returns the thread that runs the message loop—or B_ERROR if Run() hasn’t yet been called
to spawn the thread and begin the loop.

Unlock() see Lock()

60 – The Application Kit

Member Functions BLooper

The Application Kit – 61

BMessage

Derived from: public BObject

Declared in: <app/Message.h>

Overview

A BMessage bundles information so that it can be conveyed from one application to
another, one thread of execution to another, or even one object to another. Servers use
BMessage objects to notify applications about events. An application can use them to
communicate with other applications or to initiate activity in a different thread of the
same application. In the Interface Kit, BMessages package information that the user can
drag from one location on-screen and drop on another. They also hold data that’s copied
to the clipboard. Behind the scenes in the Storage Kit, they convey queries and hand back
requested information.

A BMessage is simply a container. The class defines functions that let you put information
into a message, determine what kinds of information are present in a message that’s been
delivered to you, and get the information out. It also has a function that let’s you reply to a
message once it’s received. But it doesn’t have functions that can make the initial delivery.
For that it depends on the help of other classes in the Application Kit, particularly BLooper
and BMessenger. See “Messaging” on page 6 of the chapter introduction for an overview
of the messaging mechanism and how BMessage objects work with these other classes.

Message Contents

When information is added to a BMessage, it’s copied into dynamically allocated memory
and stored under a name. If more than one piece of information is added under the same
name, the BMessage sets up an array of data for that name. The name (along with an
optional index into the array) is then used to retrieve the data.

For example, this code adds a floating-point number to a BMessage under the name “pi”,

BMessage *msg = new BMessage;
msg->AddFloat(3.1416, "pi");

and this code locates it:

float pi = msg->FindFloat("pi");

62 – The Application Kit

Overview BMessage

Names can be arbitrarily assigned. There’s no limit on the number of named entries
a message can contain or on the size of an entry. However, since the search is linear,
combing through a very long list of names to find a particular piece of data may be
inefficient. Also, because of the amount of data that must be moved, an extremely large
message (over 100,000 bytes, say) can slow the delivery mechanism. It’s sometimes better
to put some of the information in a file and just refer to the file in the message.

Message Constants

In addition to named data, a BMessage carries a coded constant that indicates what kind of
message it is. The constant is stored in the object’s one public data member, called what.
For example, a message that notifies an application that the user pressed a key on the
keyboard has B_KEY_DOWN as the what data member (and information about the event
stored under names like “key”, “char”, and “modifiers”). An application-defined message
that delivers a command to do something might have a constant such as SORT_ITEMS,
CORRECT_SPELLING, or SCROLL_TO_BOTTOM in the what field. Simple messages can
consist of just a constant and no data. A constant like RECEIPT_ACKNOWLEDGED or
CANCEL may be enough to convey a complete message.

By convention, the constant alone is sufficient to identify a message. It’s assumed that all
messages with the same constant are used for the same purpose and contain the same kinds
of data.

The what constant must be defined in a protocol known to both sender and receiver. The
constants for system messages are defined in app/AppDefs.h. Each constant names a kind
of event—such as B_KEY_DOWN, B_REFS_RECEIVED, B_PULSE, B_QUIT_REQUESTED, and
B_VALUE_CHANGED—or it carries an instruction to do something (such as B_ZOOM and
B_ACTIVATE).

It’s important that the constants you define for your own messages not be confused
with the constants that identify system messages. For this reason, we’ve adopted a strict
convention for assigning values to all Be-defined message constants. The value assigned
will always be formed by combining four characters into a multicharacter constant; the
characters are limited to uppercase letters and the underbar. For example, B_KEY_DOWN
and B_VALUE_CHANGED are defined as follows:

enum {
 . . .
 B_KEY_DOWN = ‘_KYD‘,
 B_VALUE_CHANGED = ‘_VCH’,
 . . .
};

Use a different convention to define your own message constants (or you’ll risk having
your message misinterpreted as a report of, say, a mouse-moved event). Include some
lowercase letters, numerals, or symbols (other than the underbar) in your multicharacter
constants, or assign numeric values that can’t be confused with the value of four
concatenated characters.

The Application Kit – 63

 BMessage Overview

Type Codes

Data added to a BMessage is associated with a name and stored with two relevant pieces
of information:

• The number of bytes in the data, and
• A type code indicating what kind of data it is.

Type codes are defined in app/AppDefs.h for the common data types listed below:

B_CHAR_TYPE A single character
B_SHORT_TYPE A short integer
B_LONG_TYPE A long integer
B_UCHAR_TYPE An unsigned char (the uchar defined type)
B_USHORT_TYPE An unsigned short (the ushort defined type)
B_ULONG_TYPE An unsigned long (the ulong defined type)
B_BOOL_TYPE A boolean value (the bool defined type)
B_FLOAT_TYPE A float
B_DOUBLE_TYPE A double
B_POINTER_TYPE A pointer of some type (including void *)
B_OBJECT_TYPE An object pointer (such as BMessage *)
B_POINT_TYPE A BPoint object
B_RECT_TYPE A BRect object
B_RGB_COLOR_TYPE An rgb_color structure
B_PATTERN_TYPE A pattern structure
B_ASCII_TYPE Text in ASCII format
B_RTF_TYPE Text in Rich Text Format
B_STRING_TYPE A null-terminated character string
B_MONOCHROME_1_BIT_TYPE Raw data for a monochrome bitmap (1 bit/pixel)
B_GRAYSCALE_8_BIT_TYPE Raw data for a grayscale bitmap (8 bits per pixel)
B_COLOR_8_BIT_TYPE Raw bitmap data in the B_COLOR_8_BIT color space
B_RGB_24_BIT_TYPE Raw bitmap data in the B_RGB_24_BIT color space
B_TIFF_TYPE Bitmap data in the Tag Image File Format
B_REF_TYPE A record_ref
B_RECORD_TYPE A record_id
B_TIME_TYPE A representation of a date
B_MONEY_TYPE A monetary amount
B_RAW_TYPE Raw, untyped data—a stream of bytes

You can add data to a message even if its type isn’t on this list. A BMessage will accept
any kind of data; you must simply invent your own codes for unlisted types.

To prevent confusion, the values you assign to the type codes you invent shouldn’t match
any values assigned to the standard type codes listed above—nor should they match any
codes that might be added to the list in the future. The value assigned to all Be-defined
type codes is a multicharacter constant, with the characters restricted to uppercase letters

64 – The Application Kit

Overview BMessage

and the underbar. For example, B_DOUBLE_TYPE and B_POINTER_TYPE are defined as
follows:

enum {
 . . .
 B_DOUBLE_TYPE = ‘DBLE’,
 B_POINTER_TYPE = ‘PNTR’,
 . . .
};

This is the same convention used for message constants. Be reserves all such combinations
of uppercase letters and underbars for its own use.

Assign values to your constants that can’t be mistaken for values that might be
assigned in system software. If you assign multicharacter values, make sure at least
one of the characters is a lowercase letter, a numeral, or some kind of symbol (other
than an underbar). If you assign numeric values, make sure they don’t fall in the range
0x41414141 through 0x5f5f5f5f. For example, you might safely define constants like
these:

#define PRIVATE_TYPE 0x1f3d
#define OWN_TYPE ‘Rcrd’

Publishing Message Protocols

The messaging system is most interesting—and most useful—when data types are shared
by a variety of applications. Shared types open avenues for applications to cooperate with
each other. You are therefore encouraged to publish the data types that your application
defines and can accept in a BMessage, along with their assigned type codes.

Contact Be (devsupport@be.com) to register any types you intend to publish, so that you
can be sure to choose a code that hasn’t already been adopted by another developer, and
we’ll endeavor to make sure that no one else usurps the code you’ve chosen.

If your application can respond to certain kinds of remote messages, you should also
publish the message protocol—the constant that should initialize the what data member
of the BMessage, the names of expected data entries, the types of data they contain, the
number of data items allowed in each entry, and so on. By making the specifications for
your messages public, you encourage other applications to make use of the services your
application offers, and you contribute to an integrated set of applications on the BeBox.

Error Reporting

BMessage functions that add, find, replace, or get information about message data set a
descriptive error code for the object, which the Error() function returns. The code is set to
B_NO_ERROR if all is well; otherwise it indicates what went wrong during the last function
call. Some functions also return the error code directly, but some do not.

The Application Kit – 65

 BMessage Constructor and Destructor

Before proceeding with the next operation, it’s a good idea to call Error() to be sure there
was no error on the last one.

Data Members

ulong what A coded constant that captures what the message is about.
For example, a message that’s delivered as the result of a
mouse-down event will have B_MOUSE_DOWN as its what
data member. An application that requests information
from another application might put a TRANSMIT_DATA or
SEND_INFO command in the what field. A message that’s
posted as the result of the user clicking a Cancel button
might simply have CANCEL as the what data member and
include no other information.

Constructor and Destructor

BMessage()

BMessage(ulong command)

BMessage(BMessage *message)

BMessage(void)

Assigns command as the BMessage’s what data member, and ensures that the object
otherwise starts out empty. Given the definition of a message constant such as,

#define RECEIPT_ACKNOWLEDGED 0x80

a complete message can be created as simply as this:

BMessage *msg = new BMessage(RECEIPT_ACKNOWLEDGED);

As a public data member, what can also be set explicitly. The following two lines of code
are equivalent to the one above:

BMessage *msg = new BMessage;
msg->what = RECEIPT_ACKNOWLEDGED;

Other information can be added to the message by calling AddData() or a kindred
function.

A BMessage can also be constructed as a copy of another message. It’s necessary to copy
any messages you receive that you want to keep, since the thread that receives the message
automatically deletes it before getting the next message. (More typically, you’d copy any
data you want to save from the message, but not the BMessage itself.)

66 – The Application Kit

Member Functions BMessage

As an alternative to copying a received message, you can sometimes detach it from the
message loop so that it won’t be deleted (see DetachCurrentMessage() in the BLooper
class).

Messages should be dynamically allocated with the new operator, as shown in the
examples above, rather than statically allocated on the stack (since they must live on after
the functions that send them return).

See also: DetachCurrentMessage() in the BLooper class

~BMessage()

virtual ~BMessage(void)

Frees all memory allocated to hold message data. If the message sender is expecting a
reply but hasn’t received one, a default reply (with B_NO_REPLY as the what data member)
is sent before the message is destroyed.

Don’t delete the messages that you post to a thread, send to another application, or assign
to another object. Like letters or parcels sent through the mail, BMessage objects become
the property of the receiver. Each message loop routinely deletes the BMessages it
receives after the application is finished responding to them.

Member Functions

AddData(), AddBool(), AddLong(), AddFloat(), AddDouble(),
AddRef(), AddPoint(), AddRect(), AddObject(), AddString()

long AddData(const char *name, ulong type, const void *data, long numBytes)

long AddBool(const char *name, bool aBool)

long AddLong(const char *name, long aLong)

long AddFloat(const char *name, float aFloat)

long AddDouble(const char *name, double aDouble)

long AddRef(const char *name, record_ref aRef)

long AddPoint(const char *name, BPoint aPoint)

long AddRect(const char *name, BRect aRect)

long AddObject(const char *name, BObject *anObject)

long AddString(const char *name, const char *aString)

These functions put data in the BMessage. AddData() copies numBytes of data into the
object, and assigns the data a name and a type code. The type must be a specific data type;
it should not be B_ANY_TYPE.

The Application Kit – 67

 BMessage Member Functions

AddData() copies whatever the data pointer points to. For example, if you want to add a
string of characters to the message, data should be the string pointer (char *). If you want
to add only the string pointer, not the characters themselves, data should be a pointer to the
pointer (char **).

The other functions—AddBool(), AddLong(), AddFloat(), and so on—are simplified
versions of AddData(). They each add a particular type of data to the message and register
it under the appropriate type code, as shown below:

Function Adds type Assigns type code

AddBool() a bool B_BOOL_TYPE
AddLong() a long or ulong B_LONG_TYPE
AddFloat() a float B_FLOAT_TYPE
AddDouble() a double B_DOUBLE_TYPE
AddRef() a record_ref B_REF_TYPE
AddPoint() a BPoint object B_POINT_TYPE
AddRect() a BRect object B_RECT_TYPE
AddObject() a pointer to an object B_OBJECT_TYPE
AddString() a character string B_STRING_TYPE

Each of these nine type-specific functions calculates the number of bytes in the data they
add. AddString(), like AddData(), takes a pointer to the data it adds. The string must
be null-terminated; the null character is counted and copied into the message. The other
functions are simply passed the data directly. For example, AddLong() takes a long and
AddRef() a record_ref, whereas AddData() would be passed a pointer to a long and a
pointer to a record_ref. AddObject() adds the object pointer it’s passed to the message,
not the object data structure; AddData() would take a pointer to the pointer.

If more than one item of data is added under the same name, the BMessage creates an
array of data for that name. Each successive call appends another data element to the end
of the array. For example, the following code creates an array named “primes” with 37
stored at index 0, 223 stored at index 1, and 1,049 stored at index 2.

BMessage *msg = new BMessage(NUMBERS);
long x = 37;
long y = 223;
long z = 1049;

msg->AddLong("primes", x);
msg->AddFloat("pi", 3.1416);
msg->AddLong("primes", y);
msg->AddData("primes", B_LONG_TYPE, &z, sizeof(long));

Note that entering other data between some of the elements of an array—in this case,
“pi”—doesn’t increment the array index.

All elements in a named array must be of the same type; it’s an error to try to mix types
under the same name.

68 – The Application Kit

Member Functions BMessage

These functions return B_ERROR if the data is too massive to be added to the message,
B_BAD_TYPE if the data can’t be added to an existing array because it’s the wrong type, or
B_NO_ERROR if the operation was successful.

See also: FindData(), GetInfo()

CountNames()

long CountNames(ulong type)

Returns the number of named entries in the BMessage that store data of the specified type.
An array of information held under a single name counts as one entry; each name is
counted only once, no matter how many data items are stored under that name.

If type is B_ANY_TYPE, this function counts all named entries. If type is a specific type, it
counts only entries that store data registered as that type.

See also: GetInfo()

Error()

long Error(void)

Returns an error code that specifies what went wrong with the last BMessage operation,
or B_NO_ERROR if there wasn’t an error. It’s important to check the error code before
continuing with any code that depends on the result of a BMessage function. For example:

float pi = msg->FindFloat("pi");

if (msg->Error() == B_NO_ERROR) {
 float circumference = pi * diameter;
 . . .
}

The error code is reset each time a BMessage function is called that adds, finds, alters, or
provides information about message data. It’s also reset to B_NO_ERROR whenever Error()
itself is called. Cache the return value if you write code that needs to check the current
error code more than once.

Possible error returns include the following:

Error code Is set when

B_NAME_NOT_FOUND Trying to find, or get information about, data stored
under an invalid name

B_BAD_INDEX Trying to find, or get information about, data stored at
an index that’s out-of-range

The Application Kit – 69

 BMessage Member Functions

B_BAD_TYPE Attempting to add data of the wrong type to an
existing array, or asking about named data of a given
type when the name and type don’t match

B_UNEXPECTED_REPLY Trying to send a reply to a message that isn’t from a
remote source

B_DUPLICATE_REPLY Trying to send a reply when one has already been sent
and received

< B_MESSAGE_TO_SELF Attempting to send a reply when the source and
destination threads are the same >

B_BAD_THREAD_ID Attempting to send a reply to a thread that no longer
exists

B_ERROR Attempting to add too much data to a message

See also: AddData(), FindData(), HasData(), GetInfo()

FindData(), FindBool(), FindLong(), FindFloat (), FindDouble(),
FindRef(), FindPoint(), FindRect(), FindObject(), FindString()

void *FindData(const char *name, ulong type, long *numBytes)

void *FindData(const char *name, ulong type, long index, long *numBytes)

bool FindBool(const char *name, long index = 0)

long FindLong(const char *name, long index = 0)

float FindFloat(const char *name, long index = 0)

double FindDouble(const char *name, long index = 0)

record_ref FindRef(const char *name, long index = 0)

BPoint FindPoint(const char *name, long index = 0)

BRect FindRect(const char *name, long index = 0)

BObject *FindObject(const char *name, long index = 0)

const char *FindString(const char *name, long index = 0)

These functions retrieve data from the BMessage. Each looks for data stored under the
specified name. If more than one data item has the same name, an index can be provided to
tell the function which item in the name array it should find. Indices begin at 0. If an index
isn’t provided, the function will find the first, or only, item in the array.

FindData() returns a pointer to the requested data item and records the size of the item (the
number of bytes it takes up) in the variable referred to by numBytes. It asks for data of a
specified type. If the type is ANY_TYPE, it returns a pointer to the data no matter what type
it actually is. But if type is a specific data type, it returns the data only if the name entry
holds data of that particular type.

70 – The Application Kit

Member Functions BMessage

It’s important to keep in mind that FindData() always returns a pointer to the data, never
the data itself. If the data is a pointer—for example, a pointer to an object—it returns a
pointer to the pointer. The variable that’s assigned the returned pointer must be doubly
indirect. For example:

MyClass **object;
long numBytes;
object = (MyClass **)message->FindData("name",
 B_OBJECT_TYPE, &numBytes);
if (message->Error() == B_NO_ERROR) {
 (*object)->GetSomeInformation();
 . . .
}

The other functions similarly return the requested item—but do so as a specifically
declared data type. They match the corresponding Add () functions and search for named
data of the declared type, as described below:

Function Finds data Registered as type

FindBool() a bool B_BOOL_TYPE
FindLong() a long or ulong B_LONG_TYPE
FindFloat() a float B_FLOAT_TYPE
FindDouble() a double B_DOUBLE_TYPE
FindRef() a record_ref B_REF_TYPE
FindPoint() a BPoint object B_POINT_TYPE
FindRect() a BRect object B_RECT_TYPE
FindObject() a pointer to an object B_OBJECT_TYPE
FindString() a character string B_STRING_TYPE

FindString() returns a pointer to a null-terminated string of characters (as would
FindData()); it expects the null-terminator to have been copied into the message. The rest
of the functions return the data directly, not through a pointer. For example, FindLong()
returns a long, whereas FindData() would return a pointer to a long. FindObject() returns
a pointer to an object, whereas FindData(), as illustrated above, would return a pointer to
the pointer to the object.

If you want to keep the data returned by FindData() and FindString(), you must copy it; it
will be destroyed when the BMessage is deleted.

If these functions can’t find any data associated with name, or if they can’t find data in
the name array at index, or if they can’t find name data of the requested type (or the type
the function returns), they register an error. You can rely on the values they return only if
Error() reports B_NO_ERROR and the data was correctly recorded when it was added to the
message.

When they fail, FindData(), FindString(), and FindObject() return NULL pointers.
FindRect() returns an invalid rectangle and FindRef() returns an invalid record_ref with
both data members set to -1. The other functions return values set to 0, which may be
indistinguishable from valid values.

The Application Kit – 71

 BMessage Member Functions

Finding a data item doesn’t remove it from the BMessage.

See also: GetInfo(), AddData()

Flatten(), Unflatten()

void Flatten(char **stream, long *numBytes)
void Unflatten(const char *stream)

These functions write the data stored in a BMessage to a “fiat” (untyped) stream of bytes,
and reconstruct a BMessage object from such a stream.

Flatten() allocates enough memory to hold all the information stored in the BMessage
object, then copies the information to that memory. It places a pointer to the allocated
memory in the variable referred to by the stream argument, and reports the number of
bytes that were allocated in the variable referred to by numBytes. It’s the responsibility of
the caller to free the memory that Flatten() allocates when it’s no longer needed.

Unflatten() empties the BMessage of any information it may happen to contain, then
initializes the object from information stored in stream. The pointer passed to Unflatten()
must be to the start of a stream that Flatten() allocated. Neither function frees the stream.

GetInfo()

bool GetInfo(const char *name, ulong *typeFound, long *countFound = NULL)
bool GetInfo(ulong type, long index,
 char **nameFound,
 ulong *typeFound,
 long *countFound = NULL)

Provides information about the data entries stored in the BMessage.

When passed a name that matches a name within the BMessage, GetInfo() places the type
code for data stored under that name in the variable referred to by typeFound and writes
the number of data items with that name into the variable referred to by countFound. It
then returns TRUE. If it can’t find a name entry within the BMessage, it registers an error,
sets the countFound variable to 0, and returns FALSE (without modifying the typeFound
variable).

When passed a type and an index, GetInfo() looks only at entries that store data of the
requested type and provides information about the entry at the requested index. Indices
begin at 0 and are type specific. For example, if the requested type is B_LONG_TYPE and
the BMessage contains a total of three named entries that store long data, the first entry
would be at index 0, the second at 1, and the third at 2—no matter what other types of data
actually separate them in the BMessage, and no matter how many data items each entry
contains. (Note that the index in this case ranges over entries, each with a different name,
not over the data items within a particular named entry.) If the requested type is

72 – The Application Kit

Member Functions BMessage

B_ANY_TYPE, this function looks at all entries and gets information about the one at index
whatever its type.

If successful in finding data of the type requested at index, GetInfo() returns TRUE. It
provides information about the entry through the last three arguments:

• It places a pointer to the name of the data entry in the variable referred to by
nameFound.

• It puts the code for the type of data the entry contains in the variable referred to by
typeFound. This will be the same as the type requested, unless the requested type
is B_ANY_TYPE, in which case typeFound will be the actual type stored under the
name.

• It records the number of data items stored within the entry in the variable referred to
by countFound.

If GetInfo() can’t find data of the requested type at index, it registers an error, sets the
countFound variable to 0, and returns FALSE.

This version of GetInfo() can be used to iterate through all the BMessage’s data. For
example:

char *name;
ulong type;
long count;

for (long i = 0;
 msg->GetInfo(B_ANY_TYPE, i, &name, &type, &count);
 i++) {
 . . .
}

If the index is incremented from 0 in this way, all data of the requested type will have been
read when GetInfo() returns FALSE. If the requested type is B_ANY_TYPE, as shown above,
it will reveal the name and type of every entry in the BMessage.

See also: HasData(), AddData(), FindData()

The Application Kit – 73

 BMessage Member Functions

HasData(), HasBool(), HasLong(), HasFloat(), HasDouble(),
HasRef(), HasPoint(), HasRect(), HasObject(), HasString()

bool HasData(const char *name, ulong type, long index = 0)

bool HasBool(const char *name, long index = 0)

bool HasLong(const char *name, long index = 0)

bool HasFloat(const char *name, long index = 0)

bool HasDouble(const char *name, long index = 0)

bool HasRef(const char *name, long index = 0)

bool HasPoint(const char *name, long index = 0)

bool HasRect(const char *name, long index = 0)

bool HasObject(const char *name, long index = 0)

bool HasString(const char *name, long index = 0)

These functions test whether the BMessage contains data of a given name and type.

• If type is B_ANY_TYPE and no index is provided, HasData() returns TRUE if the
BMessage stores any data at all under the specified name, regardless of its type, and
FALSE if the name passed doesn’t match any within the object.

• If type is a particular type code, HasData() returns TRUE only if the BMessage has a
name entry that stores data of that type. If the type and name don’t match, it returns
FALSE.

• If an index is supplied, HasData() returns TRUE only if the BMessage has a name
entry that stores a data item of the specified type at that particular index. If the index
is out of range, it returns FALSE.

The other functions—HasBool(), HasFloat(), HasPoint(), and so on—are specialized
versions of HasData(). They test for a particular type of data stored under the specified
name.

An error code is set (which Error() will return) whenever any of these functions returns
FALSE.

See also: GetInfo()

IsEmpty() see MakeEmpty()

IsSenderWaiting() see Sender()

74 – The Application Kit

Member Functions BMessage

IsSystem()

bool IsSystem(void)

Returns TRUE if the what data member of the BMessage object identifies it as a system-
defined message, and FALSE if not.

Unlike the GetInfo() and HasData() functions, a return of FALSE does not indicate an
error. IsSystem() resets the error code that Error() returns to B_NO_ERROR whether the
BMessage is a system message or not.

MakeEmpty(), IsEmpty()

long MakeEmpty(void)

bool IsEmpty(void)

MakeEmpty() removes and frees all data that has been added to the BMessage, without
altering the what constant. It returns B_NO_ERROR.

IsEmpty() returns TRUE if the BMessage has no data (whether or not it was emptied by
MakeEmpty()), and FALSE if it has some.

Both functions reset the error code to B_NO_ERROR in all cases.

See also: RemoveName()

PrintToStream()

void PrintToStream(void) const

Prints information about the BMessage to the standard output stream (stdout). Each entry
of named data is reported in the following format,

#entry name, type = type, count = count

where name is the name that the data is registered under, type is the constant that indicates
what type of data it is, and count is the number of data items in the named array.

RemoveName()

bool RemoveName(const char *name)

Removes all data entered in the BMessage under name, frees the memory that was
allocated to hold the data, and returns TRUE. If there is no data entered under name, this
function registers an error (B_NAME_NOT_FOUND) and returns FALSE.

See also: MakeEmpty()

The Application Kit – 75

 BMessage Member Functions

ReplaceData(), ReplaceBool(), ReplaceLong(), ReplaceFloat(),
ReplaceDouble(), ReplaceRef(), ReplacePoint(), ReplaceRect(),
ReplaceObject(), ReplaceString()

long ReplaceData(const char *name, ulong type,
 const void *data, long numBytes)
long ReplaceData(const char *name, ulong type, long index,
 const void *data, long numBytes)

long ReplaceBool(const char *name, bool aBool)
long ReplaceBool(const char *name, long index, bool aBool)

long ReplaceLong(const char *name, long aLong)
long ReplaceLong(const char *name, long index, long aLong)

long ReplaceFloat(const char *name, float aFloat)
long ReplaceFloat(const char *name, long index, float aFloat)

long ReplaceDouble(const char *name, double aDouble)
long ReplaceDouble(const char *name, long index, double aDouble)

long ReplaceRef(const char *name, record_ref aRef)
long ReplaceRef(const char *name, long index, record_ref aRef)

long ReplacePoint(const char *name, BPoint aPoint)
long ReplacePoint(const char *name, long index, BPoint aPoint)

long ReplaceRect(const char *name, BRect aRect)
long ReplaceRect(const char *name, long index, BRect aRect)

long ReplaceObject(const char *name, BObject *anObject)
long ReplaceObject(const char *name, long index, BObject *anObject)

long ReplaceString(const char *name, const char *aString)
long ReplaceString(const char *name, long index, const char *aString)

These functions replace a data item in the name entry with another item passed as an
argument. If an index is provided, they replace the item in the name array at that index;
if an index isn’t mentioned, they replace the first (or only) item stored under name. If an
index is provided but it’s out-of-range, the replacement fails.

ReplaceData() replaces an item in the name entry with numBytes of data, but only if the
type code that’s specified for the data matches the type of data that’s already stored in the
entry. The type must be specific; it can’t be B_ANY_TYPE.

The other functions are simplified versions of ReplaceData(). They each handle the
specific type of data declared for their last arguments. They succeed if this type matches
the type of data already in the name entry, and fail if it does not.

If successful, all these functions return B_NO_ERROR. If unsuccessful, they register and
return an error code—B_BAD_INDEX if the index is out-of-range, B_NAME_NOT_FOUND if

76 – The Application Kit

Member Functions BMessage

the name entry doesn’t exist, or B_BAD_TYPE if the entry doesn’t contain data of the
specified type.

See also: AddData()

Sender(), IsSenderWaiting()

thread_id Sender(void)

bool IsSenderWaiting(void)

These functions provide information about the sender of a remote message. Sender()
identifies the main thread of the sending application. It returns –1 if the message was
posted from within the application rather than sent from a remote source.

IsSenderWaiting() returns TRUE if the message sender is waiting for a reply, and FALSE if
not. The sender can request and wait for a reply when calling BMessenger’s
SendMessage() function.

See also: SendMessage() in the BMessenger class, SendReply()

SendReply()

long SendReply(BMessage *message)
long SendReply(ulong command)

Sends a reply message back to the sender of the BMessage. This function works only for
BMessage objects that have been:

• Processed through a message loop and delivered to you, and
• Sent from a remote source.

The BMessage object you receive contains information identifying its source, so the reply
message you construct and pass to SendReply() can be delivered to the application that
initiated the communication.

The reply message can be delivered synchronously or asynchronously:

• It’s delivered asynchronously if the message sender asked for a reply when calling
BMessenger’s SendMessage() function. SendMessage() waits for the reply
to arrive before returning. If an expected reply has not been sent by the time the
BMessage object is deleted, a default B_NO_REPLY message is returned to the
sender.

• It’s delivered asynchronously if the message sender isn’t waiting for a reply. In this
case, SendMessage() will have returned immediately after putting the message in
the pipeline, so the reply can’t be delivered to that function. It’s delivered instead
to the main thread of the sending application. The remote BApplication object
dispatches it by calling ReplyReceived()-

The Application Kit – 77

 BMessage Operators

If SendReply() is called when a reply is inappropriate—perhaps because one was already
sent, or because the original message was posted from within the application—message is
deleted and an error is recorded.

If you wish to delay sending a reply and keep the message beyond the time it’s scheduled
to be deleted, you may be able to detach the message from the message loop. See
DetachCurrentMessage() in the BLooper class.

The message that’s passed to SendReply() should not be modified, passed to another
messaging function, used as a model message, or deleted. It becomes the responsibility of
the messaging service and the eventual receiver.

If a command is passed to SendReply() rather than a message, the function constructs the
reply BMessage, initializes its what data member with the command constant, and sends it
just like any other reply.

This function returns B_NO_ERROR if the reply is successfully sent. If not, it returns one of
the error codes explained under the Error() function.

See also: SendMessage() in the BMessenger class, DetachCurrentMessage() in the
BLooper class, Sender(), Error()

Unflatten() see Flatten()

Operators

new

void *operator new(size_t numBytes)

Allocates memory for a BMessage object, or takes the memory from a previously allocated
cache. The caching mechanism is an efficient way of managing memory for objects that
are created frequently and used for short periods of time, as BMessages typically are.

delete

void operator delete(void *memory, size_t numBytes)

Frees memory allocated by the BMessage version of new, which may mean restoring the
memory to the cache.

78 – The Application Kit

Operators BMessage

The Application Kit – 79

BMessageQueue

Derived from: public BObject

Declared in: <app/MessageQueue.h>

Class Description

A BMessageQueue maintains a queue where messages (BMessage objects) are temporarily
stored as they wait to be received in a message loop. Every BLooper object uses a
BMessageQueue to manage the flow of incoming messages; all messages delivered to the
BLooper’s thread are placed in the queue. The BLooper removes the oldest message from
the queue, hands it off to a BReceiver, waits for the thread to finish its response, deletes
the message, then returns to the queue to get the next message.

For the most part, applications can ignore the queue—that is, they can treat it as an
implementation detail. Messages are posted to a thread (placed in the queue) by calling
BLooper’s PostMessage() function. Or they can be sent to the main thread of another
application by constructing a BMessenger object and calling SendMessage().

A BLooper calls upon a BReceiver’s MessageReceived() function—and other, message-
specific hook functions—to handle the messages it takes from the queue. Applications can
simply implement the functions that are called to respond to received messages and not
bother about the mechanics of the message loop and queue.

However, if necessary, you can manipulate the queue directly, or perhaps just look ahead
to see what messages are coming. The BLooper has a MessageQueue() function that
returns its BMessageQueue object.

See also: the BMessage class, MessageQueue() in the BLooper class,
RemoveMouseMessages() in the BWindow class of the Interface Kit

Constructor and Destructor

BMessageQueue()

BMessageQueue(void)

Ensures that the queue starts out empty. Messages are placed in the queue by calling
AddMessage() and are removed by calling NextMessage().

80 – The Application Kit

Member Functions BMessageQueue

BMessageQueues are constructed by BLooper objects.

See also: AddMessage(), NextMessage()

~BMessageQueue()

virtual ~MessageQueue(void)

Deletes all the objects in the queue and all the data structures used to manage the queue.

Member Functions

AddMessage()

void AddMessage(BMessage *message)

Adds message to the queue.

See also: NextMessage()

CountMessages()

long CountMessages(void) const

Returns the number of messages currently in the queue.

FindMessage()

BMessage *FindMessage(ulong what, long index) const
BMessage *FindMessage(long index) const

Returns a pointer to the BMessage that’s positioned in the queue at index, where indices
begin at 0 and count only those messages that have what data members matching the what
value passed as an argument. If a what argument is omitted, indices count all messages in
the queue. The lower the index, the longer the message has been in the queue.

If no message matches the specified what and index criteria, this function returns NULL.

The returned message is not removed from the queue.

See also: NextMessage()

The Application Kit – 81

 BMessageQueue Member Functions

IsEmpty()

bool IsEmpty(void) const

Returns TRUE if the BMessageQueue contains no messages, and FALSE if it has at least one.

See also: CountMessages()

Lock(), Unlock()

bool Lock(void)

void Unlock(void)

These functions lock and unlock the BMessageQueue, so that another thread won’t alter
the contents of the queue while it’s being read. Lock() doesn’t return until it has the queue
locked; it always returns TRUE. Unlock() releases the lock so that someone else can lock it.
Calls to these functions can be nested.

See also: Lock() in the BLooper class

NextMessage()

BMessage *NextMessage(void)

Returns the next message—the message that has been in the queue the longest—and
removes it from the queue. If the queue is empty, this function returns NULL.

RemoveMessage()

void RemoveMessage(BMessage *message)
void RemoveMessage(ulong what)

Removes a particular message from the queue and deletes it—or removes and deletes all
messages with a what data member matching the what argument passed.

See also: FindMessage()

Unlock() see Lock()

82 – The Application Kit

Member Functions BMessageQueue

The Application Kit – 83

BMessenger

Derived from: public BObject

Declared in: <app/Messenger.h>

Overview

A BMessenger object is an agent for sending messages to another application. Each
BMessenger can deliver messages to one, and only one, remote destination. The messages
it sends are received in the other application’s main thread of execution (by the remote
BApplication object). They’re likely to be dispatched by calling the BApplication object’s
MessageReceived() function.

An application can construct as many BMessengers as it needs to communicate with other
applications. The only restriction is that the remote application must be running at the time
the BMessenger is constructed.

An application that’s designed to receive remote messages can facilitate the process in
either of two ways:

• It can publish its signature and protocols for the messages it responds to. Other
applications can use the signature to construct a BMessenger, then create BMessage
objects in the correct format and have the BMessenger send them.

• It can provide the code for a proxy object based on the BMessenger class (or a
proxy that incorporates a BMessenger object as a data member). Other applications
would simply need to include the proxy and call its functions. The functions would
send the required remote messages and wait for replies as appropriate.

A proxy hides the underlying messaging that takes place. For example, a proxy class
that has a BMessenger as a sender data member might have functions that would work
something like this:

bool MyProxy::GetSynonym(const char *word, char *buffer)
{
 BMessage *msg;
 BMessage *reply;
 bool result = FALSE;
 . . .
 msg = new BMessage(GET_SYNONYM);
 . . .
 msg->AddString("word", some_word);
 sender->SendMessage(msg, &reply);

84 – The Application Kit

Constructor and Destructor BMessenger

 . . .
 if (reply->what == SYNONYM_FOUND) {
 strcpy(buffer, reply->FindString("synonym"));
 result = TRUE;
 }
 delete reply;
 return result;
}

A function like this keeps all the messaging details from the caller. Consequently, it
presents a simplified interface to the services that the remote application provides.

Constructor and Destructor

BMessenger()

BMessenger(ulong signature, thread_id thread = –1)

Initializes the BMessenger so that it can send messages to an application identified by
its signature or by its main thread of execution. If the signature passed is NULL, the
application is identified by its main thread only. If the thread specified is –1, as it is by
default, the application is identified by its signature only.

If both a real signature and a valid thread identifier are passed, they must match—the
thread must belong to the application that the signature identifies. If more than one
instance of the signature application happens to be running, the thread picks out a
particular instance as the BMessenger’s target. Without a valid thread argument, the
constructor arbitrarily picks one of the instances.

If the constructor can’t make a connection to the signature application—possibly because
no such application is running—it registers a B_BAD_VALUE error, which the Error()
function will return. If passed an invalid thread identifier, it registers a B_BAD_THREAD_ID
error. If the thread and the signature don’t match, it registers a B_MISMATCHED_VALUES
error.

It’s a good idea to check for an error before asking the new BMessenger to send a
message. For example:

BMessenger *outlet = new BMessenger(some_signature);
if (outlet->Error() == B_NO_ERROR) {
 BMessage *msg = new BMessage(CHANGE_NAME);
 msg->AddString("old", formerName);
 msg->AddString("new", currentName);
 outlet->SendMessage(msg);
 if (outlet->Error() == B_NO_ERROR)
 . . .
}

The Application Kit – 85

 BMessenger Member Functions

A BMessenger can send messages to only one destination. Once constructed, you can
cache it and reuse it repeatedly to communicate with that application. It should be freed
after it’s no longer needed (or if there’s a long delay between messages and it’s possible
that the user might have quit the destination application and restarted it again).

The BRoster object can provide signature and thread information about possible
destinations.

See also: the BRoster and BMessage classes, Error()

~BMessenger()

virtual ~BMessenger(void)

Frees all memory allocated by the BMessenger, if any was allocated at all.

Member Functions

Error()

long Error(void)

Returns an error code that describes what went wrong with the attempt to construct
the BMessenger or to have it send a message, or B_NO_ERROR if nothing went wrong.
Possible errors include:

B_BAD_VALUE The constructor can’t connect the BMessenger to the
remote application, most likely because an
application with the specified signature isn’t running.

B_MISMATCHED_VALUES The constructor failed because the specified signature
and thread arguments designated two different
applications.

B_BAD_THREAD_ID The constructor can’t establish a connection to the
specified thread, perhaps because there is no such
thread or perhaps because the thread is not a main
thread.

B_BAD_PORT_ID SendMessage() can’t deliver the message, most
likely because the destination application has been
killed.

Calling this function resets the error code to B_NO_ERROR, so you must cache the value
returned if you need to check the current error more than once.

86 – The Application Kit

Operators BMessenger

SendMessage()

long SendMessage(BMessage *message)
long SendMessage(ulong command)
long SendMessage(BMessage *message, BMessage **reply)
long SendMessage(ulong command, BMessage **reply)

Sends a message to the destination application. The message becomes the responsibility
of the BMessenger. You shouldn’t try to modify it, post it, send it again, use it as a model
message, or free it; it will be freed automatically when it’s no longer needed.

If a command is passed instead of a full message, this function constructs a BMessage
object with command as its what data member and sends it just like any other message.
This is just a convenience for sending messages that contain no data. The following two
lines of code are roughly equivalent:

myMessenger->SendMessage(NEVERMORE);
myMessenger->SendMessage(new BMessage(NEVERMORE));

Supplying a reply argument requests a message back from the destination. Before
returning, SendMessage() waits for the reply and places a pointer to the BMessage it
receives in the variable that reply refers to. If a reply isn’t requested, SendMessage()
returns immediately.

The caller is responsible for deleting the reply message. If the destination doesn’t send a
reply, the system sends one with B_NO_REPLY as the what data member. Check the reply
message before proceeding. If there’s an error in sending the message, the variable that
reply refers to is set to NULL.

If all goes well, SendMessage() returns B_NO_ERROR. If not, it returns an error code,
typically B_BAD_PORT_ID. The return value is also registered with the Error() function; see
that function for more information.

(It’s an error for the main thread of an application to send a message to itself and expect a
reply. The thread can’t respond to the message and wait for a reply at the same time.)

See also: SendReply() in the BMessage class

Operators

new

void *operator new(size_t numBytes)

Prevents confusion with a private version of the new operator used internally by the
Application Kit. This version of new is no different from the operator used with other
classes.

The Application Kit – 87

BReceiver

Derived from: public BObject

Declared in: <app/Receiver.h>

Overview

BReceiver objects are the primary handlers for messages received in a message loop,
whether posted from within an application or sent from a remote source.

This is an abstract class. It declares just two functions, both of them hook functions that
derived classes can override:

• The principal hook—MessageReceived()—is called by BLooper’s
DispatchMessage() function to pass an incoming message from the BLooper to
the BReceiver. A derived class must implement this function to handle expected
messages.

• The second hook function—Looper()—permits derived classes to tie a BReceiver
to one particular thread, so that the only messages it can receive are ones posted to
that thread.

A receiver can be designated for a message when BLooper’s PostMessage() function
is called to post it. The messaging mechanism eventually passes this receiver to
DispatchMessage(), so that the message can be delivered to its designated destination.

Hook Functions

Looper() Can be implemented to associate the BReceiver with a
particular BLooper object.

MessageReceived() Implemented to handle received messages.

88 – The Application Kit

Constructor and Destructor BReceiver

Constructor and Destructor

BReceiver()

BReceiver(void)

Initializes the BReceiver by registering it with the messaging system.

~BReceiver()

virtual ~BReceiver(void)

Removes the BReceiver’s registration.

Member Functions

Looper()

virtual BLooper *Looper(void) const

Implemented by derived classes to associate the BReceiver with a particular BLooper
object. By default, this function returns NULL to indicate that the BReceiver is not tied to
any BLooper, but is free to receive messages posted to any thread.

However, if a derived class implements this function to return a particular BLooper object,
messages can be targeted to the BReceiver only if they’re posted to that BLooper. This
discipline is imposed by BLooper’s PostMessage() function.

In the Interface Kit, the BView class overrides Looper() so that a BView’s
MessageReceived() function will be called only for messages posted to the BWindow
object where the view is located. The BLooper class overrides it so that a BLooper can’t
act as a message receiver for messages posted to any other thread but its own.

See also: PostMessage() in the BLooper class

MessageReceived()

virtual void MessageReceived(BMessage *message)

Implemented by derived classes to respond to messages that BLooper objects dispatch to
the BReceiver.

All messages are passed to BReceiver objects, but system messages are passed by calling a
message-specific function, not MessageReceived(). These specific functions are defined
by classes derived from BReceiver—especially BWindow and BView in the Interface Kit
and BLooper and BApplication in this Kit. For example, the BApplication

The Application Kit – 89

 BReceiver Member Functions

class defines a ReadyToRun() function to respond to B_READY_TO_RUN messages, and the
BView class defines a KeyDown() function to respond to B_KEY_DOWN messages.

Every system message is matched to a specific hook function. All other messages—
those defined by applications rather than the kits—are dispatched by calling
MessageReceived().

The default (BReceiver) implementation of MessageReceived() does nothing; it’s empty.
You must implement it to handle all the various messages that might be dispatched to the
BReceiver. It can distinguish between messages by the value recorded in the what data
member of the BMessage object. For example:

void MyReceiver::MessageReceived(BMessage *message)
{
 switch (message->what) {
 case COMMAND_ONE:
 . . .
 break;
 case COMMAND_TWO:
 . . .
 break;
 case COMMAND_THREE:
 . . .
 break;
 default:
 MyBaseClass::MessageReceived(message);
 break;
 . . .
 }
}

When defining a version of MessageReceived(), it’s always a good idea to incorporate
the inherited version as well, as shown in the example above. This ensures that any
messages handled by base versions of the function are not overlooked.

See also: PostMessage() and DispatchMessage() in the BLooper class

90 – The Application Kit

Member Functions BReceiver

The Application Kit – 91

BRoster

Derived from: none

Declared in: <app/Roster.h>

Overview

The BRoster object keeps a roster of all applications currently running on the BeBox. It
can provide information about any of those applications, add another application to the
roster by launching it, or get information about an application to help you decide whether
to launch it.

There’s just one roster and it’s shared by all applications. When an application starts up, a
global variable, be_roster, is initialized to point to the shared object. You always access
the roster through this variable; you never directly instantiate a BRoster in application
code.

The BRoster identifies applications in three ways:

• By references to the executable files where they reside.

• By their signatures. The signature is a unique identifier for the application assigned
in a resource at compile time or by the BApplication constructor at run time. You
can obtain signatures for the applications you develop by contacting Be’s developer
support staff. They can also tell you what the signatures of other applications are.
(See the introduction to this chapter for more on signatures.)

• At run time, by their main threads. The main thread is the thread in which the
application is launched and in which its main() function is executed.

If an application is launched more than once, the roster will include one entry for each
instance of the application that’s running. These instances will have the same signature,
but different main threads.

In one case, the BRoster also recognizes running applications by their team identifiers.
Each application is a “team” of threads sharing an address space.

92 – The Application Kit

Constructor and Destructor BRoster

Constructor and Destructor

The BRoster class doesn’t have a public constructor or destructor. This is because
an application doesn’t need to construct or destroy a BRoster of its own. The system
constructs one BRoster object for all applications and assigns it to the be_roster global
variable. A BRoster is therefore readily available from the time the application is launched
until the time it quits.

Member Functions

GetAppInfo(), GetRunningAppInfo(), GetActiveAppInfo()

long GetAppInfo(ulong signature, app_info *appInfo) const
long GetAppInfo(record_ref executable, app_info *appInfo) const

long GetRunningAppInfo(thread_id thread, app_info *appInfo) const

long GetActiveAppInfo(app_info *appInfo) const

These functions provide information about the application identified by its signature, by
a database reference to its executable file, by its main thread, or simply by its status as
the current active application. They place the information in the structure referred to by
appInfo.

GetRunningAppInfo() reports on a particular instance of a running application, the one for
which thread was created at launch. GetActiveAppInfo() similarly reports on a running
application, the one that happens to be the current active application.

If it can, GetAppInfo() also tries to get information about an application that’s running. If
a running application has the signature identifier or was launched from the executable file,
GetAppInfo() queries it for the information. If more than one instance of the signature
application is running, or if more than one instance was launched from the same
executable file, it arbitrarily picks one of the instances to report on.

Even if the application isn’t running—if none of the applications currently in the roster are
identified by signature or were launched from the executable file—GetAppInfo() can still
provide some information about it, perhaps enough information for you to call Launch()
to get it started.

If they’re able to fill in the app_info structure with meaningful values, these functions
return B_NO_ERROR. However, GetRunningAppInfo() returns B_BAD_THREAD_ID if
thread isn’t, on the face of it, a valid thread identifier or if it doesn’t identify the main thread
of a running application. < GetActiveAppInfo() returns the same thing if there’s no active
application. > GetAppInfo() returns B_BAD_VALUE if the signature doesn’t correspond to
an application on-disk, and simply B_ERROR if the executable doesn’t refer to a valid record
in the database or doesn’t refer to a record for an executable file.

The Application Kit – 93

 BRoster Member Functions

The app_info structure contains the following fields:

ulong signature The signature of the application. (This will be the
same as the signature passed to GetAppInfo().)

thread_id thread The identifier for the application’s main thread of
execution, or –1 if the application isn’t running.
(This will be the same as the main thread passed to
GetRunningAppInfo().)

port_id port The port where the application’s main thread receives
messages, or –1 if the application isn’t running.

record_ref ref A reference to the file that was, or could be,
executed to run the application. (This will be the
same as the executable passed to GetAppInfo().)

ulong flags A mask that contains information about the behavior
of the application.

The flags mask can be tested (with the bitwise & operator) against these two constants:

B_BACKGROUND_APP The application won’t appear in the Browser’s
application menu (because it doesn’t have a user
interface).

B_ARGV_ONLY The application can’t receive messages. Information
can be passed to it at launch only, in an array of
argument strings (as on the command line).

The flags mask also contains a value that explains the application’s launch behavior.
This value must be filtered out of flags by combining flags with the B_LAUNCH_MASK
constant. For example:

ulong behavior = theInfo.flags & B_LAUNCH_MASK;

The result will match one of these three constants:

B_EXCLUSIVE_LAUNCH The application can be launched only if an application
with the same signature isn’t already running.

B_SINGLE_LAUNCH The application can be launched only once from
the same executable file. However, an application
with the same signature might be launched from a
different executable. For example, if the user copies an
executable file to another directory, a separate instance
of the application can be launched from each copy.

94 – The Application Kit

Member Functions BRoster

B_MULTIPLE_LAUNCH There are no restrictions. The application can
be launched any number of times from the same
executable file.

These flags affect BRoster’s Launch() function. Launch() can always start up a
B_MULTIPLE_LAUNCH application. However, it can’t launch a B_SINGLE_LAUNCH
application if a running application was already launched from the same executable file.
It can’t launch a B_EXCLUSIVE_LAUNCH application if an application with the same
signature is already running.

See also: “Launch Information” on page 19 of the chapter introduction, GetAppInfo() in
the BApplication class, Launch()

GetThreadList()

void GetThreadList(BList *threads) const
void GetThreadList(ulong signature, BList *threads) const

Fills in the threads BList with the main thread_ids of running applications. The main
thread is the thread that executes the application’s main() function and that receives
messages from remote sources.

Each item in the threads list will be of type thread_id. It must be cast to that type when
retrieving it from the list, as follows:

thread_id who = (thread_id)threads->ItemAt(some index);

The list will contain one item for each instance of an application that’s running. For
example, if the same application has been launched three times, the list will include the
main thread_ids for all three running instances of that application.

If a signature is passed, the list identifies only applications running under that signature. If
a signature isn’t specified, the list identifies all running applications.

See also: ThreadFor(), the BMessenger constructor

IsRunning() see ThreadFor()

The Application Kit – 95

 BRoster Member Functions

Launch()

long Launch(ulong signature, BMessage *message = NULL,
 thread_id *mainThread = NULL)
long Launch(ulong signature, BList *messages,
 thread_id *mainThread - NULL)
long Launch(ulong signature, long argc, char **argv,
 thread_id *mainThread = NULL)
long Launch(record_ref executable, BMessage *message = NULL,
 thread_id *mainThread = NULL)
long Launch(record_ref executable, BList *messages,
 thread_id *mainThread = NULL)
long Launch(record_ref executable, long argc, char **argv,
 thread_id *mainThread = NULL)

Launches the application identified by its signature or by a reference to its executable file
in the database.

If a message is specified, it will be sent to the application on-launch and will be received
and responded to before the application is notified that it’s ready to run. This is
appropriate only for a message that helps the launched application configure itself before
it starts getting other messages. To launch an application and send it an ordinary message,
call Launch() to get it running, then set up a BMessenger object for the application and
call BMessenger’s SendMessage() function.

Similarly, if a list of messages is specified, each one will be delivered on-launch. (Like the
BMessages, the BList object will be deleted for you).

Instead of messages, you can launch an application with an array of argument strings that
will be passed to its main() function, argv contains the array and argc counts the number
of strings. If the application accepts messages, this information will also be packaged in a
B_ARGV_RECEIVED message that the application will receive on-launch.

If successful, this function places the identifier for the newly launched application’s
main thread in the variable referred to by mainThread and returns B_NO_ERROR. If
unsuccessful, it sets the mainThread variable to –1, destroys all the messages it was passed
(and the BList that contained them), and returns one of the following error codes:

B_BAD_VALUE The signature passed is not valid or it doesn’t
designate an available application.

 This return value may also signify that an attempt
is being made to send an on-launch message to an
application that doesn’t accept messages (that is, to
a B_ARGV_ONLY application).

B_ERROR The executable file can’t be found.

96 – The Application Kit

Member Functions BRoster

B_ALREADY_RUNNING The application is already running and can’t be
launched again (it’s a B_SINGLE_LAUNCH or B_
EXCLUSIVE_LAUNCH application).

B_LAUNCH_FAILED The attempt to launch the application failed for some
other reason, such as insufficient memory.

See also: the BMessenger class, GetAppInfo()

RemoveApplication(), RemoveTeam()

void RemoveApplication(thread_id thread)

void RemoveTeam(team_id team)

< These functions remove an application from the roster of running applications.
RemoveApplication() removes the application identified by its main thread.
RemoveTeam() removes the application corresponding to the team identifier. >

ThreadFor(), IsRunning()

thread_id ThreadFor(ulong signature) const
thread_id ThreadFor(record_ref executable) const

bool lsRunning(ulong signature) const
bool lsRunning(record_ref executable) const

Both these functions query whether the application identified by its signature, or by a
reference to its executable file in the database, is running. ThreadFor() returns its main
thread if it is, and B_ERROR if it’s not. IsRunning() returns TRUE if it is, and FALSE if it’s
not.

If the application is running, you probably will want its main thread (to set up a
BMessenger, for example). Therefore, it’s most economical to simply call ThreadFor() and
forego IsRunning().

If more than one instance of the signature application is running, or if more than one
instance was launched from the same executable file, ThreadFor() arbitrarily picks one of
the instances and returns its main thread.

See also: GetThreadList()

The Application Kit – 97

Global Variables,
Constants, and Defined Types

This section lists the global variables, constants, and defined types that are defined by the
Application Kit. There’s just one defined type, app_info, three global variables, be_app,
be_roster, and be_clipboard, and a handful of constants. Error codes are documented in
the chapter on the Support Kit.

Although the Application Kit defines the constants for all system messages (such as
B_REFS_RECEIVED, B_ACTIVATE, and B_KEY_DOWN), only those that mark application
messages are listed here. Those that designate interface messages are documented in the
chapter on the Interface Kit.

Global Variables

be_app

<app/Application.h>

BApplication *be_app

This variable provides global access to your application’s BApplication object. It’s
initialized by the BApplication constructor.

See also: the BApplication class

be_clipboard

<app/Clipboard.h>

BClipboard *be_clipboard

This variable gives applications access to the shared repository of data for cut, copy, and
paste operations. It’s initialized at startup; an application has just one BClipboard object.

See also: the BClipboard class

98 – The Application Kit

Constants	 Global	Variables,	Constants,	and	Defined	Types	

be_roster

<app/Roster.h>

BRoster *be_roster

This variable points to the global BRoster object that’s shared by all applications. The
BRoster keeps a roster of all running applications and can add applications to the roster by
launching them.

See also: the BRoster class

Constants

Application Flags

<app/Roster.h>

Defined constant

B_BACKGROUND_APP
B_ARGV_ONLY
B_LAUNCH_MASK

These constants are used to get information from the flags field of an app_info structure.

See also: GetAppInfo() in the BRoster class, “Launch Constants” below

Application Messages

<app/AppDefs .h>

Enumerated constant Enumerated constant

B_ACTIVATE B_ARGV_RECEIVED
 B_REFS_RECEIVED
B_READY_TO_RUN B_PANEL_CLOSED
B_APP_ACTIVATED B_VOLUME_MOUNTED
 B_VOLUME_UNMOUNTED
B_ABOUT_REQUESTED
B_QUIT_REQUESTED B_PULSE

These constants represent the system messages that the Application Kit recognizes. See the
introduction to this chapter and the BApplication class for details.

This isn’t a complete list of all the message constants defined by the Application Kit—
they’re just the constants for system messages that the Kit expects the main thread to get
and the BApplication object to handle. The Application Kit defines constants for all

The Application Kit – 99

 Global	Variables,	Constants,	and	Defined	Types	 Constants

system-defined messages, but handles just a few. The others are handled by other kits
(especially the Interface Kit) and are documented in the chapters on those kits.

See also: “Application Messages” on page 13 of the chapter introduction

Cursor Constants

<app/AppDefs.h>

const unsigned char B_HAND_CURSOR[]

This constant contains all the data needed to set the cursor to the standard hand image.

See also: SetCursor() in the BApplication class

Data Type Codes

<app/AppDefs.h>

Enumerated constant Enumerated constant

B_CHAR_TYPE B_ASCII_TYPE
B_SHORT_TYPE B_RTF_TYPE
B_LONG_TYPE B_STRING_TYPE
B_UCHAR_TYPE B_MONOCHROME_1_BIT_TYPE
B_USHORT_TYPE B_GRAYSCALE_8_BIT_TYPE
B_BOOL_TYPE B_COLOR_8_BIT_TYPE
B_ULONG_TYPE B_RGB_24_BIT_TYPE
B_FLOAT_TYPE B_TIFF_TYPE
B_DOUBLE_TYPE B_REF_TYPE
B_POINTER_TYPE B_RECORD_TYPE
B_OBJECT_TYPE B_TIME_TYPE
B_POINT_TYPE B_MONEY_TYPE
B_RECT_TYPE B_RAW_TYPE
B_RGB_COLOR_TYPE
B_PATTERN_TYPE B_ANY_TYPE

These constants are used in a BMessage object to describe the type of data the message
holds. See the BMessage class for more information on what they mean.

See also: “Type Codes” on page 63 of the BMessage class overview

100 – The Application Kit

Constants	 Global	Variables,	Constants,	and	Defined	Types	

Launch Constants

<app/Roster.h>

Defined constant

B_MULTIPLE_LAUNCH
B_SINGLE_LAUNCH
B_EXCLUSIVE_LAUNCH

These constants explain whether an application can be launched any number of times, only
once from a particular executable file, or only once for a particular application signature.
This information is part of the flags field of an app_info structure and can be extracted
using the B_LAUNCH_MASK constant.

See also: GetAppInfo() in the BRoster class, “Application Flags” above

Message Constants

<app/AppDefs .h>

Enumerated constant

B_NO_REPLY

B_CUT
B_COPY
B_PASTE

These constants mark messages that the system puts together, but that aren’t dispatched
like system messages.

• B_NO_REPLY initializes the what data member of a BMessage that’s sent as a
default reply to another message when the original message is about to be deleted.
The default reply is sent only if a reply is expected and none has been sent.

• B_CUT, B_COPY, and B_PASTE initialize the what data members of BMessages
that the Command-x, Command-c, and Command-v shortcuts generate and that
BTextView objects (in the Interface Kit) respond to.

See also: SendReply() in the BMessage class, the BTextView class in the Interface Kit,
“Application Messages” on page 98

The Application Kit – 101

 Global	Variables,	Constants,	and	Defined	Types		 Defined	Types

Defined Types

app_info

<app/Roster.h>

typedef struct {
 ulong signature;
 thread_id thread;
 port_id port;
 record_ref ref;
 ulong flags;
} app_info

This structure is used by BRoster’s GetAppInfo(), GetRunningAppInfo(), and
GetActiveAppInfo() functions to report information about an application. See those
functions for a description of its various fields.

See also: GetAppInfo() in the BRoster and BApplication classes

102 – The Application Kit

Defined	Types	 Global	Variables,	Constants,	and	Defined	Types	

The Storage Kit – 1

3 The Storage Kit

Introduction 5

BDatabase 7
Overview. .7

Tables .8
BDatabase as a BMessenger8

Constructor and Destructor .8
Member Functions .9

BDirectory 13
Overview. 13
Constructor and Destructor . 13
Member Functions . 14

BFile 17
Overview. 17

Locating and Creating Files 17
Data and Resources . 17
Opening and Closing Files 18

Constructor and Destructor . 18
Member Functions . 19

BQuery 29
Overview. 29

Defining a Query . 29
Fetching . 30
The Tables . 30
The Predicate. 31

Complex Predicates 31
Fields and Constants 32

Live Queries . 32
Preparing your Application for a Live Query . . . 32

Hook Functions . 34
Constructor and Destructor . 34
Member Functions . 35

2 – The Storage Kit

BRecord 41
Overview. 41

Creating a New Record 41
Setting Data in the BRecord 42
Committing a BRecord 43

Record ID Numbers . 43
Record ID Fields 43

The Record Ref Structure 44
Retrieving an Existing Record 44

Data Examination. 44
Data Modification 45

Constructor and Destructor . 45
Member Functions . 46

BStore 51
Overview. 51

Files, Records, and BStores 51
How to Set a Ref 52
Altering the File System 52
Passing Files to Other Threads 53

Custom Files . 53
Adding Data to a File Record 54
File Record Caveats 54

The Store Creation Hook. 55
Other Hook Providers 56
Hook Data . 56
Hook Function Rules 57

Constructor and Destructor . 57
Member Functions . 57
Operators. 60

BTable 61
Overview. 61

Creating a Table . 62
Adding Fields to a Table 62

Field Keys . 63
Field Flags . 64

Table Inheritance . 64
Type and App. 65
Using a BTable . 65

BTables and BRecords 65
BTable and BQuery. 66

Constructor and Destructor . 66
Member Functions . 67

BVolume 71

The Storage Kit – 3

Overview. 71
Retrieving a BVolume . 71
Mounting and Unmounting 72
The File System . 73

Volumes in Pathnames 73
The Database . 74

Constructor and Destructor . 74
Member Functions . 75
Global Functions. 77

Global Functions, Constants, and Defined Types 79
Global Functions. 79
Constants. 81
Defined Types . 83

System Tables and Resources 85
System Tables . 85
System Resources . 89

4 – The Storage Kit

Storage Kit Inheritance Hierarchy

BObject
(Support Kit)

BVolume

BStore

BQuery

BDatabase

BTable

BDirectory

BRecord

BFile

BMessenger
(AppKit)

The Storage Kit – 5

3 The Storage Kit

The Storage Kit lets your application store and retrieve persistent data. Persistent data
doesn’t disappear with your application; it’s stored on a long-term storage device, such as
a hard disk, floppy disk, CD-ROM, and so on, so you can return to it later.

The classes provided by the Kit fall into three categories:

• The database classes (BDatabase, BTable, BRecord, and BQuery) let you store
data as “structured entries” or records. The content of a record—the number of
individual datums it contains, and the type of values each datum can assume—
depends on the record’s structure. What this lacks in flexibility is made up for in
retrieval power: Because the data is structured, you can locate a specific entry based
on the values that are stored in the record.

• The file system classes (BStore, BDirectory, and BFile) provide a means for storing
data in files. A file isn’t (naturally) structured so its content is less restricted than
that of a record.

• Instances of the BVolume class represent the actual storage devices themselves.
BVolumes objects are used in both database and file-system applications.

It’s suggested that you explore the Storage Kit by visiting the BVolume class description
first, and then proceeding to the database or file system classes in the orders given above.

6 – The Storage Kit

The Storage Kit – 7

BDatabase

Derived from: public BMessenger

Declared in: <storage/Database.h>

Overview

A BDatabase object represents a collection of structured, persistent data called a database.
Each BDatabase object that you introduce to your application corresponds to an actual
database and gives you access to it. The database exists without the benefit of an
accompanying object. In other words, databases are the real thing, BDatabases are merely
representatives.

You never construct BDatabase objects yourself; instead, you ask the system to construct
them and return them to you. There are two ways to do this:

• You can ask a BVolume object for its BDatabase. Databases are contained within
volumes. The relationship between databases and volumes is one-to-one: Each
volume contains exactly one database; a single database is contained in exactly one
volume.

 The BVolume Database() function returns the BDatabase object that represents the
volume’s database. Of course, this methodology merely shifts the burden to finding
BVolume objects. This subject (how to retrieve BVolume objects) is discussed in
the BVolume class description. A cogent point, for the present topic, is that you can
walk down your application’s “volume list” through repeated calls to the global
volume_at() function. You can then pluck the BDatabase from each BVolume, as
demonstrated below:

void DatabasePlucker(BList *&List)
{
 BVolume this_vol;
 BDatabase *this_db;
 long counter = 0;

 while((this_vol = volume_at(counter++)))
 {
 this_db = this_vol->Database();
 dList->AddItem(this_db);
 }
}

• You can retrieve a BDatabase based on a database ID. Every database is identified
by a system-wide unique integer of type database_id. By passing a valid database

8 – The Storage Kit

Constructor and Destructor BDatabase

 ID to the global database_for() function, you can retrieve the BDatabase
object that represents the identified database. Database ID numbers appear, most
commonly, as part of the record_ref structure. The record_ref structure is used to
associate, or refer, a BFile or BDirectory object to an item in the file system.

Just as you never construct BDatabase objects, so do you not destroy them. These tasks are
performed automatically by the Storage Kit.

Tables

When you “open” a database (by asking for the object that represents it), the tables that are
stored within are automatically represented in your BDatabase object as BTable objects.
To get a BTable from a BDatabase, you can ask for it by name, through the FindTable()
function, or you can step through the BDatabase’s table list by using CountTables() and
TableAt(). Examples are given in the function descriptions, below.

To create a table, you call the CreateTable() function. The function tells the Storage
Server to manufacture a table in the database, and then constructs a BTable object to
represent it, adds it to the BDatabase’s table list, and returns the new object.

Finding or creating tables through the BDatabase object are the only means by which you
can obtain a BTable object. The implication of this is that a BTable object will always refer
to a specific BDatabase object.

BDatabase as a BMessenger

BDatabase inherits from BMessenger to conveniently embody a connection to the Storage
Server. The inheritance doesn’t imply that you need to call any of the BMessenger
functions yourself—not only do you not need to, you shouldn’t even try. BDatabase’s
ancestry is an implementation detail that can be safely ignored.

Constructor and Destructor

The BDatabase constructor and destructor are private. You never construct BDatabase
objects directly; instead, you retrieve them from the system through the global
database_for() function, or through BVolume’s Database() function.

The Storage Kit – 9

 BDatabase Member Functions

Member Functions

CountTables()

long CountTables(void)

Returns the number of BTables in the object’s table list.

See also: TableAt(), FindTable()

CreateTable()

BTable *CreateTable(char *table_name)
BTable *CreateTable(char *table_name, char *parent_name)
BTable *CreateTable(char *table_name, BTable *parent_table)

Creates a table in the database, names it table_name, and constructs (and returns) a BTable
object to represent it. The table that’s created by the first version of this function will be
empty—it won’t contain any fields. In the other two versions, the new table will “inherit”
the fields of the table designated by parent_name or parent_table argument.

The BDatabase doesn’t check to make sure you aren’t table name isn’t unique: You
can create a table with a given name even if that name identifies an existing table. To
make sure that your name won’t collide with that of an existing table, you should call
FindTable() first:

if (a_db->FindTable("Phylum") == NULL)
 a_table = a_db->CreateTable("Phylum");

Furthermore, if you designate a parent but the parent isn’t found, the table is created
without a parent. Here, too, you could check first if you want to ensure that the table will
be born of the desired progenitor:

if (a_db->FindTable("Phylum") == NULL &&
 a_db->FindTable("Kingdom") != NULL)
 a_table = a_db->CreateTable("Phylum", "Kingdom");

If the function can’t create the table, it returns NULL.

You never explicitly delete a BTable object. Constructing and deleting BTables is the
BDatabase’s responsibility.

See also: FindTable()

FindTable()

BTable *FindTable(char *table_name)

Looks in the BDatabase’s table list for the BTable that represents the named table. Returns
the BTable if it’s there; NULL if not. The table list includes all tables that live in

10 – The Storage Kit

Member Functions BDatabase

the database—it isn’t just a compilation of tables that were created by this particular
object.

If you want to make sure that the list is up-to-date before looking for a table, you should
first invoke Sync() on the BDatabase.

See also: CreateTable(), Sync()

GetUnique()

long GetUnique(void)

Returns (directly, despite the Get () component) an identifier that uniquely and
persistently identifies the BDatabase’s database.

Note: This function will be wedded with ID() and will take the latter’s name in a future
release.

ID()

database_id ID(void)

Returns the database ID number that identifies the BDatabase’s database. This number is
unique among all databases that are currently available, and is only valid for as long as the
database is mounted.

The value returned by this function is used, primarily, when you’re communicating the
identity of a database to some other application. It’s also used as the database field of a
record_ref structure; such structures are used to refer BFStore objects to items in the file
system.

See also: BStore::SetRef()

IsValid()

bool IsValid(void)

Returns TRUE if the BDatabase’s database is (still) available; otherwise, it returns FALSE.
The object will become invalid if the volume on which the database lives is unmounted.

Warning: Currently, this function always returns TRUE; don’t use it.

The Storage Kit – 11

 BDatabase Member Functions

PrintToStream()

void PrintToStream(void)

Displays, to standard output, information about the BTables that are contained in the
BDatabase’s table list. The information is displayed in this format:

| index-table <name>, id #
 | fieldName1
 | fieldName2
 | fieldName3

For example, if the first BTable in the list is named “Shirts” and contains fields named
“color,” “texture,” and “buttonCount,” the display will look like this:

| 0-table <Shirts>, id 0
| | color
| | texture
| | buttonCount

A BTable that inherits from another BTable is indented beneath its parent, and repeats the
inherited fields:

| 0-table <Shirts>, id 0
| | color
| | texture
| | buttonCount
| | 1-table <TackyShirts>, id 1
| | | color
| | | texture
| | | buttonCount
| | | hasStripes
| | | isHawaiian

PrintToStream() is meant to be used as a debugging tool.

Sync()

void Sync(void)

Synchronizes the BDatabase object with the database that it represents by doing the
following:

• Reads the database’s list of tables and re-installs it into the BDatabase’s list.

• Makes sure that all committed data has been flushed from the Storage Server to the
underlying storage media (in other words, write your changes to the disk).

Calling Sync() is the only way to update the BDatabase’s table list, whereas it isn’t
necessary to Sync() in order flush committed data. Such data will (eventually) be written

12 – The Storage Kit

Member Functions BDatabase

to the disk as a matter of routine (within seconds, typically); Sync() simply anticipates the
inevitable.

See also: BRecord::Commit()

TableAt()

BTable *TableAt(long index)

Returns the index’th BTable object in the BDatabase’s table list (zero-based).

See also: CountTables()

VolumelD()

inline long VolumeID(void)

Returns the ID of the volume that contains the database that’s represented by this
BDatabase object.

The Storage Kit – 13

BDirectory

Derived from: public BStore

Declared in: <storage/Directory.h>

Overview

The BDirectory class defines objects that represent directories in a file system. A directory
can contain files and other directories, and is itself contained within a directory (its
“parent”).

As with all BStore objects, a BDirectory is useless until its record ref is set.

Constructor and Destructor

BDirectory()

BDirectory(record_ref ref)
BDirectory(void)

The two BDirectory constructors create and return pointers to newly created BDirectory
objects. The version that takes a record_ref argument attempts to refer the new object to
the argument; the no-argument version creates an unreferenced object. In the latter case,
you must set the BDirectory’s ref in a subsequent manipulation. This you can do thus:

• By invoking the object’s SetRef() function (the function is inherited from the
BStore class).

• By passing the object as an argument to the BDirectory functions Create() or
GetDirectory().

• By passing it as an argument to BVolume’s GetRootDirectory() function.

~BDirectory()

virtual ~BDirectory(void)

Destroys the BDirectory object; this doesn’t remove the directory that the object
corresponds to. (To remove a directory, use BDirectory’s Remove() function; note that
you can’t remove a volume’s root directory.)

14 – The Storage Kit

Member Functions BDirectory

Member Functions

Contains()

bool Contains(const char *name)

Looks in the BDirectory for a file or directory named name. If the item is found, the
function returns TRUE, otherwise it returns FALSE. If you need to know whether the
item is a file or a directory, you should follow this call (if it returns TRUE) with a call to
IsDirectory(), passing the same name:

if (aDir->Contains("Something"))
 if (aDir->IsDirectory("Something"))
 /* It’s a directory. */
 else
 /* It’s a file. */

See also: IsDirectory(), GetFile(), GetDirectory()

CountDirectories() see CountFiles()

CountFiles(), CountDirectories(), CountFSItems()

long CountFiles(void)
long CountDirectories(void)
long CountFSItems(void)

Returns a count of the number of files, directories, or both that are contained in this
BDirectory.

See also: GetFile(), GetDirectory()

CountFSItems() see CountFiles()

Create()

long Create(const char *newName,
 BStore *newItem,
 const char *tableName = NULL,
 file_creation_hook *hookFunc = NULL,
 void *hookData = NULL)

Creates a new file system item, names it name, and adds it to the directory represented by
this BDirectory. The newItem argument is modified (its ref is set) to represent the added
item, newItem must either be a BFile or BDirectory object—the object’s class dictates
whether the function will create a file or a directory.

The Storage Kit – 15

 BDirectory Member Functions

The other three arguments (tableName, hookFunc, and hookData) are infrequently used—
you should only need them if you want your file system records to conform to non-default
tables. See the BStore class description on page 31, for more information.

The function returns B_NO_ERROR if the item was successfully created.

GetDirectory() see GetFile()

GetFile(), GetDirectory()

long GetFile(const char *name, BFile *file)
long GetFile(long index, BFile *file)
long GetDirectory(const char *name, BDirectory *dir)
long GetDirectory(long *index, BDirectory *dir)

Looks for the designated file or directory (contained in this BDirectory) and, if it’s found,
sets the second argument’s ref to represent it. The second argument must point to an
allocated object—these functions won’t allocate it for you.

The name versions of the functions search for the appropriate item with the given name.
For example, the call

BFile *aFile = new BFile ();
if (aDir->GetFile("something", aFile) < B_NO_ERROR)
 /* Not found. */

looks for a file named “something”. It ignores directories. Similarly, the GetDirectory()
function looks for a named directory and ignores files. As implied by the example, the
function returns B_NO_ERROR if the named item was found.

The index versions return the index’th file or directory. For example, this

if (aDir->GetFile(0, aFile) < B_NO_ERROR)
 . . .

gets the first file, while this

BDirectory *aSubDir = new BDirectory();
if (aDir->GetDirectory(0, aSubDir) < B_NO_ERROR)
 . . .

gets the first directory.

The index versions return a less-than-B_NO_ERROR value if the index is out-of-bounds.
You can test against the return value as the predicate to a loop that successively retrieves
every file (or directory) contained in a directory:

/* Print the name and type of every item in a given
 * directory.
 */

16 – The Storage Kit

Member Functions BDirectory

void ShowNames(BDirectory *dir)
{
 long ktr = 0;
 BFile aFile;

 while (dir->GetFile(ktr++, &aFile) == B_NO_ERROR)
 printf("%s is a file\n", aFile.Name());

 ktr = 0;
 BDirectory aDir;

 while (dir->GetDirectory(ktr++, &aDir) == B_NO_ERROR)
 printf("%s is a directory\n", aDir.Name());
}

See also: Contains(), IsDirectory()

IsDirectory()

bool IsDirectory(const char *name)

Returns TRUE if the BDirectory contains a directory named name; if the object doesn’t
contain an item with that name, if the item is a file, or if other impediments obtain, the
function returns FALSE.

See also: Contains()

Remove()

long Remove(BStore *anItem)

Removes the given item from the object’s directory, removes the item’s record from the
database, and frees the (disk) space that it was using. If anItem is a BFile, the object is
closed (data and resources) before it’s removed. The item must be a member of the target
BDirectory.

You can’t remove a volume’s root directory (it doesn’t have a parent, so there’s no way to
try). Also, you can’t remove a directory that isn’t empty.

The function returns B_NO_ERROR if the item was successfully removed; otherwise, it
returns B_ERROR.

The Storage Kit – 17

BFile

Derived from: public BStore

Declared in: <storage/File.h>

Overview

The BFile class defines objects that represent files in the file system. Files are containers of
information that live in directories. A file can live in only one directory at a time.

Locating and Creating Files

With one exception, the functions that BFile defines let you examine and manipulate a
file’s contents (the exception is CopyTo(), which copies a file to a specified directory). The
functions that you use to locate, create, remove (and so on) files, and assign BFiles to refer
to them are defined by the BStore class (from which BFile derives), and the BDirectory
class. Listed below are the file-locating and -creating functions from these other classes
that you should be aware of:

Defined in BStore:

• SetRef() is the fundamental function that establishes a “link” between a file and a
BFile object. BFile augments this function (and so it’s listed among the “Member
Functions” section, below), but the primary documentation for it is in the BStore
class.

• MoveTo() moves a file from one directory to another.

Defined in BDirectory

• GetFile() locates a file by name or index (into a directory) and refers a BFile to it.
• Create() creates a new file in the file system, and refers a BFile to it.
• Remove() removes a file from the file system.

Data and Resources

Every file has, potentially, two parts: A data portion, and a resources portion. There
aren’t any rules governing the content of these two parts; the distinction, from the BFile’s
perspective, is in how information is stored in either portion:

18 – The Storage Kit

Constructor and Destructor BFile

• Data (or “data in the data portion”) is “flat.” You add to the data portion by
passing a buffer of data to the Write() function, but your addition isn’t “marked” to
distinguish it from the existing data—once you’ve added data to the data portion,
it becomes part of a single, unstructured, vector of bytes. When you read from the
data portion (through Read()), you wade into this vector and retrieve some amount
of data (the amount is specified in the Read() call). There’s no way to tell whether
the data you’ve read was added in a single Write() call, or in a succession of calls.

• The resources portion contains data “entries” that are structured and identifiable—
it’s like a private database for the file. A file can contain any number of distinct
resource entries. You add a resource through the AddResource() function. When
you call the function, you supply a name by which the resource will be known. To
retrieve the resource, you ask for it by name through the FindResource() function.

Theoretically, a file can have a data portion, a resources portion, both, or neither. In
practice, however, every file has a data portion: When a file is created, a zero-length data
portion is automatically created as a means for advertising the file’s existence.

Opening and Closing Files

Before examining or manipulating either portion of a BFile, you must open that
portion. Specifically, if you want to read or write data from a BFile, you first have to
call its OpenData() function. To add, remove, or find resources, you first have to call
OpenResources(). The portion remains open until the analogous “close” function
(CloseData() or CloseResources()) is called.

As explained in the BStore class description, any number of BFile objects can refer to
the same file. In addition, any number of BFile objects can read from or write to the data
portion of the same file at the same time. Currently, there’s no way to “lock” a file such
that a particular object has exclusive access to the data portion.

By default, the resources portion of a file is read-only. Any number of BFile objects can
read the resources portion of the same file. If you want to write the resources, you must
declare as much in your OpenResources() call. Only one BFile may write the resources
portion at a time.

If you destroy a BFile while it has a portion open, that portion is automatically closed.

Constructor and Destructor

BFile()

BFile(void)

The BFile constructor creates a new, unreferenced object, and returns a pointer to it. The
object won’t correspond to an actual file until its record ref is set. You can set the ref

The Storage Kit – 19

 BFile Member Functions

directly by calling the SetRef() function, or you can allow the ref to be set as a side effect
by passing your BFile object as an argument to any of these functions:

• BFile::CopyTo()
• BDirectory::Create()
• BDirectory::GetFile()

~BFile()

virtual ~BFile(void)

Destroys the BFile object; this doesn’t remove the file that the object corresponds to (to
remove a file, use BDirectory’s Remove() function). The object is automatically closed
(through calls to CloseData() and CloseResources()) before the object is destroyed.

See also: CloseData(), CloseResources()

Member Functions

AddResource()

long AddResource(const char *name,
 ulong type,
 const void *data,
 long dataLength)

Adds a resource to the BFile. For this function to have an effect, you must first open the
resources portion for writing by calling OpenResources() with an argument of TRUE. The
resource data is copied from the data buffer; the dataLength argument tells the function
how many bytes of data to copy from the buffer.

The values that you supply for the name and type arguments are used to identify the
resource after its been copied into the BFile. You would use these values to locate the
resource in a subsequent FindResource() call (for example).

• The name is arbitrary and mustn’t be longer than B_OS_NAME_LENGTH (32
characters).

• The type should be one of the data type constants—B_STRING_TYPE, B_LONG_TYPE,
B_OBJECT_TYPE, and so on—defined in app/AppDefs.h. Note that the type
argument isn’t used to type-cast the data in die resource; it’s simply a tag by which
the resource is identified. (However, you may want to use the type value as a hint if
you have to cast the data when you retrieve it.)

The combination of name and type needn’t be unique within the BFile’s resources: You
can add (to the same BFile) any number of resources that have the same name and type.
But retrieving identically-named and -typed resources is a bit messy—you have to use the

20 – The Storage Kit

Member Functions BFile

full-blown, indexing version of FindResource(). And distinguishing between them, once
you’ve gotten them, is your own little hell.

If the BFile’s resources portion isn’t open—or if, for any other reason, the resource
couldn’t be added—the function fails and returns B_ERROR.

See also: OpenResources(), FindResource(), HasResource()

CloseData(), CloseResources()

long CloseData(void)
long CloseResources(void)

Closes the data or resources portion of the BFile. The object’s BRecord is automatically
committed to the database when you call either of these functions.

You should be aware that CloseData() and CloseResources() are (both) called
automatically by the BFile destructor, and by BDirectory’s Remove() function.

The BFile must previously have been opened through the analogous OpenData() or
OpenResources() call. If the appropriate portion isn’t open (or, more broadly, if the
BFile’s ref hasn’t been set), these functions return B_ERROR; otherwise, B_NO_ERROR is
returned.

See also: OpenData(), OpenResources()

CloseResources() see CloseData()

CopyTo()

long CopyTo(BDirectory *toDir,
 const char *newName,
 BFile *newFile,
 store_creation_hook *hookFunc = NULL,
 void *hookData = NULL)

Makes a copy of the BFile’s file, moves the copy into the directory given by toDir, names
it newName, and returns a new BFile object (by reference in newFile) that refers to the
new file.

The newName argument must be supplied—if you want to copy the file but retain the
same name as the original file, pass this_object->Name() as the argument’s value. You
can also copy a file into the same directory (by passing this_object->Parent() as the toDir
argument); in this case, however, you must supply a new name for the copied file.

The BRecord that’s created for the new BFile will conform to the same table as the
BRecord of the original BFile (by default, this is the Kit-defined “File” table).

The Storage Kit – 21

 BFile Member Functions

Furthermore, the values in the new BRecord are copied from the original file’s BRecord
(with some obvious changes, such as the file’s name, its parent, and so on). The new
BRecord is committed just before CopyTo() returns.

If the BRecord conforms to a “custom” table, you may want to modify the new BRecord
before it’s committed. The final two arguments provide this ability:

• hookFunc is a pointer to a “store creation hook” function. This function is called
after the new BFile has been created and its BRecord’s values set, but before the
BRecord is committed. The new BFile is passed as the first argument to hookFunc.
The value returned by hookFunc is significant: If it returns B_ERROR, the copy
operation is aborted; B_NO_ERROR lets it continue.

• hookData is a buffer of data that’s passed as the second (and final) argument to
hookFunc.

For more information on the use of the store creation hook mechanism, see the
BDirectory::Create() function.

The CopyTo() function automatically commits the original object’s BRecord.

The rules governing the ability to add the new file to the specified directory are the same
as those that apply to creating a file in that directory. Again, see BDirectory’s Create()
function for more information.

The target BFile must be closed (both data and resources) for the CopyTo() function
to work. If the BFile couldn’t be copied (for whatever reason) B_ERROR is returned;
otherwise, B_NO_ERROR is returned.

See also: BDirectory::Create(), BStore::MoveTo()

CountResources()

long CountResources(const char *name, ulong type)

Returns the number of separate resource items the object contains. The resources portion
of the file must be open (through a previous OpenResources() call) for this function to
succeed. If the portion isn’t open, the function returns B_ERROR.

See also: FindResource(), GetResourceInfo(), OpenResources()

DataSize(), ResourcesSize(), Size()

long DataSize(void)
long ResourcesSize(void)
long Size(void)

Returns the size of the file’s data portion, resources portion, or their combination, in bytes.
You don’t have to open the data and/or resources prior to calling these functions.

22 – The Storage Kit

Member Functions BFile

The functions return B_ERROR if the BFile’s ref hasn’t been set, or if the BFile’s record has
disappeared. (The latter can happen if the file has been removed.)

See also: SetDataSize()

FindResource()

void *FindResource(const char *name,
 ulong type,
 long *length)
void *FindResource(const char *name,
 ulong type,
 long index,
 long *length)

Returns a pointer to a specific resource from the BFile. The target resource is identified
by name and type. The first version of the function always returns the first resource that
matches these arguments. The second version of the function lets you ask for the index’th
matching resource (the index is zero-based). This is necessary if you have more than one
resource with the same name and type (an ambiguity that isn’t disallowed), or if you’re
searching on the name only (by supplying B_ALL_TYPES as the type argument). The final
argument, length, returns the size of the resource in bytes.

The pointer that the function returns points to data that’s owned by the file; if you need to
cache the resource, you should make your own copy of the pointed-to data.

These functions return NULL and set the Error() variable to B_ERROR if the resources
portion of the BFile isn’t open or if the designated resource wasn’t found.

See also: AddResource(), GetResourceInfo(), HasResource()

GetResourceInfo()

bool GetResourceInfo(char *byName,
 long andIndex,
 ulong *type,
 long *count = NULL)
bool GetResourceInfo(ulong byType,
 long andIndex,
 char *name,
 long *count = NULL)
bool GetResourceInfo(long byIndex,
 char *name,
 ulong *type,
 long *count = NULL)

These functions return information about a particular resource. The first one or two
argument(s) locate the resource; the final arguments return the information by reference.

The Storage Kit – 23

 BFile Member Functions

• The first version locates the andIndex’th resource that has the name byName. The
resource’s type is returned in type, and the number of resources that share this
resource’s name and type is returned in count.

• The second version locates the andIndex’th resource of type byType. The resource’s
name is returned in name, and the shared-count in count.

• The final version gets information for the byIndex’th resource—in other words,
all resources in the BFile are considered. The name, type, and shared-count are
returned in the final arguments.

The functions return TRUE if the designated resource was found; otherwise it returns FALSE.

See also: FindResource(), HasResource()

GetTypeAndApp() see SetTypeAndApp()

HasResource()

bool HasResource(const char *name,
 ulong type,
 long index = 0)

Looks for the resource identified by name, type, and (optionally) index. Returns TRUE if
the resource is found, otherwise returns FALSE. The resources portion of the BFile must
already be open for this function to work properly (the function returns FALSE if the
portion isn’t open).

See also: FindResource(), GetResourceInfo()

OpenData(), CloseData()

long OpenData(void)
long CloseData(void)

These functions open and close the data portion of the BFile. OpenData() gives the BFile
object access to the “normal,” or non-resource, data in the underlying file, allowing the
object to read and write this data (through the Read() and Write() functions). The data
portion remains open until CloseData() is called.

Unsurprisingly, the Read(), Write(), and Seek() functions require that the BFile’s data
portion be open (Seek() sets the “data pointer” position). Conversely, CopyTo() and
SetTypeAndApp() fail if the data portion isn’t closed. The BFile destructor, the SetRef()
function, and BDirectory’s Remove() function also expect the data portion to be closed,
but they don’t fail if it’s open—they close the data portion automatically.

24 – The Storage Kit

Member Functions BFile

If the BFile’s ref hasn’t been set, if its record has disappeared, or if, for any other reason,
the data portion couldn’t be opened, OpenData() returns B_ERROR. CloseData() returns
B_ERROR if the data portion isn’t open (by that BFile). Upon success, both functions return
B_NO_ERROR.

Note that access to the data portion isn’t affect by the state of the resources portion of the
same file. For example, a given BFile object can open the data portion while a separate
BFile object (that points to the same file) holds the resources portion open.

See also: Read(), Write(), Seek(), OpenResources()

OpenResources(), CloseResources()

long OpenResources(bool forWriting = FALSE)
long CloseResources(void)

These functions open and close the resources portion of the BFile. If forWriting is FALSE
(the default), OpenResources() grants read-only access to the resources. Any number of
BFile objects can read the same file’s resources at the same time. If forWriting is TRUE,
exclusive, read/write access is granted to the BFile. The resources portion remains open
until CloseResources() is called.

Most of BFile’s resource-accessing functions (AddResource(), GetResourceInfo(),
RemoveResource(), and the others) require that the BFile’s resources portion be open.
Conversely, CopyTo() and SetTypeAndApp() fail if the resources portion is open. The
BFile destructor, the SetRef() function, and BDirectory’s Remove() function also expect
the resources portion to be closed, but they don’t fail if it’s open—they close the resources
portion automatically.

If the BFile’s ref hasn’t been set, if its record has disappeared or if, for any other
reason, the resources portion couldn’t be opened, OpenResources() returns B_ERROR.
CloseResources() returns B_ERROR if the resources portion isn’t open (by that BFile).
Upon success, both functions return B_NO_ERROR.

Access to the resources portion isn’t affect by the state of the data portion of the same file.
For example, a given BFile object can open the resources portion while a separate BFile
object (that points to the same file) holds the data portion open.

See also: AddResource(), FindResource(), HasResource(), OpenData()

Read()

long Read(void *data, long dataLength)

Copies (at most) dataLength bytes of data from the data portion of the BFile into the data
buffer. The function returns the actual number of bytes that were read—this may be less
than the amount requested if, for example, you asked for more data than the file actually
holds.

The Storage Kit – 25

 BFile Member Functions

The BFile’s data pointer is moved forward by the amount that was read such that a
subsequent Read() would begin at the following “unread” byte. Freshly opened, the
pointer is set to the first byte in the data portion; you can reposition the pointer prior to a
Read() call through the Seek() function. Keep in mind that the same data pointer is used
for reading and writing data.

For this function to work, the data portion of the BFile must already be open. If the data
isn’t open, or if, for any other reason, the portion couldn’t be read, the function returns
B_ERROR.

See also: Open(), Seek(), Write()

RemoveResource()

void RemoveResource(const char *name,
 ulong type,
 long index = 0)

Removes the resource identified by the arguments. The resources portion must be open for
this function to work. If the function fails (for whatever reason), it sets the Error() code to
B_ERROR.

See also: AddResource(), HasResource(), GetResourceInfo()

ReplaceResource()

void ReplaceResource(const char *name,
 ulong type,
 void *data,
 long dataLength)
void ReplaceResource(const char *name,
 ulong type,
 long index,
 void *data,
 long dataLength)

Finds the resource identified by name and type (and, in the second version, index), throws
away the existing data for that resource and installs, in its place, data that’s copied from
the data buffer. The final argument gives the number of bytes to copy from the buffer. The
name, type, and index of the resource aren’t changed.

The resources portion of this BFile must be open for this function to work. If the resource
data couldn’t be replaced—for example, if the resource wasn’t found, or (for another) the
resources portion wasn’t open—ReplaceResource() sets the Error() code to B_ERROR
and, silently and unconsummated, expires.

See also: AddResource(), RemoveResource(), HasResource()

26 – The Storage Kit

Member Functions BFile

ResourcesSize() see DataSize()

Seek()

long Seek(long byteOffset, long relativeTo)

Relocates the BFile’s data pointer (its pointer into the data portion of the file). The location
that you want the pointer to assume is given as a certain number of bytes (byteOffset)
relative to one of three positions in the data. These three positions are represented by the
following values (which you pass as the value of relativeTo):

• 0 represents the beginning of the file.
• 1 represents the pointer’s current location.
• 2 represents the end of the file.

For example, the following moves the pointer five bytes forward from its present position:

aFile->Seek(5, 1)

If byteOffset is negative, the pointer moves backwards. Here, the pointer is set to five bytes
from the end of the file:

aFile->Seek(-5, 2)

If you seek to a position beyond the end of a file, the file is padded with uninitialized data
to make up the difference. For example, the following code doubles the size of aFile:

aFile->Seek(aFile->DataSize() * 2, 0)

Keep in mind that the padding is uninitialized; if you want to pad the file with NULLs (for
example), you have to write them yourself.

The function returns the pointer’s new location, in bytes, reckoned from the beginning of
the file. You can use this fact to get the pointer’s current position in the file:

/* The inquisitive, no-op seek. */
long currentPosition = aFile->Seek(0, 1) ;

Seek() is normally followed by a Read() or Write() call. Note that both of these functions
move the pointer by the amount that was read or written.

For the function to succeed, the BFile’s data portion must already be open (B_ERROR is
returned if the portion isn’t open). Moving the data pointer doesn’t affect access to the
resources portion of the BFile.

Warning: Currently, seeking before the beginning of a file isn’t illegal. Doing so doesn’t
affect the size or content of the file, but it does move the pointer to the requested (negative)
location. The Seek() function will return this location as a negative number. A subsequent
read or write on that location will cause trouble.

See also: Open(), Read(), Write()

The Storage Kit – 27

 BFile Member Functions

SetDataSize()

long SetDataSize(long sizeInBytes)

Sets the length, in bytes, of the BFile’s data portion to sizeInBytes. The data portion must
be open for this function to succeed. The function returns B_ERROR if the data portion isn’t
open, or if, for any other reason, the file couldn’t be set to the given size. Otherwise, it
returns B_NO_ERROR.

See also: DataSize()

SetRef()

virtual long SetRef(record_ref ref)
virtual long SetRef(BVolume * volume, record_id recID)

Sets the BFile’s ref. The BStore class defines the basic operations of these functions. These
versions add a BFile-specific wrinkle: They close the data and resource portions of the
BFile before setting the ref.

See also: BStore::SetRef()

SetTypeAndApp(), GetTypeAndApp()

long SetTypeAndApp(ulong type, ulong app)
long GetTypeAndApp(ulong *type, ulong *app)

These functions set and return, respectively, constants that represent the file’s contents
(its “type”), and the application that created the file. The Browser uses these constants
to display an icon for the file, and to launch the appropriate application when the file is
opened.

If the application that you’re designing creates new files, you should set the type and
app for these files through SetTypeAndApp() (this information isn’t set automatically).
The app constant must be an application signature. You can retrieve your application’s
signature through BApplication::GetAppInfo().

When the Browser tells an application to open a file, the app can look at the type constant
to determine how the file should be opened. You can use one of the data type values
declared in app/AppDefs.h as the type value, but understand that type needn’t be globally
declared (as constrasted with app): The type that you set can be privately meaningful to
the application.

If you want to set a file’s type so the Browser will take it to be an application, use the value
‘BAPP’. The app argument, in this case, is ignored (by the Browser, at least).

With regard to icons: The Icon World application lets you create the correspondence
between an application and its icon, as well as between the file types that the application

28 – The Storage Kit

Member Functions BFile

recognizes and the icon that’s displayed for each type. See “Notes on Developing a Be
Application” for more information on Icon World.

Both SetTypeAndApp() and GetTypeAndApp() expect the BFile’s resources portion to
be closed. They return B_ERROR if they fail, B_NO_ERROR otherwise. Note that the app
value (for SetTypeAndApp()) isn’t checked to make sure that it identifies a recognized
application.

Size() see DataSize()

Write()

long Write(const void *data, long length)

Copies length bytes from the data buffer into the data portion of the BFile. The data is
copied starting at the data pointer’s current position; the existing data at that position (and
extending for length bytes) is overwritten. The size of the data portion is extended, if
necessary, to accommodate the new data. When this function returns, the data pointer will
point to the first byte that follows the newly copied data.

The function returns the number of bytes that were actually written; except in extremely
unusual situations, the returned value shouldn’t vary from the value you passed as length.

The object’s data portion must already be open for this function to succeed. If it isn’t open,
or if, for any other reason, the data couldn’t be written, B_ERROR is returned.

See also: Open(), Seek(), Read()

The Storage Kit – 29

BQuery

Derived from: public BObject

Declared in: <storage/Query.h>

Overview

The BQuery class defines functions that let you search a database to identify records
whose values fall within specified ranges. Querying is the primary means for retrieving, or
“fetching,” records from a database.

Defining a Query

To define a query, you construct a BQuery object and supply it with the criteria upon
which its record search will be based. This criteria consists of tables and a predicate:

• The set of tables that you specify restricts the range of candidate records: Only
those records that conform to one of the specified tables are considered in the
search. You supply tables as BTable objects through the AddTable() or AddTree()
function.

• The predicate is a logical test that (typically) compares the value for a particular
field (in a record) to a constant value. You can also compare a field’s value to
another field’s value. A predicate is constructed by “pushing” fields, constants, and
operators on the BQuery’s “predicate stack” (using “reverse Polish notation,” as
explained in a later section). The predicate is optional.

For example, let’s say you want to find all records in the “People” table that have “age”
values greater than 12. The BQuery definition would look like this:

/* We’ll assume that myDb is a valid BDatabase object. */
BQuery *teenOrMore = new BQuery();
BTable *people = myDb->FindTable("People");

/* Add the table to the BQuery. */
teenOrMore->AddTable(people);

/* Create the predicate. */
teenOrMore->PushField("age");
teenOrMore->PushArg(12);
teenOrMore->PushOp(B_GT);

Details of the table and predicate specifications are examined in later sections.

30 – The Storage Kit

Overview BQuery

Fetching

Once you’ve defined your BQuery, you tell it to perform its search by calling the Fetch()
function:

if (teenOrMore->Fetch() != B_NO_ERROR) /* the fetch failed */

When it’s told to fetch, a BQuery object sends the table and predicate information to the
Storage Server and asks it to find the satisfactory records. The winning records (identified
by record ID) are returned to the BQuery and placed in the BQuery’s record list, which
you can then step through using CountRecordIDs() and RecordIDAt():

long num_recs = teenOrMore->CountRecordIDs();
record_id this_rec;
for (int i = 0; i < num_recs; i++)
this_rec = teenOrMore->RecordIDAt(i);

To turn the BQuery’s record IDs into BRecord objects, you pass the IDs to the BRecord
constructor:

/* Make BRecord objects for the BQuery’s record IDs and place
 * them (the BRecords) in a BList.
 */
BList *teens = new BList();
long num_recs = teenOrMore->CountRecordIDs();
record_id this_rec;
BRecord *teen_rec;

for (int i = 0; i < num_recs; i++)
{
 this_rec = teenOrMore->RecordIDAt(i);
 teen_rec = BRecord new(people->Database(), this_rec);
 teens->AddItem(teen_rec);
}

The Tables

A single BQuery, during a single fetch, can search in more than one table. When you call
AddTable(), the previously added table (if any) isn’t bumped out of the table list; instead,
the tables accumulate to widen the range of candidate records. However, all BTables that
you pass as arguments to AddTable() (for a single BQuery) must belong to the same
BDatabase object.

Another way to add multiple tables to a query is to use the AddTree() function. AddTree()
adds the table represented by the argument and all tables that inherit from it. Table
inheritance is explained in the BTable class specification.

The Storage Kit – 31

 BQuery Overview

The Predicate

As mentioned earlier, the BQuery predicate is constructed using “reverse Polish notation”
(or “RPN”). In this construction, operators are “post-fixed”; in other words, the arguments
to an operation are pushed first, followed by the operator that acts upon them. That’s why
the predicate used in the example, “age > 12”, was created by pushing the elements in the
order shown:

/* Predicate construction for "age > 12" */
teenOrMore->PushField("age");
teenOrMore->PushArg(12);
teenOrMore->PushOp(B_GT);

The query operators that you can use are represented by constants defined by the Storage
Kit:

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than
B_LE less than or equal to
B_AND logical AND
B_OR logical OR
B_NOT negation
B_ALL wildcard (matches all records)

Complex Predicates

You can create more complex predicates by using the conjunction operators B_AND and
B_OR. As with comparison operators, a conjunction operator is pushed after its arguments;
but with the conjunctions, the two arguments are the results of the two previous
comparisons (or previous complex predicates).

For example, let’s say you want to find the records for people that are between 12 and 36
years old. The programmatic representation of this notion, mapped to its reverse Polish
notation, looks like this:

Programmatic expression: (“age” > 12) && (“age” < 36)

Reverse Polish Notation: “age” 12 B_GT “age” 36 B_LT B_AND

The RPN version prescribes the order of the BQuery function calls:

/* Predicate construction for "(age > 12) and (age < 36)" */
teenOrMore->PushField("age");
teenOrMore->PushArg(12);

32 – The Storage Kit

Overview BQuery

teenOrMore->PushOp(B_GT);

teenOrMore->PushField("age");
teenOrMore->PushArg(36);
teenOrMore->PushOp(B_LT);

teenOrMore->PushOp(B_AND);

Predicates can be arbitrarily deep; the complex predicate shown above can be conjoined
with other predicates (simple or complex), and so on.

Fields and Constants

As implied by the examples, the PushField() function pushes fields, and PushArg() pushes
constant values onto the predicate stack. Constants are straightforward; fields need a bit
more explanation.

A field in a predicate acts as a variable: It represents the value that a record holds for that
field. However, keep in mind that a BQuery can have more than one table in its table
list, and any of these tables can have identically named fields. This can be a problem.
For example, if you use a field named “size” in a predicate, and then search through two
different tables that both have “size” fields, there’s no way to tell which table will supply
the “size” value.

Live Queries

By default, a BQuery performs a “one-shot” fetch: Each Fetch() call retrieves record IDs,
sets them in the BQuery’s record ID list, and that’s the end of it. Alternatively, you can
declare a BQuery to keep working—you can declare it to be “live”—by passing TRUE as
the argument to the constructor:

BQuery *live_q = new BQuery(TRUE);

When you tell a live BQuery to fetch, it searches for and retrieves record ID values, just
as in the default version, but then the Storage Server continues to monitor the database
for you, noting changes to records that would affect your BQuery’s results. If the data
in a record is modified such that the record now passes the predicate whereas before it
didn’t, or now doesn’t pass but used to, the Server automatically sends messages that will,
ultimately, update your BQuery’s record list to reflect the change. In short, a live BQuery’s
record list is always in sync with the state of the database. But you have to do some work
first.

Preparing your Application for a Live Query

It was mentioned above that the Storage Server sends messages to update a live BQuery.
The receiver of these messages (BMessage objects) is your application object. In order to
get the update messages from your application over to your BQuery, you have to subclass

The Storage Kit – 33

 BQuery Overview

BApplication’s MessageReceived() function to recognize the Server’s messages. Below
are listed the messages (as they’re identified by the BMessage what field) that the function
needs to recognize:

what Value Meaning

B_RECORD_ADDED A record ID needs to be added to the record list.
B_RECORD_REMOVED An ID needs to be removed from the list.
B_RECORD_MODIFIED Data has changed in a record currently in the list.

The only thing your MessageReceived() function needs to do to properly respond to
a Storage Server message is pass the message along in a call to the Storage Kit’s global
update_query() function, as shown below:

/* Implementation of MessageReceived() for a subclass
 * of BApplication (called MyApp). The implementation
 * recognizes Storage Server query-updating messages.
 * To be polite, you should include Query.h to get the
 * update_query() declaration
 */

#include <Query.h>

void MyApp::MessageReceived(BMessage *a_message)
{
 switch(a_message->what) {
 case B_RECORD_ADDED :
 case B_RECORD_REMOVED :
 case B_RECORD_MODIFIED :
 update_query(a_message);
 break;
 /* Other app-defined messages go here */
 . . .
 default:
 BApplication::MessageReceived (a_message);
 break;
 }
}

update_query() finds the appropriate BQuery object and calls its MessageReceived()
function. The default BQuery MessageReceived() implementation handles the
B_RECORD_ADDED and B_RECORD_REMOVED messages by manipulating the record list
appropriately. In the case of a B_RECORD_MODIFIED message, the BQuery does nothing.

If you want to handle modified records in your application, you can subclass BQuery
and re-implement MessageReceived(). To get the identity of the record, you retrieve,
from the BMessage, the long data named “rec_id”. The following code demonstrates the
general look of such a function:

/* Re-implementation of MessageReceived() for MyQuery,
 * a BQuery-derived class */
void MyQuery::MessageReceived(BMessage *a_message)
{
 record_id rec;

34 – The Storage Kit

Hook Functions BQuery

rec = a_message->FindLong("rec_id");

switch(a_message->what) {
 case B_RECORD_MODIFIED :
 /* do something with the record */
 break;
 case B_RECORD_ADDED:
 case B_RECORD_REMOVED:
 /* Pass the other two message types to BQuery. */
 BQuery::MessageReceived(a_message);
 break;
}

Hook Functions

MessageReceived() Can be overridden to handle live BQuery notifications.

Constructor and Destructor

BQuery()

BQuery(bool live = FALSE)

Creates a new BQuery object and returns it to you. If live is TRUE, the BQuery’s record list
is kept in sync with the state of the database (after the object performs its first fetch). If it’s
FALSE, the database isn’t monitored.

See the class description for more information on live BQuery objects.

~BRecord()

~BRecord(void)

Frees the memory allocated for the object’s record list. If this is a live BQuery, the Storage
Server is informed of the object’s imminent destruction (so it won’t send back any more
database-changed notifications).

The Storage Kit – 35

 BQuery Member Functions

Member Functions

AddRecordID()

void AddRecordID(record_id id)

Adds the given record (identified by record_id) to the BQuery’s record list. Although
this isn’t the normal way to add records to the list—normally, you define the BQuery’s
predicate and then fetch records—it can be useful if you want to “fine-tune” the record list.
For example, if you want to monitor a particular record through a live query regardless of
whether that record passes the BQuery’s predicate, you can add it through this function.

AddTable(), AddTree

void AddTable(BTable *a_table)
void AddTree(BTable *a_table)

Adds one or more BTable objects to the BQuery’s table list. The first version adds just the
BTable identified by the argument. The second adds the argument and all BTables that
inherit from it (where “inheritance” is meant as it’s defined by the BTable class).

You can add as many BTables as you want; invocations of these functions augment
the table list. However, any BTable that you attempt to add must “belong” to the same
BDatabase object.

There’s no way to remove BTables from the table list. If you tire of a BTable, you throw
the BQuery away and start over.

See also: CountTables(), TableAt()

Clear()

void Clear(void)

Erases the BQuery’s predicate (the table list and record lists are kept intact). Although this
function can be convenient in some cases, it usually better to create a new BQuery for each
distinct predicate that you want to test.

CountRecordIDs()

long CountRecordIDs(void)

Returns the number of records in the BQuery’s record list. If the object isn’t live, the value
returned by this function will remain constant between fetches; if it’s live, it may change at
any time.

See also: RecordIDAt()

36 – The Storage Kit

Member Functions BQuery

CountTables()

 long CountTables(void)

Returns the number of BTables in the BQuery’s table list.

See also: TableAt()

Fetch(), FetchOne()

 long Fetch(void)
 long FetchOne(void)

Tests the BQuery’s predicate against the records in the designated tables (in the database),
and fills the record list with the record ID numbers of the records that pass the test:

• Fetch() tests all candidate records.

• FetchOne() stops after it finds the first winner. This is a convenient function if all
you want to do is verify that there is any record that fulfills the predicate, or if you
know that there’s only one.

The object’s record list is cleared before the winning records are added to it.

If the BQuery is live, Fetch() turns on the Storage Server’s database monitoring;
FetchOne() doesn’t.

Fetching is performed in the thread in which the Fetch() function is called; the function
doesn’t return until all the necessary records have been tested. The on-going monitoring
requested by a live query is performed in the Storage Server’s thread.

Both functions return B_NO_ERROR if the fetch was successfully executed (even if no
records were found that pass the predicate); B_ERROR is returned if the fetch couldn’t be
performed.

See also: RunOn()

FromFlat() see ToFlat()

HasRecordID()

 bool HasRecordID(record_id id)

Returns TRUE if the argument is present in the object’s record list. Otherwise it returns
FALSE.

See also: RecordIDAt(), CountRecordIDs()

The Storage Kit – 37

 BQuery Member Functions

IsLive()

 bool IsLive(void)

Returns TRUE if the BQuery is live. You declare a BQuery to be live (or not) when you
construct it. You can’t change its persuasion thereafter.

MessageReceived()

virtual void MessageReceived(BMessage *a_message)

Invoked automatically by the update_query() function, as discussed in the class
description, above. You never call this function directly, but you can override it in a
BQuery to change its behavior. The messages it can receive (as defined by their what
fields) are these:

what Value Meaning

B_RECORD_ADDED A record ID needs to be added to the record list.
B_RECORD_REMOVED A record ID needs to be removed from the list.
B_RECORD_MODIFIED Data has changed in a record in the list.

PrintToStream()

void PrintToStream(void)

Prints the BQuery’s predicate to standard output in the following format:

arg count = count
 element_type element_value
 element_type element_value
 element_type element_value
 ...

element_type is one of “longarg”, “strarg”, “field”, or “op”, element_value gives the
element’s value as declared when it was pushed. The order in which the elements are
printed is the order in which they were pushed onto the stack.

38 – The Storage Kit

Member Functions BQuery

PushArg(), PushDate(), PushField(), PushOp()

void PushArg(long num_value)
void PushArg(char *string)
void PushDate(double time)
void PushField(char *field_name)
void PushOp(query_op operator)

These functions push elements onto the predicate stack:

• The PushArg() functions take constant values.
• PushField() takes the name of a table field.
• PushDate() takes a double value that specifies a time measured in microseconds

since January 1, 1970.
• PushOp() takes one of the query operators listed below.

The query_op constants are:

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than
B_LE less than or equal to
B_AND logical AND
B_OR logical OR
B_NOT negation
B_ALL wildcard (matches all records)

Predicate construction is explained in the class description, above. Briefly, it’s based on
the “reverse Polish notation” convention in which the two arguments to an operation are
pushed first, followed by the operator. The result of an operation can be used as one of the
arguments in a subsequent operation.

See also: PrintToStream()

RecordIDAt()

record_id RecordIDAt(long index)

Returns the index’th record ID in the object’s record list. The record list is empty until the
object performs a fetch.

See also: CountRecordIDs()

The Storage Kit – 39

 BQuery Member Functions

RunOn()

bool RunOn(record_id record)

Tests the (single) record identified by the argument against the BQuery’s predicate. If the
record passes, the function returns TRUE, otherwise it returns FALSE. The record ID isn’t
added to the record list, even if it passes. You use this function to quickly and platonically
test records—it isn’t as serious as fetching.

See also: Fetch()

TableAt()

BTable *TableAt(long index)

Returns the index’th BTable in the object’s table list.

See also: CountTables()

ToFlat(), FromFlat()

char *ToFlat(long *size)

void FromFlat(char *flatQuery)

These functions “flatten” and “unflatten” a BQuery’s query. ToFlat() flattens the query: It
transforms the BQuery’s table and predicate information into a string. The flattened string
is returned directly by ToFlat(); the length of the flattened string is returned by reference in
the size argument.

FromFlat() sets the object’s query as specified by the flatQuery argument. The argument,
unsurprisingly, should have been created through a previous call to ToFlat(). Any query
information that already resides in the calling object is wiped out.

The one piece of information that isn’t translated through a flattened query is the identity
of the database upon which the query is based. For flattening and unflattening to work
properly, the database of the BQuery that calls FromFlat() must match that of the BQuery
that flattened the query.

You use these functions to store your favorite queries, or to transmit query information
between BQuery objects in separate applications.

40 – The Storage Kit

Member Functions BQuery

The Storage Kit – 41

BRecord

Derived from: public BObject

Declared in: <storage/Record.h>

Overview

A BRecord represents a record in a database. A record is a collection of values that,
considered together, describe a single, multi-faceted “thing.” The thing that a record
describes depends on the table to which the record conforms. For example, each record
that conforms to the “File” table would describe different attributes of a specific file: its
name, size, the directory it’s contained in, and so on.

A BRecord object lets you examine and modify the values that are collected in a record.
But first, you have to associate the BRecord object with the record that you want to inspect
or alter. How you make this association depends on whether you’re creating a new record
that you wish to add to the database, or retrieving an existing record from the database.
These topics are discussed separately in the following sections.

Creating a New Record

You create a new record in reference to a specific table (within a particular database). In
your application, you create this reference by passing a BTable object to the BRecord
constructor. For example, the following code constructs a BRecord object that conforms
to the “Employee” table (the table was created in an example in the BTable class
description):

/* We’ll assume the existence of the a_db BDatabase object. */
BTable *employee_table = a_db->FindTable("Employee");
BRecord *employee_record = new BRecord(employee_table);

By conforming to a BTable, a BRecord is given appropriately-sized “slots” that will hold
data for each of the fields defined by the table. For example, the “Employee” table (as
defined in an example in the BTable class description) has three fields:

• The char * field “name” names a specific employee.

• The long field “extension” identifies the employee’s telephone extension.

• The record_id field “manager” identifies some other record (possibly in another
table) that contains information about the employee’s manager (this explained at
length later in this class description).

42 – The Storage Kit

Overview BRecord

The employee_record object, therefore, can accommodate values for these three fields.
In a freshly created BRecord, the value for each field is NULL (as appropriate for the data
type of the field).

Important: You must explicitly delete the BRecord objects that you construct in your
application. Some of the operations that a BRecord performs (such as committing or
removing) might lead you to think that you’ve “given” the object to the Storage Server,
and that you’re absolved from the responsibility of destruction. You haven’t; you’re not.

Setting Data in the BRecord

To put data in a BRecord object, you use its Set () functions; these functions are named
for the type of data that they implant:

• SetLong() places a long value in the BRecord.

• SetDouble() places a double value.

• SetString() copies a string.

• SetRecordID() places a record_id value.

• SetTime() places a double that measures time since January 1, 1970.

• SetRaw() copies an arbitrarily long buffer of “raw” data (type void *).

Each of these functions designates, as its first argument, the table field that’s used to refer
to the data. There are two ways to make this designation: by a field’s name, or by its field	
key (as defined by the BTable class).

Continuing our ape record example, we begin to put data in the new BRecord by setting
data for the name and cage number fields:

/* We’ll designate the "extension" field by the field’s name.
*/
employee_record->SetLong("extension", 123);

/* For variety, we’ll set the "name" field by field key.
 * Note that the SetString() function takes the length of
 * the string as its third argument. The function copies the
 * string, so it needs to know how much data to copy.
 */
field_key name_key = employee_table->FieldKey("name");
employee_record->SetString(name_key, "Mingo, Lon",
 strlen("Mingo, Lon"));

In most cases, there’s no difference between the two methods of designating a field (by
name or field key); you can use which ever is more convenient. The one instance in
which there is a distinction is if you have a table with similarly named fields that are
typed differently. In that case, the fields will only be distinguishable be field key (which,
remember, is based on the field’s name and its type).

The Storage Kit – 43

 BRecord Overview

Committing a BRecord

The data that you set in a BRecord isn’t seen by the database (and so can’t be seen by
other applications) until you commit the data through BRecord’s Commit() function:

record_id mingo_id = employee_record->Commit();

The function sends the object’s data back to the Storage Server, which places it in the
database; the Server creates a new record to hold the data if necessary. The record_id
value that the function returns uniquely identifies the record within its database (as
explained in the next section).

Important: Notice that the BRecord in the example was committed with an “empty”
field: The manager data hasn’t yet been set. Because this is a new record, the value at
this field is, by default, NULL. Unfortunately, there’s no way to distinguish between a
default NULL and a legitimate NULL. For example, if our “Employee” table included a long
“vacation days” field, the value (for that field) could legitimately be 0—it would look the
same as NULL. You wouldn’t be able to tell if the value was accurate, or if the field hadn’t
yet been filled in.

Record ID Numbers

A record is identified, within its database, by a record ID number (type record_id): Every
record in a given database has a different record ID. A BRecord knows the record ID of
the record it represents (you can get it through the ID() function). But keep in mind that a
record ID identifies a record, not a BRecord; thus:

• Before you commit a new BRecord (more accurately, before you commit it for the
first time), the object won’t have a record ID because it doesn’t yet represent a real
record.

• More than one BRecord object can have the same record ID value (they can
return the same record_id value from the ID() function), even if the objects are in
different applications. Because of this, a record ID number can be passed between
applications—in a BMessage, typically—the number will have the same meaning
(it will represent the same record) in the other application as it does in yours.

Record ID Fields

One of the features of the record_id type is that it can be used to define a table field. In
other words, just as you can declare a table field to accept long or string data, you can
declare a field to take record ID values (through BTable’s AddRecordIDField() function).
Through the use of a record ID field, one record can point to another record. Although
the two records must reside in the same database, the two records needn’t conform to the
same table. In fact, you can’t designate, in the field definition, the table that the pointed-to
conforms to.

44 – The Storage Kit

Overview BRecord

Returning to the example, the “manager” field in the “Employee” table is typed as a
record_id field. To set the value for this field in the employee record we created, we
need to find the record ID of Lon Mingo’s manager. This is a job for a BQuery object, as
explained in that class.

The Record Ref Structure

The record_ref structure is similar to the record_id number: It identifies a record in
a database. The difference between these two entities is that the record_ref structure
encodes the record ID and the database ID (the ID of the database in which the record
resides); the structure’s definition is

struct record_ref {
 record_id record;
 database_id database;
}

A record ref (or, simply, “ref”) is, therefore, more exacting in its identification of a record
than is the record ID. So why would you use a record ID if a ref is more precise?

• Generally speaking, refs are meant to be used in applications that want to access the
database but that don’t want to worry about the details of tables, queries, and so on.
More specifically, refs are used to identify and retrieve items from the file system.

• Record ID’s, on the other hand, are the common coin of “real” database
applications. For example, the BTable class defines a SetRecordIDField()—it
doesn’t have a function that sets a field that takes a ref. Similarly, BQuery objects
retrieve record ID numbers—they don’t retrieve refs. If you’re using BTables and
BQueries, you know which database you’re talking to, so you don’t need to encode
its identity in a cumbersome structure.

Retrieving an Existing Record

In addition to creating new (potential) records for you, the BRecord constructor can
retrieve an existing record from a database. To do this, you pass a BDatabase object and
record ID to the constructor:

BRecord(BDatabase *a_database, record_id record)

Typically, you fetch the record ID numbers that BQuery object and tell it which records
to fetch. The object retrieves record ID numbers which you then use here to actually get
records. (See the BQuery class for information on fetching.)

Data Examination

To examine the data in a BRecord, you ask for the value of a specific field (as defined by
the object’s BTable). This is accomplished by functions that take this form:

The Storage Kit – 45

 BRecord Overview

FindType(field_key key)
FindType(char *field_name)

where Type is one of the five data types that a field can take (ergo FindLong(), FindRaw(),
FindRecordID(), FindString(), and FindTime()). Each typed function has two version so
you can designate the field by field key or by name.

Keep in mind that when you examine a BRecord’s data, you’re looking at a copy of the
data that exists in the actual record. Changes to the record aren’t automatically reflected in
your BRecord object (“live” queries, as explained in the BQuery class, help in this regard,
as they inform your application when a change is made).

If you want to be sure you have the most recent data in your BRecord before you examine
it, you should call the Update() function. Update() re-copies the record’s data into your
BRecord object. Note, however, that any uncommitted changes that you’ve made to the
BRecord will be lost.

Data Modification

Modifying data in a BRecord is also done in reference to specific fields. The suite of
modification functions mirrors those for examination, but with an additional argument that
specifies the value you want to set:

SetType(field_key key, data_type value)
SetType(char *field_name, data_type value)

For example, the functions that set long data are:

SetLong(field_key key, long value)
SetLong(char *field_name, long value)

The changes that you make to the object’s data aren’t sent back to the database until you
call Commit(). The one exception to this is if you remove the record altogether (through
the Remove() function). You don’t have to call Commit() after you call Remove().

Constructor and Destructor

BRecord()

BRecord(BDatabase *database, record_id id)
BRecord(record_ref ref)
BRecord(BTable *table)
BRecord(BRecord *record)

Creates a new BRecord object and returns it to you.

46 – The Storage Kit

Member Functions BRecord

The first version of the constructor (the BDatabase and record_id version) is used to
acquire the record with the given ID from the specified database. The second version does
the same, but encodes the database and record identities as a single record_ref value.

The second version (BTable) constructs a BRecord that can accommodate values for the
fields that are declared in its BTable argument.

The third version copies the data from the argument BRecord into the new BRecord
(including the ref value).

You should follow a call to the constructor with a call to Error() to make sure the specified
record was found or created; the function returns B_ERROR for failure and B_NO_ERROR
for success.

See also: Error()

~BRecord()

~BRecord(void)

Frees the memory allocated for the object’s copy of the database data. The object is not
automatically committed by the destructor; if there are uncommitted changes, you must
explicitly commit them or they’ll be lost.

Note that you are responsible for deleting the BRecords that you’ve constructed. When
you commit or remove a record (when you call Commit() or Remove()), you’re not
giving the object to the Server.

Member Functions

Commit()

record_id Commit(void)

Sends the BRecord’s data back to the database. The function returns the record_ref of the
record that the object represents. It does this as a convenience for new records, which will
be receiving fresh ref numbers; “old” records (records that were previously retrieved from
the database) don’t change ref values when they’re committed.

You should call Error() immediately after calling Commit() to see if the operation was
successful (B_NO_ERROR). It will fail (B_ERROR) if the ref isn’t valid, if the record has
been locked by some other object, or if some other obstacle bars the path of ingress.

See also: Lock(), Update()

The Storage Kit – 47

 BRecord Member Functions

Database()

BDatabase *Database(void)

Returns the BDatabase object that represents the database that owns the table that defines
the record that killed the cat that ate the rat that’s represented by this BRecord.

Error()

long Error(void)

Returns an error code that symbolizes the success of the previous call to certain other
functions. The following functions set the code that’s returned here:

the BRecord constructor
Commit()
Update()
FindLong(), FindString(),
SetLong(), SetString(),

Remove()

In all cases, a return from Error() of B_NO_ERROR means that the previous call was
successful; B_ERROR means it failed.

After Error() returns the error code is automatically reset to B_NO_ERROR.

FindDouble() FindLong(), FindRaw(), FindRef(), FindString(),
FindTime()

double FindDouble(char *field_name)
double FindDouble(field_key key)

long FindLong(char *field_name)
long FindLong(field_key key)

void *FindRaw(char *field_name, long *size)
void *FindRaw(field_key key, long *size)

record_id FindRecordID(char *field_name)
record_id FindRecordID(field_key key)

const char *FindString(char *field_name)
const char *FindString(field_key key)

double FindTime(char *field_name)
double FindTime(field_key key)

These functions return the value of the designated field in the BRecord. None of these
functions check to make sure you’re returning the value in an appropriate data type, nor do
they perform any type conversion.

48 – The Storage Kit

Member Functions BRecord

FindRaw() and FindString() return pointers to data that’s owned by the object. If you want
to manipulate or store the data, you must copy it before deleting the object. The FindRaw()
functions also return, by reference in size, the amount of data that it points to.

You should always check Error() after calling one of these functions to make sure the call
was successful. The usual culprit, in a failure, is an illegitimate field specification. Asking
for the value of a non-existing field, for example, will fail.

There is a subtle difference between the field name and field key versions of these
functions: If you ask for a value by field name, the data type given by the selected function
is used to locate the correct field. For example, if the “age” field stores long data but you
ask for its value as a string:

char *ageString = FindString("age");

the function won’t be able to find a string-valued “age” field and so will fail (Error() will
return B_ERROR). The analogous request by field key:

char *ageString = FindString(a_table->FieldKey("age"));

won’t appear to fail (Error() returns B_NO_ERROR), even though it will return something
awful.

See also: SetDouble()

IsNew()

bool IsNew(void)

Returns TRUE if the object was constructed to represent a new record, and hasn’t yet been
committed.

See also: the BRecord constructor

Ref()

record_ref Ref(void)

Returns the record_ref structure of the BRecord’s record. This structure uniquely
identifies the record across all databases. This function always returns a record_ref value,
even if the BRecord has never been committed (in which case the structure’s record field
will be -1).

The Storage Kit – 49

 BRecord Member Functions

Remove()

void Remove(void)

Removes the BRecord’s record from the database. The success of the removal is reported
in the value returned by Error() (B_NO_ERROR if the record was removed, B_ERROR if it
wasn’t).

SetDouble(), SetLong(), SetRaw(), SetRef(), SetString(), SetTime()

void SetDouble(char *field_name, double value)
void SetDouble(field_key key, double value)

void SetLong(char *field_name, long value)
void SetLong(field_key key, long value)

void SetRaw(char *field_name, void *ptr, long size)
void SetRaw(field_key key, void *ptr, long size)

void SetRecordID(char *field_name, record_id value)
void SetRecordID(field_key key, record_id value)

void SetString(char *field_name, char *ptr)
void SetString(field_key key, char *ptr)

void SetTime(char *field_name, double value)
void SetTime(field_key key, double value)

Sets the value of the designated field to the value given by value. These functions don’t
perform type checking or type conversion. (See FindDouble() for more information on
fields and types; the rules described there apply here.)

SetRaw() and SetString() copy the data that’s pointed to by their ptr arguments. The
SetString() pointer must point to a NULL-terminated string. You specify amount of data (in
bytes) that you want SetRaw() to copy through the function’s size argument.

To gauge the success of the modification, check the value returned by Error(). If the field’s
value was successfully set, Error() returns B_NO_ERROR; otherwise it returns B_ERROR.

The value-setting functions don’t affect the actual record that the BRecord represents:
When you call a SetType() function, you’re modifying the BRecord’s copy of the data,
not the actual data that lives in the database. This means that you’re able to successfully
call these function if the record is locked, and if the BRecord doesn’t (yet) have a ref
(conditions under which many other functions fail). To write your change to the database,
you call BRecord’s Commit() function.

Keep in mind that a subsequent Lock() call will wipe out the (uncommitted) changes that
you’ve made through these functions. This is an important point since many applications
will want to lock before committing. If you plan on locking, you should do so before using
these functions. In other words:

50 – The Storage Kit

Member Functions BRecord

/* Lock, modify, commit, unlock. */
a_record->Lock();

a_record->SetLong("age", 6);
a_record->SetString("name", "Decca")
...
a_record->Commit();
a_record->Unlock();

See also: FindLong()

Table()

BTable *Table(void)

Returns the BTable to which the BRecord conforms.

Update()

void Update(void)

Copies the record’s data from the database into the BRecord. Any uncommitted changes
you have made to the data that’s currently held by the BRecord will be lost. The success of
the update is reported by the value returned by the Error() function (B_NO_ERROR means
success; B_ERROR indicates failure).

The Storage Kit – 51

BStore

Derived from: public BObject

Declared in: <storage/Store.h>

Overview

BStore is an abstract class that defines common functionality for its two subclasses,
BDirectory and BFile. You never construct direct instances of BStore, nor does the
Storage Kit “deliver” such objects to your application (as it does BFiles and BDirectories).
Furthermore, it’s useless to derive your own BStore class: The Kit won’t recognize your
class, and so won’t be able to deliver, to your application, objects constructed from it (this
proscription applies to BFile and BDirectory derivations as well).

Note: Throughout this class description, the term “file” is used generically to mean an
actual item in a file system. The characteristics ascribed to files (in the following) apply to
directories as well.

Files, Records, and BStores

Every file in the file system has a database record associated with it. The record contains
information about the file, such as its name, when it was created, the directory it lives in,
and so on. All file system activities are performed on the basis of these “file records.” For
example, if you want to locate a file, you have to locate the file’s record; passing the record
(albeit indirectly, as described below) to a BStore causes the object to “refer to” the file on
disk. Until the object is referred to a file, it’s practically useless.

A BStore’s record is established through a record ref. A record ref (or, simply, ref) is a
structure of type record_ref that uniquely identifies a record across all currently available
databases by listing the record’s ID as well as the ID of its database:

struct record_ref {
 record_id record;
 database_id database;
}

The nicety of the idea of the ref is that it bundles up all the database information that a
BStore needs, allowing your application to ignore the details of database organization.

Note: Record refs aren’t used only to identify records that describe files. A record ref is
simply a means for a identifying a record, regardless of what that record signifies.

52 – The Storage Kit

Overview BStore

How to Set a Ref

BStore’s SetRef() function sets the calling object’s ref directly. This function is most
often used in an implementation of BApplication’s RefsReceived() hook function.
RefsReceived() is invoked automatically when a ref is sent to your application in a
BMessage. For example, when the user drops a file icon on your application, your
application receives the ref of the file through a RefsReceived() notification.

In a typical implementation of RefsReceived(), you would ask the ref if it represents a
file or directory, allocate a BFile or BDirectory accordingly, and then pass the ref to the
object in an invocation of SetRef(). An example of this is given in the description of the
does_ref_conform() function, in the section “Global Functions, Constants, and Defined
Types” on page 79.

SetRef() isn’t the only way to refer an object to a file. The most important of the other
functions that perform this feat are listed below:

• BVolume’s GetRootDirectory() sets the ref for the BDirectory argument that you
pass to the function. The function causes the BDirectory to refer to the BVolume’s
root directory; this is the “starting-point” directory in the volume’s file system.

• BDirectory’s GetFile() sets the ref for its BFile argument. The function refers
the object to a file based on the file’s name, or index within the directory.
GetDirectory() performs an analogous reference for a BDirectory argument.

• BStore’s GetParent() sets the argument BDirectory to refer to the calling object’s
“parent” directory. This is the directory that immediately contains the file that the
object refers to.

Using these functions, you can traverse an entire file system: Given a BVolume object,
you can descend the file system by calling GetRootDirectory(), and then iteratively and
recursively calling GetFile() and GetDirectory(). Given a BFile or BDirectory, you can
ascend the hierarchy through recursive calls to GetParent().

Altering the File System

The Storage Kit provides a set of functions that alter the file system by creating, moving,
and removing files. These functions, listed below, also set the refs of the target objects,
although, in this context, setting the ref is a lesser concern:

• BDirectory’s Create() adds a new file to the file system. The BFile (or BDirectory)
that you pass to the function is referred to the new file (or directory).

• Remove(), also defined by BDirectory, removes, from the file system, the file
referred to by the argument. This effectively “unsets” the argument object’s ref.

• BStore’s MoveTo() moves the calling object’s file to a new parent directory.

The Storage Kit – 53

 BStore Overview

• BFile’s CopyTo() copies the calling object’s file and sets the ref of the argument
BFile to refer to the copy. Note that you can only copy files—you can’t copy
directories.

Passing Files to Other Threads

A file’s ref acts as a system-wide identifier for the file. If you want to “send” a file to
some other application, or to another thread in your own application—in other words,
if you want more than one process to operate asynchronously on the same file—you
should communicate the identity of the file by sending its ref. The thread that receives
the ref would construct its own BStore object and call SetRef(), in the manner of the
RefsReceived() function, described earlier.

Unfortunately, you can’t retrieve a BStore’s ref directly. Instead, you retrieve the object’s
record (through the Record() function) and then retrieve the ref from the record (through
BRecord’s Ref() function). The example below demonstrates this as it prepares a
BMessage to hold a ref that’s sent another application:

/* ‘zapp’ is the signature of the app that we want to send the
 * ref to.
 */
BMessenger *msngr = new BMessenger(‘zapp’);

/* By declaring the BMessage to be a B_REFS_RECEIVED command,
 * the message will automatically show up (when sent) in the
 * other app’s RefsReceived() function.
 */
BMessage *msg = new BMessage(B_REFS_RECEIVED);

/* Retrieve the ref from aFile (which is assumed to be
 * an extant BFile object).
 */
record_ref fileRef = aFile->Record()->Ref();

/* Add the ref to the BMessage and send it. */
msg->AddRef("refs", fileRef};
msngr->SendMessage(msg);

Custom Files

Although you can’t create BStore-derived classes, it is possible to “customize” your files
by, instead, providing them with “custom” records. To do this you need to understand a
little bit about the database side of the Storage Kit. Before continuing here, you should be
familiar with the BRecord and BTable classes.

When you create a new file, a record that represents the file is automatically created and
added to the database. The table to which this record conforms depends on whether the file
is, literally, a file, as opposed to a directory: If it’s a file, the record conforms to the “File”
table; if it’s a directory, it conforms to “Folder.”

54 – The Storage Kit

Overview BStore

The Create() function, defined by BDirectory, lets you declare (by name) a table of your
own design as the table to which the new file’s record will conform. The only restriction
on the table is that it should inherit (in the table-inheritance sense) from either “File” or
“Folder” (as the item that you’re creating is a file or a directory).

By creating and using your own “file tables,” you can augment the amount and type of
information that’s kept in a file’s record. In the example shown below, a “Sound File” table
is defined and used to create a new file:

/* The BDatabase object aDB is assumed to exist. */
BTable *SoundTable = aDB->CreateTable("Sound Table", "File");

SoundTable->AddLongField("Duration");
SoundTable->AddLongField("Format");
SoundTable->AddStringField("Description");

/* Create a new "sound file." The BDirectory object aDir
 * is assumed to exist.
 */
BFile mySoundFile;
aDir->Create("Bug.snd", &mySoundFile, "Sound Table");

Tables, remember, are defined for specific databases; the SoundTable definition shown
here is defined for the aDB database. Similarly, a directory is part of a specific file system.
If you designate a table when creating a new file, the table’s database and the directory’s
file system must belong to the same volume. Put programmatically, the database and
directory objects used above must be related thus:

aDB->Volume() == aDir->Volume()

Adding Data to a File Record

To add data to a file’s record, you get the record through BStore’s Record() function, and
then call BRecord’s data-adding functions. For example:

BRecord *mySoundRec = mySoundFile->Record();

mySoundRec->SetLong("Duration", 2565);
mySoundRec->SetLong("Format", 1);
mySoundRec->SetString("Description", "Bug squish");
mySoundRec->Commit();

The Commit() call at the end of the example is essential: If you change a file’s record
directly, you must commit the changes yourself (but see “The Store Creation Hook” on
page 55 for an exception to this rule).

File Record Caveats

If you create and use your own file records, heed the following:

The Storage Kit – 55

 BStore Overview

• You	may	only	change	those	fields	that	were	added	through	your	table. Because of
table-inheritance, your file records will contain a number of fields that were defined
by the “File” or “Folder” tables. Don’t touch these fields. They don’t belong to
you.

• Don’t mix BRecord function calls with BStore function calls. Almost all the BStore
(and BFile and BDirectory) functions update the file’s record (they call BRecord’s
Update()). If you’re in the middle of altering the BRecord and then call a seemingly
innocuous function—Name(), for example—you’ll lose the BRecord changes that
you’ve made. You must call BRecord’s Commit() after making BRecord changes
and before you make subsequent BStore calls.

The Store Creation Hook

In some cases, you may want to change a new file’s record before the file becomes
“public.” Normally, when you call BDirectory’s Create() function, the system creates a
record for the file, fills in as many of the fields as it knows about (in other words, it fills in
the fields that belong to the “File” or “Folder” table), commits the record, and then returns
the new BFile (or BDirectory) to you. For instance, this would be the natural order of
things given the example shown above.

The important point here is that the record is committed before you get a chance to touch
the fields that you’re interested in. If some application has a live query running (as defined
by the BQuery class), the incompletely filled-in record—which will be a candidate for
the query from the time that it’s committed by the system—may inappropriately pass the
query.

To give you access to the record before it’s committed, Create() lets you pass a store
creation hook function as an optional (fourth) argument. Such a function assumes the
following protocol:

long store_creation_hook_name(BStore *item, void *hookData)

Note that this is a global function; the file creation hook can’t be declared as part of a
class. Also, although store_creation_hook is declared (in storage/Store.h) as a typed,
the declaration is intended to be seen for its protocol only: You can’t declare a function as
a store_creation_hook type.

The file creation hook is called just after the file’s record has been created, but before it’s
committed. The first argument is a BStore object that represents the new file. The record
changes shown in the previous example would be performed in a file creation hook thus:

/* Define a file creation hook function. */
long soundFileHook(BStore *item, void *hookData)
{
 BRecord *mySoundRec = item->Record();

 mySoundRec->SetLong("Duration", 2565);
 mySoundRec->SetLong("Format", 1);

56 – The Storage Kit

Overview BStore

 mySoundRec->SetString("Description", "Bug squish");
 return B_NO_ERROR;
}

Note that you don’t commit record changes that you make in a file creation hook. They’ll
be committed for you after the function returns. If the hook function returns a value other
than B_NO_ERROR, the file creation is aborted (by the Create() function).

The Create() call with this hook function would look like this:

aDir->Create("Bug.snd", &mySoundFile, "Sound Table",
 soundFileHook);

Other Hook Providers

All Storage Kit functions that create files provide a file creation hook mechanism.
These are:

• BFile’s CopyTo() function.

• BDirectory’s Create().

• BStore’s MoveTo().

The details of the mechanism as demonstrated by the Create() examples shown here
apply without modification to the other functions as well.

Hook Data

You can pass additional data to your hook function by supplying a buffer of void * data as
the Create() function’s final argument. This “hook data” is passed as the second argument
to the hook function. Here, we redefine the hook function used above to accept a sound
description string as hook data:

/* Define a file creation hook function. */
bool soundFileHook(BStore *item, void *hookData)
{
 BRecord *mySoundRec = item->Record();

 mySoundRec->SetLong("Duration", 2565);
 mySoundRec->SetLong("Format", 1);
 mySoundRec->SetString("Description", (char *)hookData);
 return TRUE;
}

And here we call Create(), passing it some hook data:

aDir->Create("Bug.snd", &mySoundFile, "Sound Table",
 soundFileHook, (void *)"Bug squish");

The Storage Kit – 57

 BStore Constructor and Destructor

Hook Function Rules

• The store creation hook mechanism is provided exclusively so you can get to your
own table fields in a new file’s record. You mustn’t use it for any other purpose—
you mustn’t set fields that you didn’t define or alter the new BStore in any way.

• Within an implementation of a hook function, the only BStore function that you can
call is Record().

Constructor and Destructor

BStore()

protected:

BStore(void)

The BStore constructor is protected to prevent you from creating direct instances of the
class.

~BStore()

virtual ~BStore(void)

Although the BStore is public, you can’t actually use it. Since you can’t construct a BStore
object, you’ll never have the opportunity to destroy one.

Member Functions

CreationDate(), ModificationDate()

long CreationDate(void)
long ModificationDate(void)

Returns the time the item was created or last modified, measured in seconds since January
1, 1970. If the object is invalid, this function returns B_ERROR. To convert the time value
to a string, you can use standard-C function strftime() or ctime() (as declared in time.h).

Error()

int Error(void)

Returns an error code that indicates the success of the previous BStore function call. The
possible codes are:

58 – The Storage Kit

Member Functions BStore

• B_ERROR; the requested operation couldn’t be performed, typically because the
object isn’t valid.

• B_NAME_IN_USE; this code is returned if, in an immediately preceding SetName()
call, you attempted to set the item’s name to one that identifies an existing item.

• B_NO_ERROR; the previous call succeeded.

The Error() function doesn’t record the success of the BStore operators.

GetParent()

long GetParent(BDirectory *parent)

Sets the argument’s ref to represent the directory that contains this item (you must allocate
the argument before you pass it). If this BStore represents a volume’s root directory
(for which there is no parent), or if the object is invalid, this function returns B_ERROR;
otherwise, it returns B_NO_ERROR.

MoveTo()

long MoveTo(BDirectory *dir,
 const char *newName = NULL,
 store_creation_hook *hookFunc = NULL,
 void *hookData = NULL)

Removes the item from its present directory, and moves it to the directory represented by
dir. You can, optionally, rename the item at the same time by providing a value for the
newName argument.

The hookFunc and hookData arguments let you alter the file’s record before it’s
committed. This is exhaustively explained in the section ‘The Store Creation Hook” on
page 55 of the introduction to this class.

See also: SetName(), BFile::CopyTo(), BDirectory::Create()

Name()

const char *Name(void)

Returns the item’s name. If the item doesn’t refer to a file, this returns NULL and sets the
Error() code to B_ERROR.

See also: SetName()

The Storage Kit – 59

 BStore Member Functions

Record()

BRecord *Record(void)

Returns a BRecord object that represents the record in the database that holds information
for this file system item. You can examine the values in the BRecord (through functions
defined by the BRecord class), but you should only set and modify those fields that you’ve
defined yourself.

Any changes that you make to the BRecord must be explicitly committed by calling
BRecord’s Commit() function. Furthermore, you must commit your changes before
calling other BStore functions, even those that are seemingly innocuous.

More information on the use and meaning of a BStore’s record is given in the section
“Custom Files” on page 53 of the introduction to this class.

SetName()

long SetName(const char *name)

Sets the name of the item to name. If the item is the root directory for its volume, the name
of the volume is set to the argument as well.

Every item within a directory must have a different name; if name conflicts with an
existing item in the same directory, the function fails and returns B_NAME_IN_USE. Also,
you can’t change the name of an item that’s currently open; SetName() will return
B_ERROR in this case. B_ERROR is also returned if, for any other reason, the name couldn’t
be changed. Success is indicated by a return of B_NO_ERROR.

See also: Name(), MoveTo()

SetRef()

virtual long SetRef(record_ref ref)
virtual long SetRef(BVolume *volume, record_id id)

Sets the object’s record ref. By setting an object’s ref, you cause the object to refer to a file
in the file system.

The first version of the function sets the ref to the argument that you pass. This version of
the function is typically called in response to a ref being received by your application.

The second version induces the ref from the BVolume (which implies a specific database)
and record ID arguments. This version is useful if you’re finding files through a database
query.

More information on a BStore’s ref is given in the section “Files, Records, and BStores”
on page 51 of the introduction to this class.

60 – The Storage Kit

Operators BStore

Volume()

BVolume *Volume(void)

Returns the BVolume object that represents the volume in which this item is stored.

Operators

= (assignment)

inline BStore& operator=(const BStore&)

Sets the ref of the left operand object to be the same as that of the right operand object.

== (equality)

bool operator==(BStore) const

Compares the two objects based on their refs. If the refs are the same, the objects are
judged to be the same.

!= (inequality)

bool operator!=(BStore) const

Compares the two objects based on their refs. If the refs are not the same, the objects are
judged to be not the same.

The Storage Kit – 61

BTable

Derived from: public BObject

Declared in: <storage/Table.h>

Overview

The BTable class defines objects that represent tables in a database.

A table is a template for a record, where a record is a collection of data that describes
various aspects of a “thing.” As a template, the table characterizes the individual datums
that a record can contain. Each such characterization, which consists of a name and a data
type, is called a field of the table. To make an analogy, a table is like a class definition, its
fields are like data members, and records are instances of the class.

A table’s definition—the make-up of its fields—is persistent: The definition is stored in a
particular database. Within a database, tables are identified by name; the BDatabase class
provides a function, FindTable(), that lets you retrieve a table based on a name (more
accurately, the function returns a BTable object that represents the table that’s stored in the
database). To create a new table, you use BDatabase’s CreateTable(), passing the name
by which you want the table to be known (an example is given in the next section). The
reliance on BDatabase to find and create tables enforces two important BTable tenets:

• A table can only exist in reference to a particular database. You can’t, for example,
create a table and then add or otherwise “apply” it to a database. The BDatabase
object that you use as the target of a CreateTable() invocation represents the
database that will own the newly created table.

• The Storage Kit manages the construction and freeing of BTables for you. You
obtain BTable objects—through BDatabase’s FindTable() and CreateTable()
(among others)—rather than construct them yourself.

A subtler point regarding tables is that they don’t actually contain the records that they
describe. For example, every file in the Be file system is represented by a record in the
database. File records contain information such as the file’s name, its size, when it was
created, and so on. These categories of information (in other words, the “name,” “size,”
“creation data,”) are enumerated as fields in the “File” table. But the “File” table doesn’t
contain the records themselves—it’s simply the template that’s used to create file records.

62 – The Storage Kit

Overview BTable

Creating a Table

As mentioned above, you create a new table (and retrieve the BTable that’s constructed
to represent it) through BDatabase’s CreateTable() function. The function takes two
arguments:

• The first argument (a char *) supplies a name for the table. Unfortunately, the
Storage Kit doesn’t force table names to be unique. Before you create a new table,
you should make sure your proposed name won’t collide with an existing table (as
demonstrated in the example below).

• The second argument is optional; it identifies a table—by name or by BTable
object—that will act as the new table’s “parent.” If you designate a parent, the
new table will automatically contain the parent’s field definitions (as well as its
grandparent’s, and so on).

In the following example, a new table named “Employee” is created; the example assumes
the existence and validity of the a_db BDatabase object:

BTable *employee_table;

/* It’s a good idea to synchronize the BDatabase before
 * creating a new table. This refreshes the object’s table
 * list.
 */
a_db->Sync();

/* Make sure the database doesn’t already have an
 * "Employee" table.
 */
if (a_db->FindTable("Employee") != NULL)
 return; /* or whatever */
else
 /* Create the table. */
 employee_table = a_db->CreateTable("Employee");

The table name that you choose should, naturally enough, fit the “things” that the table
describes. By convention, table names are singular, not plural.

Adding Fields to a Table

Having created a table, you’ll want to add fields to it by calling BTable’s field-adding
functions. A field has two properties: a name and a data type. You pass the name as an
argument to a field-creating function; the data type is implied by the function name:

• AddStringField() adds a field that represents (char *) data.

• AddLongField() does the same for long data.

• AddRawField() is for buffers of unspecified data type (void *).

The Storage Kit – 63

 BTable Overview

• AddTimeField() adds a field that represents time_t values.

• AddRecordIDField() adds a record ID field. This is one of the trickier BTable
notions, and is fully explained in the BRecord class description. Briefly, the value
that a record ID field represents is an integer that uniquely identifies a specific
record in the database. By adding a record ID field to a BTable, you allow records to
point to each other. (Using database parlance, the field lets you “join” records.)

Typically, you add fields only when you’re creating a new table; however, you’re not
prevented from adding them to existing tables.

Here we add three fields to the “Employee” table; the first field gives the employee’s
name, the second gives the employee’s telephone extension, and the third identifies the
record that represents the employee’s manager (this is further explained in the BRecord
class description):

field_key name_key =
 employee_table->AddStringField("name", B_INDEXED_FIELD);

field_key extension_key =
 employee_table->AddLongField("extension");

field_key manager_key =
 employee_table->AddRecordIDField("manager");

Notice that the Add Field() functions don’t return objects. That’s because fields aren’t
represented by objects; instead, they’re identified by name or by field	key, as explained
in the next section (a subsequent section explains the meaning of the B_INDEXED_FIELD
argument used in the example).

You can retrieve information about a field through BTable’s GetFieldInfo() functions.

Field Keys

A field key is an integer that identifies a field within its table. Field key values have the
data type field_key, and are returned by the Add Field() functions. (You can also get a
field’s key through the FieldKey() function, passing the field’s name as an argument.)
Field keys are used, primarily, when you add and retrieve BRecord data; this is taken up in
the BRecord class description.

Field keys are not unique across the entire database—a field key value doesn’t encode the
identity of the field’s table. Furthermore, a field’s key value is computed on the basis of the
field’s name and data type. If you add, to a table, two fields that have the same name and
data type (which you aren’t prevented from doing), the fields will have the same field key
value.

64 – The Storage Kit

Overview BTable

Field Flags

The optional second argument to the Add Field() functions is a list of flags that you want
to apply to the field. Currently, there’s only one flag (B_INDEXED_FIELD), so the second
argument is either that or it’s excluded.

The presence of the B_INDEXED_FIELD flag means that the field will be considered when the
database generates its index (which it does automatically). Indexing makes data-retrieval
somewhat faster, but it also makes data-addition somewhat slower; the more fields that are
indexed, the greater the difference on either side. In general, you should only index fields
that you think will be most frequently used when data is retrieved (or fetched).

In the example, the “name” field is indexed; this implies the predication that employee
data will most likely be fetched on the basis of the employee’s name. (See the BQuery
class for examples of how data is fetched.)

Table Inheritance

A table can inherit fields from another table. For example, let’s say you want to create a
“Temp” table that inherits from “Employee”. To the “Temp” table you add fields named
“agency” and “termination” (date):

BTable *temp_table;

a_db->Sync();

/* This time, we perform the name-collision check AND test
 * to ensure that the parent exists.
 */
if (a_db->FindTable("Temp") != NULL ||
 a_db->FindTable("Employee") == NULL)
 return;

/* Now create the table... */
temp_table = a_db->CreateTable("Temp", "Employee");

/* ... and add the new fields. First we check to make sure
 * we didn’t inherit these fields from "Employee". The checks
 * allow similarly named fields with different types, but not
 * fields that are identical in name -and- type. You can
 * tighten the check to disallow fields with identical names
 * by omitting the FieldType() check.
 */

if (temp_table->FieldKey("agency") != B_ERROR)
 if (temp_table->FieldType("agency") != B_STRING_TYPE)
 field_key agency_key =
 temp_table->AddStringField("agency");

if (temp_table->FieldKey("termination") != B_ERROR)
 if (temp_table->FieldType("termination") != B_TIME_TYPE)

The Storage Kit – 65

 BTable Overview

 field_key term_key =
 temp_table->AddTimeField("termination");

The checks that accompany the field additions in the example are, perhaps, a bit overly-
scrupulous, but they can be important in some situations, such as if you’re letting a user
define tables through manipulation of the user interface.

A table hierarchy can be arbitrarily deep. However, all tables within a particular hierarchy
must belong to the same database—table inheritance can’t cross databases. Also, there’s
no “multiple inheritance” for tables.

Note: Table hierarchies have nothing to do with the C++ class hierarchy. You can’t
manufacture a table hierarchy by deriving classes based on BTable, for example.

Type and App

When the user double-clicks an icon—a file icon, for example—that’s displayed by the
Browser, the Browser launches (or otherwise finds) a particular app and then sends the
clicked icon’s record to the app. How does the Browser know which app to launch? If the
icon represents a file, then the Browser can simply ask the file for the app’s signature
through the representative BFile object’s GetTypeAndApp() message.

However, if the icon doesn’t represent a file—if it represents a “pure” database record—
then the Browser asks the record’s table for its app, through BTable’s GetTypeAndApp()
function. When you create a new table, you set the type and app through
SetTypeAndApp(). The “type” information for a table means the same thing as the “type”
of a file: It’s an application-specific identifier that describes the content of some data.

The type and app information for a table doesn’t “belong” to the Browser. Any
application can set and query this information.

Using a BTable

BTable objects are used in the definitions and operations of BRecord and BQuery objects.
These topics are examined fully in the descriptions of those classes, and are summarized
here.

BTables and BRecords

A table defines a structure for data, but it doesn’t, by itself, supply or contain the actual
data. To add data to a database, you must create and add one or more records. Records
are created in reference to a particular table; specifically, the amount and types of data
that a record can hold is determined by the fields of the table through which it’s created.
The record is said to “conform” to the table.

In your application, you create a record for a particular table by passing the representative
BTable object to the BRecord constructor:

66 – The Storage Kit

Constructor and Destructor BTable

/* Create a record for the "Employee" table. */
BRecord *an_employee = new BRecord(employee_table);

So constructed, the an_employee object will accept data for the fields that are contained
in the employee_table object. Adding data to a BRecord, and examining the data that it
contains, is performed through BRecord’s Set () and Find () functions; the set of these
functions complements BTable’s Add Field() set.

BTable and BQuery

A BQuery object represents a request to fetch records from the database. The definition
of a BQuery includes references to one or more BTable objects. To add a BTable
reference to a BQuery, you use the BQuery AddTable() or AddTree() function. The
former adds a single BTable (passed as an argument), the latter includes the argument
BTable and all its descendants.

When the BQuery performs a fetch, it only considers records that conform to its
BTables’ tables. You can further restrict the domain of candidate records as described in
the BQuery class description. Anticipating that description, here’s what you do to fetch all
the records that confrom to a particular table:

/* Fetch all Employee records. */
BQuery *employee_query = new BQuery();

employee_query->AddTable(employee_table);
employee_query->PushOp(B_ALL);
employee_query->Fetch(};

To fetch all “Employee” records—including those that conform to “Temp” as well as to
any other table that descends from “Employee”—we add the “Employee” table as a tree:

employee_query->AddTree(employee_table);
employee_query->PushOp(B_ALL);
employee_query->Fetch();

Constructor and Destructor

The BTable class doesn’t declare a constructor or destructor. You never explicitly create
or destroy BTable objects; you use, primarily, a BDatabase object to find such objects for
you. See the BDatabase class description.

The Storage Kit – 67

 BTable Member Functions

Member Functions

AddLongField, AddRawField, AddRecordIDField, AddStringField,
AddTimeField

field_key AddLongField(char *field_name, long flags = 0)
field_key AddRawField(char *field_name, long flags = 0)
field_key AddRecordIDField(char *field_name, long flags = 0)
field_key AddStringField(char *field_name, long flags = 0)
field_key AddTimeField(char *field_name, long flags = 0)

Adds a new field to the BTable and returns the field_key value that identifies it. You
supply a name for the field through the field_name argument. The flags argument gives
additional information about the field; currently, the only flag value that the functions
recognize is B_INDEXED_FIELD. See the section “Field Keys” on page 63 for more
information about indexing.

You declare the type of data that the field will hold by selecting the appropriate function:

• AddRawField() declares untyped data (void *).
• AddLongField() declares long data.
• AddRecordIDField() declares record_id values.
• AddStringField() declares (char *) data.
• AddTimeField() declares time (double) data.

Note that the functions don’t force fields names to be unique within a BTable; you can add
any number of fields with the same name. Furthermore (and slightly more concerning),
you aren’t prevented from adding fields that have identical names and types. Since field
keys are based on a combination of name and type, this means that any number of fields in
a table can have the same field key value.

See also: GetFieldInfo()

ChildAt()

BTable *ChildAt(long index)

Returns the BTable that sits in the index’th slot of the target BTable’s “child table” list.
Only those BTables that are direct descendants of the target are considered; in other words,
a BTable doesn’t know about its grandchildren. The function returns NULL if the index is
out-of-bounds.

See also: CountChildren()

68 – The Storage Kit

Member Functions BTable

CountChildren()

long CountChildren(void)

Returns the number of BTables that directly inherit from this BTable.

See also: ChildAt()

CountFields()

long CountFields(void)

Returns the number of fields in the BTable; the count includes inherited fields.

See also: GetFieldInfo()

Database()

BDatabase *Database(void)

Returns the BDatabase object that represents the database that owns the table that’s
represented by this BTable. This is the object that was the target of the FindTable() or
CreateTable() function that manufactured this BTable object.

See also: BDatabase::FindTable(), BDatabase::CreateTable()

FieldKey()

field_key FieldKey(char *name)
field_key FieldKey(char *name, long type)

Returns the field key for the named field. The second version of the function is in case you
have two fields with the same name, but different types (two fields with the same name
and type can’t be distinguished). The type argument must be one of the following
constants:

B_LONG_TYPE
B_RAW_TYPE
B_RECORD_TYPE
B_STRING_TYPE
B_TIME_TYPE

If the named field isn’t found, B_ERROR is returned.

See also: FieldType(), GetFieldInfo()

The Storage Kit – 69

 BTable Member Functions

FieldType()

long FieldType(field_key key)
long FieldType(char *name)

Returns a constant that represents the type of data that the designated field holds. The
possible return values are:

RAW_TYPE
LONG_TYPE
RECORD_TYPE
STRING_TYPE
TIME_TYPE

If the field isn’t found, B_ERROR is returned.

See also: FieldKey(), GetFieldInfo()

GetFieldInfo()

bool GetFieldInfo(long index,
char *name,
field_key *key,
long *type,
long *flags)

bool GetFieldInfo(char *name,
field_key *key,
long *type,
long *flags)

bool GetFieldInfo(field_key key,
char *name,
long *type,
long *flags)

Finds the field designated by the first argument and returns, in the other arguments,
information about it. The first version identifies the field by index into the BTable’s list of
fields, the second by its name, and the third by its field key.

The value returned in the type argument is one of the following constants:

LONG_TYPE
RAW_TYPE
RECORD_TYPE
STRING_TYPE
TIME_TYPE

The flags value will either be B_INDEXED_FIELD or 0. (See “Field Keys” on page 63 for
more information about field flags.)

70 – The Storage Kit

Member Functions BTable

If the field isn’t found, the functions returns FALSE; otherwise they return TRUE.

See also: AddLongField()

HasAncestor()

bool HasAncestor(BTable *a_table)

Returns TRUE if the target BTable inherits (however remotely) from a_table. Otherwise
returns FALSE.

See also: BDatabase::Parent(), BDatabase::CreateTable()

Name()

char *Name(void)

Returns the table’s name. The name is set when the table is created.

See also: BDatabase::CreateTable()

Parent()

BTable *Parent(void)

Returns the table’s parent, or NULL if none. A table’s parent is declared when the table is
created.

See also: BDatabase::CreateTable()

The Storage Kit – 71

BVolume

Derived from: public BObject

Declared in: <storage/Volume.h>

Overview

A BVolume object represents a volume, an entity that contains a single, hierarchical file
system and a single database. The data in a volume (the file system and database) is
persistent: It’s stored on a medium such as a hard disk, floppy disk, CD-ROM, or other
storage device.

When a volume’s existence is made known to the computer—when the volume is
mounted—the system automatically constructs a BVolume (for your application) to
represent it. When the volume is unmounted, the representative object is automatically
destroyed. You can retrieve these BVolume objects directly through global functions, or
construct your own BVolume objects that point to the objects that are created by the Kit.
This is described in the next section.

Through a BVolume object you can retrieve information such as the volume’s name, its
storage capacity, how much of the volume is available, and so on. None of the BVolume
functions manipulate or alter the volume—for example, you can’t unmount a volume by
calling a BVolume function (and rightly so, mounting and unmounting isn’t an activity
that’s expected of an application).

Retrieving a BVolume

There are three ways to retrieve BVolume objects:

• Retrieve the “boot volume” directly. The boot volume contains the executables for
the kernel and servers that are running on your machine. To retrieve the BVolume
that corresponds to the boot volume, call the global boot_volume() function:

BVolume myBootVol = boot_volume();

• Step through your application’s list of BVolume objects. You do this through the
global volume_at() function. The function takes an index argument (a long), and
returns the BVolume object at that position in the list. The first BVolume is at index
0; others (if any) follow at monotonically increasing index numbers. The function
returns NULL if the index is out-of-bounds. The following example demonstrates
this:

72 – The Storage Kit

Overview BVolume

/* Print the name of every mounted volume. */
void VolumeNamePrinter()
{
 BVolume this_vol;
 char vol_name[B_OS_NAME_LENGTH];
 long counter = 0;
 while((this_vol = volume_at(counter++)))
 {
 this_vol.GetName(vol_name);
 printf("Volume %s is available\n", vol_name);
 }
}

• Construct an object based on a volume ID. A volume is identified globally by a
unique integer (a long). By passing a valid volume identifier as the argument to the
BVolume constructor, you can retrieve a BVolume object that corresponds to the
volume. As explained in the next section, volume ID numbers are passed to your
application through BApplication hook functions that are called when volumes are
mounted and unmounted. (Also, see the ID() function for more information on
volume ID numbers.)

• Retrieve a BVolume from a BDatabase. As mentioned earlier, every volume
contains a single database. Given a BDatabase object (which represents a specific
database) you can retrieve the corresponding BVolume by passing the BDatabase
object to the global volume_for_database() function.

Mounting and Unmounting

As mentioned above, BVolume objects are automatically constructed as volumes are
mounted. Similarly, the system frees the BVolume object for a volume that’s been
unmounted (but see the note marked “Important” on page 73). The system informs your
application of these events through BApplication’s VolumeMounted() and
VolumeUnmounted() hook functions. Both functions provide a BMessage as an
argument; in the “volume_id” field of the BMessage you’ll find the volume ID of the
affected volume. To turn the volume ID into a BVolume object, you pass it as an argument
to the BVolume constructor.

In the following example implementation of these functions, information is printed as
volumes are mounted and unmounted:

void MyApp::VolumeMounted(BMessage *msg)
{
 BVolume *new_vol;
 char vol_name[B_OS_NAME_LENGTH];

 /* Get the volume ID and turn it into an object. */
 new_vol = new BVolume(msg->FindLong("volume_id"));
 new_vol->GetName(vol_name);

 /* Print information about the volume. */
 printf("Volume %s mounted; %f bytes available.\n",

The Storage Kit – 73

 BVolume Overview

 vol_name, new_vol->FreeBytes());
}

void MyApp::VolumeUnmounted(BMessage *msg)
{
 BVo1ume * o1d_vol;
 char vol_name[B_OS_NAME_LENGTH];

 old_vol = new BVolume(msg->FindLong("volume_id"));

 new_vol->GetName(vol_name);
 /* Print information about the volume. */
 printf("Volume %s unmounted.\n", vol_name);
}

As implied by the example, VolumeMounted() is called after the BVolume is constructed;
VolumeUnmounted() is called before the object is destroyed. Thus, within the
implementations of these functions, you can assume that the BVolume object is still valid.

Important: If you want your application’s volume list to be updated as volumes are
mounted and unmounted, you must have a running be_app object. This is so even if
you don’t implement VolumeMounted() and VolumeUnmounted(). Furthermore, your
application mustn’t be an “Argv Only” app.

The File System

Every volume encapsulates the hierarchy of directories and files for a single file system.
The “bridge” between a volume and the file system hierarchy is the volume’s root
directory. As its name implies, a root directory stands at the root of a file hierarchy such
that all files (and directories) in the hierarchy can be traced back to it.

Every volume has a single root directory; to retrieve a volume’s root directory (in
the form of a BDirectory object), you pass an allocated BDirectory to BVolume’s
GetRootDirectory() function:

/* Get the root directory for the first mounted volume. */
BVolume *first_vol;
BDirectory root_dir;

first_vol = volume_at(0);
new_vol->GetRootDirectory(&root_dir);

The GetRootDirectory() “fills in” the BDirectory that you pass so that it refers to the root
directory.

Volumes in Pathnames

The Storage Kit’s implementation of the file system obviates the need for pathnames.
Specific files aren’t identified by a concatenation of slash-separated subdirectories, but

74 – The Storage Kit

Constructor and Destructor BVolume

by objects. However, pathnames are still displayed in terminal windows, and are used by
command-line programs. To identify a volume in a pathname, you use this format:

/volumeName/directoryName/directoryName/...

The volume name itself doesn’t include the surrounding slashes.

You can’t set a volume’s name directly—BVolume doesn’t have a name-setting function.
A volume takes its name from that of its root directory. To change a volume’s name, you
have to retrieve the root directory and change its name (by invoking SetName() on the
BDirectory).

The Database

You can retrieve a volume’s database through the BVolume Database() function. The
function returns the BDatabase object that represents the database. As described in the
BDatabase class description, BDatabase objects are created for you in much the same way
as are BVolume objects: As volumes are mounted and unmounted, BDatabase objects that
represent the contained databases are constructed and destroyed.

In general, you only need to access a volume’s database if you’re creating an application
that performs database activities (as opposed to an application that uses the Storage Kit
simply to access the file system).

Constructor and Destructor

BVolume()

BVolume(void)
BVolume(long volume_id)

The first version of the constructor creates an “abstract” object that doesn’t correspond to
an actual volume. To create this correspondence, you invoke the SetID() function.

The second version creates a BVolume that corresponds to the volume identified by the
argument.

~BVolume()

virtual ~BVolume(void)

Destroys the object.

The Storage Kit – 75

 BVolume Member Functions

Member Functions

Capacity()

double Capacity(void)

Returns the number of bytes of data that the volume can hold. This is the total of used and
unused data—for an assessment of available storage, use the FreeBytes() function.

See also: FreeBytes()

Database()

BDatabase *Database(void)

Returns the BDatabase object that represents the volume’s database. Every volume
contains exactly one database (and each database is contained in exactly one volume).

See also: BDatabase::Volume()

FreeBytes()

double FreeBytes(void)

Returns a measure, in bytes, of the available storage in the volume.

See also: Capacity()

GetName()

long GetName(char *name)

Copies the volume’s name into the argument. The argument should be at least
B_OS_NAME_LENGTH bytes long. The name returned here is that which, for example,
shows up in the Browser’s “volume window.”

Setting the name is typically (and most politely) the user’s responsibility (a task that’s
performed, most easily, through the Browser). If you really want to set the name of the
volume programmatically, you do so by renaming the volume’s root directory.

Currently, this function always returns B_NO_ERROR.

See also: GetRootDirectory()

76 – The Storage Kit

Member Functions BVolume

GetRootDirectory()

int GetRootDirectory(BDirectory *dir)

Returns, in dir, a BDirectory object that’s set to the volume’s root directory. This is the
directory that lies at the root of the volume’s file system, and from which all other files and
directories descend.

You have to allocate the argument that you pass to this function; for example:

BDirectory root_dir;

a_volume->GetRootDirectory(&root_dir);

Some of the BDirectory (and, through inheritance, BStore) functions are treated specially
for the root directory:

• SetName() not only sets the name of the root directory, it also sets the name of the
volume.

• Remove() and MoveTo() always fail for a root directory—you’re not allowed to
remove or move a root directory.

• Parent() returns B_ERROR. By definition, root directories don’t have parents.
(Admittedly, the error code returned by Parent() is less than helpful; you can’t tell
the difference between an asked-for-the-root’s-parent B_ERROR, and a something-is-
terribly-wrong B_ERROR.)

Currently, this function always returns B_NO_ERROR.

ID()

long ID(void)

Returns the volume’s identification number. This number is unique among all volumes
that are currently mounted, and is only valid for as long as the volume is mounted.

The value returned by this function is used, primarily, when you’re communicating the
identity of a volume to some other application.

See also: volume_at() in “Global Functions”

IsReadOnly()

bool IsReadOnly(void)

Returns TRUE if the volume is set to be read-only.

The Storage Kit – 77

 BVolume Global Functions

IsRemovable()

bool IsRemovable(void)

Returns TRUE if the volume’s media is removable (if it’s a floppy disk).

Global Functions

The following functions are declared as global functions (in storage/Volume.h). Since
they’re global, they don’t rightfully belong in the BVolume class specification. But since
they pertain specifically to volumes, their place, here, is justified.

boot_volume()

BVolume boot_volume(void)

Returns the BVolume object that represents the “boot volume.” This is the volume that
contains the kernel and other system resources.

volume_at()

BVolume volume_at(long index)

Returns the index’th BVolume in your application’s volume list (counting from 0). The
list is created and administered for you by the Storage Kit. See the class description,
above, for an example of how the function is used.

If index is out-of-bounds, the function returns NULL.

volume_for_database()

BVolume volume_for_database(BDatabase *db)

Returns the BVolume that corresponds to the volume that contains the database identified
by the argument.

If db is invalid, the function returns NULL

78 – The Storage Kit

Global Functions BVolume

The Storage Kit – 79

Global Functions, Constants, and
Defined Types

This section lists parts of the Storage Kit that aren’t contained in classes.

Global Functions

boot_volume()

<storage/Volume.h>

BVolume *boot_volume(void)

Returns the BVolume object that represents the machine’s “boot” volume. This is the
volume that contains the executables for the kernel, app server, net server, and so on, that
are currently running.

See also: the BVolume class description

database_for()

<storage/Database.h>

BDatabase *database_for(long databaseID)

Returns the BDatabase object that represents the database that’s identified by databaseID.
Database ID numbers are unique across all available databases. They’re not, however,
persistently unique—you can’t cache a database ID to use again tomorrow.

If databaseID is invalid—if it doesn’t identify an available database—the function returns
NULL.

See also: the BDatabase class description

does_ref_conform ()

<storage/Record.h>

bool does_ref_conform(record_ref ref, char *tableName)

Returns TRUE if the record referred to by ref conforms to the table identified by tableName,
either directly or through table-inheritance; otherwise returns FALSE. Although you can
use this function anywhere, it’s particularly useful within an implementation of

80 – The Storage Kit

Global Functions	 Global	Functions,	Constants,	and	Defined	Types

BApplication’s RefsReceived() hook function. Most commonly, you test to see if the refs
you have received represent files, directories, or either. The table names that you use for
each of these is listed below:

• The “Files” table is used for files.
• The “Folders” table is used for directories.
• The “FSItem” table is used for file system items (files and directories).

The Be software defines a number of other tables that you can use in the is_ref_of_type()
test (the names listed above are by far the most useful). The complete list of Be-defined
table names can be found in the section “System Tables” on page 85.

Here we create a RefsReceived() function that looks for file-representing refs (only) and
creates a BFile for each:

void MyApp::RefsReceived(BMessage *msg)
{
 record_ref *theRef;
 BFile *theFile;
 long counter;
 long countFound;
 ulong typeFound;

 /* First we count the refs in the message. */
 if (!msg->GetInfo("refs", &typeFound, &countFound))
 return;
 if (countFound < 1)
 return;

 /* Loop over the refs. */
 for (counter = 0; counter < countFound; counter++)
 {
 theRef = a_message->FindRef("refs", counter)

 /* Find the refs that represent files. */
 if (does_ref_conform(theRef, "File"))
 {
 theFile = new BFile();
 theFile->SetRef(*theRef);
 /* Do something with the BFile here */
 }
 }
}

If you’ve been paying attention, you’ll probably have conjectured that you can perform the
“does conform” test through clever manipulation of the BRecord constructor and BTable’s
HasAncestor() function. Indeed; but this function conveniently abstracts all that database
nonsense, to the approbation of a database-leery public.

The Storage Kit – 81

 Global	Functions,	Constants,	and	Defined	Types Constants

update_query()

<storage/Query.h>

void update_query(BMessage *aMessage)

Used to forward messages from the Storage Server to a live BQuery object. You use this
function as part of a derived-class implementation of BApplication’s MessageReceived()
function; you never call it elsewhere in your application.

See also: the BQuery class description

volume_at()

<storage/Volume.h>

BVolume volume_at(long index)

Returns the index’th BVolume in your application’s volume list (counting from 0). The
list is created and administered for you by the Storage Kit.

If index is out-of-bounds, the function returns NULL.

See also: the BVolume class description

volume_for_database()

<storage/Volume.h>

BVolume volume_for_database(BDatabase *db)

Returns the BVolume object that corresponds to the argument database (as represented by
a BDatabase object).

If db is invalid—if it doesn’t identify a database—the function returns NULL.

Constants

Live Query Messages

<storage/Query.h>

B_RECORD_ADDED A record ref needs to be added to the BQuery’s ref list.
B_RECORD_REMOVED A ref needs to be removed from the list.
D_RECORD_MODIFIED Data has changed in a record referred to by one of the

refs in the ref list.

82 – The Storage Kit

Constants	 Global	Functions,	Constants,	and	Defined	Types

These constants are the potential what values of a BMessage that’s sent from the Storage
Server to your application.

See also: MessageReceived() in the BQuery class

query_op Constants

<storage/Query.h>

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than or equal to
B_LE less than or equal to
B_AND logically AND the previous two elements
B_OR logically OR the previous two elements
B_NOT negate the previous element
B_ALL wildcard; matches all records

These query_op constants are the operator values that can be used in the construction of a
BQuery’s predicate.

See also: PushOp() in the BQuery class

Table Field Flags

<storage/Table.h>

Constant Meaning

B_INDEXED_FIELD Create an index based on the values taken by this field.

Each field that you add to a BTable takes a set of flags. Currently, the only flag that is
recognized is B_INDEXED_FIELD.

See also: BTable::AddLongField()

The Storage Kit – 83

 Global	Functions,	Constants,	and	Defined	Types	 Defined	Types

Defined Types

database_id

<storage/StorageDefs.h>

typedef long database_id

The database_id type represents values that uniquely identify individual databases.

See also: record_id, the BDatabase class description

field_key

<storage/StorageDefs.h>

typedef long field_key

The field_key type represents fields in a BTable.

See also: the BTable class description

query_op

<storage/StorageDefs.h>

typedef long enum {...}query_op

The record_ref type represents a set of constants that can be used in a BQuery’s predicate.

See also: Query Operator Constants

record_id

<storage/StorageDefs.h>

typedef long record_id

The record_id type represents values that uniquely identify records in a known database.

See also: record_ref, the BRecord class description

record_ref

<storage/StorageDefs.h>

typedef struct {
 record_id record;

84 – The Storage Kit

Defined	Types	 Global	Functions,	Constants,	and	Defined	Types

 database_id database;
} record_ref

The record_ref type is a structure that uniquely identifies a particular record among all
records in all currently available databases.

See also: the BRecord class description

The Storage Kit – 85

System Tables and Resources

System Tables

This section lists the names of the tables that are defined by the Storage Kit, as well as
the names (and types) of the tables’ fields. You should never need to use these tables,
except to create other tables that inherit from them—you certainly shouldn’t take
advantage of the field definitions presented here in order to set record values yourself.
They’re listed, primarily, so you can avoid name collisions. Note that none of these
names (whether of the tables or their fields) are defined as constants, nor are they
published in any of the header files.

“BrowserItem”

Parent table: (none)

Field Name Field Type

“Name” STRING_TYPE
“Size” LONG_TYPE
“Created” TIME_TYPE
“Modified” TIME_TYPE
“parentID” LONG_TYPE
“dbType” LONG_TYPE
“fsType” LONG_TYPE
“fsCreator” LONG_TYPE
“parentRef” RECORD_TYPE
“flags” LONG_TYPE
“xLoc” LONG_TYPE
“yLoc” LONG_TYPE
“iconRef” RECORD_TYPE
“dock” LONG_TYPE
“openOnMount” LONG_TYPE
“inited” LONG_TYPE
“invisible” LONG_TYPE
“dockInited” LONG_TYPE
“dockX” LONG_TYPE
“dockY” LONG_TYPE

86 – The Storage Kit

System Tables System Tables and Resources

“FSItem”

Parent table: “BrowserItem”

Field Name Field Type

“appFlags” LONG_TYPE
“version” LONG TYPE

“File”

Parent table: “FSItem”

Field Name Field Type

“Project” STRING_TYPE
“Description” STRING_TYPE

“Folder”

Parent table: “FSItem”

Field Name Field Type

“dirID” LONG_TYPE
“viewMode” LONG_TYPE
“lastIconMode” LONG_TYPE
“numProperties” LONG_TYPE
“propertyList” RAW_TYPE
“windRect” RAW_TYPE
“iconOrigin” RAW_TYPE
“listOrigin” RAW_TYPE

“Proxy”

Parent table: “BrowserItem”

Field Name Field Type

“realItem” RECORD_TYPE

“Volume”

Parent table: “Folder”

Field Name Field Type

“Volume Size” LONG_TYPE
“isLocal” LONG TYPE

The Storage Kit – 87

 System Tables and Resources System Tables

“Machine”

Parent table: “Folder”

Field Name Field Type

(none)

“Query”

Parent table: “Folder”

Field Name Field Type

“QueryString” STRING_TYPE

“Person”

Parent table: “BrowserItem”

Field Name Field Type

“Company” STRING_TYPE
“Address” STRING_TYPE
“Phone” STRING_TYPE
“City” STRING_TYPE
“State” STRING_TYPE
“Zip” LONG_TYPE
“Account #” STRING_TYPE
“Portfolio Value” LONG_TYPE
“Position” RECORD_TYPE
“Fax” STRING_TYPE
“Comments” STRING TYPE

“Position”

Parent table: “BrowserItem”

Field Name Field Type

“Division” STRING_TYPE
“Salary” STRING_TYPE

88 – The Storage Kit

System Tables System Tables and Resources

“Quote”

Parent table: “BrowserItem”

Field Name Field Type

“Stock Price” LONG_TYPE
“52 Week High” LONG_TYPE
“52 Week Low” LONG_TYPE

“Message”

Parent table: “BrowserItem”

Field Name Field Type

“Status” LONG_TYPE
“Kind” LONG_TYPE
“From” STRING_TYPE
“When” TIME_TYPE
“Length” LONG_TYPE
“dataFile” STRING_TYPE
“At” STRING_TYPE
“outbound” LONG_TYPE
“Forum” STRING_TYPE

“Tool”

Parent table: “BrowserItem”

Field Name Field Type

“Description” STRING_TYPE

“Icon”

Parent table: (none)

Field Name Field Type

“creator” LONG_TYPE
“type” LONG_TYPE
“largeBits” RAW_TYPE
“smallBits” RAW_TYPE

The Storage Kit – 89

 System Tables and Resources System Resources

“DisplayTemplate”

Parent table: (none)

Field Name Field Type

“dbType” LONG_TYPE
“windowType” STRING_TYPE
“numFields” LONG_TYPE
“template Array” RAW_TYPE

“Dock”

Parent table: (none)

Field Name Field Type

“dbType” LONG_TYPE
“width” LONG_TYPE
“mode” LONG_TYPE
“bigMode” LONG_TYPE
“miniMode” LONG_TYPE

System Resources

This section lists the resource types that the Be software uses. To be specific, the Icon
World application adds resources of the following types to the applications that you
create; the Browser looks for and recognizes these resource types when it displays file
information and icons.

As with the table listings, above, the following is provided primarily so you can avoid
unintentional collisions—in general, you shouldn’t add resources by the types listed
below. However, it isn’t inconceivable that someone might try adding an ‘ICON’
resource directly (for example).

‘APPI’

The resource that’s identified by the type ‘APPI’ stores information about the
application. The data in the resource is a single app_info structure. This structure is
described in Chapter 2, “The Application Kit.” The name of the ‘APPI’ resource is “app
info”.

‘ICON’

90 – The Storage Kit

System Resources System Tables and Resources

The ‘ICON’-type resource holds data that creates the application’s large icons. The data
for the resource is a 32x32 pixel bitmap in COLOR_8_BIT color space. For the exact
representation of such data, see the BBitmap class in the Interface Kit.

There can be more than one ‘ICON’-typed resource:

• The ‘ICON’ resource that’s named “BAPP” holds the icon that’s displayed for the
application.

• The ‘ICON’ that takes, as a name, the application’s signature converted to a string
holds the data that’s displayed for documents created by the application.

‘MICN’

The ‘MICN’ type resource holds “mini-icon” data. The details are the same as the ‘ICON’
type described above, except that a mini-icon is a 16x16 pixel bitmap.

The Interface Kit – 1

4 The Interface Kit

Introduction 9
Framework for the User Interface 9

Application Server Windows. 10
BWindow Objects . 11
BView Objects . 11

Drawing Agent 12
Message Receiver 12

The View Hierarchy . 13
Drawing and Message-Handling
 in the View Hierarchy 14
Overlapping Siblings 14

The Coordinate Space . 14
Coordinate Systems 15
Coordinate Geometry. 16
Mapping Coordinates to Pixels. 17
Screen Pixels . 17

Drawing . 18
View Coordinate Systems 18

Frame and Bounds Rectangles 19
Scrolling . 19

Clipping Region . 20
The View Color . 22
The Mechanics of Drawing 23

Graphics Environment 23
The Pen . 24
Colors. 25
Patterns . 25
Drawing Modes. 27

Views and the Server. 30
The Update Mechanism 31

Forcing an Update 32
Erasing the Clipping Region 33
Drawing during an Update 33
Drawing outside of an Update 33

2 – The Interface Kit

Picking Pixels to Stroke and Fill 34
Stroking Thin Lines 34
Stroking Curved Lines 36
Filling and Stroking Rectangles 37
Filling and Stroking Polygons 39
Stroking Thick Lines 39

Responding to the User . 41
Interface Messages . 41
Hook Functions for Interface Messages 43

Dispatching . 44
The Focus View 45
Filtering Events. 46

Message Protocols . 47
Zoom Instructions 48
Minimize Instructions 48
Key-Down Events 48
Key-Up Events 49
Mouse-Down Events 49
Mouse-Up Events. 50
Mouse-Moved Events 51
Message-Dropped Events 51
View-Moved Events 52
View-Resized Events 52
Value-Changed Events 53
Window-Activated Events 53
Quit-Requested Events 53
Window-Moved Events 53
Window-Resized Events 54
Screen-Changed Events 54
Save-Requested Events. 54
Panel-Closed Events 55
Pulse Events . 55

Keyboard Information . 55
Key Codes . 56
Kinds of Keys 58
Modifier Keys 59
Character Mapping 61
Key States . 64

Guide to the Classes . 65

The Interface Kit – 3

BAlert 69
Overview. 69
Constructor . 70
Member Functions . 71

BBitmap 75
Overview. 75

Bitmap Data . 75
The Bounds Rectangle 76
The Color Space 76

Specifying the Image. 77
Transparency . 78

Constructor and Destructor . 78
Member Functions . 79

BBox 83
Overview. 83
Constructor and Destructor . 83
Member Functions . 84

BButton 85
Overview. 85
Hook Functions . 86
Constructor . 86
Member Functions . 86

BCheckBox 89
Overview. 89
Constructor . 89
Member Functions . 90

BControl 91
Overview. 91
Hook Functions . 91
Constructor and Destructor . 92
Member Functions . 93

BListView 99
Overview. 99

Displaying the List . 99
Selecting and Invoking Items 99

Hook Functions . 100
Constructor and Destructor . 101
Member Functions . 101

4 – The Interface Kit

BMenu 111
Overview. 111

Menu Hierarchy . 111
Menu Items. 111

Hook Functions . 112
Constructor and Destructor . 112
Member Functions . 114

BMenuBar 123
Overview. 123

The “Main” Menu Bar 123
A Kind of BMenu . 124

Constructor and Destructor . 124
Member Functions . 125

BMenuItem 127
Overview. 127

Kinds of Items . 127
Shortcuts and Triggers 127
Marked Items. 128
Disabled Items . 128

Hook Functions . 129
Constructor and Destructor . 129
Member Functions . 131

BPicture 139
Overview. 139

Recording a Picture . 139
The Picture Definition 139

Constructor and Destructor . 140
Member Functions . 141

BPictureButton 143
Overview. 143
Constructor and Destructor . 144
Member Functions . 145

BPoint 149
Overview. 149
Data Members . 149
Constructor . 150
Member Functions . 150
Operators. 151

The Interface Kit – 5

BPolygon 155
Overview. 155
Constructor and Destructor . 155
Member Functions . 156
Operators. 157

BPopUpMenu 159
Overview. 159
Constructor and Destructor . 160
Member Functions . 161

BRadioButton 163
Overview. 163
Constructor . 163
Member Functions . 164

BRect 167
Overview. 167
Data Members . 168
Constructor . 169
Member Functions . 169
Operators. 173

BRegion 177
Overview. 177
Constructor and Destructor . 177
Member Functions . 178
Operators. 180

BScrollBar 181
Overview. 181

The Update Mechanism 181
Value and Range . 181

Hook Functions . 183
Constructor and Destructor . 183
Member Functions . 184

BScrollView 187
Overview. 187
Constructor and Destructor . 187
Member Functions . 188

BSeparatorItem 189
Overview. 189
Constructor and Destructor . 189
Member Functions . 190

6 – The Interface Kit

BStringView 191
Overview. 191
Constructor and Destructor . 191
Member Functions . 192

BTextView 195
Overview. 195

Resizing . 195
Shortcuts and Menu Items 195

Hook Functions . 197
Constructor and Destructor . 197
Member Functions . 198

BView 215
Overview. 215

Views and Windows . 215
Drag and Drop . 216
Locking the Window . 217
Derived Classes . 217

Hook Functions . 218
Constructor and Destructor . 219
Member Functions . 222

BWindow 261
Overview. 261

View Hierarchy. 262
Window Threads . 262
Quitting. 262

Hook Functions . 263
Constructor and Destructor . 264
Member Functions . 266

Global Functions 289

Constants and Defined Types 305
Constants. 305
Defined Types . 315

The Interface Kit – 7

8 – The Interface Kit

Interface Kit Inheritance Hierarchy

BObject
(Support Kit)

BReceiver
(Application Kit)

BLooper
(Application Kit)

BRegion

BPoint

BRect

BPolygon

BMenuItem

BPicture

BWindow

BTextView

BStringView

BBox

BControl BButton

BCheckBox

BRadioButton

BPictureButton

BListView

BScrollBar

BScrollView

BBitmap

BView

BAlert

BMenu BMenuBar

BPopUpMenu

BSeparatorItem

The Interface Kit – 9

4 The Interface Kit

Most Be applications have an interactive and graphical user interface. When they start up,
they present themselves to the user on-screen in one or more windows. The windows
display areas where the user can do something—there may be menus to open, buttons to
click, text fields to type in, images to drag, and so on. Each user action on the keyboard or
mouse is packaged as an interface message and reported to the application. The
application responds to each message as it is received. At least part of the response is
always a change in what the window displays—so that users can see the results of their
work.

To run this kind of user interface, an application has to do three things. It must:

• Manage a set of windows,
• Draw within the windows, and
• Respond to interface messages.

The application, in effect, carries on a conversation with the user. It draws to present itself
on-screen, the user does something with the keyboard or mouse, the event is reported to
the application in a message, and the application draws in response, prompting more user
actions and more messages.

The Interface Kit structures this interaction with the user. It defines a set of C++ classes
that give applications the ability to manage windows, draw in them, and efficiently
respond to the user’s instructions. Taken together, these classes define a framework for
interactive applications. By programming with the Kit, you’ll be able to construct an
application that effectively uses the capabilities of the BeBox.

This chapter first introduces the conceptual framework for the user interface, then
describes all the classes, functions, types, and constants the Kit defines. The reference
material that follows this introduction assumes the concepts and terminology presented
here.

Framework for the User Interface

A graphical user interface is organized around windows. Each window has a particular
role to play in an application and is more or less independent of other windows. While

10 – The Interface Kit

Framework for the User Interface

working on the computer, users think in terms of windows—what’s in them and what can
be done with them—perhaps more than in terms of applications.

The design of the software mirrors the way the user interface works: it’s also organized
around windows. Within an application, each window runs in its own thread and is
represented by a separate BWindow object. The object is the application’s interface to the
window the system provides; the thread is where all the work that’s centered on the
window takes place.

Because every window has its own thread, the user can, for example, scroll the contents of
one window while watching an animation in another, or start a time-consuming
computation in an application and still be able to use the application’s other windows. A
window won’t stop working when the user turns to another window.

Commands that the user gives to a particular window initiate activity within that window’s
thread. When the user clicks a button within a window, for example, everything that
happens in response to the click happens in the window thread (unless the application
arranges for other threads to be involved). In its interaction with the user, each window
acts on its own, independently of other windows.

Application Server Windows

In a multitasking environment, any number of applications might be running at the same
time, each with its own set of windows on-screen. The windows of all running
applications must cooperate in a common interface. For example, there can be only one
active window at a time—not one per application, but one per machine. A window that
comes to the front must jump over every other window, not just those belonging to the
same application. When the active window is closed, the window behind it must become
active, even if it belongs to a different application.

Because it would be difficult for each application to manage the interaction of its windows
with every other application, windows are assigned, at the lowest level, to a separate
entity, the Application Server. The Server’s principal role in the user interface is to
provide applications with the windows they require.

Everything a program or a user does is centered on the windows the Application Server
provides. Users type into windows, click buttons in windows, drag images to windows,
and so on; applications draw in windows to display the text users type, the buttons they
can click, and the images they can drag.

The Application Server, therefore, is the conduit for an application’s message input and
drawing output:

• It monitors the keyboard and mouse and sends messages reporting each user
keystroke and mouse action to the application.

• It receives drawing instructions from the application and interprets them to render
images within windows.

The Interface Kit – 11

 Framework for the User Interface

The Server relieves applications of much of the burden of basic user-interface work. The
Interface Kit organizes and further simplifies an application’s interaction with the Server.

BWindow Objects

Every window in an application is represented by a separate BWindow object.
Constructing the BWindow establishes a connection to the Application Server—one
separate from, but initially dependent on, the connection previously established by the
BApplication object. The Server creates a window for the new object and dedicates a
separate thread to it.

The BWindow object is a kind of BLooper, so it spawns a thread for the window in the
application’s address space and begins running a message loop where it receives and
responds to interface messages from the Server. The window thread in the application is
directly connected to the dedicated thread in the Server.

The BWindow object, therefore, is in position to serve three crucial roles:

• It can act as the application’s interface to a Server window. It has functions that the
application can call to manipulate the window programmatically—move it, resize it,
close it, and so on. It also declares the hook functions that the system calls to notify
the application that the user manipulated the window.

• It can organize message-handling within the window thread. Since it runs the
window’s message loop, it gets to decide how each message should be handled. It’s
the focus and central distribution point for all messages that initiate activity in the
thread.

• As the entity that holds rendered images, it can manage the objects that produce
those images. (This is discussed under “BView Objects” below.)

All other Interface Kit objects play roles that depend on a BWindow. They draw in a
window, respond to interface messages received by a window, or act in support of other
objects that draw and respond to messages.

BView Objects

For purposes of drawing and message-handling, a window can be divided up into smaller
rectangular areas called views. Each view corresponds to one part of what the window
displays—a scroll bar, a document, a list, a button, or some other more or less self-
contained portion of the window’s contents.

An application sets up a view by constructing a BView object and associating it with a
particular BWindow. The BView object is responsible for drawing within the view
rectangle, and for handling interface messages directed at that area.

12 – The Interface Kit

Framework for the User Interface

Drawing Agent

A window is a tablet that can retain and display rendered images, but it can’t draw them;
for that it needs a set of BViews. A BView is an agent for drawing, but it can’t render the
images it creates; for that it needs a BWindow. The two kinds of objects work hand in
hand.

Each BView object is an autonomous graphics environment for drawing. Some aspects of
the environment, such as the list of possible colors, are shared by all BViews and all
applications. But within those broad limits, every BView maintains an independent
graphics state. It has its own coordinate system, current colors, drawing mode, clipping
region, pen position, and so on.

The BView class defines the functions that applications call to carry out elemental drawing
tasks—such as stroking lines, filling shapes, drawing characters, and imaging bitmaps.
These functions are typically used to implement another function—called Draw()—in a
class derived from BView. This view-specific function draws the contents of the view
rectangle.

The BWindow will call the BView’s Draw() function whenever the window’s contents (or
at least the part that the BView has control over) need to be updated. A BWindow first
asks its BViews to draw when the window is initially placed on-screen. Thereafter, they
might be asked to refresh the contents of the window whenever the contents change or
when they’re revealed after being hidden or obscured. A BView might be called upon to
draw at any time.

Because Draw() is called on the command of others, not the BView, it can be considered to
draw passively. It presents the view as it currently appears. For example, the Draw()
function of a BView that displays editable text would draw the characters that the user had
inserted up to that point.

BViews also draw actively in response to messages reporting the user’s actions. For
example, text is highlighted as the user drags over it and is replaced as the user types.
Each change is the result of a system message reported to the BView. For passive
drawing, the BView implements a function (Draw()) that others may call. For active
drawing, it calls the drawing functions itself (it may even call Draw()).

Message Receiver

The drawing that a BView does is often designed to prompt a user response of some
kind—an empty text field with a blinking caret invites typed input, a menu item or a
button invites a click, an icon looks like it can be dragged, and so on.

When the user acts, system messages that report the resulting events are sent to the
BWindow object, which determines which BView elicited the user action and should
respond to it. For example, a BView that draws typed text can expect to respond to
messages reporting the user’s keystrokes. A BView that draws a button gets to handle the
messages that are generated when the button is clicked. The BView class derives from
BReceiver, so BView objects are eligible to handle messages dispatched by the BWindow.

The Interface Kit – 13

 Framework for the User Interface

Just as classes derived from BView implement Draw() functions to draw within the view
rectangle, they also implement the hook functions that respond to interface messages.
These functions are discussed later, under “Hook Functions for Interface Messages” on
page 43.

Largely because of its graphics role and its central role in handling interface messages,
BView is the biggest and most diverse class in the Interface Kit. Most other Interface Kit
classes are derived from it.

The View Hierarchy

A window typically contains a number of different views—all arranged in a hierarchy
beneath the top view, a view that’s exactly the same size as the content area of the window.
The top view is a companion of the window; it’s created by the BWindow object when the
BWindow is constructed. When the window is resized, the top view is resized to match.
Unlike other views, the top view doesn’t draw or respond to messages; it serves merely to
connect the window to the views that the application creates and places in the hierarchy.

As illustrated in the diagram below, the view hierarchy can be represented as a branching
tree structure with the top view at its root. All views in the hierarchy (except the top view)
have one, and only one, parent view. Each view (including the top view) can have any
number of child views.

In this diagram, the top view has four children, the container view has three, and the
border view one. Child views are located within their parents, so the hierarchy is one of
overlapping rectangles. The container view, for example, takes up some of the top view’s
area and divides its own area into a document view and two scroll bars.

When a new BView object is created, it isn’t attached to a window and it has no parent.
It’s added to a window by making it a child of a view already in the view hierarchy. This
is done with the AddChild() function. A view can be made a child of the window’s top
view by calling BWindow’s version of AddChild().

top view

button

text field

container
view

graph
view

border
view

document
view

vertical
scroll bar

horizontal
scroll bar

14 – The Interface Kit

Framework for the User Interface

Until it’s assigned to a window, a BView can’t draw and won’t receive reports of events.
BViews know how to produce images, but it takes a window to display and retain the
images they create.

Drawing and Message-Handling in the View Hierarchy

The view hierarchy determines what’s displayed where on-screen, and also how user
actions are associated with the responsible BView object:

• When the views in a window are called upon to draw, parents draw before their
children; children draw in front of their ancestors.

• Mouse events (like the mouse-down and mouse-up events that result from a click)
are associated with the view where the cursor is located. Since the cursor points to
the frontmost view at any given location, it’s likely to be pointing at a view close to
the bottom of the hierarchy. It’s those views—the ones that have no children—that
are responsible for most of the drawing and message-handling for the window.
Views farther up the hierarchy tend to contain and organize those at the bottom.

Overlapping Siblings

Although children wait for their parents when it comes time to draw and parents defer to
their offspring when it comes to time to respond to interface messages, sibling views are
not so well-behaved. Siblings don’t draw in any predefined order. This doesn’t matter,
as long as the view rectangles of the siblings don’t overlap. If they do overlap, it’s
indeterminate which view will draw last—that is, which one will draw on top of the other.

Similarly, it’s indeterminate which view will be associated with mouse events in the area
the siblings share. It may be one view or it may be the other, and it won’t necessarily be
the one that drew the image the user sees.

Therefore, it’s strongly recommended that sibling views should be arranged so that they
don’t overlap.

The Coordinate Space

To locate windows and views, draw in them, and report where the cursor is positioned
over them, it’s necessary to have some conventional way of talking about the display
surface. The same conventions are used whether the display device is a monitor that
shows images on a screen or a printer that puts them on a page.

The Interface Kit – 15

 Framework for the User Interface

In Be software, the display surface is described by a standard two-dimensional coordinate
system where the y-axis extends downward and the x-axis extends to the right, as
illustrated below:

y coordinate values are greater towards the bottom of the display and smaller towards the
top, x coordinate values are greater to the right and smaller to the left.

The axes define a continuous coordinate space where distances are measured by floating-
point values (floats). All quantities in this space—including widths and heights, x and y
coordinates, font sizes, angles, and the size of the pen—are floating point numbers.

Floating-point coordinates permit precisely stated measurements that can take advantage
of display devices with higher resolutions than the screen. For example, a vertical line 0.4
units wide would be displayed using a single column of pixels on-screen, the same as a
line 1.4 units wide. However, a 300 dpi printer would use two pixel columns to print the
0.4-unit line and six to print the 1.4-unit line.

A coordinate unit is 1/72 of an inch, roughly equal to a typographical point. However, all
screens are considered to have a resolution of 72 pixels per inch (regardless of the actual
dimension), so coordinate units count screen pixels. One unit is the distance between the
centers of adjacent pixels on-screen.

Coordinate Systems

Specific coordinate systems are associated with the screen, with windows, and with the
views inside windows. They differ only in where the two axes are located:

• The global or screen coordinate system has its origin, (0.0, 0.0), at the left top
corner of the screen. It’s used for positioning windows on-screen, < for arranging
multiple screens connected to the same machine, > and for comparing coordinate
values that weren’t originally stated in a common coordinate system.

• A window coordinate system has its origin at the left top corner of the content area
of a window. It’s used principally for positioning views within the window. Each
window has its own coordinate system so that locations within the window can be
specified without regard to where the window happens to be on-screen.

16 – The Interface Kit

Framework for the User Interface

• A view coordinate system has its default origin at the left top corner of the view
rectangle. However, scrolling can shift view coordinates and move the origin.
View-specific coordinates are used for all drawing operations and to report the
cursor location in most system messages.

Coordinate Geometry

The Interface Kit defines a handful of basic classes for locating points and areas within a
coordinate system:

• A BPoint object is the simplest way to specify a coordinate location. Each object
stores two values—an x coordinate and a y coordinate—that together locate a
specific point, (x, y), within a given coordinate system.

• A BRect object represents a rectangle; it’s the simplest way to designate an area
within a coordinate system. The BRect class defines a rectangle as a set of four
coordinate values—corresponding to the rectangle’s left, top, right, and bottom
edges, as illustrated below:

The sides of the rectangle are therefore parallel to the coordinate axes. The left and
right sides delimit the range of x coordinate values within the rectangle, and the top
and bottom sides delimit the range of y coordinate values. For example, if a
rectangle’s left top corner is at (0.8, 2.7) and its right bottom corner is at
(11.3, 49.5), all points having x coordinates ranging from 0.8 through 11.3 and
y coordinates from 2.7 through 49.5 lie inside the rectangle.

If the top of a rectangle is the same as its bottom, or its left the same as its right, the
rectangle defines a straight line. If the top and bottom are the same and also the left
and right, it collapses to a single point. Such rectangles are still valid—they specify
real locations within a coordinate system. However, if the top is greater than the
bottom or the left greater than the right, the rectangle is invalid; it has no meaning.

The Interface Kit – 17

 Framework for the User Interface

• A BPolygon object represents a polygon, a closed figure with an arbitrary number
of sides. The polygon is defined as an ordered set of points. It encloses the area
that would be outlined by connecting the points in order, then connecting the first
and last points to close the figure. Each point is therefore a potential vertex of the
polygon.

• A BRegion object defines a set of points. A region can be any shape and even
include discontinuous areas.

Mapping Coordinates to Pixels

The device-independent coordinate space described above must be mapped to the pixel
grid of a particular display device—the screen, a printer, or some other piece of hardware
that’s capable of rendering an image. For example, to display a rectangle, it’s necessary
to find the pixel columns that correspond to its right and left sides and the pixel rows that
correspond to its top and bottom.

This depends entirely on the resolution of the device. In essence, each device-independent
coordinate value must be translated internally to a device-dependent value—an integer
index to a particular column or row of pixels. In the coordinate space of the device, one
unit equals one pixel.

This translation is easy for the screen, since, as mentioned above, there’s a one-to-one
correspondence between coordinate units and pixels. It reduces to rounding floating-point
coordinates to integers. For other devices, however, the translation means first scaling the
coordinate value to a device-specific value, then rounding. For example, the point
(12.3, 40.8) would translate to (12,41) on the screen, but to (51,170) on a 300 dpi printer.

Screen Pixels

To map coordinate locations to device-specific pixels, you need to know only two things:

• The resolution of the device, and
• The location of the coordinate axes relative to pixel boundaries.

The axes are located in the same place for all devices: The x-axis runs left to right along
the middle of a row of pixels and the y-axis runs down the middle of a pixel column. They
meet at the very center of a pixel.

Because coordinate units match pixels on the screen, this means that all integral
coordinate values (those without a fractional part) fall midway across a screen pixel. The

18 – The Interface Kit

Drawing

following illustration shows where various x coordinate values fall on the x-axis. The
broken lines represent the division of the screen into a pixel grid:

As this illustration shows, it’s possible to have coordinate values that lie on the boundary
between two pixels. A later section, “Picking Pixels to Stroke and Fill” on page 34,
describes how these values are mapped to one pixel or the other.

Drawing

Drawing is done by BView objects. As discussed above, the views within a window are
organized into a hierarchy—there can be views within views—but each view is an
independent drawing agent and maintains a separate graphics environment. This section
discusses the framework in which BViews draw, beginning with view coordinate systems.
Detailed descriptions of the functions mentioned here can be found in the BView and
BWindow class descriptions.

View Coordinate Systems

As a convenience, each view is assigned a coordinate system of its own. By default, the
coordinate origin—(0.0, 0.0)—is located at the left top corner of the view rectangle. (For
an overview of the coordinate systems assumed by the Interface Kit, see “The Coordinate
Space” on page 14 above.)

When a view is added as a child of another view, it’s located within the coordinate system
of its parent. A child is considered part of the contents of the parent view. If the parent
moves, the child moves with it; if the parent view scrolls its contents, the child view is
shifted along with everything else in the view.

Since each view retains its own internal coordinate system no matter who its parent is,
where it’s located within the parent, or where the parent is located, a BView’s drawing and
message-handling code doesn’t need to be concerned about anything exterior to itself. To
do its work, a BView need look no farther than the boundaries of its own view rectangle.

The Interface Kit – 19

 Drawing

Frame and Bounds Rectangles

Although a BView doesn’t have to look outside its own boundaries, it does have to know
where those boundaries are. It can get this information in two forms:

• Since a view is located within the coordinate system of its parent, the view rectangle
is initially defined in terms of the parent’s coordinates. This defining rectangle for a
view is known as its frame rectangle. (See the BView constructor and the Frame()
function.)

• When translated from the parent’s coordinates to the internal coordinates of the
view itself, the same rectangle is known as the bounds rectangle. (See the Bounds()
function.)

The illustration below shows a child view 180.0 units wide and 135.0 units high. When
viewed from the outside, from the perspective of its parent’s coordinate system, it has
a frame rectangle with left, top, right, and bottom coordinates at 90.0, 60.0, 270.0, and
195.0, respectively. But when viewed from the inside, in the view’s own coordinate
system, it has a bounds rectangle with coordinates at 0.0, 0.0, 180.0, and 135.0:

When a view moves to a new location in its parent, its frame rectangle changes but not
its bounds rectangle. When a view scrolls its contents, its bounds rectangle changes, but
not its frame. The frame rectangle positions the view in the world outside; the bounds
rectangle positions the contents inside the view.

Since a BView does its work in its own coordinate system, it refers to the bounds rectangle
more often than to the frame rectangle.

Scrolling

A BView scrolls its contents by shifting coordinate values within the view rectangle—that
is, by altering the bounds rectangle. If, for example, the top of a view’s bounds rectangle
is at 100.0 and its bottom is at 200.0, scrolling downward 50.0 units would put the top at
150.0 and the bottom at 250.0. Contents of the view with y coordinate values of 150.0 to
200.0, originally displayed in the bottom half of the view, would be shifted to the top half.

20 – The Interface Kit

Drawing

Contents with y coordinate values from 200.0 to 250.0, previously unseen, would become
visible at the bottom of the view. This is illustrated below:

Scrolling doesn’t move the view—it doesn’t alter the frame rectangle—it moves only
what’s displayed inside the view. In the illustration above, a “data rectangle” encloses
everything the BView is capable of drawing. For example, if the view is able to display
an entire book, the data rectangle would be large enough to enclose all the lines and
pages of the book laid end to end. However, since a BView can draw only within its
bounds rectangle, everything in the data rectangle with coordinates that fall outside the
bounds rectangle would be invisible. To make unseen data visible, the bounds rectangle
must change the coordinates that it encompasses. Scrolling can be thought of as sliding
the view’s bounds rectangle to a new position on its data rectangle, as is shown in the
illustration above. However, as it appears to the user, it’s moving the data rectangle under
the bounds rectangle. The view doesn’t move; the data does.

Clipping Region

The Application Server clips the images that a BView produces to the region where it’s
permitted to draw.

This region is never any larger than the view’s bounds rectangle; a view cannot draw
outside its bounds. Furthermore, since a child is considered part of its parent, a view
can’t draw outside the bounds rectangle of its parent either—or, for that matter, outside
the bounds rectangle of any ancestor view. In addition, since child views draw after, and
therefore logically in front of, their parents, a view concedes some of its territory to its
children.

Thus, the visible region of a view is the part of its bounds rectangle that’s inside the
bounds rectangles of all its ancestors, minus the frame rectangles of its children. This is
illustrated in the figure below. It shows a hierarchy of three views. The area filled with a
Crosshatch pattern is the visible region of view A; it omits the area occupied by its child,
view B. The visible region of view B is colored dark gray; it omits the part of the view that

The Interface Kit – 21

 Drawing

lies outside its parent. View C has no visible region, for it lies outside the bounds
rectangle of its ancestor, view A:

The visible region of a view might be further restricted if its window is obscured by
another window or if the window it’s in lies partially off-screen. The visible region
includes only those areas that are actually visible to the user. For example, if the three
views in the illustration above were in a window that was partially blocked by another
window, their visible regions might be considerably smaller. This is illustrated below:

Note that in this case, view A has a discontinuous visible region.

The Application Server clips the drawing that a view does to a region that’s never any
larger than the visible region. On occasion, it may be smaller. For the sake of efficiency,

22 – The Interface Kit

Drawing

while a view is being automatically updated, the clipping region excludes portions of the
visible region that don’t need to be redrawn:

• When a view is scrolled, the Application Server may be able to shift some of its
contents from one portion of the visible region to another. The clipping region
excludes any part of the visible region that the Server was able to update on its
own; it includes only the part where the BView must produce images that were not
previously visible.

• If a view is resized larger, the clipping region may include only the new areas
that were added to the visible region. (But see the flags argument for the BView
constructor.)

• If only part of a view is invalidated (by the Invalidate() function), the clipping
region is the intersection of the visible region and the invalid rectangle.

An application can also limit the clipping region for a view by passing a BRegion object to
ConstrainClippingRegion(). The clipping region won’t include any areas that aren’t in the
region passed. The Application Server calculates the clipping region as it normally would,
but intersects it with the specified region.

You can obtain the current clipping region for a view by calling GetClippingRegion().
(See also the BRegion class description.)

The View Color

Every view has a basic, underlying color. It’s the color that fills the view rectangle before
the BView does any drawing. The user may catch a glimpse of this color when the view is
first shown on-screen, when it’s resized larger, and when it’s erased in preparation for an
update. It will also be seen wherever the BView fails to draw in the visible region.

In a sense, the view color is the canvas on which the BView draws. It doesn’t enter into
any of the object’s drawing operations except to provide a background; it’s not one of the
BView’s graphics parameters.

By default, the view color is white. You can assign a different color to a view by calling
BView’s SetViewColor() function. Every view can have its own background color.

The Interface Kit – 23

 Drawing

The Mechanics of Drawing

Views draw through a set of primitive functions such as:

• DrawString(), which draws a string of characters,

• DrawBitmap(), which produces an image from a bitmap,

• DrawPicture(), which executes a set of recorded drawing instructions,

• StrokeLine(), StrokeArc(), and other Stroke () functions, which stroke lines along
defined paths, and

• FillEllipse(), FillRect(), and other Fill () functions, which fill closed shapes.

The way these functions work depends not only on the values that they’re passed—the
particular string, bitmap, arc, or ellipse that’s to be drawn—but on previously set values in
the BView’s graphics environment.

Graphics Environment

Each BView object maintains its own graphics environment for drawing. The coordinate
system and the clipping region are two fundamental parts of that environment, but not the
only parts. It also includes a number of parameters that can be set and reset at will to affect
the next image drawn. These parameters are:

• Font attributes that determine the appearance of text the BView draws. (See
SetFontName() and its companion functions.)

• Two pen parameters—a location and a size. The pen location determines where the
next drawing will occur and the pen size determines the thickness of stroked lines.
(See MovePenBy() and SetPenSize().)

• Two current colors—a high color and a low color—that can be used either alone
or in combination to form a pattern or halftone. The high color is used for most
drawing. The low color is sometimes set to the underlying view color so that it can
be used to erase other drawing or, because it matches the view background, make it
appear that drawing has not touched certain pixels.

 (The high and low colors roughly match what other systems call the fore and back,
or foreground and background, colors. However, neither color truly represents the
color of the foreground or background. The terminology “high” and “low” is meant
to keep the sense of two opposing colors and to match how they’re defined in a
pattern. A pattern bit is turned on for the high color and turned off for the low color.
See the SetHighColor() and SetLowColor() functions and the “Patterns” section
below.)

• A drawing mode that determines how the next image is to be rendered. (See the
“Drawing Modes” section below and the SetDrawingMode() function.)

24 – The Interface Kit

Drawing

By default, a BView’s graphics parameters are set to the following values:

Font “Kate” (9-point bitmap font, no rotation, 90° shear)
Pen position (0.0, 0.0)
Pen size 1.0 coordinate units
High color Black (red, green, and blue components all equal to 0)
Low color White (red, green, and blue components all equal to 255)
Drawing mode Copy mode (B_OP_COPY)
Clipping region The visible region of the view
Coordinate system Origin at the left top corner of the bounds rectangle

However, as the next section, “Views and the Server” on page 30, explains, these values
take effect only when the BView is assigned to a window.

The Pen

The pen is a fiction that encompasses two properties of a view’s graphics environment: the
current drawing location and the thickness of stroked lines.

The pen location determines where the next image will be drawn—but only if another
location isn’t explicitly passed to the drawing function. Some drawing functions alter the
pen location—as if the pen actually moves as it does the drawing—but usually it’s set by
calling MovePenBy() or MovePenTo().

The pen that draws lines (through the various Stroke () functions) has a malleable tip that
can be made broader or narrower by calling the SetPenSize() function. The larger the pen
size, the thicker the line that it draws.

The pen size is expressed in coordinate units, which must be translated to a particular
number of pixels for the display device. This is done by scaling the pen size to a device-
specific value and rounding to the closest integer. For example, pen sizes of 2.6 and 3.3
would both translate to 3 pixels on-screen, but to 7 and 10 pixels respectively on a 300 dpi
printer.

The size is never rounded to 0; no matter how small the pen may be, the line never
disappears. If the pen size is set to 0.0, the line will be as thin as possible—it will be
drawn using the fewest possible pixels on the display device. (In other words, it will be
rounded to 1 for all devices.)

If the pen size translates to a tip that’s broader than one pixel, the line is drawn with the tip
centered on the path of the line and held perpendicular to it. Roughly the same number of
pixels are colored on both sides of the path.

A later section, “Picking Pixels to Stroke and Fill” on page 34, illustrates how pens of
different sizes choose the pixels to be colored.

The Interface Kit – 25

 Drawing

Colors

The high and low colors are specified as rgb_color values—full 24-bit values with
separate red, green, and blue components. Although there may be limitations on the colors
that can be rendered on-screen, there are none on the colors that can be specified.

The way colors are specified for a bitmap depends on the color space in which they’re
interpreted. The color space determines the depth of the bitmap data (how many bits of
information are stored for each pixel) and its interpretation (whether the data represents
shades of gray or true colors, whether it’s segmented into color components, what the
components are, and so on). Four possible color spaces are recognized:

B_MONOCHROME_1_BIT One bit of data per pixel, where 1 is black and 0 is
white.

B_GRAYSCALE_8_BIT Eight bits of data per pixel, where a value of 255 is
black and 0 is white. <This color space is currently
not implemented. >

B_COLOR_8_BIT Eight bits of data per pixel, interpreted as an index into
a list of 256 colors. The list is part of the system color
map, and is the same for all applications.

B_RGB_24_BIT Four components of data per pixel—red, green, blue,
and alpha, arranged in that order—with eight bits
per component. A component value of 255 yields the
maximum amount of red, green, or blue, and a value
of 0 indicates the absence of that color. < The alpha
component is currently ignored. It will specify the
coverage of the color—how transparent or opaque it
is. >

The components of an B_RGB_24_BIT color are meshed rather than separated into distinct
planes; all four components are specified for the first pixel before the four components for
the second pixel, and so on.

The format of a rgb_color value exactly matches that of the B_RGB_24_BIT color space—
in other words, the high and low colors are specified as B_RGB_24_BIT colors. However,
onscreen, all colors are rendered in the B_COLOR_8_BIT color space. Specified 24-bit
colors are converted to the closest 8-bit color in the color list. (See the BBitmap class and
the system_colors() global function.)

Patterns

Functions that stroke a line or fill a closed shape don’t draw directly in either the high
or the low color. Rather they take a pattern, an arrangement of one or both colors that’s
repeated over the entire surface being drawn.

By combining the low color with the high color, patterns can produce dithered colors that
lie somewhere between two hues in the B_COLOR_8_BIT color space. Patterns also permit

26 – The Interface Kit

Drawing

drawing with less than the solid high color (for intermittent or broken lines, for example)
and can take advantage of drawing modes that treat the low color as if it were transparent,
as discussed below.

A pattern is defined as an 8-pixel by 8-pixel square. The pattern type is 8 bytes long, with
one byte per row and one bit per pixel. Rows are specified from top to bottom and pixels
from left to right. Bits marked 1 designate the high color; those marked 0 designate the
low color. For example, a pattern of wide diagonal stripes could be defined as follows:

pattern stripes = { 0xc7, 0x8f, 0x1f, 0x3e,
 0x7c, 0xf8, 0xf1, 0xe3 };

Patterns repeat themselves across the screen, like tiles that are laid side by side. The
pattern defined above looks like this:

The dotted lines in this illustration show the separation of the screen into pixels. The
thicker black line outlines one 8-by-8 square that the pattern defines.

The outline of the shape being filled or the width of the line being stroked determines
where the pattern is revealed. It’s as if the screen was covered with the pattern just below
the surface, and stroking or filling allowed some of it to show through. For example,
stroking a one-pixel wide horizontal path in the pattern illustrated above would result in a
dotted line, with the dashes (in the high color) slightly longer than the spaces between (in
the low color):

When stroking a line or filling a shape, the pattern serves as the source image for the
current drawing mode, as explained under “Drawing Modes” below. The nature of the
mode determines how the pattern interacts with the destination image, the image already in
place.

The Interface Kit – 27

 Drawing

The Interface Kit defines three patterns:

• B_SOLID_HIGH consists only of the high color,
• B_SOLID_LOW has only the low color, and
• B_MIXED_COLORS mixes the two colors evenly, like the pattern on a checkerboard.

B_SOLID_HIGH is the default pattern for all drawing functions. Applications can define as
many other patterns as they need.

Drawing Modes

When a BView draws, it in effect transfers an image to a target location somewhere in the
view rectangle. The drawing mode determines how the image being transferred interacts
with the image already in place at that location. The image being transferred is known as
the source image; it might be a bitmap or a pattern of some kind. The image already in
place is known as the destination image.

In the simplest and most straightforward kind of drawing, the source image is simply
painted on top of the destination; the source replaces the destination. However, there are
other possibilities. There are nine different drawing modes—nine distinct ways of
combining the source and destination images. The modes are designated by
drawing_mode constants that can be passed to SetDrawingMode():

B_OP_COPY B_OP_MIN B_OP_ADD
B_OP_OVER B_OP_MAX B_OP_SUBTRACT
B_OP_ERASE B_OP_INVERT B_OP_BLEND

B_OP_COPY is the default mode and the simplest. It transfers the source image to the
destination, replacing whatever was there before. The destination is ignored.

In the other modes, however, some of the destination might be preserved, or the source
and destination might be combined to form a result that’s different from either of them.
For these modes, it’s convenient to think of the source image as an image that exists
somewhere independent of the destination location, even though it’s not actually visible.
It’s the image that would be rendered at the destination in B_OP_COPY mode.

The modes work for all BView drawing functions—including those that stroke lines and
fill shapes, those that draw characters, and those that image bitmaps. The way they work
depends foremost on the nature of the source image—whether it’s a pattern or a bitmap.
For the Fill and Stroke functions, the source image is a pattern that has the same shape
as the area being filled or the area the pen touches as it strokes a line. For DrawBitmap(),
the source image is a rectangular bitmap.

• Only a source pattern has designated “high” and “low” colors. Even if a source
bitmap has colors that match the current high and low colors, they’re not handled
like the colors in a pattern; they’re treated just like any other color in the bitmap.

• On the other hand, only a source bitmap can have transparent pixels. In the
B_COLOR_8_BIT color space, a pixel is made transparent by assigning it the

28 – The Interface Kit

Drawing

 B_TRANSPARENT_8_BIT value. In the B_RGB_24_BIT color space, a pixel assigned
the B_TRANSPARENT_24_BIT value is considered transparent. These values have
meaning only for source bitmaps, not for source patterns. If the current high or low
color in a pattern happens to have a transparent value, it’s still treated as the high or
low color, not like transparency in a bitmap.

The way the drawing modes work also depends on the color space of the source image
and the color space of the destination. The following discussion concentrates on drawing
where the source and destination both contain colors. This is the most common case, and
also the one that’s most general.

When applied to colors, the nine drawing modes fall naturally into four groups:

• The B_OP_COPY mode, which copies the source image to the destination.

• The B_OP_OVER, B_OP_ERASE, and B_OP_INVERT modes, which—despite their
differences—all treat the low color in a pattern as if it were transparent.

• The B_OP_ADD, B_OP_SUBTRACT, and B_OP_BLEND modes, which combine colors
in the source and destination images.

• The B_OP_MIN and B_OP_MAX modes, which choose between the source and
destination colors.

The following paragraphs describe each of these groups in turn.

Copy Mode In B_OP_COPY mode, the source image replaces the destination. This is
the default drawing mode and the one most commonly used. Because this mode doesn’t
have to test for particular color values in the source image, look at the colors in the
destination, or compute colors in the result, it’s also the fastest of the modes.

If the source image contains transparent pixels, their transparency will be retained in the
result; the transparent value is copied just like any other color. However, the appearance
of a transparent pixel when shown on-screen is indeterminate. If a source image has
transparent portions, it’s best to transfer it to the screen in B_OP_OVER or another mode.
In all modes other than B_OP_COPY, a transparent pixel in a source bitmap preserves the
color of the corresponding destination pixel.

Transparency Modes Three drawing modes—B_OP_OVER, B_OP_ERASE, and
B_OP_INVERT—are designed specifically to make use of transparency in the source image;
they’re able to preserve some of the destination image. In these modes (and only these
modes) the low color in a source pattern acts just like transparency in a source bitmap.

• The B_OP_OVER mode places the source image “over” the destination; the source
provides the foreground and the destination the background. In this mode, the
source image replaces the destination image (just as in the B_OP_COPY mode)—
except where a source bitmap has transparent pixels and a source pattern has the
low

The Interface Kit – 29

 Drawing

 color. Transparency in a bitmap and the low color in a pattern retain the destination
image in the result.

 By masking out the unwanted parts of a rectangular bitmap with transparent pixels,
this mode can place an irregularly shaped source image on top of a background
image. Transparency in the source foreground lets the destination background show
through. The versatility of B_OP_OVER makes it the second most commonly used
mode, after B_OP_COPY

• The B_OP_ERASE mode doesn’t draw the source image at all. Instead, it erases the
destination image. Like B_OP_OVER, it preserves the destination image wherever a
source bitmap is transparent or a source pattern has the low color. But everywhere
else—where the source bitmap isn’t transparent and the source pattern has the high
color—it removes the destination image, replacing it with the low color.

 Although this mode can be used for selective erasing, it’s simpler to erase by filling
an area with the B_SOLID_LOW pattern in B_OP_COPY mode.

• The B_OP_INVERT mode, like B_OP_ERASE, doesn’t draw the source image. Instead,
it inverts the colors in the destination image. As in the case of the B_OP_OVER and
B_OP_ERASE modes, where a source bitmap is transparent or a source pattern has
the low color, the destination image remains unchanged in the result. Everywhere
else, the color of the destination image is inverted.

 These three modes also work for monochrome images. If the source image is
monochrome, the distinction between source bitmaps and source patterns breaks
down. Two rules apply:

• If the source image is a monochrome bitmap, it acts just like a pattern. A value of
1 in the bitmap designates the current high color and a value of 0 designates the
current low color. Thus, 0, rather than B_TRANSPARENT_24_BIT or
B_TRANSPARENT_8_BIT, becomes the transparent value.

• If the source and destination are both monochrome, the high color is necessarily
black (1) and the low color is necessarily white (0)—but otherwise the drawing
modes work as described. With the possible colors this severely restricted, the three
modes are reduced to boolean operations: B_OP_OVER is the same as a logical
‘OR’, B_OP_INVERT the same as logical ‘exclusive OR’, and B_OP_ERASE the same
as an inversion of logical ‘AND’.

Blending Modes Three drawing modes—B_OP_ADD, B_OP_SUBSTRACT, and
B_OP_BLEND—combine the source and destination images, pixel by pixel, and color
component by color component. As in most of the other modes, transparency in a source
bitmap preserves the destination image in the result. Elsewhere, the result is a

30 – The Interface Kit

Drawing

combination of the source and destination. The high and low colors of a source pattern
aren’t treated in any special way; they’re handled just like other colors.

• B_OP_ADD adds each component of the source color to the corresponding
component of the destination color, with a component value of 255 as the limit.
Colors become brighter, closer to white.

 By adding a uniform gray to each pixel in the destination, for example, the whole
destination image can be brightened by a constant amount.

• B_OP_SUBTRACT subtracts each component of the source color from the
corresponding component of the destination color, with a component value of 0 as
the limit. Colors become darker, closer to black.

 For example, by subtracting a uniform amount from the red component of each
pixel in the destination, the whole image can be made less red.

• B_OP_BLEND averages each component of the source and destination colors (adds
the source and destination components and divides by 2). The two images are
merged into one.

These modes work only for color images, not for monochrome ones. If the source or
destination is specified in the B_COLOR_8_BIT color space, the color will be expanded to
a full B_COLOR_24_BlT value to compute the result; the result is then contracted to the
closest color in the B_COLOR_8_BIT color space.

Selection Modes Two drawing modes—B_OP_MAX and B_OP_MIN—compare
each pixel in the source image to the corresponding pixel in the destination image and
select one to keep in the result. If the source pixel is transparent, both modes select the
destination pixel. Otherwise, B_OP_MIN selects the darker of the two colors and B_OP_
MAX selects the brighter of the two. If the source image is a uniform shade of gray, for
example, B_OP_MAX would substitute that shade for every pixel in the destination image
that was darker than the gray.

Like B_OP_ADD, B_OP_SUBTRACT, and B_OP_BLEND, B_OP_MIN and B_OP_MAX work
only for color images.

Views and the Server

Just as windows lead a dual life—as on-screen entities provided by the Application Server
and as BWindow objects in the application—so too do views. Each BView object has
a shadow counterpart in the Server. The Server knows the view’s location, its place in
the window’s hierarchy, its visible area, and the current state of its graphics parameters.
Because it has this information, the Server can more efficiently associate a user action with
a particular view and interpret the BView’s drawing instructions.

The Interface Kit – 31

 Drawing

BWindows become known to the Application Server when they’re constructed. Creating
a BWindow object causes the Server to produce the window that the user will eventually
see on-screen. A BView, on the other hand, has no effect on the Server when it’s
constructed. It becomes known to the Server only when it’s attached to a BWindow. The
Server must look through the application’s windows to see what views it has.

A BView that’s not attached to a window therefore lacks a counterpart in the Server. This
means that some functions can’t operate on unattached BViews. Three kinds of functions
are included in this group:

• Most obvious among them are the drawing functions—DrawBitmap(), FillRect(),
StrokeLine(), and so on. A BView can’t draw unless it’s in a window.

• Also included are functions that set and return graphics parameters—such as
DrawingMode(), SetFontSize(), ScrollTo(), and SetHighColor(). A view’s graphic
state is kept within the Server (where it’s needed to carry out drawing instructions).
BViews that the Server doesn’t know about don’t have a valid graphics state. It
won’t work, for example, to create a BView, set its low color, and then attach it to a
window. The low color can be set only after the BView belongs to the window.

• The group similarly includes functions that indirectly depend on a BView’s graphics
parameters—such as GetMouse(), which reports the cursor location in the BView’s
coordinates, and StringWidth(), which returns how much room a string would take
up in the BView’s font. These functions require information that an unattached
BView can’t provide.

Because of these restrictions, you may find it impossible to complete the initialization of a
BView at the time it’s constructed. Instead, you may need to wait until the BView receives
an AttachedToWindow() notification informing it that it has been added to a window’s
view hierarchy. AttachedToWindow() can be implemented to set graphics parameters and
to take care of any other final initialization that’s required.

When a BView is removed from a window, it loses its graphics environment. Thus if a
BView is moved to a different window or it changes its position in the view hierarchy of
the same window, its graphics parameters must be reset. AttachedToWindow() is called to
reset them.

The Update Mechanism

The Application Server sends a message to a BWindow whenever any of the views within
the window need to be updated. The BWindow then calls the Draw() function of each out-
of-date BView so that it can redraw the contents of its on-screen display.

Update messages can arrive at any time. A BWindow receives one whenever:

• The window is first placed on-screen, or is shown again after having been hidden.

• Any part of the window becomes visible after being obscured.

32 – The Interface Kit

Drawing

• The views in the window are rearranged—for example, if a view is resized or a
child is added or removed from the hierarchy.

• Something happens to alter what a particular view displays. For example, if the
contents of a view are scrolled, the BView must draw any new images that scrolling
makes visible. If one of its children moves, it must fill in the area the child view
vacated.

• The application forces an update by “invalidating” a view, or a portion of a view.

Update messages take precedence over other kinds of messages. To keep the on-screen
display as closely synchronized with event handling as possible, the window acts on
update messages as soon as they arrive. They don’t need to wait their turn in the message
queue.

(Update messages do their work quietly and behind the scenes. You won’t find them in
the BWindow’s message queue, they aren’t handled by BWindow’s DispatchMessage()
function, and they aren’t returned by BLooper’s CurrentMessage().)

Forcing an Update

When a user action or a BView function alters a view in a window—for example, when
a view is resized or its contents are scrolled—the Application Server knows about it. It
makes sure that an update message is sent to the window so the view can be redrawn.

However, if code that’s specific to your application alters a view, you’ll need to inform the
Server that the view needs updating. This is done by calling the Invalidate() function. For
example, if you write a function that changes the number of elements a view displays, you
might invalidate the view after making the change, as follows:

void MyView::SetNumElements(long count)
{
 if (numElements == count)
 return;
 numElements = count;
 Invalidate();
}

Invalidate() ensures that the view’s Draw() function—which presumably looks at the new
value of the numElements data member—will be called automatically.

At times, the update mechanism may be too slow for your application. Update messages
arrive just like other messages sent to a window thread, including the interface messages
that report events. Although they take precedence over other messages, update messages
must wait their turn. The window thread can respond to only one message at a time; it will
get the update message only after it finishes with the current one.

Therefore, if your application alters a view and calls Invalidate() while responding to
an interface message, the view won’t be updated until the response is finished and the
window thread is free to turn to the next message. Usually, this is soon enough. But if it’s

The Interface Kit – 33

 Drawing

not, if the response to the interface message includes some time-consuming operations, the
application can request an immediate update by calling BWindow’s UpdateIfNeeded()
function.

Erasing the Clipping Region

Just before sending an update message, the Application Server prepares the clipping region
of each BView that is about to draw by erasing it to the view background color. Note that
only the clipping region is erased, not the entire view, and perhaps not the entire area
where the BView will, in fact, draw.

Drawing during an Update

While drawing, a BView may set and reset its graphics parameters any number of times—
for example, the pen position and high color might be repeatedly reset so that whatever is
drawn next is in the right place and has the right color. These settings are temporary. When
the update is over, all graphics parameters are reset to their initial values.

If, for example, Draw() sets the high color to a shade of light blue, as shown below,

SetHighColor(152, 203, 255);

it doesn’t mean that the high color will be blue when Draw() is called next. If this line of
code is executed during an update, light blue would remain the high color only until the
update ends or SetHighColor() is called again, whichever comes first. When the update
ends, the previous graphics state, including the previous high color, is restored.

Although you can change most graphics parameters during an update—move the pen
around, reset the font, change the high color, and so on—the coordinate system can’t be
touched; a view can’t be scrolled while it’s being updated. Since scrolling causes a view to
be updated, scrolling during an update would, in effect, be an attempt to nest one update in
another, something that can’t logically be done (since updates happen sequentially through
messages). If the view’s coordinate system were to change, it would alter the current
clipping region and confuse the update mechanism.

Drawing outside of an Update

Graphics parameters that are set outside the context of an update are not limited; they
remain in effect until they’re explicitly changed. For example, if application code calls
Draw(), perhaps in response to an interface message, the parameter values that Draw() last
sets would persist even after the function returns. They would become the default values
for the view and would be assumed the next time Draw() is called.

Default graphics parameters are typically set as part of initializing the BView once it’s
attached to a window—in an AttachedToWindow() function. If you want a Draw()
function to assume the values set by AttachedToWindow(), it’s important to restore those
values after any drawing the BView does that’s not the result of an update. For example, if

34 – The Interface Kit

Drawing

a BView invokes SetHighColor() while drawing in response to an interface message, it
will need to restore the default high color when done.

If Draw() is called outside of an update, it can’t assume that the clipping region will have
been erased to the view color, nor can it assume that default graphics parameters will be
restored when it’s finished.

Picking Pixels to Stroke and Fill

This section discusses how the various BView Stroke () and Fill () functions pick
specific pixels to color. Pixels are chosen after the pen size and all coordinate values have
been translated to device-specific units. The device-specific value measures distances by
counting pixels; one unit equals one pixel on the device.

A device-specific value can be derived from a coordinate value using a formula that takes
the size of a coordinate unit and the resolution of the device into account. For example:

device_value = coordinate_value × (dpi / 72)

dpi is the resolution of the device in dots (pixels) per inch, 72 is the number of coordinate
units in an inch, and device_value is rounded to the closest integer.

To describe where lines and shapes fall on the pixel grid, this section mostly talks about
pixel units rather than coordinate units. The accompanying illustrations magnify the grid
so that pixel boundaries are clear. As a consequence, they can show only very short lines
and small shapes. By blowing up the image, they exaggerate the phenomena they
illustrate.

Stroking Thin Lines

The thinnest possible line is drawn when the pen size translates to 1 pixel on the device.
Setting the size to 0.0 coordinate units guarantees that the pen will be a one-pixel square
on all devices.

A one-pixel pen follows the path of the line it strokes and makes the line exactly one pixel
thick. If the line is more vertical than horizontal, only one pixel in each row is used to
render the line. If the line is more horizontal than vertical, only one pixel in each column is
used.

The Interface Kit – 35

 Drawing

Some illustrations of one-pixel thick lines are given below. The broken lines show the
separation of the display surface into pixels:

The first thing to notice about this illustration is that only pixels that the line path actually
passes through are colored to display the line. If a path begins or ends on a pixel boundary,
as it does for lines (d) and (e), for example, the pixels at the boundary aren’t colored unless
the path crosses into the pixel. The pen touches the fewest possible number of pixels.

It’s possible for a line path not to enter any pixels, but to lie entirely on the boundaries
between pixels. Such a line is not invisible. A horizontal path between pixels colors the
pixel row beneath it. A vertical path between pixels colors the pixel column to its right. A
line path that reduces to a single point lying on the corner of four pixels colors the pixel at
its lower right. The orientation of the pen is always toward the bottom and the right.

< However, currently, it’s indeterminate which column or row of adjacent pixels would be
used to display vertical and horizontal lines like (h) and (i) above. Point (j) would not be
visible. >

Although a one-pixel pen touches only pixels that lie on the path it strokes, it won’t touch
every pixel that the path crosses if that would mean making the line thicker than specified.
When the path cuts though two pixels in a column or row, but only one of those pixels can
be colored, the one that contains more of the path (the one that contains the midpoint of

36 – The Interface Kit

Drawing

the segment cut by the column or row) is chosen. This is illustrated in the close-up below,
which shows where a mostly vertical line crosses one row of pixels:

However, before a choice is made as to which pixel in a row or column to color, the line
path is normalized for the device. For example, if a line is defined by two endpoints, it’s
first determined which pixels correspond to those endpoints. The line path is then treated
as if it connected the centers of those pixels. This may alter which pixels get colored, as
is illustrated below. In this illustration, the solid black line is the line path as originally
specified and the broken line is its normalized version:

This normalization is nothing more than the natural consequence of the rounding that
occurs when coordinate values are translated to device-specific pixel values.

Stroking Curved Lines

Although all the diagrams above show straight lines, the principles they illustrate apply
equally to curved line paths. A curved path can be treated as if it were made up of a large
number of short straight segments.

The Interface Kit – 37

 Drawing

Filling and Stroking Rectangles

The following illustration shows how some rectangles, represented by the solid black line,
would be filled with a solid color.

A rectangle includes every pixel that it encloses and every pixel that its sides pass through.
However, as rectangle (n) illustrates, it doesn’t include pixels that its sides merely touch at
the boundary.

If the pixel grid in this illustration represents the screen, rectangle (n) would have left, top,
right, and bottom coordinates with fractional values of .5. Rectangle (k), on the other hand,
would have coordinates without any fractional parts. Nonfractional coordinates lie at the
center of screen pixels.

Rectangle (k), in fact, is the normalized version of all four of the illustrated rectangles.
It shows how the sides of the four rectangles would be translated to pixel values. Note
that for a rectangle like (n), with edges that fall on pixel boundaries, normalization means
rounding the left and top sides upward and rounding the right and bottom sides downward.
This follows from the principal that the fewest possible number of pixels should be
colored.

Although the four rectangles above differ in size and shape, when filled they all cover a
6x4 pixel area. You can’t predict this area from the dimensions of the rectangle. Because
the coordinate space is continuous and x and y values can be located anywhere, rectangles
with different dimensions might have the same rendered size, as shown above,

38 – The Interface Kit

Drawing

and rectangles with the same dimensions might have different rendered sizes, as shown
below:

If a one-pixel pen strokes a rectangular path, it touches only pixels that would be included
if the rectangle were filled. The illustration below shows the same rectangles that were
presented above, but strokes them rather than fills them:

Each of the rectangles still covers a 6 × 4 pixel area. Note that even though the path of
rectangle (n´) lies entirely on pixel boundaries, pixels below it and to its right are not
touched by the pen. The pen touches only pixels that lie within the rectangle.

If a rectangle collapses to a straight line or to a single point, it no longer contains any area.
Stroking or filling such a rectangle is equivalent to stroking the line path with a one-pixel
pen, as was discussed in the previous section.

The Interface Kit – 39

 Drawing

Filling and Stroking Polygons

The figure below shows a polygon as it would be stroked by a one-pixel pen and as it
would be filled:

The same rules apply when stroking each segment of a polygon as would apply if that
segment were an independent line. Therefore, the pen may not touch every pixel the
segment passes through.

When the polygon is filled, no additional pixels around its border are colored. As is the
case for a rectangle, the displayed shape of filled polygon is identical to the shape of
the polygon when stroked with a one-pixel pen. The pen doesn’t touch any pixels when
stroking the polygon that aren’t colored when the polygon is filled. Conversely, filling
doesn’t color any pixels at the border of the polygon that aren’t touched by a one-pixel
pen.

Stroking Thick Lines

A pen that’s thicker than one pixel touches the same pixels that a one-pixel pen does, but it
adds extra columns and rows adjacent to the line path.

If the path is a rectangle, the pen tip is, in effect, a square. The left top corner of the tip
follows the line path, so additional columns and rows of pixels are colored to the right and

40 – The Interface Kit

Drawing

below the rectangle. The following illustration shows rectangles stroked with two- and
four-pixel pens:

A square tip is used only for rectangular paths. If the path is anything but a rectangle, the
pen tip is, in effect, a linear brush that’s kept centered on the line and perpendicular to the
line path. The edges of the brush mark out a polygon around the path. Stroking the line is
equivalent to filling the polygon, following the rules outlined above. The illustration below
shows a short line that’s six pixels thick:

The Interface Kit – 41

 Responding to the User

In this way, lines retain their shape even when rotated.

Responding to the User

The BWindow and BView classes together define a structure for responding to user actions
on the keyboard and mouse. These actions generate interface messages that are delivered
to BWindow objects. The BWindow distributes responsibility for the messages it receives
to other objects, typically BViews.

This section describes the messages that report user actions, and the way that BWindow
and BView objects are structured to respond to them.

Interface Messages

Nineteen interface messages are currently defined. Two of them command the window to
do something in particular:

• A zoom instruction tells the window to zoom to a larger size—or to return to its
normal size having previously been zoomed larger. The message is typically caused
by the user operating the zoom button in the window’s title tab.

• A minimize instruction tells the window to replace itself on-screen with a token
representation—or to restore itself having been previously minimized. This message
is typically caused by the user double-clicking the window tab (or the window
token).

All other interface messages report events—something that happened, rather than
something that the application must do. In most cases, the message merely reports what
the user did on the keyboard or mouse. However, in some cases, the event may reflect the
way the Application Server interpreted or handled a user action. The Server might respond
directly to the user and pass along an message that reflects what it did—moved a window
or changed a value, for example. In a few cases, the event may even reflect what the
application thinks the user intended—that is, an application might interpret one or more
generic user actions as a more specific event.

The following five events capture atomic user actions on the keyboard and mouse:

• A key-down event occurs when the user presses a character key on the keyboard.
After the initial event (and a brief threshold), most keys generate repeated key-
down events—as long as the user continues to hold the key down and doesn’t press
another key. Only character keys produce keyboard events. The modifier keys—
Shift, Control, Caps Lock, and so on—don’t produce events of any kind but may
affect the character that’s reported for another key.

• A key-up event occurs when the user releases the character key. < Currently, this
event isn’t reported in an interface message. >

42 – The Interface Kit

Responding to the User

• A mouse-down event occurs when the user presses one of the mouse buttons while
the cursor is over the content area of a window. The event occurs (and the message
is generated) only for the first button the user presses—that is, only if no other
mouse buttons are down at the time.

• A mouse-up event occurs when the user releases the mouse button. The event occurs
only for the last button the user releases—that is, only if no other mouse button
remains down.

• A mouse-moved event captures some small portion of the cursor’s movement into,
within, or out of a window. If the cursor isn’t over a window, it’s movement isn’t
reported; it doesn’t create mouse-moved events. (All interface events are associated
with windows.) Repeated mouse-moved events occur as the user moves the mouse.

A closely related event announces the arrival of a package of information:

• A message-dropped event occurs when the user releases the mouse button after
dragging an image from one view to another. The image represents information
bundled in a BMessage object. The message is “dropped” on the view where the
cursor is located when the mouse button goes up.

The six events above are all directed at particular views. Three others also concern views:

• A view-moved event occurs when a view is moved within its parent’s coordinate
system. This can be a consequence of a programmatic action or of the parent
view being automatically resized. If the parent view is being continuously resized
because the user is resizing the window, repeated mouse-moved events may be
recorded.

• A view-resized event occurs when a view is resized, perhaps because the program
resized it or possibly as an automatic consequence of the window being resized. If
the resizing is continuous, because the user is resizing the window, repeated view-
resized events are reported.

• A value-changed event occurs when the Application Server changes a value
associated with an object. Currently, the event occurs only for BScrollBar objects.
Repeated events are reported as the user manipulates a scroll bar.

A few events affect the window itself:

• An activation event happens when a window becomes the active window, and when
it gives up that status. The single action of clicking a window to make it active
might result in two activation events—one for the window that gains active-window
status and one for the window that relinquishes it—plus a mouse-down and a
mouse-up event.

• A quit-requested event occurs when the user clicks a window’s close box, or when
the system perceives some other reason to request the window to quit.

• A window-moved event records the new location of a window that has been moved,
either programmatically or by the user. When the user drags a window, repeated

The Interface Kit – 43

 Responding to the User

 events occur, each one capturing a small portion of the window’s continuous
movement. Only one event occurs when the program moves a window.

• A window-resized event occurs when the window is resized, again either
programmatically or by the user. The event is reported repeatedly as the user resizes
the window, but only once each time the application resizes it.

• A screen-changed event occurs when the configuration of the screen—the size of
the pixel grid it displays < or the color space of the frame buffer >—changes. Such
changes may require the window to take compensatory measures.

Two events are produced by the save panel:

• A save-requested event occurs when the user operates the panel to request that a
document be saved.

• A panel-closed event occurs when the application or the user closes the panel.
Finally, there’s one event that doesn’t derive from a user action:

• Periodic pulse events occur at regularly spaced intervals, like a steady heartbeat.
Pulses don’t involve any communication between the application and the Server.
They’re generated as long as no other events are pending, but only if the application
asks for them.

An application doesn’t have to wait for a message to discover what the user is doing on the
keyboard and mouse. Two BView functions, GetKeys() and GetMouse(), can provide an
immediate check on the state of these devices.

Hook Functions for Interface Messages

As the user acts, interface messages are generated and reported to the application. The
Application Server determines which window an action affects and notifies the appropriate
window thread. Messages for keyboard events are delivered to the current active window;
messages announcing mouse events are sent to the window where the cursor is located.

However, the message is just an intermediary. As soon as it arrives, the BWindow
dispatches it to initiate action within the window thread. Typically, one of the BViews
associated with the window is asked to respond to the message—usually the BView
that drew the image that elicited the user action. But some messages are handled by the
BWindow itself.

Interface messages are dispatched by calling a virtual function that’s matched to the
message. If the message reports an event, the function is named for the event. For
example, the BView where a mouse-down event occurs is notified with a MouseDown()
function call. When the user clicks the close box of a window, generating a quit-requested
event, the BWindow’s QuitRequested() function is called. If the message delivers an

44 – The Interface Kit

Responding to the User

instruction, the function is named for the action that should be taken. For example, a zoom
instruction is dispatched by calling the Zoom() function.

The charts below lists the virtual functions that are called to initiate the application’s
response to interface messages, and the base classes where the functions are declared.
Each application can implement these message-specific functions in a way that’s
appropriate to its purposes.

Instruction type Virtual function Class

Zoom Zoom() BWindow
Minimize Minimize() BWindow

Event type Virtual function Class

Key-down KeyDown() BView
Key-up none
Mouse-down MouseDown() BView
Mouse-up none
Mouse-moved MouseMoved() BView
Message-dropped MessageDropped() BView
View-moved FrameMoved() BView
View-resized FrameResized() BView
Value-changed ValueChanged() BScrollBar
Window-activated WindowActivated() BWindow and BView
Quit-requested QuitRequested() BLooper, inherited by BWindow
Window-moved FrameMoved() BWindow
Window-resized FrameResized() BWindow
Screen-changed ScreenChanged() BWindow
Save-requested SaveRequested() BWindow
Panel-closed() SavePanelClosed() BWindow
Pulse Pulse() BView

< Key-up events are currently not reported. > Mouse-up events are reported, but the
messages aren’t dispatched by calling a virtual function. A BView can determine when a
mouse button goes up by calling GetMouse() from within its MouseDown() function. As
it reports information about the location of the cursor and the state of the mouse buttons,
GetMouse() removes mouse-moved and mouse-up messages from the BWindow’s
message queue, so the same information won’t be reported twice.

Dispatching

Notice, from the chart above, that the BWindow class declares the functions that handle
instructions and events directed at the window itself. FrameMoved() is called when the
user moves the window, FrameResized() when the user resizes it, WindowActivated()
when it becomes, or ceases to be, the active window, Zoom() when it should zoom larger,
and so on.

The Interface Kit – 45

 Responding to the User

Although the BWindow handles some interface messages, most are handled by BViews.
When the BWindow receives a message, it must decide which view is responsible.

This decision is relatively easy for messages reporting mouse events. The cursor points to
the affected view. For example, when the user presses a mouse button, the BWindow calls
the MouseDown() virtual function of the view under the cursor. When the user moves the
mouse, it calls the MouseMoved() function of each view the cursor travels through. When
the user drags a message to a window and drops it there, it calls the MessageDropped()
function of the view the cursor points to.

However, there’s no cursor attached to the keyboard, so the BWindow object must keep
track of the view that’s responsible for messages reporting key-down events. That view
depends on which kind of key-down event it is:

• If the user holds a Command key down while pressing a character key, the event is
interpreted as a keyboard shortcut (typically for a menu item, but possibly for some
other control device). Instead of assigning the message to a view, the BWindow
tries to issue the command associated with the shortcut.

• If the window has a default button and the user presses the Enter key, the window
assigns the message to the button, so that it can respond to the key-down event as it
would to a click. A “default button” is simply a button that can be operated from the
Enter key on the keyboard.

• In all other cases, the BWindow assigns the message to the current focus view.

The Focus View

The focus view is whatever view happens to be displaying the current selection (possibly
an insertion point) within the window, or whatever check box or other gadget is currently
marked to show that it can be operated from the keyboard.

The focus view is expected to respond to the user’s keyboard actions when the window is
the active window. If it displays editable data, it’s also expected to handle commands that
target the current selection. When the user presses a key on the keyboard, the BWindow
calls the focus view’s KeyDown() virtual function. When the user pastes material from the
clipboard, the application should arrange for the focus view to respond.

The focus doesn’t have to stay on one view all the time; it can shift from view to view. It
may change as the user changes the current selection in the window—from text field to
text field, for example. Only one view in the window can be in focus at a time.

Views put themselves in focus when they’re selected by a user action of some kind. For
example, when a BView’s MouseDown() or MessageDropped() function is called,
notifying it that the user has selected the view, it can grab the focus by calling

46 – The Interface Kit

Responding to the User

MakeFocus(). When a BView makes itself the focus view, the previous focus view is
notified that it has lost that status.

A view should become the focus view if:

• It has a KeyDown() function so that the user can operate it from the keyboard,
• It has a KeyDown() function to display typed characters, or
• It can show the current selection, whether or not it displays what the user types.

A view should highlight the current selection only while it’s in focus.

BViews make themselves the focus view (with the MakeFocus() function), but
BWindows report which view is currently in focus (with the CurrentFocus() function).

Filtering Events

A BWindow can scrutinize the messages that report mouse and keyboard events before
it gives the target BView a chance to respond. The BWindow class declares four hook
functions that preview events before a BView is notified:

FilterKeyDown(),
FilterMouseDown(),
FilterMouseMoved(), and
FilterMessageDropped()

These functions give BWindows an opportunity to modify aspects of the report or even
change the BView that will be expected to respond. Unless the BWindow completely
intercepts the message, the responsible BView is notified through its KeyDown(),
MouseDown(), MouseMoved(), or MessageDropped() function.

The filter functions are rarely implemented to prevent the BView functions from being
called. Since the response to an message depends on what prompted it—for example, a
click would mean one thing to a button and quite another to a text field—the principal
message-handling code must be located within BViews, not at the BWindow level.

The Interface Kit – 47

 Responding to the User

Message Protocols

Interface messages are delivered to the window thread as BMessage objects. The object’s
what data member is a constant that always names the event it reports or the instruction it
gives. The constants for interface messages are:

B_KEY_DOWN B_WINDOW_ACTIVATED
B_KEY_UP B_QUIT_REQUESTED
B_MOUSE_DOWN B_WINDOW_MOVED
B_MOUSE_UP B_WINDOW_RESIZED
B_MOUSE_MOVED B_SCREEN_CHANGED

B_MESSAGE_DROPPED B_SAVE_REQUESTED
 B_PANEL_CLOSED

B_VIEW_MOVED
B_VIEW_RESIZED B_PULSE
B_VALUE_CHANGED

B_ZOOM
B_MINIMIZE

Typically, the BMessage object also carries various kinds of data describing the event or
clarifying the instruction. In some cases, it may contain more information than is passed
to the function that starts the application’s response. For example, a MouseDown()
function is passed the point where the cursor was located when the user pressed the mouse
button. But a B_MOUSE_DOWN BMessage also includes information about when the
event occurred, what modifier keys the user was holding down at the time, which mouse
button was pressed, whether the event counts as a solitary mouse-down, the second of a
doubleclick, or the third of a triple-click, and so on.

A MouseDown() function can get this information by taking it directly from the
BMessage. The BMessage that the window thread is currently responding to can be
obtained by calling CurrentMessage(), which the BWindow inherits from BLooper. For
example, a MouseDown() function might check whether the event is a single-click or the
second of a double-click as follows:

void MyView::MouseDown(BPoint point)
{
 long num = Window()->CurrentMessage()->FindLong("clicks");
 if (num == 1) {
 . . .
 }
 . . .
 else if (num == 2) {
 . . .
 }
 . . .
}

The following sections list the data that’s available from the BMessage objects that carry
interface messages.

48 – The Interface Kit

Responding to the User

Zoom Instructions

Data name Type code Description

“when” B_DOUBLE_TYPE When the zoom button was clicked, as
measured in microseconds from the time
the machine was last booted.

Minimize Instructions

Data name Type code Description

“when” B_DOUBLE_TYPE When the user acted, as measured in
microseconds from the time the machine
was last booted.

“minimize” B_BOOL_TYPE A flag that’s TRUE if the window should be
minimized to a token representation, and
FALSE if it should be restored to the screen
from its minimized state.

Key-Down Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the key went down, as measured in
microseconds from the time the machine
was last booted.

“key” B_LONG_TYPE The code for the key that was pressed.

“modifiers” B_LONG_TYPE A mask that identifies which modifier keys
the user was holding down and which
keyboard locks were on at the time of the
event.

“char” B_LONG_TYPE The character that’s generated by the
combination of the key and modifiers.

“states” B_UCHAR_TYPE A bit field that records the state of all keys
and keyboard locks at the time of the
event. Although declared as
B_UCHAR_TYPE, this is actually an array of
16 bytes.

For most applications, the “char” code is sufficient to distinguish one sort of user action
on the keyboard from another. It reflects both the key that was pressed and the effect that
the modifiers have on the resulting character. For example, if the Shift key is down when
the user presses the A key, or if Caps Lock is on, the “char” produced will be uppercase ‘A’
rather than lowercase ‘a’. If the Control key is down, it will be the B_HOME character. A

The Interface Kit – 49

 Responding to the User

later section, “Keyboard Information” on page 55, discusses the mapping of keys to
characters in more detail.

The “modifiers” mask explicitly identifies which modifier keys the user is holding down
and which keyboard locks are on at the time of the event. It’s described under “Modifier
Keys” on page 59 below.

The “key” code is an arbitrarily assigned number that identifies which character key the
user pressed. All keys on the keyboard, including modifier keys, have key codes (but only
character keys produce key-down events). The codes for the keys on a standard keyboard
are shown in the “Key Codes” section on page 56.

The “states” bit field has one bit assigned to each key. For most keys, the bit is set to 1 if
the key is down, and to 0 if the key is up. However, the bits corresponding to keys that
toggle keyboard locks (the Caps Lock, Num Lock, and Scroll Lock keys) are set to 1 if the
lock is on, and to 0 if the lock is off. See “Key States” on page 64 for details on how to
read information from the “states” array.

Key-Up Events

< Key-up events are not currently reported. >

Mouse-Down Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the mouse button went down, as
measured in microseconds from the time
the machine was last booted.

“where” B_POINT_TYPE Where the cursor was located when the
user pressed the mouse button, expressed
in the coordinate system of the target
BView—the view where the cursor was
located at the time of the event.

“modifiers” B_LONG_TYPE A mask that identifies which modifier keys
were down and which keyboard locks were
on when the user pressed the mouse button.

“buttons” B_LONG_TYPE A mask that identifies which mouse button
went down.

“clicks” B_LONG_TYPE An integer that counts the sequence of
mouse-down events for multiple clicks. It
will be 1 for a single-click, 2 for a double-
click, 3 for a triple-click, and so on.

50 – The Interface Kit

Responding to the User

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 59.

The “buttons” mask identifies mouse buttons by their roles in the user interface. It may be
formed from one or more of the following constants:

PRIMARY_MOUSE_BUTTON
SECONDARY_MOUSE_BUTTON
TERTIARY_MOUSE_BUTTON

Because a mouse-down event is reported only for the first button that goes down, the mask
will usually contain just one constant.

The “clicks” integer counts clicks. It’s incremented each time the user presses the mouse
button within a specified interval of the previous mouse-down event, and is reset to 1 if the
event falls outside that interval. The interval is a user preference that can be set with the
Mouse preferences application.

Note that the only test for a multiple-click is one of timing between mouse-down events.
There is no position test—whether the cursor is still in the vicinity of where it was at the
time of the previous event. It’s left to applications to impose such a test where
appropriate.

Mouse-Up Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the mouse button went up again, as
measured in microseconds from the time
the machine was last booted.

“where” B_POINT_TYPE Where the cursor was located when the
user released the mouse button, expressed
in the coordinate system of the target
BView—the view where the cursor was
located when the button went up.

“modifiers” B_LONG_TYPE A mask that identifies which of the
modifier keys were down and which
keyboard locks were in effect when the
user released the mouse button.

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 59.

The Interface Kit – 51

 Responding to the User

Mouse-Moved Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

“where” B_POINT_TYPE The new location of the cursor, where it
has moved to, expressed in window
coordinates.

“area” B_LONG_TYPE The area of the window where the cursor is
now located.

“buttons” B_LONG_TYPE Which mouse buttons, if any, are down.

“dragging” B_OBJECT_TYPE A pointer to a BMessage object that the
user is dragging, or NULL if nothing is
being dragged.

The “area” constant records which part of the window the cursor is over. It can be:

B_CONTENT_AREA The cursor is over the content area of the window.
B_CLOSE_AREA The cursor is over the close button in the title tab.
B_ZOOM_AREA The cursor is over the zoom button in the title tab.
B_TITLE_AREA The cursor is inside the title tab, but not over either button.
B_RESIZE_AREA The cursor is over the area where the window can be resized.
B_UNKNOWN_AREA It’s not known where the cursor is.

If the location of the cursor is unknown, it’s probably because it just left the window.

The “buttons” mask is formed from one or more of the following constants:

PRIMARY_MOUSE_BUTTON
SECONDARY_MOUSE_BUTTON
TERTIARY_MOUSE_BUTTON

If no buttons are down, the mask is 0.

Message-Dropped Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the message was dropped, as
measured in microseconds from the time
the machine was last booted.

“where” B_POINT_TYPE Where the cursor was located when the user
released the mouse button to drop the

52 – The Interface Kit

Responding to the User

 dragged message. The point is expressed
in window coordinates.

“offset” B_POINT_TYPE Where the cursor was located inside the
rectangle or image being dragged. The
point is expressed in coordinates relative to
an origin at the left top corner of the
rectangle or image.

A B_MESSAGE_DROPPED BMessage simply informs the window that another BMessage
has been dragged to it and dropped on one of its views. The dropped BMessage is passed
to the BView as an argument in a MessageDropped() function call; it’s not recorded as
part of the message-dropped event.

View-Moved Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the view moved, as measured in
microseconds from the time the machine
was last booted.

“where” B_POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent.

View-Resized Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the view was resized, as measured
in microseconds from the time the machine
was last booted.

“width” B_LONG_TYPE The new width of the view’s frame
rectangle.

“height” B_LONG_TYPE The new height of the view’s frame
rectangle.

“where” B_POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent. (A
“where” entry is present only if the view
was moved while being resized.)

A B_VIEW_RESIZED BMessage has a “where” entry only if resizing the view also served to
move it. The new location of the view would first be reported in a B_VIEW_MOVED
BMessage.

The Interface Kit – 53

 Responding to the User

Value-Changed Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the value changed, as measured in
microseconds from the time the machine
was last booted.

“value” B_LONG_TYPE The new value of the object.

Window-Activated Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the window’s status changed, as
measured in microseconds from the time
the machine was last booted.

“active” B_BOOL_TYPE A flag that records the new status of the
window. It’s TRUE if the window has
become the active window, and FALSE if it
is giving up that status.

Quit-Requested Events

Data name Type code Description

“when’’ B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

This data entry is added by the Application Server whenever it posts a B_QUIT_REQUESTED
message—for example, when the user clicks the window’s close box. However, it’s not
crucial to the interpretation of the event. You don’t need to add it to messages that are
posted in application code.

Window-Moved Events

Data name Type code Description

 “when” B_DOUBLE_TYPE When the window moved, as measured in
microseconds from the time the machine
was last booted.

“where” B_POINT_TYPE The new location of the left top corner of
the window’s content area, expressed in
screen coordinates.

54 – The Interface Kit

Responding to the User

Window-Resized Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the window was resized, as
measured in microseconds from the time
the machine was last booted.

“width” B_LONG_TYPE The new width of the window’s content
area.

“height” B_LONG_TYPE The new height of the window’s content
area.

Screen-Changed Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the screen changed, as measured in
microseconds from the time the machine
was last booted.

“frame” B_RECT_TYPE A rectangle with the same dimensions as
the pixel grid the screen displays.

“mode” B_LONG_TYPE The color space of the screen. < Given the
current configuration, this will always be
B_COLOR_8_BIT. >

Serve-Requested Events

Data name Type code Description

“directory” B_REF_TYPE A record_ref reference to the directory
where the document should be saved.

“name” B_STRING_TYPE The name of the file in which the
document should be saved.

These entries are added to all messages reporting save-requested events. Generally, the
message has B_SAVE_REQUESTED as its what data member. However, you can define a
custom message to report the event, one with another constant and additional data entries.
See RunSavePanel() in the BWindow class.

The Interface Kit – 55

 Responding to the User

Panel-Closed Events

Data name Type code Description

“frame” B_RECT_TYPE The frame rectangle of the save panel in
screen coordinates at the time the panel
was closed. (The user may have resized it
and relocated it on-screen before it was
closed.)

‘directory” B_REF_TYPE A record_ref reference to the last directory
displayed in the panel.

“canceled” B_BOOL_TYPE An indication of whether or not the panel
was closed by user. It’s TRUE if the user
closed the panel by operating the “Cancel”
button and FALSE otherwise.

Pulse Events

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

Keyboard Information

Most information about what the user is doing on the keyboard comes to applications by
way of messages reporting key-down events. The application can usually determine what
the user’s intent was in pressing a key by looking at the character recorded in the message.
But, as discussed under “Key-Down Events” on page 48 above, the message carries other
keyboard information in addition to the character—the key the user pressed, the modifier
states that were in effect at the time, and the current state of all keys on the keyboard.

Some of this information can be obtained in the absence of key-down messages:

• The BWindow, BView, and BApplication classes have Modifiers() functions that
return the current modifier states, and

• The BView class has a GetKeys() function that can provide the current state of all
the keys and modifiers on the keyboard.

This section discusses in detail the kinds of information that you can get about the
keyboard through interface messages and these functions.

56 – The Interface Kit

Responding to the User

Key Codes

To talk about the keys on the keyboard, it’s necessary first to have a standard way of
identifying them. For this purpose, each key is arbitrarily assigned a numerical code.

The illustrations on the next two pages show the key identifiers for a typical keyboard.
The codes for the main keyboard are shown on page 57. This diagram shows a standard
101-key keyboard and an alternate version of the bottom row of keys—one that adds a
Menu key and left and right Command keys.

The codes for the numerical keypad and for the keys between it and the main keyboard are
shown on page 58.

Different keyboards locate keys in slightly different positions. The function keys may be
to the left of the main keyboard, for example, rather than along the top. The backslash key
(0x33) shows up in various places—sometimes above the Enter key, sometimes next to
Shift, and sometimes in the top row (as shown here). No matter where these keys are
located, they have the codes indicated in the illustrations.

The BMessage that reports a key-down event contains an entry named “key” for the code
of the key that was pressed.

The Interface Kit – 57

 Responding to the User

58 – The Interface Kit

Responding to the User

Kinds of Keys

Keys on the keyboard can be distinguished by the way they behave and by the kinds of
information they provide. A principal distinction is between character keys and modifier	
keys:

• Character keys are mapped to particular characters; they generate key-down events
when pressed. Keys not mapped to characters don’t generate events.

• Modifier	keys set states that can be discerned independently of key-down events
(through the various Modifiers() functions). Some modifier keys—like Caps Lock
and Num Lock—toggle in and out of a locked modifier state. Others—like Shift
and Control—set the state only while the key is being held down.

If a key doesn’t fall into one of these categories or the other, there’s nothing for it to do; it
has no role to play in the interface. For most keys, the categories are mutually exclusive.
Modifier keys are typically not mapped to characters, and character keys don’t set modifier
states. However, the Scroll Lock key is an exception. It both sets a modifier state and
generates a character.

The Interface Kit – 59

 Responding to the User

Keys can be distinguished on two other grounds as well:

• Repeating keys produce a continuous series of key-down events, as long as the user
holds the key down and doesn’t press another key. After the initial event, there’s a
slight delay before the key begins repeating, but then events are generated in rapid
succession.

 All keys are repeating keys except for Pause, Break, and the three that set locks
(Caps Lock, Num Lock, and Scroll Lock). Even modifier keys like Shift and
Control would repeat if they were mapped to characters (but, since they’re not, they
don’t produce any key-down events at all).

• Dead keys are keys that don’t produce characters until the user strikes another key
(or the key repeats). If the key the user strikes after the dead key belongs to a
particular set, the two keys together produce one character (one key-down event). If
not, each produces a separate character. The key-down event for the dead key is
delayed until it can be determined whether it will be combined with another key to
produce just one event.

 Dead keys are dead only when the Option key is held down. They’re most
appropriate for situations where the user can imagine a character being composed of
two distinguishable parts—such as ‘a’ and ‘e’ combining to form ‘æ’.

 The system permits up to five dead keys. By default, they’re reserved for combining
diacritical marks with other characters. The diacritical marks are the acute (´) and
grave (`) accents, dieresis (¨), circumflex (ˆ), and tilde (˜).

There’s a system key map that determines the role that each key plays—whether it’s a
character key or a modifier key, which modifier states it sets, which characters it produces,
whether it’s dead or not, how it combines with other keys, and so on. The map is shared
by all applications.

Users can modify the key map with the Keyboard utility. Applications can look at it (and
perhaps modify it) by calling the system_key_map() global function. See that function on
page 298 for details on the structure of the map. The discussion here assumes the default
key map that comes with the computer.

Modifier Keys

The role of a modifier key is to set a temporary, modal state. There are eight modifier
states—eight different kinds of modifier key—defined functionally. Three of them affect
the character that’s reported in a key-down event:

• The Shift key maps alphabetic keys to the uppercase version of the character, and
other keys to alternative symbols.

• The Control key maps alphabetic keys to Control characters—those with ASCII
values (character codes) below 0x20.

60 – The Interface Kit

Responding to the User

• The Option key maps keys to alternative characters, typically characters in an
extended set—those with ASCII values above 0x7f.

Two modifier keys permit users to give the application instructions from the keyboard:

• When the Command key is held down, the character keys perform keyboard
shortcuts.

• The Menu key initiates keyboard navigation of menus. Pressing and releasing a
Command key (without touching another key) accomplishes the same thing.

Three modifiers toggle in and out of locked states:

• The Caps Lock key reverses the effect of the Shift key for alphabetic characters.
With Caps Lock on, the uppercase version of the character is produced without the
Shift key, and the lowercase version with the Shift key.

• The Num Lock key similarly reverses the effect of the Shift key for keys on the
numeric keypad.

• The Scroll Lock key temporarily prevents the display from updating. (It’s up to
applications to implement this behavior.)

There are two things to note about these eight modifier states. First, since applications can
read the modifiers directly from the messages that report key-down events and obtain them
at other times by calling the Modifiers() and GetKeys() functions, they are free to interpret
the modifier states in any way they desire. They’re not tied to the narrow interpretation of,
say, the Control key given above. Control, Option, and Shift, for example, often modify
the meaning of a mouse event or are used to set other temporary modes of behavior.

Second, the set of modifier states listed above doesn’t quite match the keys that are
marked on a typical keyboard. A standard 101-key keyboard has left and right
“Alt(ernate)” keys, but lacks those labeled “Command,” “Option,” or “Menu.”

The key map must, therefore, bend the standard keyboard to the required modifier states.
The default key map does this in three ways:

• Because the “Alt(ernate)” keys are close to the space bar and are easily accessible,
the default key map assigns them the role of Command keys.

• It turns the right “Control” key into an Option key. Therefore, there’s just one
functional Control key (on the left) and one Option key (on the right).

• It leaves the Menu key unmapped. It relies on the Command key as an adequate
alternative for initiating keyboard navigation of menus.

The illustration below shows the modifier keys on the main keyboard, with labels that
match their functional roles. Users can, of course, remap these keys with the Keyboard

The Interface Kit – 61

 Responding to the User

utility. Applications can remap them by calling set_modifier_key() or
system_key_map().

Current modifier states are reported in a mask that can be tested against these constants:

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_CONTROL_KEY B_MENU_KEY B_NUM_LOCK
B_OPTION_KEY B_SCROLL_LOCK

The _KEY modifiers are set if the user is holding the key down. The _LOCK modifiers
are set only if the lock is on—regardless of whether the key that sets the lock happens to
be up or down at the time.

If it’s important to know which physical key the user is holding down, the one on the right
or the one on the left, the mask can be more specifically tested against these constants:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_LEFT_COMMAND KEY B_RIGHT_COMMAND_KEY

If no keyboard locks are on and the user isn’t holding a modifier key down, the modifiers
mask will be 0.

The modifiers mask is returned by the various Modifiers() functions (defined by the
BApplication class in the Application Kit and by BWindow and BView in the Interface
Kit). It’s returned, along with other information, by BView’s GetKeys() function. And it’s
also included as a “modifiers” entry in every BMessage that reports a keyboard or mouse
event.

Character Mapping

Most keys are mapped to more than one character. The precise character that the key
produces depends on which modifier keys are being held down and which lock states the
keyboard is in at the time the key is pressed.

62 – The Interface Kit

Responding to the User

Responding to the User

A few examples are given in the table below:

Key Without With With With Shift With
Code Modifiers Shift Option & Option Control

0x15 ‘4’ ‘$’ ‘¢’ ‘4’
0x18 ‘7’ ‘&’ ‘¶’ ‘§’ ‘7’
0x26 B_TAB B_TAB B_TAB B_TAB B_TAB
0x2e ‘i’ ‘I’ B_TAB
0x40 ‘g’ ‘G’ ‘©’ 0x1a
0x44 ‘l’ ‘L’ ‘æ’ ‘Æ’ B_PAGE_DOWN
0x51 ‘n’ ‘N’ ‘ñ’ ‘Ñ’ 0x0e
0x55 ‘/’ ‘?’ ‘÷’ ‘¿’ ‘/’
0x64 B_INSERT ‘0’ B_INSERT ‘0’ B_INSERT

The mapping follows some fixed rules, including these:

• If a Command key is held down, the Control keys are ignored. Command trumps
Control. Otherwise, Command doesn’t affect the character that’s reported for the
key. If only Command is held down, the character that’s reported is the same as if
no modifiers were down; if Command and Option are held down, the character
that’s reported is the same as for Option alone; and so on.

• If a Control key is held down (without a Command key), Shift, Option, and all
keyboard locks are ignored. Control trumps the other modifiers (except for
Command).

• Num Lock applies only to keys on the numerical keypad. While this lock is on, the
effect of the Shift key is inverted. Num Lock alone yields the same character that’s
produced when a Shift key is down (and Num Lock is off). Num Lock plus Shift
yields the same character that’s produced without either Shift or the lock.

• Menu and Scroll Lock play no role in determining how keys are mapped to
characters.

The default key map also follows the conventional rules for Caps Lock and Control:

• Caps Lock applies only to the 26 alphabetic keys on the main keyboard. It serves to
map the key to the same character as Shift. Using Shift while the lock is on undoes
the effect of the lock; the character that’s reported is the same as if neither Shift nor
Caps Lock applied. For example, Shift-G and Caps Lock-G both are mapped to
uppercase ‘G’, but Shift-Caps Lock-G is mapped to lowercase ‘g’.

 However, if the lock doesn’t affect the character, Shift plus the lock is the same as
Shift alone. For example, Caps Lock-7 produces ‘7’ (the lock is ignored) and Shift-
7 produces ‘&’ (Shift has an effect), so Shift-Caps Lock-7 also produces ‘&’ (only
Shift has an effect).

• When Control is used with a key that otherwise produces an alphabetic character,
the character that’s reported has an ASCII value 0x40 less than the value of the
uppercase version of the character (0x60 less than the lowercase version of the

The Interface Kit – 63

 Responding to the User

 character). This often results in a character that is produced independently by
another key. For example, Control-I produces the B_TAB character and Control-L
produces B_PAGE_DOWN.

 When Control is used with a key that doesn’t produce an alphabetic character, the
character that’s reported is the same as if no modifiers were on. For example,
Control-7 produces a ‘7’.

The Interface Kit defines constants for characters that aren’t normally represented by a
visible symbol. This includes the usual space and backspace characters, but most invisible
characters are produced by the function keys and the navigation keys located between the
main keyboard and the numeric keypad. The character values associated with these keys
are more or less arbitrary, so you should always use the constant in your code rather than
the actual character value. Many of these characters are also produced by alphabetic keys
when a Control key is held down.

The table below lists all the character constants defined in the Kit and the keys they’re
associated with.

Key Key Character
Label Code Reported

Backspace 0x1e B_BACKSPACE
Tab 0x26 B_TAB
Enter 0x47 B_ENTER
(space bar) 0x5e B_SPACE

Escape 0x01 B_ESCAPE
F1 – F12 0x02 through 0x0d B_FUNCTION_KEY
Print Screen 0x0e B_FUNCTION_KEY
Scroll Lock 0x0f B_FUNCTION_KEY
Pause 0x10 B_FUNCTION_KEY
System Request 0x7e 0xc8
Break 0x7f 0xca
Insert 0x1f B_INSERT
Home 0x20 B_HOME
Page Up 0x21 B_PAGE_UP
Delete 0x34 B_DELETE
End 0x35 B_END
Page Down 0x36 B_PAGE_DOWN

(up arrow) 0x57 B_UP_ARROW
(left arrow) 0x61 B_LEFT_ARROW
(down arrow) 0x62 B_DOWN_ARROW
(right arrow) 0x63 B_RIGHT_ARROW

64 – The Interface Kit

Responding to the User

Several keys are mapped to the B_FUNCTION_KEY character. An application can determine
which function key was pressed to produce the character by testing the key code against
these constants:

B_F1_KEY B_F6_KEY B_F11_KEY
B_F2_KEY B_F7_KEY B_F12_KEY
B_F3_KEY B_F8_KEY B_PRINT_KEY (the “Print Screen” key)
B_F4_KEY B_F9_KEY B_SCROLL_KEY (the “Scroll Lock” key)
B_F5_KEY B_F10_KEY B_PAUSE_KEY

Note that key 0x30 (P) is also mapped to B_FUNCTION_KEY when the Control key is held
down.

Key States

The “states” bit field that’s reported in a key-down message captures the state of all keys
and keyboard locks at the time of the event. At other times, you can obtain the same
information through BView’s GetKeys() function.

Although the “states” bit field is declared as B_UCHAR_TYPE, it’s not just a single uchar.
It’s really an array of 16 bytes,

uchar states[16];

with one bit standing for each key on the keyboard. Bits are numbered from left to right,
beginning with the first byte in the array, as illustrated below:

Bit numbers start with 0 and match key codes. For example, bit 0x3c corresponds to the
A key, 0x3d to the S key, 0x3e to the D key, and so on. The first bit is 0x00, which doesn’t
correspond to any key. The first meaningful bit is 0x01, which corresponds to the Escape
key.

The Interface Kit – 65

 Guide to the Classes

When a key is down, the bit corresponding to its key code is set to 1. Otherwise, the bit is
set to 0. However, for the three keys that toggle keyboard locks—Caps Lock (key 0x3b),
Num Lock (key 0x22), and Scroll Lock (key 0x0f)—the bit is set to 1 if the lock is on and
set to 0 if the lock is off, regardless of the state of the key itself.

To test the “states” mask against a particular key,

• Select the byte in the “states” array that contains the bit for that key,
• Form a mask for the key that can be compared to that byte, and
• Compare the byte to the mask.

For example:

if (states[keyCode>>3] & (1 << (7 - (keyCode%8))))

Here, the key code is divided by 8 to obtain an index into the states array. This selects the
byte (the uchar) in the array that contains the bit for that key. Then, the part of the key
code that remains after dividing by 8 is used to calculate how far a bit needs to be shifted
to the left so that it’s in the same position as the bit corresponding to the key. This mask is
compared to the states byte with the bitwise & operator.

Guide to the Classes

The classes in the Interface Kit work together to define a program structure for drawing
and responding to the user. The two classes at the core of the structure—BWindow and
BView—have been discussed extensively above. Other Kit classes either derive from
BWindow and BView or support the work of those that do. The Kit defines several
different kinds of BViews that you can use in your application, but each application must
also invent some BViews of its own, to do the drawing and message handling that’s unique
to it.

To learn about the Interface Kit for the first time, it’s recommended that you first read this
introduction, then look at the class descriptions in roughly the following order:

1 BWindow Windows are at the center of the user interface.
They’re where applications present themselves to
the user and where users do their work. All other
Interface Kit objects are associated with
BWindows in one way or another.

2 BView BView objects draw within windows and handle
most user actions on the keyboard and mouse.
Each object corresponds to a particular view, one
part of the window’s display. Several of the other
classes in the Interface Kit inherit from BView and
implement particular kinds of views—such as
buttons, text displays, and scroll bars. In

66 – The Interface Kit

Guide to the Classes

 conjunction with the BWindow class, BView
defines the Kit’s mechanisms for drawing and
message-handling.

3 BPoint and BRect These two classes define the basic data types for
coordinate geometry. They’re ubiquitous
throughout the kit.

4 BRegion and BPolygon Like BRect, these two classes define objects that
describe areas and shapes within a coordinate
system. They’re used by functions in the BView
class.

5 BBitmap This class defines objects that store bitmap data.
BBitmaps are passed to BView functions, which
place the bitmap images on-screen.

6 BPicture BPicture objects record a set of drawing
instructions that can be replayed at will.

7 BScrollBar BScrollBar objects provide scroll bars for an
 and BScrollView application, and a BScrollView sets up the scroll

bars for a target view. Scrolling is explained in the
BView and BScrollBar class descriptions.

8 BMenu, BMenuItem, These classes implement the Be menu system.
 BMenuBar, and A BMenu object represents a menu list, and a
 BPopUpMenu BMenuItem represents a single item in the list. An

item can control a submenu—another BMenu
object—so menus can be hierarchically arranged.
A BMenuBar is the visible menu at the root of the
hierarchy.

9 BTextView A BTextView object displays text on-screen and
implements the user interface for editing and
selecting text.

10 BControl, BButton, The BControl class is the base class for objects that
 BRadioButton, BCheckBox, implement control devices. The other four classes
 and BPictureButton are derived from BControl.

11 BListView A BListView is similar to the control classes. It
displays a list of items that the user can select and
invoke. This class is based on the BList class of
the Storage Kit.

12 BAlert A BAlert runs a modal window that alerts the user
to something and asks for a response. It’s a
convenience for putting warnings and dialogs on-
screen.

The Interface Kit – 67

 Guide to the Classes

13 BStringView and BBox These are simple views that don’t respond to
interface messages. A BString View draws a string
(such as a label). A BBox draws a labeled box
around other views.

The class overview should help you determine which specific functions you need to turn to
in order to get more information about a class. The class constructor is often a good place
to start, as it contains general information on how instances of the class are initialized.

If you haven’t already read about the BApplication object and messaging classes in the
Application Kit, be sure to do so. A program must have a BApplication object before it
can use the Interface Kit.

A reference to the Interface Kit follows. The classes are presented in alphabetical order,
beginning with BAlert.

68 – The Interface Kit

Guide to the Classes

The Interface Kit – 69

BAlert

Derived from: public BWindow

Declared in: <interface/Alert.h>

Overview

A BAlert places a modal window on-screen in front of other windows and keeps it there
until the user dismisses it. The window is an alert panel that has a message for the user to
read and one or more buttons along the bottom that present various options for the user to
choose among. Operating a button with the keyboard or mouse selects a course of action
and dismisses the panel (closes the window). The message in the alert panel might warn
the user of something or convey some information that the application doesn’t want the
user to overlook. Typically, it asks a question that the user must answer (by operating the
appropriate button).

The alert panel stays on-screen only temporarily, until the user operates one of the buttons.
As long as it’s on-screen, other parts of the application’s user interface are disabled.
< However, the user can continue to move windows around and work in other
applications. >

It’s possible to design such a panel using a BWindow object, some BButtons, and other
views. However, the BAlert class provides a simple way to do it. There’s no need to
construct views and arrange them, or call functions to show the window and then get rid of
it. All you do is:

• Construct the object.

• Call SetShortcut() if you want the user to be able to operate window buttons from
the keyboard. (The button on the right is automatically made the default button and
can be operated by the Enter key.)

• Call Go() to put the window on-screen.

For example:

BAlert *alert;
long result;

alert = new BAlert("", "Time’s up! Do you want to continue?",
 "Cancel", "Continue", NULL,
 B_WIDTH_FROM_WIDEST, B_WARNING_ALERT);
alert->SetShortcut(0, B_ESCAPE);
result = alert->Go();

70 – The Interface Kit

Constructor BAlert

Go() doesn’t return until the user operates a button to dismiss the panel. When it returns,
the window will have been closed, the window thread will have been killed, and the
BAlert object will have been deleted.

The value Go() returns indicates which button dismissed the panel. If the user clicked the
“Cancel” button in this example or pressed the Escape key, the return result would be 0. If
the user clicked “Continue”, the result would be 1. Since the BAlert sets up the rightmost
button as the default button for the window, the user could also operate the “Continue”
button by pressing the Enter key.

Constructor

BAlert()

BAlert(const char *title, const char *text,
 const char *firstButton,
 const char *secondButton = NULL,
 const char *thirdButton = NULL,
 button_width width = B_WIDTH_AS_USUAL,
 alert_type type = B_INFO_ALERT)

Creates an alert panel as a modal window. The window displays some text for the user to
read, and can have up to three buttons. There must be at least firstButton; the others are
optional. The BAlert must also have a title, even though the panel doesn’t have a title tab
to display it. The title can be NULL or an empty string.

The buttons are arranged in a row at the bottom of the panel so that one is always in
the right bottom corner. They’re placed from left to right in the order specified to the
constructor. If labels for three buttons are provided, firstButton will be on the left,
secondButton in the middle, and thirdButton on the right. If only two labels are provided,
firstButton will come first and secondButton will be in the right bottom corner. If there’s
just one label (firstButton), it will be at the right bottom location.

By default, the user can operate the rightmost button by pressing the Enter key. If
a “Cancel” button is included, it should be assigned the B_ESCAPE character as a
keyboard shortcut. Other buttons can be assigned other shortcut characters. Use BAlert’s
SetShortcut() function to set up the shortcuts, rather than BWindow’s AddShortcut().
Shortcuts added by a BWindow require the user to hold down a Command key, while
those set by a BAlert don’t.

By default, all the buttons have a standard, minimal width (B_WIDTH_AS_USUAL). This
is adequate for most buttons, but may not be wide enough to accommodate an especially
long label. To let the width of each button adjust to the width of its label, set the width
parameter to B_WIDTH_FROM_LABEL. To ensure that the buttons are all the same width, yet
wide enough to display the widest label, set the width parameter to
B_WIDTH_FROM_WIDEST.

The Interface Kit – 71

 BAlert Member Functions

For more hands-on manipulation of the buttons, you can get the BButton objects that
the BAlert creates by calling the ButtonAt() function. To get the BTextView object that
displays the text string, you can call TextView().

There are various kinds of alert panels, depending on the content of the textual message
and the nature of the options presented to the user. The type parameter should classify the
BAlert object as one of the following:

B_EMPTY_ALERT
B_INFO_ALERT
B_IDEA_ALERT
B_WARNING_ALERT
B_STOP_ALERT

Currently, the alert type is used only to select a representative icon that’s displayed at the
left top corner of the window. A B_EMPTY_ALERT doesn’t have an icon.

After the BAlert is constructed, Go() must be called to place it on-screen. Before
returning, Go() destroys the object. You don’t need to write code to delete it.

See also: Go(), SetShortcut()

Member Functions

ButtonAt()

inline BButton *ButtonAt(long index) const

Returns a pointer to the BButton object for the button at index. Indices begin at 0 and
count buttons from left to right. The BButton belongs to the BAlert object and should not
be freed.

See also: TextView()

FilterKeyDown()

virtual bool FilterKeyDown(ulong *aChar, BView **target)

Permits keyboard shortcuts to operate the buttons and dismiss the window. There’s no need
for your application to call or override this function. Call SetShortcut() to assign shortcut
characters to buttons.

See also: SetShortcut()

72 – The Interface Kit

Member Functions BAlert

FrameResized()

virtual void FrameResized(float width, float height)

Overrides the BView function to adjust the layout within the panel when its dimensions
change. This function is called as the panel is being resized; there’s no need to call it or
override it in application code.

See also: FrameResized() in the BWindow class

Go()

long Go(void)

Calls the Show() virtual function to place the alert panel on-screen, sets the modal loop for
the BAlert in motion, and returns when the loop has quit and the window has been closed.
The value returned is the index of the button that the user operated to dismiss the window.
Buttons are numbered from left to right, beginning with 0.

To put an alert panel on-screen, simply construct a BAlert object, set its keyboard
shortcuts, if any, and call this function. See the example code in the “Overview” section
above.

Before returning, this function deletes the BAlert object, and all the objects it created.

See also: the BAlert constructor

MessageReceived()

virtual void MessageReceived(BMessage *message)

Closes the window in response to messages posted from the window’s buttons. There’s no
need for your application to call or override this function.

SetShortcut()

void SetShortcut(long index, char shortcut)

Sets a shortcut character that the user can type to operate the button at index. Buttons are
indexed from left to right beginning with 0. By default, B_ENTER is the shortcut for the
rightmost button.

A “Cancel” button should be assigned the B_ESCAPE character as a shortcut.

The shortcut doesn’t require the user to hold down a Command key or other modifier
(except for any modifiers that would normally be required to produce the shortcut
character).

The shortcut is valid only while the window is on-screen.

The Interface Kit – 73

 BAlert Member Functions

TextView()

inline BTextView *TextView(void) const

Returns a pointer to the BTextView object that contains the textual information that’s
displayed in the panel. The object is created and the text is set when the BAlert is
constructed. The BTextView object belongs to the BAlert and should not be freed.

See also: the BAlert constructor, ButtonAt()

74 – The Interface Kit

Member Functions BAlert

The Interface Kit – 75

BBitmap

Derived from: public BObject

Declared in: <interface/Bitmap.h>

Overview

A BBitmap object is a container for an image bitmap; it stores pixel data—data that
describes an image pixel by pixel. The class provides a way of specifying a bitmap from
raw data, and also a way of creating the data from scratch using the Interface Kit graphics
mechanism.

BBitmap functions manage the bitmap data and provide information about it. However,
they don’t do anything with the data. Placing the image somewhere so that it can be seen is
the province of BView functions—such as DrawBitmap() and DragMessage()—not this
class.

Bitmap Data

An image bitmap records the color values of pixels within a rectangular area. The pixels
in the rectangle, as on the screen, are arranged in rows and columns. The data is specified
in rows, beginning with the top row of pixels in the image and working downward to the
bottom row. Each row of data is aligned on a long word boundary and is read from left to
right.

New BBitmap objects are constructed with two pieces of information that prepare them to
store bitmap data—a bounds rectangle and a color space. For example, this code

BRect rect(0.0, 0.0, 39.0, 79.0);
BBitmap *image = new BBitmap(rect, B_COLOR_8_BIT);

constructs a bitmap of 40 rows and 80 pixels per row. Each pixel is specified by an 8-bit
color value.

76 – The Interface Kit

Overview BBitmap

The Bounds Rectangle

A BBitmap’s bounds rectangle serves two purposes:

• It sets the size of the image. A bitmap covers as many pixels as its bounds rectangle
encloses—under the assumption mat one coordinate unit equals one pixel, as it does
when the display device is the screen.

 Since a bitmap can’t contain a fraction of a pixel, the bounds rectangle shouldn’t
contain any fractional coordinates. Without fractional coordinates, each side of the
bounds rectangle will be aligned with a column or a row of pixels. The pixels
around the edge of the rectangle are included in the image, so the bitmap will
contain one more column of pixels than the width of the rectangle and one more
row than the rectangle’s height. (See the BRect class “Overview” on page 167 for
an illustration.)

• It establishes a coordinate system that can be used later by drawing functions, such
as DrawBitmap() and DragMessage(), to designate particular points or portions of
the image.

 For example, if one BBitmap was constructed with this bounds rectangle,

BRect firstRect(0.0, 0.0, 60.0, 100.0);

 and another with this rectangle,

BRect secondRect(60.0, 100.0, 120.0, 200.0);

 they would both have the same size and shape. However, the coordinates
(60.0, 100.0) would designate the right bottom corner of the first bitmap, but the left
top corner of the second.

< If a BBitmap object enlists BViews to create the bitmap data, it must have a bounds
rectangle with (0.0, 0.0) at the left top corner. >

The Color Space

The color space of a bitmap determines its depth (how many bits of information are stored
for each pixel) and its interpretation (what the data values mean). These four color spaces
are currently defined:

B_MONOCHROME_1_BIT
B_GRAYSCALE_8_BIT
B_COLOR_8_BIT
B_RGB_24_BIT

In the B_RGB_24_BIT color space, the color of each pixel is specified as an rgb_color value.
In the B_COLOR_8_BIT color space, colors are specified as indices into the color map. In
the B_MONOCHROME_1_BIT color space, a value of 1 means black and 0 means white. (A

The Interface Kit – 77

 BBitmap Overview

more complete description of the four color spaces can be found under “Colors” on
page 25 of the introduction to this chapter.)

< Currently, bitmap data is stored only in the B_COLOR_8_BIT and B_MONOCHROME_1_BIT
color spaces, though it can also be specified in the B_RGB_24_BIT format. The
B_GRAYSCALE_8_BIT color space is not used at the present time. >

Specifying the Image

BBitmap objects begin life empty. When constructed, they allocate sufficient memory to
store an image of the size and color space specified. However, the memory isn’t initialized.
The actual image must be set after construction. This can be done by explicitly assigning
pixel values with the SetBits() function:

image->SetBits(rawData, numBytes, 0, COLOR_8_BIT);

In addition to this function, BView objects can be enlisted to produce the bitmap. Views
are assigned to a BBitmap object just as they are to a BWindow (by calling the AddChild()
function). In reality, the BBitmap sets up a private, off-screen window for the views.
When the views draw, the window renders their output into the bitmap buffer. The
rendered image has the same format as the data captured by the SetBits() function. SetBits()
and BViews can be used in combination to create a bitmap.

The BViews that construct a bitmap behave a bit differently than the BViews that draw in
regular windows:

• In contrast to BViews attached to an ordinary window, the BViews assigned to a
BBitmap can create an image off-screen. When an ordinary window is hidden, it
doesn’t render images; its BViews may draw, but they don’t produce image data.
However, the BViews assigned to a BBitmap produce an off-screen bitmap.

• Because they never appear on-screen, the BViews that produce a bitmap image
never handle events and never get update messages telling them to draw. You must
call their drawing functions directly in your own code.

 This is typically done just once, to create the bitmap. After that, the BViews can be
discarded; they’ll never be called upon to update the image. However, if the bitmap
will change—perhaps to reflect decisions the user makes as the program runs—the
BViews can be retained to make the changes.

• Because there are no update messages, the output buffer to the Application Server
isn’t automatically flushed. You must flush it explicitly in application code. This is
best done by calling Sync(), rather than Flush(), so that you can be sure the entire
image has been rendered before the bitmap is used.

• A BBitmap has no background color against which images are drawn. Your code
must color every pixel within the bounds rectangle.

78 – The Interface Kit

Constructor and Destructor BBitmap

• Views that are attached to a BWindow normally draw in the window’s thread.
However, views attached to a BBitmap don’t draw in a separate thread; the BBitmap
doesn’t set up an independent thread for its private window.

So that you can manage the BViews that are assigned to a BBitmap, the BBitmap class
duplicates a number of BWindow functions—such as AddChild(), FindView(), and
ChildAt().

A BBitmap that enlists views to produce the bitmap consumes more system resources
than one that relies solely on SetBits(). Therefore, by default, BBitmaps refuse to accept
BViews. If BViews will be used to create bitmap data, the BBitmap constructor must be
informed so that it can set up the off-screen window and prepare the rendering mechanism.

Transparency

Color bitmaps can have transparent pixels. When the bitmap is imaged in a drawing mode
other than B_OP_COPY, its transparent pixels won’t be transferred to the destination view.
The destination image will show through wherever the bitmap is transparent.

To introduce transparency into a B_COLOR_8_BIT bitmap, a pixel can be assigned a value
of B_TRANSPARENT_8_BIT. In a B_RGB_24_BIT bitmap, a pixel can be assigned the special
value of B_TRANSPARENT_24_BIT. (Or B_TRANSPARENT_24_BIT can be made the high or
low color of the BView drawing the bitmap.)

Transparency is covered in more detail under “Drawing Modes” on page 27 of the chapter
introduction.

See also: system_colors() global function

Constructor and Destructor

BBitmap()

BBitmap(BRect bounds, color_space mode, bool acceptsViews = FALSE)

Initializes the BBitmap to the size and internal coordinate system implied by the bounds
rectangle and to the depth and color interpretation specified by the mode color space.

This function allocates enough memory to store data for an image the size of bounds at the
depth required by mode, but does not initialize any of it. All pixel data should be
explicitly set using the SetBits() function, or by enlisting BViews to produce the bitmap. If
BViews are to be used, the constructor must be informed by setting the acceptsViews flag
to TRUE. This permits it to set up the mechanisms for rendering the image, including an
off-screen window to contain the views.

< Currently, only B_COLOR_8_BIT and B_MONOCHROME_1_BIT are acceptable as the
color_space mode. B_GRAYSCALE_8_BIT is reinterpreted as B_COLOR_8_BIT. >

The Interface Kit – 79

 BBitmap Member Functions

< If the BBitmap accepts BViews, the left and top sides of its bounds rectangle must be
located at 0.0. >

~BBitmap()

virtual ~BBitmap(void)

Frees all memory allocated to hold image data, deletes any BViews used to create the
image, gets rid of the off-screen window that held the views, and severs the BBitmap’s
connection to the Application Server.

Member Functions

AddChild()

virtual void AddChild(BView *aView)

Adds aView to the hierarchy of views associated with the BBitmap, attaching it to an
offscreen window (one created by the BBitmap for just this purpose) by making it a child
of the window’s top view. If aView already has a parent, it’s removed from that view
hierarchy and adopted into this one. A view can serve only one window at a time.

Like AddChild() in the BWindow class, this function calls the BView’s
AttachedToWindow() function to inform it that it now belongs to a view hierarchy. Every
view that descends from aView also becomes attached to the BBitmap’s off-screen window
and receives its own AttachedToWindow() notification.

AddChild() fails if the BBitmap was not constructed to accept views.

See also: AddChild() in the BWindow class, AttachedToWindow() in the BView class,
RemoveChild(), the BBitmap constructor

Bits()

inline void *Bits(void) const

Returns a pointer to the bitmap data. The data lies in memory shared by the application
and the Application Server. The length of the data can be obtained by calling
BitsLength()—or it can be calculated from the height of the bitmap (the number of rows)
and the number of bytes per row.

See also: Bounds(), BytesPerRow(), BitsLength()

80 – The Interface Kit

Member Functions BBitmap

BitsLength()

inline long BitsLength(void) const

Returns the number of bytes that were allocated to store the bitmap data.

See also: Bits(), BytesPerRow()

Bounds()

inline BRect Bounds(void) const

Returns the bounds rectangle that defines the size and coordinate system of the bitmap.
This should be identical to the rectangle used in constructing the object.

See also: the BBitmap constructor

BytesPerRow()

inline long BytesPerRow(void) const

Returns how many bytes of data are required to specify a row of pixels. For example, a
monochrome bitmap (one bit per pixel) 80 pixels wide would require twelve bytes per row
(96 bits). The extra sixteen bits at the end of the twelve bytes are ignored. Every row of
bitmap data is aligned on a long word boundary.

ChildAt(), CountChildren()

BView *ChildAt(long index) const

long CountChildren(void) const

ChildAt() returns the child BView at index, or NULL if there’s no child at index. Indices
begin at 0 and count only BViews that were added to the BBitmap (added as children of
the top view of the BBitmap’s off-screen window) and not subsequently removed.

CountChildren() returns the number of BViews the BBitmap currently has. (It counts only
BViews that were added directly to the BBitmap, not BViews farther down the view
hierarchy.)

< Do not rely on these functions as they may not remain in the API. >

These functions fail if the BBitmap wasn’t constructed to accept views.

See also: ChildAt() in the BWindow class

The Interface Kit – 81

 BBitmap Member Functions

ColorSpace()

inline color_space ColorSpace(void) const

Returns the color space of the data being stored (not necessarily the color space of the data
passed to the SetBits() function). Once set by the BBitmap constructor, the color space
doesn’t change.

The color_space data type is defined in interface/InterfaceDefs.h and is explained on
page 25 and in the overview above.

See also: the BBitmap constructor

CountChildren() see ChildAt()

FindView()

BView *FindView(BPoint point) const

BView *FindView(const char *name) const

Returns the BView located at point within the bitmap, or the BView tagged with name.
The point must be somewhere within the BBitmap’s bounds rectangle, which must have
the coordinate origin, (0.0, 0.0), at its left top corner.

If the BBitmap doesn’t accept views, this function fails. If no view draws at the point
given, or no view associated with the BBitmap has the name given, it returns NULL.

See also: FindView() in the BView class

Lock(), Unlock()

bool Lock(void)

void Unlock(void)

These functions lock and unlock the off-screen window where BViews associated with the
BBitmap draw. Locking works for this window and its views just as it does for ordinary
on-screen windows.

Lock() returns FALSE if the BBitmap doesn’t accept views or if its off-screen window is
unlockable (and therefore unusable) for some reason. Otherwise, it doesn’t return until it
has the window locked and can return TRUE.

See also: Lock() in the BLooper class of the Application Kit

82 – The Interface Kit

Member Functions BBitmap

RemoveChild()

virtual bool RemoveChild(BView *aView)

Removes aView from the hierarchy of views associated with the BBitmap, but only if
aView was added to the hierarchy by calling BBitmap’s version of the AddChild()
function.

If aView is successfully removed, RemoveChild() returns TRUE. If not, it returns FALSE.

See also: AddChild()

SetBits()

void SetBits(const void *data, long length, long offset, color_space mode)

Assigns length bytes of data to the BBitmap. The new data is copied into the bitmap
beginning offset bytes from the start of allocated memory. To set data beginning with the
first (left top) pixel in the image, the offset should be 0.

The data is specified in the mode color space, which may or may not be the same as the
color space that the BBitmap uses to store the data. If not, a conversion is automatically
made. < Currently, only B_RGB_24_BIT data is converted, to B_COLOR_8_BIT data. In the
conversion, colors are dithered, so that the resulting image will match the original as
closely as possible, despite the lost information. SetBits() rejects data in
B_GRAYSCALE_8_BIT mode. >

This function works for all BBitmaps, whether or not BViews are also enlisted to produce
the image.

The Interface Kit – 83

BBox

Derived from: public BView

Declared in: <interface/Box.h>

Overview

A BBox draws a labeled border around other views. It serves only to label those views
and organize them visually. It doesn’t respond to messages.

The border is drawn around the edge of the view’s frame rectangle. If the BBox has a
label, the border at the top of box is broken where the label appears (and the border is inset
from the top somewhat to make room for the label).

The current pen size of the view determines the width of the border, which by default is
1.0 coordinate unit. The label is drawn in the current font, which AttachedToWindow()
sets to a 9-point “Erich.” Both the border and the label are drawn in the current high color;
the default high color is black.

The views that the box encloses should be made children of the BBox object.

Constructor and Destructor

BBox()

BBox(BRect frame, const char *name = NULL,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = B_WILL_DRAW)

Initializes the BBox by passing all arguments to the BView constructor. The new object
doesn’t have a label; call SetLabel() to assign it one.

See also: SetLabel()

~BBox()

virtual ~BBox(void)

Frees the label, if the BBox has one.

84 – The Interface Kit

Member Functions BBox

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Sets the default font for drawing the label to the 9-point “Erich” bitmap font.

This function is called by the Interface Kit; you shouldn’t call it yourself. However, you
can reimplement it to set a different font and other graphics parameters—such as the high
color and pen size that will be used to draw the box.

See also: AttachedToWindow() in the BView class

Draw()

virtual void Draw(BRect updateRect)

Draws the box and its label. This function is called automatically in response to update
messages.

See also: Draw() in the BView class

SetLabel(), Label()

void SetLabel(const char *string)

const char *Label(void) const

These functions set and return the label that’s displayed along the top edge of the box.
SetLabel() copies string and makes it the BBox’s label, freeing the previous label, if any.
If string is NULL, it removes the current label and frees it.

Label() returns a pointer to the BBox’s current label, or NULL if it doesn’t have one.

The Interface Kit – 85

BButton

Derived from: public BControl

Declared in: <interface/Button.h>

Overview

A BButton object draws a labeled button on-screen and responds when the button is
clicked or when it’s operated from the keyboard. If the BButton is the default button for
its window and the window is the active window, the user can operate it by pressing the
Enter key.

BButtons have a single state. Unlike check boxes and radio buttons, the user can’t toggle
a button on and off. However, the button’s value changes while it’s being operated.
During a click (while the user holds the mouse button down and the cursor points to the
button on-screen), the BButton’s value is set to 1 (B_CONTROL_ON). Otherwise, the value
is 0 (B_CONTROL_OFF).

This class, like BCheckBox and BRadioButton, depends on the control framework defined
in the BControl class. In particular, it calls these BControl functions:

• SetValue() to make each change in the BControl’s value. This is a hook function
that you can override to take collateral action when the value changes.

• Invoke() to post a message each time the button is clicked or operated from the
keyboard. You can designate the object that should receive the message by calling
BControl’s SetTarget() function. A model for the message is set by the BButton
constructor (or by BControl’s SetMessage() function).

• IsEnabled() to determine how the button should be drawn and whether it’s enabled
to post a message. You can call BControl’s SetEnabled() to enable and disable the
button.

A BButton is an appropriate control device for initiating an action. Use a BCheckBox or
BRadioButtons to set a state.

86 – The Interface Kit

Hook Functions BButton

Hook Functions

MakeDefault() Makes the BButton the default button for its window or
removes that status; can be augmented by derived classes to
take note when the status of the button changes.

Constructor

BButton()

BButton(BRect frame, const char *name,
 const char *label,
 BMessage *message,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = B_WILL_DRAW)

Initializes the BButton by passing all arguments to the BControl constructor. BControl
initializes the button’s label and assigns it a model message that identifies the action that
should be carried out when the button is invoked.

The frame, name, resizingMode, and flags arguments are the same as those declared for
the BView class and are passed up the inheritance hierarchy to the BView constructor
without change.

See also: the BControl and BView constructors, Invoke() in the BControl class

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Augments the BControl version of this function to make sure that the BButton does not
consider itself the default button for the window to which it has just become attached—
even if it may have been the default button for the window to which it was previously
attached.

This version of AttachedToWindow() incorporates the BControl version.

See also: AttachedToWindow() in the BControl and BView classes, MakeDefault()

The Interface Kit – 87

 BButton Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws the button and labels it. If the BButton’s value is anything but 0, the button is
highlighted. If it’s disabled, it drawn in muted shades of gray. Otherwise, it’s drawn in its
ordinary, enabled, unhighlighted state.

See also: Draw() in the BView class

IsDefault() see MakeDefault

KeyDown()

virtual void KeyDown(ulong aChar)

Responds to a message reporting that the user pressed the Enter key by:

• Momentarily highlighting the button and changing its value, and
• Posting a copy of the model BMessage to the target receiver.

This function is called if:

• The BButton is the default button for the window,
• The window the button is in is the active window, and
• aChar is B_ENTER.

It might also be called if the BButton object is the focus view for the active window, but
BButtons normally don’t make themselves the focus for keyboard events.

See also: Invoke() in the BControl class, MakeDefault()

MakeDefault(), IsDefault()

virtual void MakeDefault(bool flag)

bool IsDefault(void) const

MakeDefault() makes the BButton the default button for its window when flag is TRUE, and
removes that status when flag is FALSE. The default button is the button the user can
operate by striking the Enter key when the window is the active window. IsDefault()
returns whether the BButton is currently the default button.

A window can have only one default button at a time. Setting a new default button,
therefore, may deprive another button of that status. When MakeDefault() is called with
an argument of TRUE, it generates a MakeDefault() call with an argument of FALSE for
previous default button. Both buttons are redisplayed so that the user can see which one is
currently the default.

88 – The Interface Kit

Member Functions BButton

The default button can also be set by calling BWindow’s SetDefaultButton() function.
That function makes sure that the button that’s forced to give up default status and the
button that obtains it are both notified through MakeDefault() function calls.

MakeDefault() is therefore a hook function that can be augmented to take note each time
the default status of the button changes. It’s called once for each change in status, no
matter which function initiated the change.

See also: SetDefault() in the BWindow class

MouseDown()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event in the button by tracking the cursor while the user holds
the mouse button down. As the cursor moves in and out of the button, the BButton’s value
is reset accordingly. The SetValue() virtual function is called to make the change each
time.

If the cursor is inside the BButton’s bounds rectangle when the user releases the mouse
button, this function posts a copy of the model message so that it will be dispatched to the
target receiver.

See also: MessageReceived() in the BReceiver class, Invoke() and SetTarget() in the
BControl class

The Interface Kit – 89

BCheckBox

Derived from: public BControl

Declared in: <interface/CheckBox.h>

Overview

A BCheckBox object draws a labeled check box on-screen and responds to a click by
changing the state of the device. A check box has two states: An “X” is displayed in the
box when the object’s value is 1 (B_CONTROL_ON), and is absent when the value is 0
(B_CONTROL_OFF). The BCheckBox is invoked (it posts a message to the target receiver)
whenever its value changes in either direction—when it’s turned on and when it’s turned
off.

A check box is an appropriate control device for setting a state—turning a value on and
off. Use menu items or buttons to initiate actions within the application.

Constructor

BCheckBox()

BCheckBox(BRect frame, const char *name, const char *label,
 BMessage *message,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = B_WILL_DRAW)

Initializes the BCheckBox by passing all arguments to the BControl constructor. BControl
initializes the label of the check box and assigns it a model message that encapsulates the
action that should be taken when the state of the check box changes.

The frame, name, resizingMode, and flags arguments are the same as those declared for
the BView class and are passed unchanged to the BView constructor.

The frame rectangle of a BCheckBox should be at least 11.0 units high to accommodate
the check box and the label in the default font. The object draws at the bottom of its frame
rectangle beginning at the left side; it doesn’t use any extra space there may happen to
be at the top or on the right. (However, the user can click anywhere within the frame
rectangle to operate the check box).

See also: the BControl and BView constructors

90 – The Interface Kit

Member Functions BCheckBox

Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws the check box and its label. If the current value of the BCheckBox is 1
(B_CONTROL_ON), it’s marked with an “X”. If the value is 0 (B_CONTROL_OFF), it’s
empty.

See also: Draw() in the BView class

MouseDown()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event within the check box by tracking the cursor while the
user holds the mouse button down. If the cursor is inside the bounds rectangle when the
user releases the mouse button, this function toggles the value of the BCheckBox and calls
Draw() to redisplay it. If the box was empty before the mouse-down event, it will be
marked afterward; if marked before, it will be empty afterwards.

When the value of the BCheckBox changes, a copy of the model BMessage is posted so
that it can be delivered to the object’s target receiver. See BControl’s Invoke() and
SetTarget() functions for more information. The message is dispatched by calling the
target’s MessageReceived() virtual function.

The receiver can get a pointer to the BCheckBox from the message, and use it to discover
the object’s new value. For example:

void MyReceiver::MessageReceived(BMessage *msg)
{
 . . .
 BCheckBox *box = (BCheckBox *}msg->FindObject("source");
 if (message->Error() == B_NO_ERROR) {
 long value = box->Value();
 . . .
 }
 . . .
}

See also: Invoke(), SetTarget(), and SetValue() in the BControl class

The Interface Kit – 91

BControl

Derived from: public BView

Declared in: <interface/Control.h>

Overview

BControl is an abstract class for views that draw control devices on the screen. Objects
that inherit from BControl emulate, in software, real-world control devices—like the
switches and levers on a machine, the check lists and blank lines on a form to fill out, or
the dials and knobs on a home appliance.

Controls turn the messages that report generic mouse and keyboard events into other
messages with more specific instructions for the application. Just as a switch that you
might buy in a hardware store can be hooked up to do various kinds of work, a BControl
object can be customized by setting the message it posts when invoked and the target
receiver that should handle the message.

The Interface Kit currently includes three classes derived from BControl—BButton,
BRadioButton, and BCheckBox. In addition, it has two classes—BListView and
BMenuItem—that implement control devices but are not derived from this class.
BListView shares an interface with the BList class (of the Support Kit) and BMenuItem is
designed to work with the other classes in the menu system.

As BListView and BMenuItem demonstrate, it’s possible to implement a control device
that’s not a BControl. However, it’s simpler to take advantage of the code that’s already
provided by the BControl class. That way you can keep a simple programming interface
and avoid reimplementing functions that BControl has defined for you. If your application
defines its own control devices—dials, sliders, selection lists, text fields, and the like—
they should be derived from BControl.

Hook Functions

SetEnabled() Enables and disables the control device; can be augmented
by derived classes to note when the state of the object has
changed.

SetValue() Changes the value of the control device; can be augmented
to take collateral action when the change is made.

92 – The Interface Kit

Constructor and Destructor BControl

Constructor and Destructor

BControl()

BControl(BRect frame, const char *name, const char *label,
 BMessage *message, ulong resizingMode, ulong flags)

Initializes the BControl by setting its initial value to 0 (B_CONTROL_OFF), assigning it a
label, which can be NULL, and registering a model message that captures what the control
does—the command it gives when it’s invoked and the information that accompanies the
command.

The label is copied, but the message is not. The BMessage object becomes the property
of the BControl; it should not be deleted, posted, assigned to another object, or otherwise
used in application code. The label and message can be altered after construction with the
SetLabel() and SetMessage() functions.

The BControl class doesn’t define Draw(), MouseDown(), or KeyDown() functions. It’s up
to derived classes to determine how the label is drawn and how the message is to be used.
Typically, when a BControl object needs to take action (in response to a click, for
example), it calls the Invoke() function, which copies the model message and posts the
copy so that it will be received by the designated target. By default, the target is the
window where the control is located, but SetTarget() can designate another receiver.

Before posting a copy of the model message, Invoke() adds two data entries to it, under
the names “when” and “source”. These names should not be used for data items in the
model.

The frame, name, resizingMode, and flags arguments are identical to those declared for the
BView class and are passed unchanged to the BView constructor.

See also: the BView constructor, PostMessage() in the BLooper class of the Application
Kit, SetLabel(), SetMessage(), SetTarget(), Invoke()

~BControl()

virtual ~BControl(void)

Frees the model message and all memory allocated by the BControl.

The Interface Kit – 93

 BControl Member Functions

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Overrides BView’s version of this function to set the default font for all control devices to
9-point “Emily”. It also makes the BWindow to which the BControl has become attached
the default target for the Invoke() function, provided that another target hasn’t already
been set. To make the font change, it calls BView’s SetFontName(); to designate the
target, it calls SetTarget(). Both are virtual functions.

AttachedToWindow() is called for you when the BControl becomes a child of a view
already associated with the window.

See also: AttachedToWindow() and SetFontName() in the BView class, Invoke(),
SetTarget()

Command() see SetMessage()

Invoke()

protected:
void Invoke(void)

Copies the BControl’s model BMessage and posts the copy so that it will be dispatched
to the designated target. The following two pieces of information are added to the copy
before it’s posted:

Data name Type code Description

“when” B_LONG_TYPE When the control was invoked, as
measured in milliseconds from the time
the machine was last booted.

“source” B_OBJECT_TYPE A pointer to the BControl object. This
permits the message receiver to request
more information from the source of the
message.

These two names shouldn’t be used for data entries in the model.

If the control doesn’t have a designated target, but it does have a designated BLooper
where it can post the message, it will ask the BLooper for its preferred receiver and name
it as the target. Since the preferred receiver for a BWindow object is the current focus
view, this option allows control devices to be targeted to whatever view happens to be in
focus at the time. See the SetTarget() function for information on how to designate a target
BReceiver and BLooper for the control.

94 – The Interface Kit

Member Functions BControl

Invoke() is designed to be called from the MouseDown() and KeyDown() functions
defined for derived classes; it’s not called for you in BControl code. It’s up to each
derived class to define what user actions trigger the call to Invoke()—what activity
constitutes “invoking” the control.

This function doesn’t check to make sure the BControl is currently enabled. Derived
classes should make that determination before calling Invoke().

See also: SetTarget(), SetMessage(), SetEnabled()

IsEnabled() see SetEnabled()

Label() see SetLabel()

SetEnabled(), IsEnabled()

virtual void SetEnabled(bool	flag)

bool IsEnabled(void) const

SetEnabled() enables the BControl if flag is TRUE, and disables it if flag is FALSE.
IsEnabled() returns whether or not the object is currently enabled. BControls are enabled
by default.

While disabled, a BControl typically won’t post messages and won’t respond visually to
mouse and keyboard manipulation. To indicate this nonfunctional state, the control device
is displayed on-screen in subdued colors.

However, it’s left to each derived class to carry out this strategy in a way that’s appropriate
for the kind of control it implements. The BControl class merely marks an object as being
enabled or disabled; none of its functions take the enabled state of the device into account.

Derived classes can augment SetEnabled() (override it) to take action when the control
device becomes enabled or disabled. To be sure that SetEnabled() has been called to
actually make a change, its current state should be checked before calling the inherited
version of the function. For example:

void MyControl::SetEnabled(bool flag)
{
 if (flag == IsEnabled())
 return;
 BControl::SetEnabled(flag);
 /* Code that responds to the change in state goes here. */
}

Note, however, that you don’t have to override SetEnabled() just to update the on-screen
display when the control becomes enabled or disabled. If the BControl is attached to a
window, the Kit’s version of SetEnabled() always calls the Draw() function. Therefore,

The Interface Kit – 95

 BControl Member Functions

the device on-screen will be updated automatically—as long as Draw() has been
implemented to take the enabled state into account.

See also: the BControl constructor

SetLabel(), Label()

virtual void SetLabel(const char *string)

const char *Label(void) const

These functions set and return the label on a control device—the text that’s displayed, for
example, on top of a button or alongside a check box or radio button. The label is a null-
terminated string.

SetLabel() makes a copy of string, replaces the current label with it, frees the old label,
and updates the control on-screen so the new label will be displayed to the user. The label
is first set by the constructor and can be modified thereafter by this function.

Label() returns the current label. The string it returns belongs to the BControl and may be
altered or freed without notice.

See also: the BControl constructor, AttachedToWindow(), SetFontName() in the BView
class

SetMessage(), Message(), Command()

virtual void SetMessage(BMessage *message)

BMessage *Message(void) const

ulong Command(void) const

SetMessage() sets the model BMessage that defines what the BControl does, and frees the
message that was previously set. Message() returns a pointer to the BMessage that’s the
current model, and Command() returns its what data member. The message is first set by
the BControl constructor.

Because Invoke() adds “when” and “source” entries to the messages it posts, these two
names shouldn’t be used for any data entries in the model BMessage.

The model message passed to SetMessage() and returned by Message() belongs to the
BControl object; it can be modified in application code, but it shouldn’t be deleted (except
by passing NULL to SetMessage()), posted, or put to any other use.

See also: the BControl constructor, Invoke(), SetTarget()

96 – The Interface Kit

Member Functions BControl

SetTarget(), Target()

virtual long SetTarget(BReceiver *target, BLooper *looper= NULL)

BReceiver *Target(BLooper **looper = NULL) const

These functions set and return the object that’s targeted to receive the messages the
BControl posts (through its Invoke() function).

SetTarget() sets the target BReceiver, but is successful only if it can also discern a
BLooper object where Invoke() can post messages to that target. Invoke() calls the
BLooper’s PostMessage() function and names the target as the Invoke() that should receive
the message:

looper->PostMessage(theMessage, target);

If the target receiver passed to SetTarget() is itself a BLooper object (such as a BWindow)
or if it’s associated with a BLooper object (as BViews are associated with BWindows), the
looper argument can be NULL. SetTarget() can discover the BLooper from the target (by
calling the target’s Looper() function).

However, if the target can’t supply a BLooper object, a specific looper must be named as
an argument. If a looper isn’t named and the target can’t supply one, the function fails and
returns B_BAD_VALUE to indicate that the target alone is inadequate.

Moreover, SetTarget() also fails if a specific looper is named but the target is associated
with some other BLooper object. In this case, B_MISMATCHED_VALUES is returned to
indicate that there’s a conflict between the two arguments.

It’s also possible to name a specific looper, but a NULL target. In this case, messages will
be targeted to the looper’s preferred receiver (the object returned by its
PreferredReceiver() function). For a BWindow, the preferred receiver is the current focus
view. Therefore, by passing a NULL target and a BWindow looper to SetTarget(),

myControl->SetTarget(NULL, myControl->Window());

the control device can be targeted to whatever BView happens to be in focus at the time
the control is invoked. This is useful for controls that act on the current selection. (Note,
however, that if the PreferredReceiver() is NULL, the looper itself becomes the target.)

When successful, SetTarget() returns B_NO_ERROR.

Target() returns the current target and, if a pointer to a looper is provided, fills in the
BLooper where Invoke() will post messages. By default (established by
AttachedToWindow()), both roles are filled by the BWindow where the control device is
located.

See also: Looper() in the BReceiver and BView classes, PreferredReceiver() in the
BLooper and BWindow classes, Invoke(), AttachedToWindow()

The Interface Kit – 97

 BControl Member Functions

SetValue(), Value()

virtual void SetValue(long value)

long Value(void) const

These functions set and return the value of the BControl object.

SetValue() assigns the object a new value. If the value passed is in fact different from the
BControl’s current value, this function calls the object’s Draw() function so that the new
value will be reflected in what the user sees on-screen; otherwise it does nothing.

Value() returns the current value.

Each class that’s derived from BControl should call SetValue() in its MouseDown() and
KeyDown() functions to change the value of the control device in response to user actions.
The derived classes defined in the Be software kits change values only by calling this
function.

Since SetValue() is a virtual function, you can override it to take note whenever a control’s
value changes. However, if you want your code to act only when the value actually
changes, you must check to be sure the new value doesn’t match the old before calling the
inherited version of the function. For example:

void MyControl::SetValue(long value)
{
 if (value != Value()) {
 BControl::SetValue(value);
 /* MyControl’s additions to SetValue() go here */
 }
}

Remember that the BControl version of SetValue() does nothing unless the new value
differs from the old.

Target() see SetTarget()

Value() see SetValue()

98 – The Interface Kit

Member Functions BControl

The Interface Kit – 99

BListView

Derived from: public BView

Declared in: <interface/ListView.h>

Overview

A BListView is a view that displays a list of items the user can select and invoke. This
class is based on the BList class of the Support Kit. Every member function of the BList
class is replicated by BListView, so you can treat a BListView object just like a BList.
BListView simply makes the list visible.

Displaying the List

In both classes, the list keeps track of data pointers. Adding an item to the list adds only
the pointer; the data itself isn’t copied. Neither class imposes a type restriction on the data
(both declare items to be type void *). However, by default, BListView assumes they’re
pointers to strings (type char *). Its functions can display the strings, highlight them when
selected, and so on. As long as only string pointers are placed in the list, a BListView
object can be used as is. However, if the list is to contain another kind of data, it’s
necessary to derive a class from BListView and reimplement some of its hook functions.

When the contents of the list change, the BListView makes sure the visible list on-screen
is updated. However, it can know that something changed only when a data pointer
changes, since pointers are all that the list records. If any pointed-to data is altered, but the
pointer remains the same, you must force the list to be redrawn (by calling the
InvalidateItem() function or BView’s Invalidate()).

Selecting and Invoking Items

The user can click an item in the list to select it and double-click an item to both select and
invoke it. The user can also select and invoke items from the keyboard. The navigation
keys (such as Down Arrow, Home, and Page Up) select items; Enter invokes the item
that’s currently selected.

The BListView highlights the selected item, but otherwise it doesn’t define what, if
anything, should take place when an item is selected. You can determine that yourself by
registering a “selection message” (a BMessage object) that should be delivered to a target
receiver whenever the user selects an item.

100 – The Interface Kit

Hook Functions BListView

Similarly, the BListView doesn’t define what it means to “invoke” an item. You can
register a separate “invocation message” that’s posted whenever the user double-clicks an
item or presses Enter while an item is selected. For example, if the user double-clicks an
item in a list of file names, a message might be posted telling the BApplication object to
open that file.

A BListView doesn’t have a default selection message or invocation message. Messages
are posted only if registered with the SetSelectionMessage() and
SetInvocationMessage() functions. The registered message is only a model. When an
item is selected or invoked, the BListView makes a copy of the model, adds information to
the copy about itself and the item, then posts the copy. See the function descriptions for
information on the data that automatically gets added to the message.

See also: the BList class in the Support Kit

Hook Functions

DrawItem() Draws the character string that the item points to; can be
reimplemented to draw from another kind of data.

HighlightItem() Highlights the item by inverting all the colors in its frame
rectangle; can be reimplemented to highlight in a different
way.

Invoke() Posts the invocation message, if one has been registered for
the BListView; can be augmented to do whatever else may
be necessary when a item is invoked.

ItemHeight() Returns the height of a single item, assuming that it’s a
character string and is to be drawn in the current font; can
be reimplemented to return the height required to draw a
different kind of item. All items are taken to have the same
height.

Select() Highlights the selected item and posts the selection
message, if one has been registered for the BListView; can
be augmented to take any collateral action that may be
required when the selection changes.

The Interface Kit – 101

 BListView Constructor and Destructor

Constructor and Destructor

BListView()

BListView(BRect frame, const char *name,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = B_WILL_DRAW | B_FRAME_EVENTS)

Initializes the new BListView. The frame, name, resizingMode, and flags arguments are
identical to those declared for the BView class and are passed unchanged to the BView
constructor.

The list begins life empty. Call AddItem() or AddList() (documented for the BList class)
to put items in the list. Call Select() (documented below) to select one of the items so that
it’s highlighted when the list is initially displayed to the user.

See also: the BView constructor, AddItem() in the BList class

~BListView()

virtual ~BListView(void)

Frees the model messages, if any, and all memory allocated to hold the list of items.

Member Functions

The BListView class reimplements all of the member functions of the BList class in the
Support Kit. BListView’s versions of these functions work identically to the BList
versions, except that a BListView makes sure that the on-screen display is properly
updated whenever the list changes.

Consequently, this section excludes all functions that BList and BListView have in
common. It concentrates instead on those member functions that deal with the
BListView’s behavior as a view, not as a list. See the BList class for information on the
functions that you can use to manipulate the BListView’s list.

AttachedToWindow()

virtual void AttachedToWindow(void)

Sets up the BListView so that it’s prepared to draw character strings for items, and makes
the BWindow to which the object has become attached the target for messages posted by
the Select() and Invoke() functions—provided another target hasn’t already been set.

102 – The Interface Kit

Member Functions BListView

This function is called for you when the BListView becomes part of a window’s view
hierarchy.

See also: AttachedToWindow() in the BView class, SetTarget()

BaselineOffset()

protected:
float BaselineOffset(void)

Returns the distance from the bottom of an item’s frame rectangle to the baseline where
the item, assuming it is a character string, is drawn. The string is drawn beginning at a
point that’s offset 2.0 coordinate units from the left of the frame rectangle and
BaselineOffset() units from the bottom. The offsets are the same for all items.

This function will give unreliable results unless the BListView is attached to a window.

CurrentSelection()

inline long CurrentSelection(void) const

Returns the index of the currently selected item, or a negative number if no item is
selected.

See also: Select()

Draw()

virtual void Draw(BRect updateRect)

Calls the DrawItem() hook function to draw each visible item in the updateRect area of the
view and highlights the currently selected item by calling the HighlightItem() hook
function.

Draw() is called for you whenever the list view is to be updated or redisplayed; you don’t
need to call it yourself. You also don’t need to reimplement it, even if you’re defining a
list that displays something other than character strings. You should implement data-
specific versions of DrawItem() and HighlightItem() instead.

See also: Draw() in the BView class, DrawItem(), HighlightItem()

The Interface Kit – 103

 BListView Member Functions

DrawItem()

protected:
virtual void DrawItem(BRect updateRect, long index)

Draws the item at index. The default version of this function assumes that the item is a
character string. It can be reimplemented by derived classes to draw differently, based on
other kinds of data.

The updateRect rectangle is stated in the BListView’s coordinate system. It’s the portion
of the item’s frame rectangle that needs to be updated. The full frame rectangle of the item
is returned by the ItemFrame() function.

The Draw() function determines which items in the BListView need to be updated and
calls DrawItem() for each one.

See also: ItemHeight(), ItemFrame(), HighlightItem(), BaselineOffset()

FrameResized()

virtual void FrameResized(float width, float height)

Updates the on-screen display in response to a notification that the BListView’s frame
rectangle has been resized. In particular, this function looks for a vertical scroll bar that’s
a sibling of the BListView. It adjusts this scroll bar to reflect the way the list view was
resized, under the assumption that it must have the BListView as its target.

FrameResized() is called automatically at the appropriate times; you shouldn’t call it
yourself.

See also: FrameResized() in the BView class

HighlightItem()

protected:
virtual void HighlightItem(bool	flag, long index)

Highlights the item at index if flag is TRUE, and removes the highlighting if flag is FALSE.
Items are highlighted by inverting all colors in their frame rectangles.

This function is called (by Draw()) to highlight the selected item and (by Select()) to
change the item that’s highlighted whenever the selection changes. It can be
reimplemented in a derived class to highlight in a different way.

See also: Select(), Draw()

104 – The Interface Kit

Member Functions BListView

InvalidateItem()

void InvalidateItem(long index)

Invalidates the item at index so that an update message will be sent forcing the BListView
to redraw it.

See also: Invalidate() in the BView class

Invoke()

virtual void Invoke(long index)

Invokes the item at index, provided that the index isn’t out-of-range.

This function is called whenever the user double-clicks an item in the list, or presses the
Enter key while the BListView is the current focus view for the window and there’s a
selected item. It can also be called from application code to invoke a particular item;
usually Select() would first be called to select the item.

To invoke an item that’s identified by a pointer, first call IndexOf() to find where it’s
located in the list:

long i = myList->IndexOf(someItem);
myList->Select(i);
myList->Invoke(i);

If a model “invocation message” has been registered with the BListView (through
SetInvocationMessage()), Invoke() makes a copy of the message, adds information to the
copy identifying the BListView and the invoked item, and posts the copy so that it will be
received by the designated target. The default target (established by
AttachedToWindow()) is the BWindow where the BListView is located. If SetTarget()
was called to name a particular BLooper where the message should be posted, but to set a
NULL target, the target will be the BLooper’s preferred receiver.

What it means to “invoke” an item depends entirely on the BMessage that’s posted and the
receiver’s response when it gets the message. This function does nothing but post the
message.

See also: Select(), SetInvocationMessage(), SetTarget()

IsItemSelected()

inline bool IsItemSelected(long index) const

Returns TRUE if the item at index is currently selected, and FALSE if it’s not.

See also: CurrentSelection()

The Interface Kit – 105

 BListView Member Functions

ItemFrame()

protected:
BRect ItemFrame(long index) const

Returns the frame rectangle of the item at index. The rectangle defines the area where the
item is drawn; it’s stated in the coordinate system of the BListView. The rectangle is
calculated from the ordinal position of the item in the list and the value returned by
ItemHeight().

It’s expected that you’d need to find an item’s frame rectangle only if you’re implementing
a DrawItem() function.

< This function currently doesn’t check to be sure that the index is in range. >

See also: DrawItem()

ItemHeight()

protected:
virtual float ItemHeight(void) const

Returns how much vertical room is required to draw a single item in the list—how high
each item’s frame rectangle should be. The BListView calls ItemHeight() extensively to
determine where items are located and where to draw them. By default, it returns a height
sufficient to draw a character string in the current font.

A derived class that draws items other than character strings should reimplement
ItemHeight() so that it returns the height required to draw one of its items.

See also: DrawItem()

KeyDown()

virtual void KeyDown(ulong aChar)

Permits the user to operate the list using the following keys:

Keys Perform Action

Up Arrow and Down Arrow Select the items that are immediately before and
immediately after the currently selected item.

Page Up and Page Down Select the items that are one viewful above and
below the currently selected item—or the first and
last items if there’s no item a viewful away.

Home and End Select the first and last items in the list.

Enter Invokes the currently selected item.

106 – The Interface Kit

Member Functions BListView

This function is called to notify the BListView of key-down events whenever it’s the focus
view in the active window; you shouldn’t call it yourself.

See also: KeyDown() in the BView class, Select(), Invoke()

MouseDown()

virtual void MouseDown(BPoint point)

Determines which item is located at point and calls Select() to select it (for a single-click
or the first event in a series) and Invoke() to invoke it (for a double-click or the second in a
series).

This function also makes the BListView the focus view so the user can operate the list
from the keyboard.

MouseDown() is called to notify the BListView of a mouse-down event; you don’t need to
call it yourself.

See also: MouseDown() in the BView class, Select(), Invoke()

Select()

virtual void Select(long index)

Selects the item located at index, provided that the index isn’t out-of-range. This function
removes the highlighting from the previously selected item and highlights the new
selection, scrolling the list so the item is visible if necessary. Selecting an item also marks
it as the item that CurrentSelection() returns and that the Enter key can invoke.

Select() is called whenever the user selects an item, using either the keyboard or the
mouse. It can also be called from application code to set an initial selection in the list or
change the current selection.

If a model “selection message” has been registered with the BListView, Select() copies the
message, adds information to the copy identifying the list and the item that was selected,
and posts the copy so that it will be dispatched to the target BReceiver. If a message hasn’t
been registered, “selecting” an item simply means to highlight it and mark is as the
selected item.

Typically, BListViews are set up to post a message when an item is invoked, but not when
one is selected.

See also: SetSelectionMessage(), Invoke()

The Interface Kit – 107

 BListView Member Functions

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()

virtual void SetFontName(const char *name)

virtual void SetFontSize(float points)

virtual void SetFontRotation(float degrees)

virtual void SetFontShear(float angle)

SetFontName(), SetFontSize(), and SetFontShear() augment their BView counterparts to
recalculate the layout of items in the list when the font changes. However, the list is not
automatically redisplayed in the new font.

SetFontRotation() is disabled; a rotated font is incompatible with a list horizontal items.

See also: SetFontName() in the BView class

SetInvocationMessage(), InvocationMessage(),
InvocationCommand()

virtual void SetInvocationMessage(BMessage *message)

BMessage *InvocationMessage(void) const

ulong InvocationCommand(void) const

These functions set, and return information about, the BMessage that the BListView posts
when an item is invoked.

SetInvocationMessage() assigns message to the BListView, freeing any message
previously assigned. The message becomes the responsibility of the BListView object and
will be freed only when it’s replaced by another message or the BListView is freed; you
shouldn’t free it yourself. Passing a NULL pointer to this function deletes the current
message without replacing it.

The BListView treats the BMessage as its “invocation message,” a model for the message
it posts when an item in the list is invoked. The Invoke() function makes a copy of the
model and adds two pieces of relevant information. It then posts the copy, not the original.

The added information identifies the BListView and the invoked item:

Data name Type code Description

“source” B_OBJECT_TYPE A pointer to the BListView object.

“index” B_LONG_TYPE The index of the item that was invoked.

These names should not be used for any data that you add to the model message.

108 – The Interface Kit

Member Functions BListView

Given this information, the message receiver can get a pointer to item data. For example:

void myWindow::MessageReceived(BMessage *message)
{
 BListView *theList;
 long theIndex;
 char *theItem;
 . . .
 theList = (BListView *)message->FindObject("source");
 if (message->Error() == B_NO_ERROR) {
 theIndex = message->FindLong("index");
 if (message->Error() == B_NO_ERROR) {
 theItem = (char *)theList->ItemAt(theIndex);
 . . .
 }
 }
 . . .
}

(Although not shown in this example, you might also want to use the cast_as() macro to
make sure that it’s safe to cast the “source” object pointer to the BListView class.)

InvocationMessage() returns a pointer to the model BMessage and
InvocationCommand() returns its what data member. The message belongs to the
BListView; it can be altered by adding or removing data, but it shouldn’t be deleted. Nor
should it be posted or sent anywhere, since that would eventually free it. To get rid of the
current message, pass a NULL pointer to SetInvocationMessage().

See also: Invoke(), the BMessage class

SetSelectionMessage(), SelectionMessage(),
SelectionCommand()

virtual void SetSelectionMessage(BMessage *message)

BMessage *SelectionMessage(void) const

ulong SelectionCommand(void) const

These functions set, and return information about, the message that a BListView posts
whenever one of its items is selected. They’re exact counterparts to the invocation
message functions described above under SetInvocationMessage(), except that the
“selection message” is posted whenever an item in the list is selected, rather than when
invoked. It’s more common to take action (to post a message) on invoking an item than on
selecting one.

The message that SetSelectionMessage() assigns to the BListView is a model for the
messages that the Select() function posts. Select() copies the model and posts the copy.

The Interface Kit – 109

 BListView Member Functions

It adds the same two pieces of information to the copy as are added to the invocation
message:

Data name Type code Description

“source” B_OBJECT_TYPE A pointer to the BListView object.

“index” B_LONG_TYPE The index of the item that was selected.

You should not use these names for data you add to the model message.

See also: Select(), SetInvocationMessage(), the BMessage class

SetSymbolSet()

virtual void SetSymbolSet(const char *name)

Augments its BView counterpart to recalculate the layout of the list when the symbol set
changes.

See also: SetSymbolSet() in the BView class

SetTarget(), Target()

virtual long SetTarget(BReceiver *target, BLooper *looper= NULL)

BReceiver *Target(BLooper **looper= NULL) const

SetTarget() sets the target BReceiver that’s expected to handle messages the BListView
posts (through its Select() and Invoke() functions). It’s successful only if it can also learn
about a BLooper object where messages can be posted to the target. To post a message,
the BListView calls the BLooper’s PostMessage() function and names the target as the
object that should receive the message:

looper->PostMessage(theMessage, target);

If the target receiver passed to SetTarget() is itself a BLooper object (such as a BWindow)
or if it’s associated with a BLooper object (as BViews are associated with BWindows), the
looper argument can be NULL. SetTarget() can discover the BLooper from the target (by
calling the target’s Looper() function).

However, if the target can’t supply a BLooper object, a specific looper must be named as
an argument. If a looper isn’t named and can’t be discovered from the target, the function
fails and B_BAD_VALUE is returned to indicate that the target alone is insufficient.

Moreover, SetTarget() also fails if a specific looper is named but the target is associated
with some other BLooper object. In this case, B_MISMATCHED_VALUES is returned to
indicate that there’s a conflict between the two arguments.

It’s also possible to specify a NULL target. In this case, the message will be targeted to the
looper’s preferred receiver (the object returned by its PreferredReceiver() function). For a

110 – The Interface Kit

Member Functions BListView

BWindow, the preferred receiver is the current focus view. Therefore, by passing a NULL
target and a BWindow looper to SetTarget(),

myList->SetTarget(NULL, myList->Window());

the BListView can be targeted to whatever BView happens to be in focus at the time an
item is invoked.

Note, however, that if the looper doesn’t have a preferred receiver (as a BLooper doesn’t
by default, and a BWindow won’t if none of its views are currently in focus), the message
will be targeted to the looper itself.

If both target and looper are NULL, the function fails and B_BAD_VALUE is returned. When
successful, SetTarget() returns B_NO_ERROR.

Target() returns the current target and, if a pointer to a looper is provided, fills in the
BLooper where Invoke() will post messages. By default (established by
AttachedToWindow()), both roles are filled by the BWindow where the list is displayed. If
the BListView isn’t attached to a window and a target hasn’t been set, Target() returns
NULL.

See also: Looper() in the BReceiver and BView classes, PreferredReceiver() in the
BLooper and BWindow classes, Invoke(), AttachedToWindow()

The Interface Kit – 111

BMenu

Derived from: public BView

Declared in: <interface/Menu.h>

Overview

A BMenu object displays a pull-down or pop-up list of menu items. Menus organize the
features of an application—the common ones as well as the more obscure—and provide
users with points of entry for most everything the application can do.

Menus categorize the features of the application—all formatting possibilities might be
grouped in one menu, a list of documents in another, graphics choices in a third, and so on.
The arrangement of menus presents an outline of how the various parts of the application
fit together.

Menu Hierarchy

Menus are hierarchically arranged; an item in one menu can control another menu. The
controlled menu is a submenu; the menu that contains the item that controls it is its
supermenu. A submenu remains hidden until the user operates the item that controls it; it
becomes hidden again when the user is finished with it. A submenu can have its own
submenus, and those submenus can have submenus of their own, and so on—although it
becomes hard for users to find their way around in a menu hierarchy that becomes too
deep.

The menu at the root of the hierarchy is displayed in a window as a list—perhaps a list of
just one item. Since it, unlike other menus, doesn’t have a controlling item, it must remain
visible. A root menu is therefore a special kind of menu in that it behaves more like an
ordinary view than do other menus, which stay hidden. Root menus should belong to the
BMenuBar class, which is derived from BMenu. The typical root menu is a menu bar
displayed across the top of a window (hence the name of the class).

Menu Items

Each item in a menu is a kind of BMenuItem object. An item can be marked (displayed
with a check mark to its left), assigned a keyboard shortcut, enabled and disabled, and
given a “trigger” character that the user can type to invoke the item when its menu is open
on-screen.

112 – The Interface Kit

Hook Functions BMenu

Every item has a particular job to do. If an item controls a submenu, its job is to show the
submenu on-screen and hide it again. All other items give instructions to the application.
When invoked by the user, they post a BMessage object to a target BReceiver. What the
item does depends on the content of the BMessage and the BReceiver’s response to it.

The BMenu and BMenuItem classes share some functions that accomplish the same thing
when called for a submenu or for the supermenu item that controls the submenu. For
example, setting the target for a BMenu (SetTarget()) sets the target for each of its items.
Disabling a submenu (SetEnabled()) is the same as disabling the item that controls it; the
user will be able to bring the submenu to the screen, but none of its items will work. This,
in effect, disables all items and menus in the branch of the menu hierarchy under the
superitem.

Hook Functions

ScreenLocation() Can be implemented to have the menu appear on-screen at
some location other than the default.

Constructor and Destructor

BMenu()

public:
BMenu(const char *name, menu_layout layout = B_ITEMS_IN_COLUMN)
BMenu(const char *name, float width, float height)

protected:
BMenu(BRect frame, const char *name, ulong resizingMode, ulong flags,
 menu_layout layout, bool resizeToFit)

Initializes the BMenu object. The name of the object becomes the initial label of the
supermenu item that controls the menu and brings it to the screen. (It’s also the view name
that can be passed to BView’s FindView() function.)

A new BMenu object doesn’t contain any items; you need to call AddItem() to set up its
contents.

The Interface Kit – 113

 BMenu Constructor and Destructor

A menu can arrange its items in any of three ways:

B_ITEMS_IN_COLUMN The items are stacked vertically in a column, one
on top of the other, as in a typical menu.

B_ITEMS_IN_ROW The items are laid out horizontally in a row, from
end to end, as in a typical menu bar.

B_ITEMS_IN_MATRIX The items are arranged in a custom fashion, such as
a matrix.

Either B_ITEMS_IN_ROW or the default B_ITEMS_IN_COLUMN can be passed as the layout
argument to the public constructor. (A column is the default for ordinary menus; a row is
the default for BMenuBars.) This version of the constructor isn’t designed for
B_ITEMS_IN_MATRIX layouts.

A BMenu object can arrange items that are laid out in a column or a row entirely on its
own. The menu will be resized to exactly fit the items that are added to it.

However, when items are laid out in a custom matrix, the menu needs more help. First,
the constructor must be informed of the exact width and height of the menu rectangle. The
version of the constructor that takes these two parameters is designed just for matrix
menus—it sets the layout to B_ITEMS_IN_MATRIX. Then, when items are added to the
menu, the BMenu object expects to be informed of their precise positions within the
specified area. The menu is not resized to fit the items that are added. Finally, when items
in the matrix change, you must take care of any required adjustments in the layout
yourself.

The protected version of the constructor is supplied for derived classes that don’t simply
devise different sorts of menu items or arrange them in a different way, but invent a
different kind of menu. If the resizeToFit flag is TRUE, it’s expected that the layout will be
B_ITEMS_IN_COLUMN or B_ITEMS_IN_ROW. The menu will resize itself to fit the items that
are added to it. If the layout is B_ITEMS_IN_MATRIX, the resizeToFit flag should be FALSE.

~BMenu()

virtual ~BMenu(void)

Deletes all the items that were added to the menu and frees all memory allocated by the
BMenu object. Deleting the items serves also to delete any submenus those items control
and, thus, the whole branch of the menu hierarchy.

114 – The Interface Kit

Member Functions BMenu

Member Functions

AddItem()

bool AddItem(BMenuItem *item)
bool AddItem(BMenuItem *item, long index)
bool AddItem(BMenuItem *item, BRect frame)
bool AddItem(BMenu *submenu)
bool AddItem(BMenu *submenu, long index)
bool AddItem(BMenu *submenu, BRect frame)

Adds an item to the menu list at index—or, if no index is mentioned, to the end of the list.
If items are arranged in a matrix rather than a list, it’s necessary to specify the item’s frame
rectangle—the exact position where it should be located in the menu view. Assume a
coordinate system for the menu that has the origin, (0.0, 0.0), at the left top corner of the
view rectangle. The rectangle will have the width and height that were specified when the
menu was constructed.

The versions of this function that take an index (even an implicit one) can be used only if
the menu arranges items in a column or row (B_ITEMS_IN_COLUMN or B_ITEMS_IN_ROW);
it’s an error to use them for items arranged in a matrix. Conversely, the versions of this
function that take a frame rectangle can be used only if the menu arranges items in a
matrix (B_ITEMS_IN_MATRIX); it’s an error to use them for items arranged in a list.

If a submenu is specified rather than an item, AddItem() constructs a controlling
BMenuItem for the submenu and adds the item to the menu.

If it’s unable to add the item to the menu—for example, if the index is out-of-range or the
wrong version of the function has been called—AddItem() returns FALSE. If successful, it
returns TRUE.

See also: the BMenu constructor, the BMenuItem class, RemoveItem()

AddSeparatorItem()

bool AddSeparatorItem(void)

Creates an instance of the BSeparatorItem class and adds it to the end of the menu list,
returning TRUE if successful and FALSE if not (a very unlikely possibility). This function is
a shorthand for:

BSeparatorItem *separator = new BSeparatorItem;
AddItem(separator);

A separator serves only to separate other items in the list. It counts as an item and has an
indexed position in the list, but it doesn’t do anything. It’s drawn as a horizontal line

The Interface Kit – 115

 BMenu Member Functions

across the menu. Therefore, it’s appropriately added only to menus where the items are
laid out in a column.

See also: AddItem(), the BSeparatorItem class

AreTriggersEnabled() see SetTriggersEnabled()

AttachedToWindow()

virtual void AttachedToWindow(void)

Finishes initializing the BMenu object by setting graphics parameters and laying out
items. This function is called for you each time the BMenu is assigned to a window. For
a submenu, that means each time the menu is shown on-screen.

See also: AttachedToWindow() in the BView class

CountItems()

long CountItems(void) const

Returns the total number of items in the menu, including separator items.

Draw()

virtual void Draw(BRect updateRect)

Draws the menu. This function is called for you whenever the menu is placed on-screen
or is updated while on-screen. It’s not a function you need to call yourself.

See also: Draw() in the BView class

FindItem()

BMenuItem *FindItem(const char *label) const
BMenuItem *FindItem(ulong command) const

Returns the item with the specified label—or the one that posts a message with the
specified command. If there’s more than one item in the menu with that particular label or
associated with that particular command, this function returns the first one it finds (the one
with the lowest index). If none of the items in the menu meet the criterion, it returns NULL.

116 – The Interface Kit

Member Functions BMenu

FindMarked()

BMenuItem *FindMarked(void)

Returns the first marked item in the menu list (the one with the lowest index), or NULL if
no item is marked.

See also: SetMarked() in the BMenuItem class, SetRadioMode()

Hide(), Show()

protected:
void Hide(void)

void Show(bool selectFirst)
virtual void Show(void)

These functions hide the menu (remove the BMenu view from the window it’s in and
remove the window from the screen) and show it (attach the BMenu to a window and
place the window on-screen). If the selectFirst flag passed to Show() is TRUE, the first item
in the menu will be selected when it’s shown. If selectFirst is FALSE, the menu is shown
without a selected item.

The version of Show() that doesn’t take an argument simply calls the version that does and
passes it a selectFirst value of FALSE.

These functions are not ones that you’d ordinarily call, even when implementing a derived
class. You’d need them only if you’re implementing a nonstandard menu of some kind
and want to control when the menu appears on-screen.

See also: Show() in the BView class, Track()

IndexOf()

long IndexOf(BMenuItem *item) const
long IndexOf(BMenu *submenu) const

Returns the index of the specified menu item—or the item that controls the specified
submenu. Indices record the position of the item in the menu list. They begin at 0 for the
item at the top of a column or at the left of a row and include separator items.

If the menu doesn’t contain the specified item, or the item that controls submenu, the
return value will be B_ERROR.

See also: AddItem()

The Interface Kit – 117

 BMenu Member Functions

InvalidateLayout()

void InvalidateLayout(void)

Forces the BMenu to recalculate the layout of all menu items and, consequently, its own
size. It can do this only if the items are arranged in a row or a column. If the items are
arranged in a matrix, it’s up to you to keep their layout up-to-date.

All BMenu and BMenuItem functions that change an item in a way that might affect the
overall menu automatically invalidate the menu’s layout so it will be recalculated. For
example, changing the label of an item might cause the menu to become wider (if it needs
more room to accommodate the longer label) or narrower (if it no longer needs as much
room as before).

Therefore, you don’t need to call InvalidateLayout() after using a Kit function to change a
menu or menu item; it’s called for you. You’d call it only when making some other change
to a menu.

See also: the BMenu constructor

IsEnabled() see SetEnabled()

IsLabelFromMarked() see SetLabelFromMarked()

IsRadioMode() see SetRadioMode()

ItemAt(), SubmenuAt()

BMenuItem *ItemAt(long index) const

BMenu *SubmenuAt(long index) const

These functions return the item at index—or the submenu controlled by the item at index.
If there’s no item at the index, they return NULL. SubmenuAt() is a shorthand for:

ItemAt(index)->Submenu()

It returns NULL if the item at index doesn’t control a submenu.

See also: AddItem()

118 – The Interface Kit

Member Functions BMenu

KeyDown()

virtual void KeyDown(ulong aChar)

Handles keyboard navigation through the menu. This function is called to respond to
messages reporting key-down events. It should not be called from application code.

See also: KeyDown() in the BView class

Layout()

protected:
menu_layout Layout(void) const

Returns B_ITEMS_IN_COLUMN if the items in the menu are stacked in a column from top to
bottom, B_ITEMS_IN_ROW if they’re stretched out in a row from left to right, or
B_ITEMS_IN_MATRIX if they’re arranged in some custom fashion. By default BMenu items
are arranged in a column and BMenuBar items in a row.

The layout is established by the constructor.

See also: the BMenu and BMenuBar constructors

RemoveItem()

BMenuItem *RemoveItem(long index)
bool RemoveItem(BMenuItem *item)
bool RemoveItem(BMenu *submenu)

Removes the item at index, or the specified item, or the item that controls the specified
submenu. Removing the item doesn’t free it.

• If passed an index, this function returns a pointer to the item so you can free it. It
returns a NULL pointer if the item couldn’t be removed (for example, if the index is
out-of-range).

• If passed an item, it returns TRUE if the item was in the list and could be removed,
and FALSE if not.

• If passed a submenu, it returns TRUE if the submenu is controlled by an item in the
menu and that item could be removed, and FALSE otherwise.

When an item is removed from a menu, it loses its target; the cached value is set to NULL.
If the item controls a submenu, it remains attached to the submenu even after being
removed.

See also: AddItem()

The Interface Kit – 119

 BMenu Member Functions

ScreenLocation()

protected:
virtual BPoint ScreenLocation(void)

Returns the point where the left top corner of the menu should appear when the menu is
shown on-screen. The point is specified in the screen coordinate system.

This function is called each time a hidden menu (a submenu of another menu) is brought
to the screen. It can be overridden in a derived class to change where the menu appears.
For example, the BPopUpMenu class overrides it so that a pop-up menu pops up over the
controlling item.

See also: the BPopUpMenu class

SetEnabled(), IsEnabled()

virtual void SetEnabled(bool flag)

bool IsEnabled(void) const

SetEnabled() enables the BMenu if flag is TRUE, and disables it if flag is FALSE. If the menu
is a submenu, this enables or disables its controlling item, just as if SetEnabled() were
called for that item. The controlling item is updated so that it displays its new state, if it
happens to be visible on-screen.

Disabling a menu disables its entire branch of the menu hierarchy. All items in the menu,
including those that control other menus, are disabled.

IsEnabled() returns TRUE if the BMenu, and every BMenu above it in the menu hierarchy,
is enabled. It returns FALSE if the BMenu, or any BMenu above it in the menu hierarchy, is
disabled.

See also: SetEnabled() in the BMenuItem class

SetLabelFromMarked(), IsLabelFromMarked()

protected:
void SetLabelFromMarked(bool flag)

bool IsLabelFromMarked(void)

SetLabelFromMarked() determines whether the label of the item that controls the menu
(the label of the superitem) should be taken from the currently marked item within the
menu. If flag is TRUE, the menu is placed in radio mode and the superitem’s label is reset
each time the user selects a different item. If flag is FALSE, the setting for radio mode
doesn’t change and the label of the superitem isn’t automatically reset.

120 – The Interface Kit

Member Functions BMenu

IsLabelFromMarked() returns whether the superitem’s label is taken from the marked item
(but not necessarily whether the BMenu is in radio mode).

See also: SetRadioMode()

SetRadioMode(), IsRadioMode()

virtual void SetRadioMode(bool flag)

bool IsRadioMode(void)

SetRadioMode() puts the BMenu in radio mode if flag is TRUE and takes it out of radio
mode if flag is FALSE. In radio mode, only one item in the menu can be marked at a time.
If the user selects an item, a check mark is placed in front of it automatically (you don’t
need to call BMenuItem’s SetMarked() function; it’s called for you). If another item was
marked at the time, its mark is removed. Selecting a currently marked item retains the
mark.

IsRadioMode() returns whether the BMenu is currently in radio mode. The default radio
mode is FALSE for ordinary BMenus, but TRUE for BPopUpMenus.

SetRadioMode() doesn’t change any of the items in the menu. If you want an initial item
to be marked when the menu is put into radio mode, you must mark it yourself.

When SetRadioMode() turns radio mode off, it calls SetLabelFromMarked() and passes it
an argument of FALSE—turning off the feature that changes the label of the menu’s
superitem each time the marked item changes. Similarly, when SetLabelFromMarked()
turns on this feature, it calls SetRadioMode() and passes it an argument of TRUE—turning
on radio mode.

See also: SetMarked() in the BMenuItem class, SetLabelFromMarked()

SetTarget()

virtual long SetTarget(BReceiver *target, BLooper *looper = NULL)

This function is a convenience for assigning the same target and looper to all items in the
menu. It works through the list of items in order, calling BMenuItem’s SetTarget() virtual
function for each one. However, if it’s unable to set the target of any item, it aborts and
returns the error it encountered. If successful in setting the target (and looper) of all items,
it returns B_NO_ERROR. See BMenuItem’s SetTarget() for information on acceptable
target and looper values.

This function doesn’t work recursively; it acts only on items added to the BMenu, not on
items added to submenus of the BMenu.

See also: SetTarget() in the BMenuItem class

The Interface Kit – 121

 BMenu Member Functions

SetTriggersEnabled(), AreTriggersEnabled()

virtual void SetTriggersEnabled(bool flag)

bool AreTriggersEnabled(void) const

SetTriggersEnabled() enables the triggers for all items in the menu if flag is TRUE and
disables them if flag is FALSE. AreTriggersEnabled() returns whether the triggers are
currently enabled or disabled. They’re enabled by default.

Triggers are displayed to the user only if they’re enabled, and only when keyboard actions
can operate the menu.

Triggers are appropriate for some menus, but not for others. SetTriggersEnabled() is
typically called to initialize the BMenu when it’s constructed, not to enable and disable
triggers as the application is running. If triggers are ever enabled for a menu, they should
always be enabled; if they’re ever disabled, they should always be disabled.

See also: SetTrigger() in the BMenuItem class

Show() see Hide()

SubmenuAt() see ItemAt()

Superitem(), Supermenu()

BMenuItem *Superitem(void) const

BMenu *Supermenu(void) const

These functions return the supermenu item that controls the BMenu and the supermenu
where that item is located. The supermenu could be a BMenuBar object. If the BMenu
hasn’t been made the submenu of another menu, both functions return NULL.

See also: AddItem()

Track()

protected:
BMenuItem *Track(void)

Initiates tracking of the cursor within the menu. This function passes tracking control to
submenus (and submenus of submenus) depending on where the user moves the mouse. If
the user ends tracking by invoking an item, Track() returns the item. If the user didn’t
invoke any item, it returns NULL. The item doesn’t have to be located in the BMenu; it
could, for example, belong to a submenu of the BMenu.

122 – The Interface Kit

Member Functions BMenu

Track() is called by the BMenu to initiate tracking in the menu hierarchy. You would need
to call it yourself only if you’re implementing a different kind of menu that starts to track
the cursor under nonstandard circumstances.

The Interface Kit – 123

BMenuBar

Derived from: public BMenu

Declared in: <interface/MenuBar.h>

Overview

A BMenuBar is a menu that can stand at the root of a menu hierarchy. Rather than appear
on-screen when commanded to do so by a user action, a BMenuBar object has a settled
location in a window’s view hierarchy, just like other views. Typically, the root menu is
the menu bar that’s drawn across the top of the window. It’s from this use that the class
gets its name.

However, instances of this class can also be used in other ways. A BMenuBar might
simply display a list of items arranged in a column somewhere in a window. Or it might
contain just one item, where that item controls a pop-up menu (a BPopUpMenu object).
Rather than look like a “menu bar,” the BMenuBar object would look something like a
button.

The “Main” Menu Bar

The “real” menu bar at the top of the window usually represents an extensive menu
hierarchy; each of its items typically controls a submenu.

The user should be able to operate this menu bar from the keyboard (using the arrow keys
and Enter). There are two ways that the user can put the BMenuBar and its hierarchy in
focus for keyboard events:

• Clicking an item in a menu bar. This opens the submenu the item controls so that it
stays visible on-screen and puts the submenu in focus.

• Pressing the Menu key, or pressing and releasing a Command key. This puts the
BMenuBar in focus and selects its first item.

Either method opens the entire menu hierarchy to keyboard navigation.

If there’s only one BMenuBar in the window’s view hierarchy, the Menu key (or
Command) will put it in focus. But if there’s more than one BMenuBar object, the Menu
key must choose one of them. By default, it selects the last one added to the window.
However, the SetMainMenuBar() function defined in the BWindow class can be called to
designate a different BMenuBar object as the “main” menu bar for the window.

124 – The Interface Kit

Constructor and Destructor BMenuBar

A Kind of BMenu

BMenuBar inherits most of its functions from the BMenu class. It reimplements the
AttachedToWindow(), Draw(), and MouseDown() functions that set up the object and
respond to messages, but these aren’t functions that you’d call from application code;
they’re called for you.

The only real function (other than the constructor) that the BMenuBar class adds to those
it inherits is SetBorder(), which determines how the list of items is bordered.

Therefore, for most BMenuBar operations—adding submenus, finding items, temporarily
disabling the menu bar, and so on—you must call inherited functions and treat the object
like the BMenu that it is.

See also: the BMenu class

Constructor and Destructor

BMenuBar()

BMenuBar(BRect frame, const char *name,
 ulong resizingMode = B_FOLLOW_LEFT_TOP_RIGHT,
 menu_layout layout = B_ITEMS_IN_ROW,
 bool resizeToFit = FALSE)

Initializes the BMenuBar by assigning it a frame rectangle, a name, and a resizingMode,
just like other BViews. These values are passed up the inheritance hierarchy to the BView
constructor. The “real” menu bar in a window should have a frame rectangle just high
enough to accommodate a single row of items and a border. Given the default font
currently used for menu items, the frame height should be about 14.0 coordinate units.

The layout of the menu determines how items are arranged. By default, they’re arranged
in a row as befits a true menu bar. If an instance of this class isn’t being used to implement
an actual menu bar, items can be laid out in a column (B_ITEMS_IN_COLUMN) or in a
matrix (B_ITEMS_IN_MATRIX).

If the resizeToFit flag is TRUE, the frame rectangle of the BMenuBar will be resized to
exactly fit the items that are added to the object. This usually is not what’s desired. For a
true menu bar, the frame rectangle should stretch all the way across the window, from the
left side to the right, no matter how many items it contains. The default resizing mode of
B_FOLLOW_LEFT_TOP_RIGHT permits the menu bar to adjust itself to changes in the
window’s width, while keeping it glued to the top of the window.

Change the resizingMode, the layout, and the resizeToFit flag for BMenuBars that are used
for a purpose other than to implement a true menu bar.

See also: the BMenu constructor

The Interface Kit – 125

 BMenuBar Member Functions

~BMenuBar()

virtual ~BMenuBar(void)

Frees all the items and submenus in the entire menu hierarchy, and all memory allocated
by the BMenuBar.

Member Functions

AttachedToWindow()

virtual void AttachedToWindow(void)

Finishes the initialization of the BMenuBar by setting up its graphics environment, and by
making the BWindow to which it has become attached the target receiver for all items in
the menu hierarchy, except for those items for which a target has already been set.

This function also makes the BMenuBar the “main menu bar,” the BMenuBar object
whose menu hierarchy the user can navigate from the keyboard. If a window contains
more than one BMenuBar in its view hierarchy, the last one that’s added to the window
gets to keep this designation. However, the “main” menu bar should always be the real
menu bar at the top of the window. It can be explicitly set with BWindow’s
SetMainMenuBar() function.

See also: SetMainMenuBar() in the BWindow class

Draw()

virtual void Draw(BRect updateRect)

Draws the menu—whether as a true menu bar, as some other kind of menu list, or as a
single item that controls a pop-up menu. This function is called as the result of update
messages; you don’t need to call it yourself.

See also: Draw() in the BView class

MouseDown()

virtual void MouseDown(BPoint point)

Initiates mouse tracking and keyboard navigation of the menu hierarchy. This function is
called to notify the BMenuBar of a mouse-down event.

See also: MouseDown() in the BView class

126 – The Interface Kit

Member Functions BMenuBar

SetBorder()

void SetBorder(ulong border)

Determines how the menu list is bordered. The border argument can be:

B_BORDER_FRAME The border is drawn around the entire frame rectangle.
B_BORDER_CONTENTS The border is drawn around just the list of items.
B_BORDER_EACH_ITEM A border is drawn around each item.

The default is B_BORDER_FRAME.

The Interface Kit – 127

BMenuItem

Derived from: public BObject

Declared in: <interface/MenuItem.h>

Overview

A BMenuItem is an object that contains and displays one item within a menu. By default,
Menu items are displayed simply as textual labels, like “Options...” or “Save As”.
Derived classes can be defined to draw something other than a label—or something in
addition to the label.

Kinds of Items

Some menu items play a role in helping users navigate the menu hierarchy. They give the
user access to submenus. A submenu remains hidden until the user operates the item that
controls it.

Other items accomplish specific actions. When the user invokes the item, a message is
posted to a target BReceiver, usually the window where the menu at the root of the
hierarchy (a BMenuBar object) is displayed. The action mat the item initiates, or the state
that it sets, depends entirely on the message and the receiver’s response to it.

The target receiver and the message can be customized for every item. Each BMenuItem
retains a model for the BMessage it posts and can have a target that’s different from other
items in the same menu.

Items can also have a visual presence, but do nothing. Instances of the BSeparatorItem
class, which is derived from BMenuItem, serve only to visually separate groups of items
in the menu.

Shortcuts and Triggers

Any menu item (except for those that control submenus) can be associated with a
keyboard shortcut, a character that the user can type in combination with the Command
key (and possibly other modifiers) to invoke the item. The shortcut character is displayed
in the menu item to the right of the label. All shortcuts for menu items require the user to
hold down the Command key.

128 – The Interface Kit

Overview BMenuItem

A shortcut works even when the item it invokes isn’t visible on-screen. It, therefore, has
to be unique within the window (within the entire menu hierarchy).

Every menu item is also associated with a trigger, a character that the user can type
(without the Command key) to invoke the item. The trigger works only while the menu is
both open on-screen and can be operated using the keyboard. It therefore must be unique
only within a particular branch of the menu hierarchy (within the menu).

The trigger is one of the characters that’s displayed within the item—either the keyboard
shortcut or a character in the label. When it’s possible for the trigger to invoke the item,
the character is drawn in a distinctive color. Like shortcuts, triggers are case-insensitive.

For an item to have a keyboard shortcut, the application must explicitly assign one when
constructing the object. However, by default, the Interface Kit chooses and assigns
triggers for all items. The default choice can be altered by the SetTrigger() function.

Marked Items

An item can also be marked (with a check mark drawn to the left of the label) in order to
indicate that the state it sets is currently in effect. Items are marked by the SetMarked()
function. A menu can be set up so that items are automatically marked when they’re
selected and exactly one item is marked at all times. (See SetRadioMode() in the BMenu
class.)

Disabled Items

Items can also be enabled or disabled (by the SetEnabled() function). A disabled item is
drawn in muted tones to indicate that it doesn’t work. It can’t be selected or invoked. If
the item controls a specific action, it won’t post the message that initiates the action. If it
controls a submenu, it will still bring the submenu to the screen, but all the items in
submenu will be disabled. If an item in the submenu brings its own submenu to the
screen, items in that submenu will also be disabled. Disabling the superitem for a
submenu in effect disables a whole branch of the menu hierarchy.

See also: the BMenu class, the BSeparatorItem class

The Interface Kit – 129

 BMenuItem Hook Functions

Hook Functions

All BMenuItem hook functions are protected. They should be implemented only if you
design a special type of menu item that displays something other than a textual label.

Draw() Draws the entire item; can be reimplemented to draw the
item in a different way.

DrawContents() Draws the item label; can be reimplemented to draw
something other than a label.

GetContentSize() Provides the width and height of the item’s content area,
which is based on the length of the label and the current
font; can be reimplemented to provide the size required to
draw something other than a label.

Highlight() Highlights the item when it’s selected; can be
reimplemented to do highlighting in some way other than
the default.

Constructor and Destructor

BMenuItem()

BMenuItem(const char *label, BMessage *message,
 char shortcut = NULL, ulong modifiers = NULL)
BMenuItem(BMenu *submenu)

Initializes the BMenu to display label (which can be NULL if the item belongs to a derived
class that’s designed to display something other than text) and assigns it a model message.

Whenever the user invokes the item, the model message is copied and the copy is posted
to the target receiver. Three pieces of information are added to the copy before it’s posted:

Data name Type code Description

“when” B_LONG_TYPE The time the item was invoked, as
measured in milliseconds since the
machine was last booted.

“source” B_OBJECT_TYPE A pointer to the BMenuItem object.

“index” B_LONG_TYPE The index of the item, its ordinal position
in the menu. Indices begin at 0.

These names should not be used for any data that you place in the message.

130 – The Interface Kit

Constructor and Destructor BMenuItem

By default, the target of the message is the window associated with the item’s menu
hierarchy—the window where the BMenuBar at the root of the hierarchy is located.
Another target can be designated by calling the SetTarget() function.

The constructor can also optionally set a keyboard shortcut for the item. The character
that’s passed as the shortcut parameter will be displayed to the right of the item’s label.
It’s the accepted practice to display uppercase shortcut characters only, even though the
actual character the user types may not be uppercase.

The modifiers mask, not the shortcut character, determines which modifier keys the user
must hold down for the shortcut to work—including whether the Shift key must be down.
The mask can be formed by combining any of the modifiers constants, especially these:

B_SHIFT_KEY
B_CONTROL_KEY
B_OPTION_KEY
B_COMMAND_KEY

However, B_COMMAND_KEY is required for all keyboard shortcuts; it doesn’t have to be
explicitly included in the mask. For example, setting the shortcut to ‘U’ with no modifiers
would mean that the letter ‘U’ would be displayed alongside the item label and Command-
u would invoke the item. The same shortcut with a B_SHIFT_KEY modifiers mask would
mean that the uppercase character (Command-Shift-U) would invoke the item.

If the BMenuItem is constructed to control a submenu, it doesn’t post messages—its role
is to bring up the submenu—and it can’t take a shortcut. The item’s initial label will be
taken from the name of the submenu. It can be changed after construction by calling
SetLabel()).

See also: SetTarget(), SetMessage(), SetLabel())

-BMenuItem ()

virtual ~BMenuItem(void)

Frees the item’s label and its model BMessage object. If the item controls a submenu, that
menu and all its items are also freed. Deleting a BMenuItem destroys the entire menu
hierarchy under that item.

The Interface Kit – 131

 BMenuItem Member Functions

Member Functions

Command() see SetMessage()

ContentLocation()

protected:
BPoint ContentLocation(void) const

Returns the left top corner of the content area of the item, in the coordinate system of the
BMenu to which it belongs. The content area of an item is the area where it displays its
label (or whatever graphic substitutes for the label). It doesn’t include the part of the item
where a check mark or a keyboard shortcut could be displayed, nor the border and
background around the content area.

You would need to call this function only if you’re implementing a DrawContent()
function to draw the contents of the menu item (likely something other than a label). The
content rectangle can be calculated from the point returned by this function and the size
specified by GetContentSize().

If the item isn’t part of a menu, the return value is indeterminate.

See also: GetContentSize(), DrawContent()

Draw(), DrawContent()

protected:
virtual void Draw(void)

virtual void DrawContent(void)

These functions draw the menu item and highlight it if it’s currently selected. They’re
called by the Draw() function of the BMenu where the item is located whenever the menu
is required to display itself; they don’t need to be called from within application code.

However, they can both be overridden by derived classes that display something other
than a textual label. The Draw() function is called first. It draws the background for the
entire item, then calls DrawContent() to draw the label within the item’s content area.
After DrawContent() returns, it draws the check mark (if the item is currently marked) and
the keyboard shortcut (if any). It finishes by calling Highlight() if the item is currently
selected.

132 – The Interface Kit

Member Functions BMenuItem

Both functions draw by calling functions of the BMenu in which the item is located. For
example:

void MyItem::DrawContent()
{
 . . .
 Menu()->DrawBitmap(image);
 . . .
}

A derived class can override either Draw(), if it needs to draw the entire item, or
DrawContent(), if it needs to draw only within the content area. A Draw() function can
find the frame rectangle it should draw within by calling the BMenuItem’s Frame()
function; a DrawContent() function can calculate the content area from the point returned
by ContentLocation() and the dimensions provided by GetContentSize().

When DrawContent() is called, the pen is positioned to draw the item’s label and the high
color is appropriately set. The high color may be a shade of gray, if the item is disabled, or
black if it’s enabled. If some other distinction is used to distinguish disabled from enabled
items, DrawContent() should check the item’s current state by calling IsEnabled().

Note: If a derived class implements its own DrawContent() function, but still want to
draw a textual string, it should do so by assigning the string as BMenuItem’s label and
calling the inherited version of DrawContent(), not by calling DrawString()- This
preserves the BMenuItem’s ability to display a trigger character in the string.

See also: Highlight(), Frame(), ContentLocation(), GetContentSize()

Frame()

BRect Frame(void) const

Returns the rectangle that frames the entire menu item, in the coordinate system of the
BMenu to which the item belongs. If the item hasn’t been added to a menu, the return
value is indeterminate.

See also: AddItem() in the BMenu class

GetContentSize()

protected:
virtual void GetContentSize(float *width, float *height)

Writes the size of the item’s content area into the variables referred to by width and height.
The content area of an item is the area where its label (or whatever substitutes for the
label) is drawn.

The Interface Kit – 133

 BMenuItem Member Functions

A BMenu calls GetContentSize() for each of its items as it arranges them in a column or a
row; the function is not called for items in a matrix. The information it provides helps
determine where each item is located and the overall size of the menu.

GetContentSize() must report a size that’s large enough to display the content of the item
(and separate one item from another). By default, it reports an area just large enough to
display the item’s label. This area is calculated from the label and the BMenu’s current
font.

If you design a class derived from BMenuItem and implement your own Draw() or
DrawContent() function, you should also implement a GetContentSize() function to report
how much room will be needed to draw the item’s contents.

See also: DrawContent(), ContentLocation()

Highlight()

protected:
virtual void Highlight(bool flag)

Highlights the menu item -when flag is TRUE, and removes the highlighting when flag is
FALSE. Highlighting simply inverts all the colors in the item’s frame rectangle (except for
the check mark).

This function is called by the Draw() function whenever the item is selected and needs to
be drawn in its highlighted state. There’s no reason to call it yourself, unless you define
your own version of Draw(). However, it can be reimplemented in a derived class, if items
belonging to that class need to be highlighted in some way other than simple inversion.

See also: Draw()

IsEnabled() see SetEnabled()

IsMarked() see SetMarked()

IsSelected()

protected:
bool IsSelected(void) const

Returns TRUE if the menu item is currently selected, and FALSE if not. Selected items are
highlighted.

134 – The Interface Kit

Member Functions BMenuItem

Label() see SetLabel()

Menu()

BMenu *Menu(void) const

Returns the menu where the item is located, or NULL if the item hasn’t yet been added to a
menu.

See also: AddItem() in the BMenu class

Message() see SetMessage()

SetEnabled(), IsEnabled()

virtual void SetEnabled(bool flag)

bool IsEnabled(void) const

SetEnabled() enables the BMenuItem if flag is TRUE, disables it if flag is FALSE, and
updates the item if it’s visible on-screen. If the item controls a submenu, this function
calls the submenu’s SetEnabled() virtual function, passing it the same flag. This ensures
that the submenu is enabled or disabled as well.

IsEnabled() returns TRUE if the BMenuItem is enabled, its menu is enabled, and all menus
above it in the hierarchy are enabled. It returns FALSE if the item is disabled or any objects
above it in the menu hierarchy are disabled.

Items and menus are enabled by default.

When using these functions, keep in mind that:

• Disabling a BMenuItem that controls a submenu serves to disable the entire menu
hierarchy under the item.

• Passing an argument of TRUE to SetEnabled() is not sufficient to enable the item if
it’s located in a disabled branch of the menu hierarchy. It can only undo a previous
SetEnabled() call (with an argument of FALSE) on the same item.

See also: SetEnabled() in the BMenu class

The Interface Kit – 135

 BMenuItem Member Functions

SetLabel(), Label()

virtual void SetLabel(const char *string)

const char *Label(void) const

SetLabel() frees the item’s current label and copies string to replace it. If the menu is
visible on-screen, it will be redisplayed with the item’s new label. If necessary, the menu
will become wider (or narrower) so that it fits the new label.

The Interface Kit calls this virtual function to:

• Set the initial label of an item that controls a submenu to the name of the submenu,
and

• Subsequently set the item’s label to match the marked item in the submenu, if the
submenu was set up to have this feature.

Label() returns a pointer to the current label.

See also: SetLabelFromMarked() in the BMenu class, the BMenuItem constructor

SetMarked(), IsMarked()

virtual void SetMarked(bool flag)

bool IsMarked(void) const

SetMarked() adds a check mark to the left of the item label if flag is TRUE, or removes an
existing mark if flag is FALSE. If the menu is visible on-screen, it’s redisplayed with or
without the mark.

IsMarked() returns whether the item is currently marked.

See also: SetLabelFromMarked() and FindMarked() in the BMenu class

SetMessage(), Message(), Command()

virtual void SetMessage(BMessage *message)

BMessage *Message(void) const

ulong Command(void) const

SetMessage() makes message the model BMessage for the menu item, deleting any
previous message assigned to the item. The model message is first set by the BMenuItem
constructor; SetMessage() allows you to change the message in midstream. You might
need to change it, for example, when the item’s label changes.

When a menu item is invoked, its model message is copied, relevant information is added
to the copy, and the copy is posted to the target BReceiver. (The information that gets
added to the copy is described under the BMenuItem constructor.)

136 – The Interface Kit

Member Functions BMenuItem

Message() returns a pointer to the BMenuItem’s model message and Command() returns
its what data member. If the BMenuItem doesn’t post a message—if, for example, it
controls a submenu or is a separator item—both functions return NULL.

The BMessage that Message() returns belongs to the BMenuItem. You can modify it by
adding and removing data, but you shouldn’t delete it or do anything that will cause it to
be deleted. In particular, you shouldn’t post or send the message anywhere, since that
would transfer ownership to a message loop and subject the message to automatic
deletion.

It’s possible to set and return a model BMessage for a separator item or an item that
controls a submenu. However, the message will never be used.

See also: the BMenuItem constructor, SetTarget()

SetTarget(), Target()

virtual long SetTarget(BReceiver *target, BLooper *looper = NULL)

BReceiver *Target(BLooper **looper= NULL) const

These functions set and return the object that’s targeted to receive messages posted by the
BMenuItem.

SetTarget() sets the target BReceiver, but is successful only if it can also discern a
BLooper object where the BMenuItem can post messages to that target. The BMenuItem
calls the BLooper’s PostMessage() function and names the target as the object that should
receive the message:

looper->PostMessage(theMessage, target);

If the target receiver passed to SetTarget() is itself a BLooper object (such as a BWindow)
or if it’s associated with a BLooper object (as BViews are associated with BWindows), the
looper argument can be NULL. SetTarget() can discover the BLooper from the target (by
calling the target’s Looper() function).

However, if the target can’t supply a BLooper object, a specific looper must be named as
an argument. If a looper isn’t named and the target can’t supply one, the function fails and
returns B_BAD_VALUE to indicate that the target alone is insufficient.

Moreover, it also fails if a specific looper is named but the target is associated with some
other BLooper object. B_MISMATCHED_VALUES is returned to indicate that there’s a
conflict between the two arguments.

It’s also possible to name a specific looper, but a NULL target. In this case, messages will
be targeted to the looper’s preferred receiver (the object returned by its
PreferredReceiver() function). For a BWindow, the preferred receiver is the current focus
view. Therefore, by passing a NULL target and a BWindow looper to SetTarget(),

myItem->SetTarget(NULL, myItem->Window());

The Interface Kit – 137

 BMenuItem Member Functions

the BMenuItem can be targeted to whatever BView happens to be in focus at the time it’s
invoked. This is useful for items like “Cut” and “Copy” that act on the current selection.
(Note, however, that if the PreferredReceiver() is NULL—if there’s no current focus
view—the BWindow itself will be the target.)

At least one of the two arguments must point to a real object. If both target and looper are
NULL, SetTarget() fails and returns B_BAD_VALUE. When successful, it returns
B_NO_ERROR.

Target() returns the current target and, if a pointer to a looper is provided, fills in the
BLooper where the item will post messages. By default, both roles are filled by the
BWindow at the root of the menu hierarchy (the BWindow where the menu bar is located).
These defaults are established when the BMenuItem becomes part of a menu hierarchy
that’s rooted in a window, but only if another target (or looper) hasn’t already been set. If
a target hasn’t been set and the BMenuItem isn’t part of a rooted menu hierarchy, Target()
returns NULL.

See also: Looper() in the BReceiver and BView classes, PreferredReceiver() in the
BLooper and BWindow classes

SetTrigger(), Trigger()

virtual void SetTrigger(char trigger)

char Trigger(void) const

SetTrigger() sets the trigger character that the user can type to invoke the item while the
item’s menu is open on-screen. If a trigger is not set, the Interface Kit will select one for
the item, so it’s not necessary to call SetTrigger().

The character passed to this function has to match a character displayed in the item—
either the keyboard shortcut or a character in the label. The case of the character doesn’t
matter; lowercase arguments will match uppercase characters in the item and uppercase
arguments will match lowercase characters. When the item can be invoked by its trigger,
the trigger character is drawn in an eye-catching color.

If more than one character in the item matches the character passed, SetTrigger() tries first
to mark the keyboard shortcut. Failing that, it tries to mark an uppercase letter at the
beginning of a word. Failing that, it marks the first instance of the character in the label.

If the trigger doesn’t match any characters in the item, the item won’t have a trigger, not
even one selected by the system.

Trigger() returns the character set by SetTrigger(), or NULL if SetTrigger() didn’t succeed or
if SetTrigger() was never called and the trigger is selected automatically.

See also: SetTriggersEnabled() in the BMenu class

138 – The Interface Kit

Member Functions BMenuItem

Shortcut()

char Shortcut(ulong *modifiers = NULL) const

Returns the character that’s used as the keyboard shortcut for invoking the item, and writes
a mask of all the modifier keys the shortcut requires to the variable referred to by
modifiers. Since the Command key is required to operate the keyboard shortcut for any
menu item, B_COMMAND_KEY will always be part of the modifiers mask. The mask can
also be tested against the B_CONTROL_KEY, B_OPTION_KEY, and B_SHIFT_KEY constants.

The shortcut is set by the BMenuItem constructor.

See also: the BMenuItem constructor

Submenu()

BMenu *Submenu(void) const

Returns the BMenu object that the item controls, or NULL if the item doesn’t control a
submenu.

See also: the BMenuItem constructor, the BMenu class

Target() see SetTarget()

Trigger() see SetTrigger()

The Interface Kit – 139

BPicture

Derived from: public BObject

Declared in: <interface/Picture.h>

Overview

A BPicture object holds a set of drawing instructions in the Application Server, where they
can be reused over and over again simply by passing the object to BView’s DrawPicture()
function. Because it contains instructions for producing an image, not the rendered result
of those instructions, a picture (unlike a bitmap) is independent of the resolution of the
display device.

Recording a Picture

Drawing instructions are captured by bracketing them with calls to a BView’s
BeginPicture() and EndPicture() functions. An empty BPicture object is passed to
BeginPicture(); EndPicture() returns the same object, fully initialized. For example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
/* drawing code goes here */
myPict = someView->EndPicture();

The BPicture object records all of the drawing instructions given to the BView following
the BeginPicture() call and preceding the EndPicture() call. Only the drawing that the
BView does is recorded; drawing done by children and other views attached to the
window is ignored, as is everything except drawing code.

If the BPicture object passed to BeginPicture() isn’t empty, the new drawing is appended
to the code that’s already in place.

The Picture Definition

The picture captures everything that affects the image that’s drawn. It takes a snapshot of
the BView’s graphics parameters—the pen size, high and low colors, font size, and so
on—at the time BeginPicture() is called. It then captures all subsequent modifications to
those parameters, such as calls to MovePenTo(), SetLowColor(), and SetFontSize().
However, changes to the coordinate system (ScrollBy() and ScrollTo()) are ignored.

140 – The Interface Kit

Constructor and Destructor BPicture

The picture records all primitive drawing instructions—such as, DrawBitmap(),
StrokeEllipse(), FillRect(), and DrawString(). It can even include a call to DrawPicture();
one picture can incorporate another.

The BPicture traces exactly what BView drew and reproduces it precisely. For example,
whatever pen size happens to be in effect when a line is stroked will be the pen size that
the picture records, whether it was explicitly set while the BPicture was being recorded or
assumed from the BView’s graphics environment.

The picture makes its own copy of any data that’s passed during the recording session.
For example, it copies the bitmap passed to DrawBitmap() and the picture passed to
DrawPicture(). If that bitmap or picture later changes, it won’t affect what was recorded.

See also: BeginPicture() and DrawPicture() in the BView class, the BPictureButton class

Constructor and Destructor

BPicture()

BPicture(void)
BPicture(const BPicture &picture)
BPicture(void *data, long size)

Initializes the BPicture object by ensuring that it’s empty, by copying data from another
picture, or by copying size bytes of picture data. The data should be taken, directly or
indirectly, from another BPicture object.

~BPicture()

virtual ~BPicture(void)

Destroys the Application Server’s record of the BPicture object and deletes all its picture
data.

The Interface Kit – 141

 BPicture Member Functions

Member Functions

Data()

void *Data(void) const

Returns a pointer to the data contained in the BPicture. The data can be copied from the
object, stored on disk (perhaps as a resource), and later used to initialize another BPicture
object.

See also: the BPicture constructor

DataSize()

long DataSize(void) const

Returns how many bytes of data the BPicture object contains.

See also: Data()

142 – The Interface Kit

Member Functions BPicture

The Interface Kit – 143

BPictureButton

Derived from: public BControl

Declared in: <interface/PictureButton.h>

Overview

A BPictureButton object draws a button with a graphic image on its face, rather than a
textual label. The image is set by a BPicture object.

Like other BControl objects, BPictureButtons can have two values, B_CONTROL_OFF and
B_CONTROL_ON. A separate BPicture object is associated with each value. How the
BPictureButton displays these pictures depends on its behavior—whether it’s set to remain
in one state or to toggle between two states:

• A one-state BPictureButton usually has a value of 0 (B_CONTROL_OFF), and it
displays the BPicture associated with that value. However, while it’s being operated
(while the cursor is over the button on-screen and the user keeps the mouse button
down), its value is set to 1 (B_CONTROL_ON) and it displays the alternate picture.
That picture should be a highlighted version of the picture that’s normally shown.

 This behavior is exactly like an ordinary, labeled BButton object. Just as a BButton
displays the same label, a one-state BPictureButton shows the same picture. Both
kinds of objects are appropriate devices for initiating an action of some kind.

• A two-state BPictureButton toggles between the B_CONTROL_OFF and
B_CONTROL_ON values. Each time the user operates the button, it’s value changes.
The picture that’s displayed changes with the value. The two BPictures are
alternatives to each other. The B_CONTROL_ON picture might be a highlighted
version of the B_CONTROL_OFF picture, but it doesn’t need to be. The value of the
object changes only after it has been toggled to the other state, not while it’s being
operated.

 This behavior is exactly like a BCheckBox or an individual BRadioButton. Like
those objects, a two-state BPictureButton is an appropriate device for setting a state.

Every BPictureButton must be assigned at least two BPictures. If it’s a one-state button,
one picture will be the one that’s normally shown and another will be shown while the
button is being operated. If it’s a two-state button, one picture is shown when the button is
turned on and one when it’s off.

If a one-state button can be disabled, it also needs to be assigned an image that can be
shown while it’s disabled. If a two-state button can be disabled, it needs two additional

144 – The Interface Kit

Constructor and Destructor BPictureButton

images—one in case it’s disabled while in the B_CONTROL_OFF state and another if it’s
disabled in the B_CONTROL_ON state.

Often the BPictures that are assigned to a BPictureButton simply wrap around a bitmap
image. For example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
someView->DrawBitmap(kbuttonBitmap);
myPict = someView->EndPicture();

See also: the BPicture class

Constructor and Destructor

BPictureButton()

BPictureButton(BRect frame, const char* name,
 BPicture *off, BPicture *on,
 BMessage *message,
 ulong behavior = B_ONE_STATE_BUTTON,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = B_WILL_DRAW)

Initializes the BPictureButton by assigning it two images—an off picture that will be
displayed when the object’s value is B_CONTROL_OFF and an on picture that’s displayed
when the value is B_CONTROL_ON—and by setting its behavior to either
B_ONE_STATE_BUTTON or B_TWO_STATE_BUTTON. A one-state button displays the off image
normally and the on image to highlight the button as it’s being operated by the user. A
two-state button toggles between the off image and the on image (between the
B_CONTROL_OFF and B_CONTROL_ON values). The initial value is set to
B_CONTROL_OFF.

If the BPictureButton can be disabled, it will need additional BPicture images that indicate
its disabled state. They can be set by calling SetDisabledOff() and SetDisabledOn().

All the BPictures assigned to the BPictureButton object become its property. It takes
responsibility for deleting them when they’re no longer needed.

The message parameter is the same as the one declared for the BControl constructor. It
establishes a model for the messages the BPictureButton sends to a target receiver each
time it’s invoked. See SetMessage(), SetTarget(), and Invoke() in the BControl class for
more information.

The Interface Kit – 145

 BPictureButton Member Functions

The frame, name, resizingMode, and flags parameters are the same as those declared for
the BView constructor. They’re passed up the inheritance hierarchy to the BView class
unchanged. See the BView constructor for details.

See also: the BControl and BView constructors, SetEnabledOff()

~BPictureButton()

virtual ~BPictureButton(void)

Deletes the model message and the BPicture objects that have been assigned to the
BPictureButton.

Member Functions

Behavior() see SetBehavior()

Draw()

virtual void Draw(BRect updateRect)

Draws the BPictureButton. This function is called as the result of an update message to
draw the button in its current appearance; it’s also called from the MouseDown() function
to draw the button in its highlighted state.

See also: Draw() in the BView class

MouseDown()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event in the button by tracking the cursor while the user holds
the mouse button down. If the BPictureButton is a one-state object, this function resets its
value as the cursor moves in and out of the button on-screen. The SetValue() virtual
function is called to make the change each time. If it’s a two-state object, the value is not
reset. < However, the picture corresponding to the B_CONTROL_ON value is shown while
the cursor is in the button on-screen and the mouse button remains down. >

If the cursor is inside the BPictureButton’s bounds rectangle when the user releases the
mouse button, this function posts a copy of the model message so that it will be dispatched
to the target receiver. If it’s a one-state object, it’s value is reset to B_CONTROL_OFF. If it’s

146 – The Interface Kit

Member Functions BPictureButton

a two-state object, it’s value is toggled on or off and the corresponding picture is
displayed.

See also: MouseDown() in the BView class, Invoke() in the BControl class,
SetBehavior()

SetBehavior(), Behavior()

virtual void SetBehavior(ulong behavior)

ulong Behavior(void) const

These functions set and return whether the BPictureButton is a B_ONE_STATE_BUTTON or a
B_TWO_STATE_BUTTON. If it’s a one-state button, its value is normally set to
B_CONTROL_OFF and it displays a fixed image (the off picture passed to the constructor or
the one passed to SetEnabledOff()). Its value is reset as its being operated and it displays
the alternate image (the on picture passed to the constructor or the one passed to
SetEnabledOn()).

If it’s a two-state button, its value toggles between B_CONTROL_OFF and B_CONTROL_ON
each time the user operates it. The image the button displays similarly toggles between
two pictures (the off and on images passed to the constructor or the ones passed to
SetEnabledOff() and SetEnabledOn()).

See also: the BPictureButton constructor

SetEnabledOff(), SetEnabledOn(), SetDisabledOff(), SetDisabledOn()

virtual void SetEnabledOff(BPicture *picture)

virtual void SetEnabledOn(BPicture *picture)

virtual void SetDisabledOff(BPicture *picture)

virtual void SetDisabledOn(BPicture *picture)

These functions set the images the BPictureButton displays. Each BPictureButton object
needs to be assigned at least two BPicture objects—one corresponding to the
B_CONTROL_OFF value and another corresponding to the B_CONTROL_ON value. These
are the images that are displayed when the BPictureButton is enabled, as it is by default.
They’re initially set when the object is constructed and can be replaced by calling the
SetEnabledOff() and SetEnabledOn() functions.

If a BPictureButton can be disabled, it needs to display an image that indicates its disabled
condition. A two-state button might be disabled when its value is either B_CONTROL_OFF
or B_CONTROL_ON, so it needs two BPictures to indicate disabling, one corresponding to
each value. They can be set by calling SetDisabledOff() and SetDisabledOn().

The value of a one-state button is always B_CONTROL_OFF (unless it’s being operated), so
it needs only a single BPicture to indicate disabling; it can be set by calling
SetDisabledOff().

The Interface Kit – 147

 BPictureButton Member Functions

All four of these functions free the image previously set, if any, and replace it with picture.
The picture belongs to the BPictureButton; it should not be freed or assigned to any other
object.

See also: the BPictureButton constructor

148 – The Interface Kit

Member Functions BPictureButton

The Interface Kit – 149

BPoint

Derived from: none

Declared in: <interface/Point.h>

Overview

BPoint objects represent points on a two-dimensional coordinate grid. Each object holds
an x coordinate value and a y coordinate value declared as public data members. These
values locate a specific point, (x, y), relative to a given coordinate system.

Because the BPoint class defines a basic data type for graphic operations, its data members
are publicly accessible and it declares no virtual functions. It’s a simple class that doesn’t
inherit from BObject or any other class and doesn’t retain class information that it can
reveal at run time. In the Interface Kit, BPoint objects are typically passed and returned by
value, not through pointers.

For an introduction to coordinate geometry on the BeBox, see “The Coordinate Space” on
page 14.

Data Members

float x The coordinate value measured horizontally along the
x-axis.

float y The coordinate value measured vertically along the
y-axis.

150 – The Interface Kit

Constructor BPoint

Constructor

BPoint()

inline BPoint(float x, float y)
inline BPoint(const BPoint& point)
inline BPoint(void)

Initializes a new BPoint object to (x, y), or to the same values as point. For example:

BPoint somePoint(155.7, 336.0);
BPoint anotherPoint(somePoint);

Here, both somePoint and anotherPoint are initialized to (155.7, 336.0).

If no coordinate values are assigned to the BPoint when it’s declared,

BPoint emptyPoint;

its initial values are indeterminate.

BPoint objects can also be initialized or modified using the Set() function,

emptyPoint.Set(155.7, 336.0);
anotherPoint.Set(221.5, 67.8);

or the assignment operator:

somePoint = anotherPoint;

See also: Set(), the assignment operator

Member Functions

ConstrainTo()

void ConstrainTo(BRect rect)

Constrains the point so that it lies inside the rect rectangle. If the point is already
contained in the rectangle, it remains unchanged. However, if it falls outside the
rectangle, it’s moved to the nearest edge. For example, this code

BPoint point(54.9, 76.3);
BRect rect(10.0, 20.0, 40.0, 80.0);
point.Constrain(rect);

modifies the point to (40.0, 76.3).

See also: Contains() in the BRect class

The Interface Kit – 151

 BPoint Operators

PrintToStream()

void PrintToStream(void) const

Prints the contents of the BPoint object to the standard output stream (stdout) in the form:

"BPoint(x, y)"

where x and y stand for the current values of the BPoint’s data members.

Set()

inline void Set(float x, float y)

Assigns the coordinate values x and y to the BPoint object. For example, this code

BPoint point;

point.Set(27.0, 53.4);

is equivalent to:

BPoint point;
point.x = 27.0;
point.y = 53.4;

See also: the BPoint constructor

Operators

= (assignment)

inline BPoint& operator =(const BPoint&)

Assigns the x and y values of one BPoint object to another BPoint:

BPoint a, b;
a.Set (21.5, 17.0);
b = a;

Point b, like point a, is set to (21.5, 17.0).

152 – The Interface Kit

Operators BPoint

== (equality)

bool operator ==(const BPoint&) const

Compares the data members of two BPoint objects and returns TRUE if each one exactly
matches its counterpart in the other object, and FALSE if not. In the following example, the
equality operator would return FALSE:

BPoint a(21.5, 17.0);
BPoint b(17.5, 21.0);
if (a == b)
 . . .

!= (inequality)

bool operator !=(const BPoint&) const

Compares two BPoint objects and returns TRUE unless their data members match exactly
(the two points are the same), in which case it returns FALSE. This operator is the inverse
of the == (equality) operator.

+ (addition)

BPoint operator +(const BPoint&) const

Combines two BPoint objects by adding the x coordinate of the second to the x coordinate
of the first and the y coordinate of the second to the y coordinate of the first, and returns a
BPoint object that holds the result. For example:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
BPoint c = a + b;

Point c is initialized to (132.0, 44.0).

+= (addition and assignment)

BPoint& operator +=(const BPoint&)

Modifies a BPoint object by adding another point to it. As in the case of the + (addition)
operator, the members of the second point are added to their counterparts in the first point:

BPoint a(77.0, 11. 0);
BPoint b(55.0, 3 3.0);
a += b;

Point a is modified to (132.0, 44.0).

The Interface Kit – 153

 BPoint Operators

- (subtraction)

BPoint operator -(const BPoint&) const

Subtracts one BPoint object from another by subtracting the x coordinate of the second
from the x coordinate of the first and the y coordinate of the second from the y coordinate
of the first, and returns a BPoint object that holds the result. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
BPoint c = a - b;

Point c is initialized to (55.0, -22.0).

-= (subtraction and assignment)

BPoint& operator -=(const BPoint&)

Modifies a BPoint object by subtracting another point from it. As in the case of the
- (subtraction) operator, the members of the second point are subtracted from their
counterparts in the first point. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
a -= b;

Point a is modified to (55.0, -22.0).

154 – The Interface Kit

Operators BPoint

The Interface Kit – 155

BPolygon

Derived from: public BObject

Declared in: <interface/Polygon.h>

Overview

A BPolygon object represents a polygon—a closed, many-sided figure that describes an
area within a two-dimensional coordinate system. It differs from a BRect object in that it
can have any number of sides and the sides don’t have to be aligned with the coordinate
axes.

A BPolygon is defined as a series of connected points. Each point is a potential vertex in
the polygon. An outline of the polygon could be constructed by tracing a straight line
from the first point to the second, from the second point to the third, and so on through the
whole series, then by connecting the first and last points if they’re not identical.

The BView functions that draw a polygon—StrokePolygon() and FillPolygon()—take
BPolygon objects as arguments.

Constructor and Destructor

BPolygon ()

BPolygon(BPoint *pointList, long numPoints)
BPolygon(const BPolygon *polygon)
BPolygon(void)

Initializes the BPolygon by copying numPoints from pointList, or by copying the list of
points from another polygon. If one polygon is constructed from another, the original and
the copy won’t share any data; independent memory is allocated for the copy to hold a
duplicate list of points.

If a BPolygon is constructed without a point list, points must be set with the AddPoints()
function.

See also: AddPoints()

156 – The Interface Kit

Member Functions BPolygon

~BPolygon()

virtual ~BPolygon(void)

Frees all the memory allocated to hold the list of points.

Member Functions

AddPoints()

void AddPoints(const BPoint *pointList, long numPoints)

Appends numPoints from pointList to the list of points that already define the polygon.

See also: the BPolygon constructor

CountPoints()

inline long CountPoints(void) const

Returns the number of points that define the polygon.

Frame()

inline BRect Frame(void) const

Returns the polygon’s frame rectangle—the smallest rectangle that encloses the entire
polygon.

MapTo()

void MapTo(BRect source, BRect destination)

Modifies the polygon so that it fits the destination rectangle exactly as it originally fit
the source rectangle. Each vertex of the polygon is modified so that it has the same
proportional position relative to the sides of the destination rectangle as it originally had to
the sides of the source rectangle.

The polygon doesn’t have to be contained in either rectangle. However, to modify a
polygon so that it’s exactly inscribed in the destination rectangle, you should pass its frame
rectangle as the source:

BRect frame = myPolygon->Frame();
myPolygon->MapTo(frame, anotherRect);

The Interface Kit – 157

 BPolygon Operators

PrintToStream()

void PrintToStream(void) const

Prints the BPolygon’s point list to the standard output stream (stdout). The BPoint version
of this function is called to report each point as a string in the form

"BPoint(x, y)"

where x and y stand for the coordinate values of the point in question.

See also: PrintToStream() in the BPoint class

Operators

= (assignment)

BPolygon& operator =(const BPolygon&)

Copies the point list of one BPolygon object and assigns it to another BPolygon. After the
assignment, the two objects describe the same polygon, but are independent of each other.
Destroying one of the objects won’t affect the other.

158 – The Interface Kit

Operators BPolygon

The Interface Kit – 159

BPopUpMenu

Derived from: public BMenu

Declared in: <interface/PopUpMenu.h>

Overview

A BPopUpMenu is a specialized menu that’s typically used in isolation, rather than as part
of an extensive menu hierarchy. By default, it operates in radio mode—the last item
selected by the user, and only that item, is marked in the menu.

A menu of this kind can be used to choose one from among a limited set of mutually
exclusive states—to pick a paper size or paragraph style, for example, or to select a
category of information. It should not be used to group different kinds of choices (as other
menus may), nor should it include items that initiate actions rather than set states, except
in certain well-defined cases.

A pop-up menu can be used in any of four ways:

• It can be controlled by a BMenuBar object, often one that contains just a single
item. The BMenuBar, in effect, functions as a button that pops up a list. The label
of the marked item in the list can be displayed as the label of the controlling item in
the BMenuBar. In this way, the BMenuBar is able to show the current state of the
hidden menu. When this is the case, the menu pops up so its marked item is directly
over the controlling item.

• A BPopUpMenu can also be controlled by a view other than a BMenuBar. It might
be associated with a particular image the view displays, for example, and appear
over the image when the user moves the cursor there and presses the mouse button.
Or it might be associated with the view as a whole and come up under the cursor
wherever the cursor happens to be. When the view is notified of a mouse-down
event, it calls BPopUpMenu’s Go() function to show the menu on-screen.

• The BPopUpMenu might also be controlled by a particular mouse button, typically
the secondary mouse button. When the user presses the button, the menu appears at
the location of the cursor. Instead of passing responsibility for the mouse-down
event to a BView, the BWindow would intercept it and place the menu on-screen.

• Finally, the application’s main menu must be a BPopUpMenu object. This menu
should be set up to behave like an ordinary menu, even though it’s not included in an
ordinary menu hierarchy. (The main menu is the one that holds items with
application-wide significance, like “About...” and “Quit”. It’s accessible when the

160 – The Interface Kit

Constructor and Destructor BPopUpMenu

 application is the active application by pressing on the application icon in the left
top comer of the screen. See SetMainMenu() in the BApplication class.)

Other than Go() (and the constructor), this class implements no functions that you’d ever
need to call from application code. In all other respects, a BPopUpMenu can be treated
like any other BMenu.

Constructor and Destructor

BPopUpMenu()

BPopUpMenu(const char *name, bool radioMode = TRUE,
 bool labelFromMarked = TRUE,
 menu_layout layout = B_ITEMS_IN_COLUMN)

Initializes the BPopUpMenu object. If the object is added to a BMenuBar, its name also
becomes the initial label of its controlling item (just as for other BMenus).

If the labelFromMarked flag is TRUE (as it is by default), the label of the controlling item
will change to reflect the label of the item that the user last selected. In addition, the menu
will operate in radio mode (regardless of the value passed as the radioMode flag). When
the menu pops up, it will position itself so that the marked item appears directly over the
controlling item in the BMenuBar.

If labelFromMarked is FALSE, the menu pops up < so that its first item is over the
controlling item >.

If the radioMode flag is TRUE (as it is by default), the last item selected by the user will
always be marked. In this mode, one and only one item within the menu can be marked at
a time. If radioMode is FALSE, items aren’t automatically marked or unmarked.

However, the radioMode flag has no effect unless the labelFromMarked flag is FALSE. As
long as labelFromMarked is TRUE, radio mode will also be TRUE.

The BPopUpMenu that’s used as the application’s main menu should have both
labelFromMarked and radioMode set to FALSE.

The layout of the items in a BPopUpMenu can be either B_ITEMS_IN_ROW or the default
B_ITEMS_IN_COLUMN. It should never be B_ITEMS_IN_MATRIX. The menu is resized so
that it exactly fits the items mat are added to it.

The new BPopUpMenu is empty; you add items to it by calling BMenu’s AddItem()
function.

See also: SetRadioMode() and SetLabelFromMarked() in the BMenu class

The Interface Kit – 161

 BPopUpMenu Member Functions

-BPopUpMenu()

virtual ~BPopUpMenu(void)

Does nothing. The BMenu destructor is sufficient to clean up after a BPopUpMenu.

Member Functions

Go()

BMenuItem *Go(BPoint screenPoint, bool deliversMessage = FALSE)

Places the pop-up menu on-screen and keeps it there as long as the user holds a mouse
button down. The menu appears on-screen so that its left top corner is located at
screenPoint in the screen coordinate system. When the user releases the mouse button, the
menu is hidden again and Go() returns. If the user invoked an item in the menu, it returns
a pointer to the item. If no item was invoked, it returns NULL.

Go() is typically called from within the MouseDown() function of a BView. For example:

void MyView::MouseDown(BPoint point)
{
 BMenuItem *selected;
 BMessage *copy;
 . . .
 ConvertToScreen(&point);
 selected = myPopUp->Go(point);
 . . .
 if (selected) {
 BLooper *looper;
 BReceiver *target = selected->Target(&looper);
 if (target == NULL)
 target = looper->PreferredReceiver();
 copy = new BMessage(selected->Message());
 looper->PostMessage(copy, target);
 }
 . . .
}

Go() operates in two modes:

• If the deliversMessage flag is TRUE, the BPopUpMenu works just like a menu that’s
controlled by a BMenuBar. When the user invokes an item in the menu, the item
posts a message to its target receiver.

• If the deliversMessage flag is FALSE, a message is not posted. Invoking an item
doesn’t automatically accomplish anything. It’s up to the application to look at the
returned BMenuItem and decide what to do. It can mimic the behavior of other
menus and post the message—as shown in the example above—or it can take some
other course of action.

162 – The Interface Kit

Member Functions BPopUpMenu

In the example, a copy of the BMessage returned by the item’s Message() function was
posted, not the returned message itself. Posting the returned message would turn it over to
a message loop, which would eventually delete it. It would then be unavailable the next
time the item was invoked.

See also: SetMessage() in the BMenuItem class

ScreenLocation()

protected:
virtual BPoint ScreenLocation(void)

Determines where the pop-up menu should appear on-screen (when it’s being run
automatically, not by Go()). As explained in the description of the class constructor, this
largely depends on whether the label of the superitem changes to reflect the item that’s
currently marked in the menu. The point returned is stated in the screen coordinate
system.

This function is called only for BPopUpMenus that have been added to a menu hierarchy
(a BMenuBar). You should not call it to determine the point to pass to Go(). However,
you can override it to change where a customized pop-up menu defined in a derived class
appears on-screen when it’s controlled by a BMenuBar.

See also: SetLabelFromMarked() and ScreenLocation() in the BMenu class, the
BPopUpMenu constructor

The Interface Kit – 163

BRadioButton

Derived from: public BControl

Declared in: <interface/RadioButton.h>

Overview

A BRadioButton object draws a labeled, two-state button that’s displayed in a group along
with other similar buttons. The button itself is a round icon that has a filled center when
the BRadioButton is turned on, and is empty when it’s off. The label appears next to the
icon.

Only one radio button in the group can be on at a time. When the user clicks a button to
turn it on, the button that’s currently on is turned off. The user can turn a button off only
by turning another one on; one button in the group must be on at all times. The button
that’s on has a value of 1 (B_CONTROL_ON); the others have a value of 0
(B_CONTROL_OFF).

The BRadioButton class handles the interaction between radio buttons in the following
way: A direct user action can only turn on a radio button, not turn it off. However, when
the user turns a button on, the BRadioButton object turns off all sibling BRadioButtons—
all BRadioButtons that have the same parent as the one that was turned on.

This means that a parent view should have no more than one group of radio buttons among
its children. Each set of radio buttons should be assigned a separate parent—perhaps an
empty BView that simply contains the radio buttons and does no drawing of its own.

Constructor

BRadioButton()

BRadioButton(BRect frame, const char *name, const char *label,
 BMessage *message,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = B_WILL_DRAW)

Initializes the BRadioButton by passing all arguments to the BControl constructor without
change. BControl initializes the radio button’s label and assigns it a model message that
identifies the action that should be taken when the radio button is turned on. When the

164 – The Interface Kit

Member Functions BRadioButton

user turns the button on, the BRadioButton posts a copy of the message to the target
receiver.

The frame, name, resizingMode, and flags arguments are the same as those declared for
the BView class and are passed without change from BControl to the BView constructor.

The frame rectangle of a BRadioButton must be at least 12 units high (a difference of 11
between the bottom and the top) to accommodate the icon and the label in the default font.
Anything over a height of 12 is superfluous; the BRadioButton draws at the bottom of the
rectangle beginning at the left side. It ignores any extra space at the top or on the right.
(However, the user can click anywhere within frame to turn on the radio button).

See also: the BControl and BView constructors

Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws the radio button—the circular icon—and its label. The center of the icon is filled
when the BRadioButton’s value is 1 (B_CONTROL_ON); it’s left empty when the value is 0
(B_CONTROL_OFF).

See also: Draw() in the BView class

MouseDown()

virtual void MouseDown(BPoint point)

Responds to a mouse-down event in the radio button by tracking the cursor while the user
holds the mouse button down. If the cursor is pointing to the radio button when the user
releases the mouse button, this function turns the button on (and consequently turns all
sibling BRadioButtons off), calls the BRadioButton’s Draw() function, and posts a
message that will be delivered to the target BReceiver. Unlike a BCheckBox, a
BRadioButton posts the message—it’s “invoked”—only when it’s turned on, not when it’s
turned off.

To set the value of each radio button in the group, this function calls SetValue() (a hook
function defined in the BControl class).

See also: Invoke() and SetTarget() in the BControl class

The Interface Kit – 165

 BRadioButton Member Functions

SetValue()

virtual void SetValue(long value)

Augments the BControl version of SetValue() to turn all sibling BRadioButtons off (set
their values to 0) when this BRadioButton is turned on (when the value passed is anything
but 0).

See also: SetValue() in the BControl class

166 – The Interface Kit

Member Functions BRect

The Interface Kit – 167

BRect

Derived from: none

Declared in: <interface/Rect.h>

Overview

A BRect object represents a rectangle, one with sides that parallel the x and y coordinate
axes. The rectangle is defined by its left, top, right, and bottom coordinates, as illustrated
below:

In a valid rectangle, the top y coordinate value is never greater than the bottom
y coordinate, and the left x coordinate value is never greater than the right.

A BRect is the simplest, most basic way of specifying an area in a two-dimensional
coordinate system. Windows, scroll bars, buttons, text fields, and the screen itself are all
specified as rectangles. For more details on the definition of a rectangle, see “Coordinate
Geometry” on page 16 in the chapter introduction.

When used to define the frame of a window or a view, or the bounds of a bitmap, the sides
of the rectangle must line up on screen pixels. For this reason, the rectangle can’t have
any fractional coordinates. Coordinate units have a one-to-one correspondence with
screen pixels.

Integral coordinates fall at the center of screen pixels, so frame rectangles cover a larger
area than their coordinate values would indicate. Just as the number of elements in an
array is one greater than the largest index, a frame rectangle covers one more column of
pixels than its width and one more row than its height.

168 – The Interface Kit

Data Members BRect

The figure below illustrates why this is the case. It shows a rectangle with a right side 8.0
units from its left (62.0-54.0) and a bottom 4.0 units below its top (17.0-13.0). Because
the pixels that lie on all four sides of the rectangle are considered to be inside it, there’s an
extra pixel in each direction. When the rectangle is filled on-screen, it covers a 9-pixel-by-
5-pixel area.

Because the BRect structure is a basic data type for graphic operations, it’s constructed
more simply than most other Interface Kit classes: All its data members are publicly
accessible, it doesn’t have virtual functions, it doesn’t inherit from BObject or any other
class, and it doesn’t retain class information that it can reveal at run time. Within the
Interface Kit, BRect objects are passed and returned by value.

Data Members

float left The coordinate value of the rectangle’s leftmost side (the
smallest x coordinate in a valid rectangle).

float top The coordinate value of the rectangle’s top (the smallest y
coordinate in a valid rectangle).

float right The coordinate value of the rectangle’s rightmost side (the
largest x coordinate in a valid rectangle).

float bottom The coordinate value of the rectangle’s bottom (the largest
y coordinate in a valid rectangle).

The Interface Kit – 169

 BRect Constructor

Constructor

BRect()

inline BRect(float left, float top, float right, float bottom)
inline BRect(BPoint leftTop, BPoint rightBottom)
inline BRect(const BRect& rect)
inline BRect(void)

Initializes a BRect with its four coordinate values—left, top, right, and bottom. The four
values can be directly stated,

BRect rect(11.0, 24.7, 301.5, 99.0);

or they can be taken from two points designating the rectangle’s left top and right bottom
corners,

BPoint leftTop(11.0, 24.7);
BPoint rightBottom(301.5, 99.0);
BRect rect(leftTop, rightBottom);

or they can be copied from another rectangle:

BRect anotherRect(11.0, 24.7, 301.5, 99.0);
BRect rect(anotherRect);

A rectangle that’s not assigned any initial values,

BRect rect;

is constructed to be invalid (its top and left are greater than its right and bottom), until a
specific assignment is made, typically with the Set() function:

rect.Set(77.0, 2.25, 510.8, 393.0);

See also: Set()

Member Functions

Contains()

bool Contains(BPoint point) const
bool Contains(BRect rect) const

Returns TRUE if point—or rect—lies inside the area the BRect defines, and FALSE if not. A
rectangle contains a point even if the point coincides with one of the rectangle’s corners or
lies on one of its edges.

One rectangle contains another if their union is the same as the first rectangle and their
intersection is the same as the second—that is, if the second rectangle lies entirely within

170 – The Interface Kit

Member Functions BRect

the first. A rectangle is considered to be inside another rectangle even if they have one or
more sides in common. Two identical rectangles contain each other.

See also: Intersects(), the & (intersection) and | (union) operators, ConstrainTo() in the
BPoint class

Height() seeWidth()

InsetBy()

void InsetBy(float horizontal, float vertical)
void InsetBy(BPoint point)

Modifies the BRect by insetting its left and right sides by horizontal units and its top and
bottom sides by vertical units. (If a point is passed, its x coordinate value substitutes for
horizontal and its y coordinate value substitutes for vertical.)

For example, this code

BRect rect(10.0, 40.0, 100.0, 140.0);
rect.InsetBy(20.0, 30.0);

produces a rectangle identical to one that could be constructed as follows:

BRect rect(30.0, 70.0, 80.0, 110.0);

If horizontal or vertical is negative, the rectangle becomes larger in that dimension, rather
than smaller.

See also: OffsetBy()

Intersects()

bool Intersects(BRect rect) const

Returns TRUE if the BRect has any area—even a corner or part of a side—in common with
rect, and FALSE if it doesn’t.

See also: the & (intersection) operator

IsValid()

inline bool IsValid(void) const

Returns TRUE if the BRect’s right side is greater than or equal to its left and its bottom is
greater than or equal to its top, and FALSE otherwise. An invalid rectangle doesn’t
designate any area, not even a line or a point.

The Interface Kit – 171

 BRect Member Functions

LeftBottom() see SetLeftBottom()

LeftTop() see SetLeftTop()

OffsetBy(), OffsetTo()

void OffsetBy(float horizontal, float vertical)
void OffsetBy(BPoint point)

void OffsetTo(BPoint point)
void OffsetTo(float x, float y)

These functions reposition the rectangle in its coordinate system, without altering its size
or shape.

OffsetBy() adds horizontal to the left and right coordinate values of the rectangle and
vertical to its top and bottom coordinates. (If a point is passed, point.x substitutes for
horizontal and point.y for vertical)

OffsetTo() moves the rectangle so that its left top corner is at point—or at (x, y). The
coordinate values of all its sides are adjusted accordingly.

See also: InsetBy()

PrintToStream()

void PrintToStream(void) const

Prints the contents of the BRect object to the standard output stream (stdout) in the form:

"BRect(left, top, right, bottom)"

where left, top, right, and bottom stand for the current values of the BRect’s data members.

RightBottom() see SetRightBottom()

RightTop() see SetRightTop()

Set()

inline void Set(float left, float top, float right, float bottom)

Assigns the values left, top, right, and bottom to the BRect’s corresponding data members.
The following code

BRect rect;
rect.Set(0.0, 25.0, 50.0, 75.0);

172 – The Interface Kit

Member Functions BRect

is equivalent to:

BRect rect;
rect.left = 0.0;
rect.top = 25.0;
rect.right = 50.0;
rect.bottom = 75.0;

See also: the BRect constructor

SetLeftBottom(), LeftBottom()

void SetLeftBottom(const BPoint point)

inline BPoint LeftBoftom(void) const

These functions set and return the left bottom corner of the rectangle. SetLeftBottom()
alters the BRect so that its left bottom corner is at point, and LeftBottom() returns its
current left and bottom coordinates as a BPoint object.

See also: SetLeftTop(), SetRightBottom(), SetRightTop()

SetLeftTop(), LeftTop()

void SetLeftTop(const BPoint point)

inline BPoint LeftTop(void) const

These functions set and return the left top corner of the rectangle. SetLeftTop() alters the
BRect so that its left top corner is at point, and LeftTop() returns its current left and top
coordinates as a BPoint object.

See also: SetLeftBottom(), SetRightTop(), SetRightBottom()

SetRightBottom(), RightBottom()

void SetRightBottom(const BPoint point)

inline BPoint RightBottom(void) const

These functions set and return the right bottom corner of the rectangle. SetRightBottom()
alters the BRect so that its right bottom corner is at point, and RightBottom() returns its
current right and bottom coordinates as a BPoint object.

See also: SetRightTop(), SetLeftBottom(), SetLeftTop()

The Interface Kit – 173

 BRect Operators

SetRightTop(), RightTop()

void SetRightTop(const BPoint point)

inline BPoint RightTop(void) const

These functions set and return the right top corner of the rectangle. SetRightTop() alters
the BRect so that its right top corner is at point, and RightTop() returns its current right and
top coordinates as a BPoint object.

See also: SetRightBottom(), SetLeftTop(), SetLeftBottom()

Width(), Height()

inline float Width(void) const

inline float Height(void) const

These functions return the width of the rectangle (the difference between its bottom and
top coordinates) and its height (the difference between its right and left sides). If either
value is negative, the rectangle is invalid.

The width and height of a rectangle are not accurate guides to the number of pixels it
covers on screen. As illustrated in the “Overview” to this class, a rectangle without
fractional coordinates covers an area that’s one pixel broader than its coordinate width and
one pixel taller than its coordinate height.

Operators

= (assignment)

inline BRect& operator =(const BRect&)

Assigns the data members of one BRect object to another BRect:

BRect a(27.2, 36.8, 230.0, 359.1);
BRect b;
b = a;

Rectangle b is made identical to rectangle a.

== (equality)

bool operator ==(BRect) const

Compares the data members of two BRect objects and returns TRUE if each one exactly
matches its counterpart in the other object, and FALSE if any of the members don’t match.

174 – The Interface Kit

Operators BRect

In the following example, the equality operator would return FALSE, since the two objects
have different right boundaries:

BRect a(11.5, 22.5, 66.5, 88.5);
BRect b(11.5, 22.5, 46.5, 88.5);
if (a == b)
 . . .

!= (inequality)

char operator !=(BRect) const

Compares two BRect objects and returns TRUE unless their data members match exactly
(the two rectangles are identical), in which case it returns FALSE. This operator is the
inverse of the == (equality) operator.

& (intersection)

BRect operator &(BRect) const

Returns the intersection of two rectangles—a rectangle enclosing the area they have in
common. The shaded area below shows where the two outlined rectangles intersect.

The intersection is computed by taking the greatest left and top coordinate values of the
two rectangles, and the smallest right and bottom values. In the following example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a & b;

rectangle c will be identical to one constructed as follows:

BRect c(35.0, 40.0, 80.0, 65.0);

If the two rectangles don’t actually intersect, the result will be invalid. You can test for
this by calling the Intersects() function on the original rectangles, or by calling IsValid() on
the result.

See also: Intersects(), IsValid(), the | (union) operator

The Interface Kit – 175

 BRect Operators

I (union)

BRect operator |(BRect) const

Returns the union of two rectangles—the smallest rectangle that encloses them both. The
shaded area below illustrates the union of the two outlined rectangles. Note that it
includes areas not in either of them.

The union is computed by selecting the smallest left and top coordinate values from the
two rectangles, and the greatest right and bottom coordinate values. In the following
example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a | b;

rectangle c will be identical to one constructed as follows:

BRect c(10.0, 15.0, 95.0, 100.0);

Note that two rectangles will have a valid union even if they don’t intersect.

See also: the & (intersection) operator

176 – The Interface Kit

Operators BRect

The Interface Kit – 177

BRegion

Derived from: public BObject

Declared in: <interface/Region.h>

Overview

A BRegion object describes an arbitrary area within a two-dimensional coordinate system.
The area can have irregular boundaries, contain holes, or be discontinuous. It’s
convenient to think of a region as a set of locations or points, rather than as a closed shape
like a rectangle or a polygon.

The points that a region includes can be described by a set of rectangles. Any point that
lies within at least one of the rectangles belongs to the region. You can define a region
incrementally by passing rectangles to functions like Set(), Include(), and Exclude().

BView’s GetClippingRegion() function modifies a BRegion object so that it represents the
current clipping region of the view. A BView can pass GetClippingRegion() a pointer to
an empty BRegion,

BRegion temp;
GetClippingRegion(&temp) ;

then call BRegion’s Intersects() and Contains() functions to test whether the potential
drawing it might do falls within the region:

if (temp.Intersects(someRect))
 . . .

Constructor and Destructor

BRegion()

BRegion(const BRegion& region)
BRegion(void)

Initializes the BRegion object to have the same area as another region—or, if no other
region is specified, to an empty region.

178 – The Interface Kit

Member Functions BRegion

The original BRegion object and the newly constructed one each have their own copies of
the data describing the region. Altering or freeing one of the objects will not affect the
other.

BRegion objects can be allocated on the stack and assigned to other objects:

BRegion regionOne(anotherRegion);
BRegion regionTwo = regionOne;

However, due to their size, it’s more efficient to pass them by pointer rather than by value.

~BRegion

virtual ~BRegion(void)

Frees any memory that was allocated to hold data describing the region.

Member Functions

Contains()

bool Contains(BPoint point) const

Returns TRUE if point lies within the region, and FALSE if not.

Exclude()

void Exclude(BRect rect)
void Exclude(const BRegion *region)

Modifies the region so that it excludes all points contained within rect or region that it
might have included before.

See also: Include(), IntersectWith()

Frame()

BRect Frame(void) const

Returns the frame rectangle of the BRegion—the smallest rectangle that encloses all the
points within the region.

If the region is empty, the rectangle returned won’t be valid.

See also: IsValid() in the BRect class

The Interface Kit – 179

 BRegion Member Functions

Include()

void Include(BRect rect)
void Include(const BRegion *region)

Modifies the region so that it includes all points contained within the rect or region passed
as an argument.

See also: Exclude()

IntersectWith()

void IntersectWith(const BRegion *region)

Modifies the region so that it includes only those points that it has in common with another
region.

See also: Include()

Intersects()

bool Intersects(BRect rect) const

Returns TRUE if the BRegion has any area in common with rect, and FALSE if not.

MakeEmpty()

void MakeEmpty(void)

Empties the BRegion of all its points. It will no longer designate any area and its frame
rectangle won’t be valid.

See also: the BRegion constructor

OffsetBy()

void OffsetBy(long horizontal, long vertical)

Offsets all points contained within the region by adding horizontal to each x coordinate
value and vertical to each y coordinate value.

180 – The Interface Kit

Operators BRegion

PrintToStream()

void PrintToStream(void) const

Prints the contents of the BRegion to the standard output stream (stdout) as an array of
strings. Each string describes a rectangle in the form:

"BRect(left, top, right, bottom)"

where left, top, right, and bottom are the coordinate values that define the rectangle.

The first string in the array describes the BRegion’s frame rectangle. Each subsequent
string describes one portion of the area included in the BRegion.

See also: PrintToStream() in the BRect class, Frame()

Set()

void Set(BRect rect)

Modifies the BRegion so that it describes an area identical to rect. A subsequent call to
Frame() should return the same rectangle (unless some other change was made to the
region in the interim).

See also: Include(), Exclude()

Operators

= (assignment)

BRegion& operator =(const BRegion&)

Assigns the region described by one BRegion object to another BRegion:

BRegion region = anotherRegion;

After the assignment, the two regions will be identical, but independent, copies of one
another. Each object allocates its own memory to store the description of the region.

The Interface Kit – 181

BScrollBar

Derived from: public BView

Declared in: <interface/ScrollBar.h>

Overview

A BScrollBar object displays a scroll bar that users can operate to scroll the contents of
another view, a target view. Scroll bars usually come in pairs, one horizontal and one
vertical, and are often grouped as siblings of the target view under a common parent. That
way, when the parent is resized, the target and scroll bars can be automatically resized to
match. (A companion class, BScrollView, defines just such a container view; a
BScrollView object sets up the scroll bars for a target view and makes itself the parent of
the target and the scroll bars.)

The Update Mechanism

BScrollBars are different from other views in one important respect: All their drawing
and event handling is carried out within the Application Server, not in the application. A
BScrollBar object doesn’t receive Draw() or MouseDown() notifications; the Server
intercepts updates and interface messages that would otherwise be reported to the
BScrollBar and handles them itself. As the user moves the knob on a scroll bar or presses
a scroll button, the Application Server continuously refreshes the scroll bar’s image on -

screen and informs the application with a steady stream of messages reporting value-
changed events.

The window dispatches these messages by calling the BScrollBar’s ValueChanged()
function. Each function call notifies the BScrollBar of a change in its value and,
consequently, of a need to scroll the target view.

Confining the update mechanism for scroll bars to the Application Server limits the
volume of communication between the application and Server and enhances the efficiency
of scrolling. The application’s messages to the Server can concentrate on updating the
target view as its contents are being scrolled, rather than on updating the scroll bars
themselves.

Value and Range

A scroll bar’s value determines what the target view displays. The default assumption is
that the left coordinate value of the target view’s bounds rectangle should match the value

182 – The Interface Kit

Overview BScrollBar

of the horizontal scroll bar, and the top of the target view’s bounds rectangle should match
the value of the vertical scroll bar. When a BScrollBar is notified of a change of value
(through its ValueChanged() function), it scrolls the target view to put the new value at
the left or top of the bounds rectangle.

The value reported in a ValueChanged() notification depends on where the user moves
the scroll bar’s knob and on the range of values the scroll bar represents. The range is first
set in the BScrollBar constructor and can be modified by the SetRange() function.

The range must be large enough to bring all the coordinate values where the target view
can draw into its bounds rectangle. If everything the target view can draw is conceived as
being enclosed in a “data rectangle,” the range of a horizontal scroll bar must extend from
a minimum that makes the left side of the target’s bounds rectangle coincide with the left
side of its data rectangle, to a maximum that puts the right side of the bounds rectangle at
the right side of the data rectangle. This is illustrated in part below:

As this illustration helps demonstrate, the maximum value of a horizontal scroll bar can be
no less than the right coordinate value of the data rectangle minus the width of the bounds
rectangle. Similarly, for a vertical scroll bar, the maximum value can be no less than the
bottom coordinate of the data rectangle minus the height of the bounds rectangle. The
range of a scroll bar subtracts the dimensions of the target’s bounds rectangle from its data
rectangle. (The minimum values of horizontal and vertical scroll bars can be no greater
than the left and top sides of the data rectangle.)

What the target view can draw may change from time to time as the user adds or deletes
data. As this happens, the range of the scroll bar should be updated with the SetRange()
function. The range may also need to be recalculated when the target view is resized.

The Interface Kit – 183

 BScrollBar Hook Functions

Hook Functions

ValueChanged() Scrolls the target view when the BScrollBar is informed
that its value has changed; can be implemented to alter the
default interpretation of the scroll bar’s value.

Constructor and Destructor

BScrollBar()

BScrollBar(BRect frame, const char *name, BView *target,
 long min, long max, orientation posture)

Initializes the BScrollBar and connects it to the target view that it will scroll. It will be
a horizontal scroll bar if posture is B_HORIZONTAL and a vertical scroll bar if posture is
B_VERTICAL.

The range of values that the scroll bar can represent at the outset is set by min and max.
These values should be calculated from the boundaries of a rectangle that encloses the
entire contents of the target view—everything that it can draw. If min and max are both 0,
the scroll bar is disabled and the knob is not drawn.

The object’s initial value is 0 < even if that falls outside the range set for the scroll bar >.

The other arguments, frame and name, are the same as for other BViews:

• The frame rectangle locates the scroll bar within its parent view. A horizontal scroll
bar should be exactly 12.0 units high, and a vertical scroll bar should be exactly
12.0 pixels wide. < These values may change as the user interface changes. >

• The BScrollBar’s name identifies it and permits it to be located by the FindView()
function. It can be NULL.

Unlike other BViews, the BScrollBar constructor doesn’t set an automatic resizing mode.
By default, scroll bars have the resizing behavior that befits their posture—horizontal
scroll bars resize themselves horizontally (as if they had a resizing mode of
B_FOLLOW_LEFT_RIGHT_BOTTOM) and vertical scroll bars resize themselves vertically (as if
their resizing mode was B_FOLLOW_TOP_RIGHT_BOTTOM).

~BScrollBar()

virtual ~BScrollBar(void)

Disconnects the scroll bar from its target.

184 – The Interface Kit

Member Functions BScrollBar

Member Functions

GetRange() see SetRange()

GetSteps() see SetSteps()

Orientation()

inline orientation Orientation(void) const

Returns HORIZONTAL if the object represents a horizontal scroll bar and VERTICAL if it
represents a vertical scroll bar.

See also: the BScrollBar constructor

SetRange(), GetRange()

void SetRange(long min, long max)

void GetRange(long *min, long *max) const

These functions modify and return the range of the scroll bar. SetRange() sets the
minimum and maximum values of the scroll bar to min and max. GetRange() places the
current minimum and maximum in the variables that min and max refer to.

If the scroll bar’s current value falls outside the new range, it will be reset to the closest
value—either min or max—within range. ValueChanged() is called to inform the
BScrollBar of the change whether or not it’s attached to a window.

If the BScrollBar is attached to a window, any change in its range will be immediately
reflected on-screen. The knob will move to the appropriate position to reflect the current
value.

Setting both the minimum and maximum to 0 disables the scroll bar. It will be drawn
without a knob.

See also: the BScrollBar constructor

SetSteps(), GetSteps()

void SetSteps(long smallStep, long bigStep)

void GetSteps(long *smallStep, long *bigStep) const

SetSteps() sets how much a single user action should change the value of the scroll bar—
and therefore how far the target view should scroll. GetSteps() provides the current
settings.

The Interface Kit – 185

 BScrollBar Member Functions

When the user presses one of the scroll buttons at either end of the scroll bar, its value
changes by a smallStep. When the user clicks in the bar itself (other than on the knob),
it changes by a bigStep. For an application that displays text, the small step of a vertical
scroll bar should be large enough to bring another line of text into view.

The default small step is 1, which should be too small for most purposes; the default large
step is 10, which is also probably too small.

< Currently, a BScrollBar’s steps can be successfully set only after it’s attached to a
window. >

See also: ValueChanged()

SetTarget(), Target()

void SetTarget(BView *view)
void SetTarget(char *name)

inline BView *Target(void) const

These functions set and return the target of the BScrollBar (the view that the scroll bar
scrolls). SetTarget() sets the target to view, or to the BView identified by name. Target()
returns the current target view. The target can also be set when the BScrollBar is
constructed.

SetTarget() can be called either before or after the BScrollBar is attached to a window. If
the target is set by name, the named view must eventually be found within the same
window as the scroll bar. Typically, the target and its scroll bars are children of a container
view that serves to bind them together as a unit.

See also: the BScrollBar constructor, ValueChanged()

SetValue(), Value()

void SetValue(long value)

long Value(void) const

These functions modify and return the value of the scroll bar. The value is usually set as
the result of user actions; SetValue() provides a way to do it programmatically. Value()
returns the current value, whether set by SetValue() or by the user.

SetValue() assigns a new value to the scroll bar and calls the ValueChanged() hook
function, whether or not the new value is really a change from the old. If the value passed
lies outside the range of the scroll bar, the BScrollBar is reset to the closest value within
range—that is, to either the minimum or the maximum value previously specified.

If the scroll bar is attached to a window, changing its value updates its on-screen display.
The call to ValueChanged() enables the object to scroll the target view so that it too is
updated to conform to the new value.

186 – The Interface Kit

Member Functions BScrollBar

The initial value of a scroll bar is 0.

See also: ValueChanged(), SetRange()

Target() see SetTarget()

Value() see SetValue()

ValueChanged()

virtual void ValueChanged(long newValue)

Responds to a notification that the value of the scroll bar has changed to newValue. For a
horizontal scroll bar, this function interprets newValue as the coordinate value that should
be at the left side of the target view’s bounds rectangle. For a vertical scroll bar, it
interprets newValue as the coordinate value that should be at the top of the rectangle. It
calls ScrollTo() to scroll the target view’s contents accordingly.

ValueChanged() does nothing if a target BView hasn’t been set—or if the target has been
set by name, but the name doesn’t correspond to an actual BView within the scroll bar’s
window.

Derived classes can override this function to interpret newValue differently, or to do
something in addition to scrolling the target view.

ValueChanged() is called as the result both of value-changed messages received from
the Application Server and of SetValue() and SetRange() function calls within the
application.

See also: SetTarget()

The Interface Kit – 187

BScrollView

Derived from: public BView

Declared in: <interface/ScrollView.h>

Overview

A BScrollView object is a container for another view, a target view, typically a view that
can be scrolled. The BScrollView creates and positions the scroll bars the target view
needs and makes itself the parent of the scroll bars and the target view. It’s a convenient
way to set up scroll bars for another view.

If requested, the BScrollView draws a one-pixel wide black border around its children.
Otherwise, it does no drawing and simply contains the family of views it set up.

The ScrollBar() function provides access to the scroll bars the BScrollView creates, so you
can set their ranges and values as needed.

Constructor and Destructor

BScrollView()

BScrollView(const char *name, BView *target,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = 0,
 bool horizontal = FALSE, bool vertical = FALSE,
 bool bordered = TRUE)

Initializes the BScrollView. It will have a frame rectangle large enough to contain the
target view and any scroll bars that are requested. If horizontal is TRUE, there will be a
horizontal scroll bar. If vertical is TRUE, there will be a vertical scroll bar. Scroll bars are
not provided unless you ask for them.

If bordered is TRUE, as it is by default, the frame rectangle will also be large enough to
draw a narrow black border around the target view and scroll bars. A BScrollView can be
used without scroll bars to simply contain and border the target view.

The BScrollView adapts its frame rectangle from the frame rectangle of the target view. It
positions itself so that its left and top sides are exactly where the left and top sides of the
target view originally were. It then adds the target view as its child along with any

188 – The Interface Kit

Member Functions BScrollView

requested scroll bars. In the process, it modifies the target view’s frame rectangle (but not
its bounds rectangle) so that it will fit within its new parent.

If the resize mode of the target view is B_FOLLOW_ALL, it and the scroll bars will be
automatically resized to fill the container view whenever the container view is resized.

The scroll bars created by the BScrollView have an initial range extending from a
minimum of 0 to a maximum of 1000. You’ll generally need to ask for the scroll bars
(using the ScrollBar() function) and set their ranges to more appropriate values.

The name, resizeMode, and flags arguments are identical to those declared in the BView
class and are passed unchanged to the BView constructor.

See also: the BView constructor

~BScrollView()

virtual ~BScrollView(void)

Does nothing.

Member Functions

Draw()

virtual void Draw(BRect updateRect)

Draws a one-pixel wide black border around the target view and scroll views, provided the
bordered flag wasn’t set to FALSE in the BScrollView constructor.

See also: the BScrollView constructor, Draw() in the BView class

ScrollBar()

BScrollBar *ScrollBar(orientation posture) const

Returns the horizontal scroll bar if posture is B_HORIZONTAL and the vertical scroll bar if
posture is B_VERTICAL. If the BScrollView doesn’t contain a scroll bar with the requested
orientation, this function returns NULL.

See also: the BScrollBar class

The Interface Kit – 189

BSeparatorItem

Derived from: public BMenuItem

Declared in: <interface/MenuItem.h>

Overview

A BSeparatorItem is a menu item that serves only to separate the items that precede it in
the menu list from the items that follow it. It’s drawn as a horizontal line across the menu
from the left border to the right. Although it has an indexed position in the menu list just
like other items, it doesn’t have a label, can’t be selected, posts no messages, and is
permanently disabled.

Since the separator is drawn horizontally, it’s assumed that items in the menu are arranged
in a column, as they are by default. It’s inappropriate to use a separator in a menu bar or
another menu where the items are arranged in a row.

A separator can be added to a BMenu by constructing an object of this class and calling
BMenu’s AddItem() function. As a shorthand, you can simply call BMenu’s
AddSeparatorItem() function, which constructs the object for you and adds it to the list.

A BSeparatorItem that’s returned to you (by BMenu’s ItemAt() function, for example) will
always respond NULL to Message(), Command(), and Submenu() queries and FALSE to
IsEnabled().

See also: AddSeparatorItem() in the BMenu class

Constructor and Destructor

BSeparatorItem()

BSeparatorItem(void)

Initializes the BSeparatorItem and disables it.

~BSeparatorItem()

virtual ~BSeparatorItem(void)

Does nothing.

190 – The Interface Kit

Member Functions BSeparatorItem

Member Functions

Draw()

protected:
virtual void Draw(void)

Draws the item as a horizontal line across the width of the menu.

GetContentSize()

protected:
virtual void GetContentSize(float *width, float *height)

Provides a minimal size for the item so that it won’t constrain the size of the menu.

SetEnabled()

virtual void SetEnabled(bool flag)

Does nothing. A BSeparatorItem is disabled when it’s constructed and must stay that way.

The Interface Kit – 191

BStringView

Derived from: public BView

Declared in: <interface/StringView.h>

Overview

A BStringView object draws a static character string. The user can’t select the string or
edit it; a BStringView doesn’t respond to user actions. An instance of this class can be
used to draw a label or other text that simply delivers a message of some kind to the user.
Use a BTextView object for selectable and editable text.

You can also draw strings by calling BView’s DrawString() function. However, assigning
a string to a BStringView object locates it in the view hierarchy. The string will be
updated automatically, just like other views. And, by setting the resizing mode of the
object, you can make sure that it will be positioned properly when the window or the view
it’s in (the parent of the BStringView) is resized.

Constructor and Destructor

BStringView()

BStringView(BRect frame, const char *name, const char *text,
 ulong resizingMode = B_FOLLOW_LEFT_TOP,
 ulong flags = B_WILL_DRAW)

Initializes the BStringView by assigning it a text string. The frame rectangle needs to be
large enough to display the entire string in the current font. The string is drawn at the
bottom of the frame rectangle and, by default, is aligned to the left side. A different
horizontal alignment can be set by calling SetAlignment().

The frame, name, resizingMode, and flags arguments are the same as those declared for the
BView class. They’re passed unchanged to the BView constructor.

~BStringView()

virtual ~BStringView(void)

Frees the text string.

192 – The Interface Kit

Member Functions BStringView

Member Functions

Alignment() see SetAlignment()

AttachedToWindow()

virtual void AttachedToWindow(void)

Sets the default font for drawing the label to the 9-point “Erich” bitmap font. This
function is called by the Interface Kit; you shouldn’t call it yourself. However, you can
reimplement it to set the high color or a different font for drawing the string—or simply to
take notice when the BStringView becomes part of a window’s view hierarchy.

See also: AttachedToWindow() in the BView class

Draw()

virtual void Draw(BRect updateRect)

Draws the string along the bottom of the BStringView’s frame rectangle in the current
high color.

See also: Draw() in the BView class

SetAlignment(), Alignment()

void SetAlignment(alignment flag)

inline alignment Alignment(void) const

These functions align the string within the BStringView’s frame rectangle and return the
current alignment. The alignment flag can be:

B_ALIGN_LEFT The string is aligned at the left side of the frame
rectangle.

B_ALIGN_RIGHT The string is aligned at the right side of the frame
rectangle.

B_ALIGN_CENTER The string is aligned so that the center of the string falls
midway between the left and right sides of the frame
rectangle.

The default is B_ALIGN_LEFT.

The Interface Kit – 193

 BStringView Member Functions

SetText(), Text()

void SetText(const char *string)

inline const char *Text(void) const

These functions set and return the text string that the BStringView draws. SetText() frees
the previous string and copies string to replace it. Text() returns the null-terminated string.

194 – The Interface Kit

Member Functions BStringView

The Interface Kit – 195

BTextView

Derived from: public BView

Declared in: <interface/TextView.h>

Overview

The BTextView class defines a view that displays text on-screen and supports a standard
user interface for entering, selecting, and editing text from the keyboard and mouse. It
also supports the principal editing commands—“Cut,” “Copy,” “Paste,” “Delete,” and
“Select All.”

BTextView objects are suitable for displaying small amounts of text in the user interface
and for creating textual data in ASCII format. Full-scale text editors and word processors
will need to define their own objects to handle richer data formats.

A BTextView displays all its text in a single font, the font that it inherits as a BView
graphics parameter. Multiple fonts are not supported. Paragraph properties—such as
alignment, tab widths, and interline spacing—are similarly uniform for all text displayed
within the view.

Resizing

A BTextView can be made to resize itself to exactly fit the text that the user enters. This is
sometimes appropriate for small one-line text fields. See the MakeResizeable() function.

Shortcuts and Menu Items

When a BTextView is the focus view for its window, it responds to these standard
keyboard shortcuts for cutting, copying, and pasting text:

• Command-x to cut text and copy it to the clipboard,
• Command-c to copy text without cutting it, and
• Command-v to paste text taken from the clipboard.

These shortcuts work even in the absence of “Cut,” “Copy,” and “Paste” menu items;
they’re implemented by the BWindow for any view that might be the focus view. All the
focus view has to do is cooperate, as a BTextView does, by handling the messages the
shortcuts generate.

196 – The Interface Kit

Overview BTextView

The only trick is to set up menu items that are compatible with the shortcuts. Follow these
guidelines if you put a menu with editing commands in a window that has a BTextView:

• Create “Cut”, “Copy”, and “Paste” menu items and assign them the Command-x,
Command-c, and Command-v shortcuts.

• Assign the items model B_CUT, B_COPY and B_PASTE messages. These messages
don’t need to contain any information (other than a what data member initialized to
the proper constant).

• Target the messages to the BWindow’s focus view (or directly to the BTextView).
No changes to the BTextView are necessary. When it gets these messages, the
BTextView calls its Cut(), Copy(), and Paste() functions.

You can also set up menu items that trigger calls to other BTextView editing and layout
functions. Simply create menu items like “Select All” or “Double Space” that are targeted
to the focus view of the window where the BTextView is located, or to the BTextView
itself. The model messages assigned to these items can be structured with whatever
command constants and data entries you wish; the BTextView class imposes no
constraints.

Then, in a class derived from BTextView, implement a MessageReceived() function that
responds to messages posted from the menu items by calling BTextView functions like
SelectAll() and SetSpacing(). For example:

void myText::MessageReceived(BMessage *message)
{
 switch (message->what) {
 case SELECT_ALL:
 SelectAll();
 break;
 case SINGLE_SPACE:
 SetSpacing(1);
 break;
 case DOUBLE_SPACE:
 SetSpacing(2);
 break;
 . . .
 default:
 BTextView::MessageReceived(message);
 break;
 }
}

The MessageReceived() function you implement should be sure to call BTextView’s
version of the function, which already handles B_CUT, B_COPY, and B_PASTE messages.

The Interface Kit – 197

 BTextView Hook Functions

Hook Functions

AcceptsChar() Can be implemented to preview the characters the user
types and either accept or reject them before they’re added
to the display.

BreaksAtChar() Breaks word selection on spaces, tabs, and other invisible
characters, permitting all adjacent visible characters to be
selected when the user double-clicks a word. This function
can be augmented to break word selection on other
characters in addition to the invisible ones.

Constructor and Destructor

BTextView()

BTextView(BRect frame, const char *name, BRect textRect,
 ulong resizingMode, ulong flags)

Initializes the BTextView to the frame rectangle, stated in its eventual parent’s coordinate
system, assigns it an identifying name, sets its resizing behavior to resizingMode and its
drawing behavior with flags. These four arguments—frame, name, resizingMode, and
flags—are identical to those declared for the BView class and are passed unchanged to the
BView constructor.

The text rectangle, textRect, is stated in the BTextView’s coordinate system. It determines
where text in placed within the view’s bounds rectangle:

• The first line of text is placed at the top of the text rectangle. As additional lines of
text are entered into the view, the text grows downward and may actually extend
beyond the bottom of the rectangle.

• The left and right sides of the text rectangle determine where lines of text are placed
within the view. Lines can be aligned to either side of the rectangle, or they can be
centered between the two sides. See the SetAlignment() function.

• When lines wrap on word boundaries, the width of the text rectangle determines the
maximum length of a line; each line of text can be as long as the rectangle is wide.
When word wrapping isn’t turned on, lines can extend beyond the boundaries of the
text rectangle. See the SetWordWrap() function.

The bottom of the text rectangle is ignored; it doesn’t limit the amount of text the view can
contain. The text can be limited by the number of characters, but not by the number of
lines.

198 – The Interface Kit

Member Functions BTextView

The constructor establishes the following default properties for a new BTextView:

• The text is left-aligned and single-spaced.
• The tab width is 44.0 coordinate units.
• Automatic indenting and word wrapping are turned off.
• The text is selectable and editable.
• All characters the user may type are acceptable.

A BTextView isn’t fully initialized until it’s assigned to a window and it receives an
AttachedToWindow() notification.

See also: AttachedToWindow(), the BView constructor

~BTextView()

virtual ~BTextView(void)

Frees the memory the BTextView allocated to hold the text and to store information about
it.

Member Functions

AcceptsChar()

virtual bool AcceptsChar(ulong aChar) const

Implemented by derived classes to return TRUE if aChar designates a character that the
BTextView can add to its text, and FALSE if not. By returning FALSE, this function prevents
the character from being displayed or retained by the object.

AcceptsChar() is called for every character the user types (including those, like
B_BACKSPACE and B_RIGHT_ARROW, that are used for editing the text). The default
version of this function always returns TRUE, but it can be overridden in a derived class to
restrict the text the user can enter. For example, a BTextView might reject uppercase
letters, or permit only numbers, or allow only those characters that are valid in a
pathname.

Sometimes, a character will be meaningful and trigger a response of some kind, even
though it can’t be displayed. For example, a B_TAB (0x09) might be rejected as a character
to display, and instead shift the selection to another text field. Similarly, a BTextView that
has room to display only a single line of text might return FALSE for the newline character
(B_ENTER, 0x0a), yet take the occasion to simulate a click on a button.

When rejecting a character outright (not using it to take some other action), an application
has an obligation to explain to the user why the character is unacceptable, perhaps by
displaying an alert panel or dialog box.

The Interface Kit – 199

 BTextView Member Functions

As an alternative to implementing an AcceptsChar() function, you can simply inform the
BTextView at the outset that certain characters should not be allowed. Call
DisallowChar() when setting up the BTextView to tell it which characters won’t be
acceptable.

See also: KeyDown(), DisallowChar()

Alignment() see SetAlignment()

AllowChar() see DisallowChar()

AttachedToWindow()

virtual void AttachedToWindow(void)

Completes the initialization of the BTextView object after it becomes attached to a
window. This function sets up the object so that it can correctly format text and display
it. It allocates memory for the text and makes sure that all properties that were previously
set—for example, word wrapping, tab width, and alignment—are correctly reflected in the
display on-screen. In addition, it calls SetFontName() and SetFontSize() to set the font to
the 9-point “Erich” bitmap font (no rotation, 90° shear).

This function is called for you when the BTextView becomes part a window’s view
hierarchy; you shouldn’t call it yourself, though you can override it to set a different
default font and do other graphics initialization. For more information on when it’s called,
see the BView class.

An AttachedToWindow() function that’s implemented by a derived class should begin by
incorporating the BTextView version:

void MyText::AttachedToWindow()
{
 BTextView::AttachedToWindow()
 . . .
}

If it doesn’t, the BTextView won’t be able to properly display the text.

See also: AttachedToWindow() in the BView class, SetFontName()

BreaksAtChar()

virtual bool BreaksAtChar(ulong aChar) const

Implemented by derived classes to return TRUE if the aChar character can break word
selection, and FALSE if it cannot. The BTextView class calls this function when the user
selects a word by double-clicking it. A return of TRUE means that the character breaks the

200 – The Interface Kit

Member Functions BTextView

selection—it cannot be selected as part of the word. A return of FALSE means that the
character will be included in the selected word.

By default, BreaksAtChar() returns TRUE if the character is a B_SPACE (0x20), a
B_TAB (0x09), a newline (B_ENTER, 0x0a), or some other character with an ASCII value
less than that of a space, and FALSE otherwise.

It can be reimplemented to add hyphens to the list of characters that break word selection,
as follows:

bool MyTextView::BreaksAtChar(ulong someChar)
{
 if (someChar == ‘-’)
 return TRUE;
 return BTextView::BreaksAtChar(someChar);
}

See also: Text()

CharAt() see Text()

Copy()

virtual void Copy(BClipboard *clipboard)

Copies the current selection to the clipboard. The clipboard argument is identical to the
global be_clipboard object.

See also: Paste(), Cut()

CountLines() see GoToLine()

CurrentLine() see GoToLine()

Cut()

virtual void Cut(BClipboard *clipboard)

Copies the current selection to the clipboard, deletes it from the BTextView’s text, and
removes it from the display. The clipboard argument is identical to the global
be_clipboard object.

See also: Paste(), Copy()

The Interface Kit – 201

 BTextView Member Functions

Delete()

void Delete(void)

Deletes the current selection from the BTextView’s text and removes it from the display,
without copying it to the clipboard.

See also: Cut()

DisallowChar(), AllowChar()

void DisallowChar(ulong aChar)

void AllowChar(ulong aChar)

These functions inform the BTextView whether the user should be allowed to enter aChar
into the text. By default, all characters are allowed. Call DisallowChar() for each
character you want to prevent the BTextView from accepting, preferably when first setting
up the object.

AllowChar() reverses the effect of DisallowChar().

Alternatively, and for more control over the context in which characters are accepted or
rejected, you can implement an AcceptsChar() function for the BTextView.
AcceptsChar() is called for each key-down event that’s reported to the object.

See also: AcceptsChar()

DoesAutoindent() see SetAutoindent()

DoesWordWrap() see SetWordWrap()

Draw()

virtual void Draw(BRect updateRect)

Draws the text on-screen. The Interface Kit calls this function for you whenever the text
display needs to be updated—for example, whenever the user edits the text, enters new
characters, or scrolls the contents of the BTextView.

See also: Draw() in the BView class

GetSelection()

void GetSelection(long *start, long *finish)

Provides the current selection by writing the offset before the first selected character into
the variable referred to by start and the offset after the last selected character into the

202 – The Interface Kit

Member Functions BTextView

variable referred to by finish. If no characters are selected, both offsets will record the
position of the current insertion point.

The offsets designate positions between characters. The position at the beginning of the
text is offset 0, the position between the first and second characters is offset 1, and so on.
If the 175th through the 202nd characters were selected, the start offset would be 174 and
the finish offset would be 202.

If the text isn’t selectable, both offsets will be 0.

See also: Select()

GetText() see Text()

GoToLine(), CountLines(), CurrentLine()

void GoToLine(long index)

long CurrentLine(void) const

inline long CountLines(void) const

GoToLine() moves the insertion point to the beginning of the line at index. The first line
has an index of 0, the second line an index of 1, and so on. If the index is out-of-range, the
insertion point is moved to the beginning of the line with the nearest in-range index—that
is, to either the first or the last line.

CurrentLine() returns the index of the line where the first character of the selection—or the
character following the insertion point—is currently located.

CountLines() returns how many lines of text the BTextView currently contains.

Like other functions that change the selection, GoToLine() doesn’t automatically scroll the
display to make the new selection visible. Call ScrollToSelection() to be sure that the user
can see the start of the selection.

See also: ScrollToSelection()

Highlight()

void Highlight(long start, long finish)

Highlights the characters from start through finish, where start and finish are the same sort
of offsets into the text array as are passed to Select().

The Interface Kit – 203

 BTextView Member Functions

Highlight() is the function that the BTextView calls to highlight the current selection. You
don’t need to call it yourself for this purpose. It’s in the public API just in case you may
need to highlight a range of text in some other circumstance.

See also: Select()

IndexAtPoint()

long IndexAtPoint(BPoint point) const
long IndexAtPoint(float x, float y) const

Returns the index of the character displayed closest to point—or (x, y)—in the
BTextView’s coordinate system. The first character in the text array is at index 0.

If the point falls after the last line of text, the return value is the index of the last character
in the last line. If the point falls before the first line of text, or if the BTextView doesn’t
contain any text, the return value is 0.

See also: Text()

Insert()

void Insert(const char *text, long length)
void Insert(const char *text)

Inserts length characters of text—or if a length isn’t specified, all the characters of the text
string up to the null character that terminates it—at the beginning of the current selection.
The current selection is not deleted and the insertion is not selected.

See also: SetText()

IsEditable() see MakeEditable()

IsSelectable() see MakeSelectable()

KeyDown()

virtual void KeyDown(ulong aChar)

Enters text at the current selection in response to the user’s typing. This function is called
from the window’s message loop for every report of a key-down event—once for every
character the user types. However, it does nothing unless the BTextView is the focus view
and the text it contains is editable.

If aChar is one of the arrow keys (B_UP_ARROW, B_LEFT_ARROW, B_DOWN_ARROW, or
B_RIGHT_ARROW), KeyDown() moves the insertion point in the appropriate direction. If

204 – The Interface Kit

Member Functions BTextView

aChar is the B_BACKSPACE character, it deletes the current selection (or one character at
the current insertion point). Otherwise, it checks whether the character was registered as
unacceptable (by DisallowChar()) and it calls the AcceptsChar() hook function to give the
application a chance to reject the character or handle it in some other way. If the character
isn’t disallowed and AcceptsChar() returns TRUE, it’s entered into the text and displayed.

See also: KeyDown() in the BView class, AcceptsChar(), DisallowChar()

LineHeight()

inline float LineHeight(void) const

Returns the height of a single line of text, as measured from the baseline of one line of
single-spaced text to the baseline of the line above or below it.

The height in stated in coordinate units and depends on the current font. It’s the sum of
how far characters can ascend above and descend below the baseline, plus the amount of
leading that separates lines.

See also: GetFontInfo() in the BView class

LineWidth()

float LineWidth(long index = 0) const

Returns the width of the line at index—or, if no index is given, the width of the first line.
The value returned is the sum of the widths (in coordinate units) of all the characters in the
line, from the first through the last, including tabs and spaces.

Line indices begin at 0.

If the index passed is out-of-range, it’s reinterpreted to be the nearest in-range index—that
is, as the index to the first or the last line.

MakeEditable(), IsEditable()

void MakeEditable(bool flag = TRUE)

bool IsEditable(void) const

The first of these functions sets whether the user can edit the text displayed by the
BTextView; the second returns whether or not the text is currently editable. Text is
editable by default.

To edit text, the user must be able to select it. Therefore, when MakeEditable() is called
with an argument of TRUE (or with no argument), it makes the text both editable and
selectable. Similarly, when IsEditable() returns TRUE, the text is selectable as well as
editable; IsSelectable() will also return TRUE.

The Interface Kit – 205

 BTextView Member Functions

A value of FALSE means that the text can’t be edited, but implies nothing about whether or
not it can be selected.

See also: MakeSelectable()

MakeFocus()

virtual void MakeFocus(bool flag = TRUE)

Overrides the BView version of MakeFocus() to highlight the current selection when the
BTextView becomes the focus view (when flag is TRUE) and to unhighlight it when the
BTextView no longer is the focus view (when flag is FALSE). However, the current
selection is highlighted only if the BTextView’s window is the current active window.

This function is called for you whenever the user’s actions make the BTextView become
the focus view, or force it to give up that status.

See also: MakeFocus() in the BView class, MouseDown()

MakeResizeable()

void MakeResizable(BView *containerView)

Makes the BTextView’s frame rectangle and text rectangle automatically grow and shrink
to exactly enclose all the characters entered by the user. The containerView is a view that
should be resized with the BTextView; typically it’s a view that draws a border around the
text (like a BScrollView object) and is the parent of the BTextView. This function won’t
work without a container view.

MakeResizeable() is an alternative to the automatic resizing behavior provided in the
BView class. It triggers resizing on the user’s entry of text, not on a change in the parent
view’s size. The two schemes are incompatible; the BTextView and the container view
should not automatically resize themselves when their parents are resized.

< This function currently requires the text to be either left aligned or center aligned; it
doesn’t work for text that’s right aligned. >

See also: SetAlignment()

MakeSelectable(), IsSelectable()

void MakeSelectable(bool flag = TRUE)

bool IsSelectable(void) const

The first of these functions sets whether it’s possible for the user to select text displayed by
the BTextView; the second returns whether or not the text is currently selectable. Text is
selectable by default.

206 – The Interface Kit

Member Functions BTextView

When text is selectable but not editable, the user can select one or more characters to copy
to the clipboard, but can’t position the insertion point (an empty selection), enter
characters from the keyboard, or paste new text into the view.

Since the user must be able to select text to edit it, calling MakeSelectable() with an
argument of FALSE causes the text to become uneditable as well as unselectable. Similarly,
if IsSelectable() returns FALSE, the user can neither select nor edit the text; IsEditable()
will also return FALSE.

A value of TRUE means that the text is selectable, but says nothing about whether or not it’s
also editable.

See also: MakeEditable()

MessageDropped()

virtual bool MessageDropped(BMessage *message, BPoint point, BPoint offset)

Takes textual data from the dropped message and pastes it into the text. The text replaces
the current selection, or is placed at the site of the current insertion point.

This function first looks in the BMessage for an entry named “text” registered as
B_ASCII_TYPE. Failing that, it looks for a single character named “char” registered as
B_LONG_TYPE. If successful in finding either entry, it adds the data to the text, updates the
display on-screen, and returns TRUE. If unsuccessful, it returns FALSE.

See also: AcceptsChar()

MessageReceived()

virtual void MessageReceived(BMessage *message)

Overrides the BReceiver function to handle B_CUT, B_COPY, and B_PASTE messages, by
calling the Cut(), Copy(), and Paste() virtual functions.

For the BTextView to get these messages, “Cut”, “Copy”, and “Paste” menu items should
be:

• Assigned model messages with B_CUT, B_COPY, and B_PASTE as their what data
members, and

• Targeted to the BTextView, or to the current focus view in the window that displays
the BTextView.

The BTextView, through this function, takes care of the rest.

To inherit this functionality, MessageReceived() functions implemented by derived
classes should be sure to call the BTextView version.

See also: SetMessage() and SetTarget() in the BMenuItem class

The Interface Kit – 207

 BTextView Member Functions

MouseDown()

virtual void MouseDown(BPoint point)

Selects text and positions the insertion point in response to the user’s mouse actions. If the
BTextView isn’t already the focus view for its window, this function calls MakeFocus() to
make it the focus view.

MouseDown() is called for each mouse-down event that occurs inside the BTextView’s
frame rectangle.

See also: MouseDown() and MakeFocus() in the BView class

Paste()

virtual void Paste(BClipboard *clipboard)

Takes textual data from the clipboard and pastes it into the text. The new text replaces the
current selection, or is placed at the site of the current insertion point.

The clipboard argument is identical to the global be_clipboard object.

See also: Cut(), Copy()

Pulse()

virtual void Pulse(void)

Turns the caret marking the current insertion point on and off when the BTextView is the
focus view in the active window. Pulse() is called by the system at regular intervals.

This function is first declared in the BView class.

See also: Pulse() in the BView class

ScrollToSelection()

void ScrollToSelection(void)

Scrolls the text so that the beginning of the current selection is within the visible region of
the view, provided that the BTextView is equipped with a scroll bar that permits scrolling
in the required direction (horizontal or vertical).

See also: ScrollBy() in the BView class

208 – The Interface Kit

Member Functions BTextView

Select()

void Select(long start, long finish)

Selects the characters from start up to finish, where start and finish are offsets into the
BTextView’s text. The offsets designate positions between characters. For example,

Select (0, 2);

selects the first two characters of text,

Select(17, 18);

selects the eighteenth character, and

Select(0, TextLength());

selects the entire text just as the SelectAll() function does. If start and finish are the same,
the selection will be empty (an insertion point).

Normally, the selection is changed by the user. This function provides a way to change it
programmatically.

If the BTextView is the current focus view in the active window, Select() highlights the
new selection (or displays a blinking caret at the insertion point). However, it doesn’t
automatically scroll the contents of the BTextView to make the new selection visible. Call
ScrollToSelection() to be sure that the user can see the start of the selection.

See also: Text(), GetSelection(), ScrollToSelection(), GoToLine(), MouseDown()

SelectAll()

void SelectAll(void)

Selects the entire text of the BTextView, and highlights it if the BTextView is the current
focus view in the active window.

See also: Select()

The Interface Kit – 209

 BTextView Member Functions

SetAlignment(), Alignment()

void SetAlignment(alignment where)

alignment Alignment(void) const

These functions set the way text is aligned within the text rectangle and return the current
alignment. Three settings are possible:

B_ALIGN_LEFT Each line is aligned at the left boundary of the text
rectangle.

B_ALIGN_RIGHT Each line is aligned at the right boundary of the text
rectangle.

B_ALIGN_CENTER Each line is centered between the left and right
boundaries of the text rectangle.

The default is B_ALIGN_LEFT.

SetAutoindent(), DoesAutoindent()

void SetAutoindent(bool flag)

bool DoesAutoindent(void) const

These functions set and return whether a new line of text is automatically indented the
same as the preceding line. When set to TRUE and the user types Return at the end of a line
that begins with tabs or spaces, the new line will automatically indent past those tabs and
spaces to the position of the first visible character.

The default value is FALSE.

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()

virtual void SetFontName(const char *name)

virtual void SetFontSize(float points)

virtual void SetFontRotation(float degrees)

virtual void SetFontShear(float angle)

These functions override their BView counterparts to recalculate the layout of the text
when the font changes, and to prevent the text displayed by a BTextView object from
being rotated.

Font rotation is disabled; the BTextView version of SetFontRotation() does nothing. The
other three functions invoke their BView counterparts to change the font, then make sure
the entire text is recalculated and rewrapped for the new font. However, the text display is
not updated.

210 – The Interface Kit

Member Functions BTextView

SetFontName() and SetFontSize() are called by AttachedToWindow() to set the
BTextView’s default font to 9-point “Erich”.

See also: SetFontName() in the BView class

SetMaxChars()

void SetMaxChars(long max)

Sets the maximum number of characters that the BTextView can accept. The default is the
maximum number of characters that can be designated by a long integer, a number:
sufficiently large to accommodate all uses of a BTextView. Use this function only if you
need to restrict the number of characters that the user can enter in a text field.

SetSpacing(), Spacing()

void SetSpacing(long spacing)

long Spacing(void) const

These functions set and return the spacing between lines of text. A value of 1 indicates
single spacing, 2 double spacing, 3 triple spacing, and so on.

Single spacing is the default.

SetSymbolSet()

virtual void SetSymbolSet(const char *name)

Overrides its BView counterpart to recalculate the text layout when the symbol set
changes.

See also: SetSymbolSet() in the BView class

SefTabWidth()

void SetTabWidth(float width)

Sets the distance between tab stops to width coordinate units. All tabs have a uniform
width.

The default tab width is 44.0.

The Interface Kit – 211

 BTextView Member Functions

SetText()

void SetText(const char *text, long length)
void SetText(const char *text)

Removes any text currently in the BTextView and copies length characters of text to
replace it—or all the characters in the text string, up to the null character, if a length isn’t
specified. If text is NULL or length is 0, this function empties the BTextView. Otherwise, it
copies the required number of text characters passed to it.

This function is typically used to set the text initially displayed in the view. If the
BTextView is attached to a window, it’s updated to show its new contents.

See also: Text(), TextLength()

SetTextRect(), TextRect()

void SetTextRect(BRect rect)

inline BRect TextRect(void) const

SetTextRect() makes rect the BTextView’s text rectangle—the rectangle that locates where
text is placed within the view. This replaces the text rectangle originally set in the
BTextView constructor. The layout of the text is recalculated to fit the new rectangle, and
the text is redisplayed.

TextRect() returns the current text rectangle.

See also: the BTextView constructor

SetWordWrap(), DoesWordWrap()

void SetWordWrap(bool flag)

bool DoesWordWrap(void) const

These functions set and return whether the BTextView wraps lines on word boundaries,
dropping entire words that don’t fit at the end of a line to the next line. Words break on
tabs, spaces, and other invisible characters; all adjacent visible characters wrap together.

By default, word wrapping is turned off (DoesWordWrap() returns FALSE). Lines break
only on a newline character (where the user types return).

See also: SetTextRect()

Spacing() see SetSpacing()

212 – The Interface Kit

Member Functions BTextView

Text(), GetText(), CharAt()

const char *Text(void)

const char *GetText(char *buffer, long index, long length) const

char CharAt(long index) const

These functions reveal the text contained in the BTextView.

Text() returns a pointer to the text, which may be a pointer to an empty string if the
BTextView is empty. The returned pointer can be used to read the text, but not to alter it
(use SetText(), Insert(), Delete(), and other BTextView functions to do that).

GetText() copies up to length characters of the text into buffer, beginning with the
character at index, and adds a null terminator (‘\0’). The first character in the BTextView
is at index 0, the second at index 1, and so on. Fewer than length characters are copied if
there aren’t that many between index and the end of the text. The results won’t be reliable
if the index is out-of-range.

CharAt() returns the specific character located at index.

The pointer that Text() returns is to the BTextView’s internal representation of the text.
When it returns, the text string is guaranteed to be null-terminated and without gaps.
However, the BTextView may have had to manipulate the text to get it in that condition.
Therefore, there may be a performance price to pay if Text() is called frequently. If you’re
going to copy the text, it’s more efficient to have GetText() do it for you. If you’re going to
index into the text, it may be more efficient to call CharAt().

The pointer that Text() returns may no longer be valid after the user or the program next
changes the text. Even if valid, the string may no longer be null-terminated and gaps may
appear.

See also: TextLength()

TextLength()

long TextLength(void) const

Returns the number of characters the BTextView currently contains—the number of
characters that Text() returns (not counting the null terminator).

See also: Text(), SetMaxChars()

TextRect() see SetTextRect()

The Interface Kit – 213

 BTextView Member Functions

Window Activated()

virtual void WindowActivated(bool flag)

Highlights the current selection when the BTextView’s window becomes the active
window (when flag is TRUE)—provided that the BTextView is the current focus view—and
removes the highlighting when the window ceases to be the active window (when flag is
FALSE).

If the current selection is empty (if it’s an insertion point), it’s highlighted by turning the
caret on and off (blinking it).

The Interface Kit calls this function for you whenever the BTextView’s window becomes
the active window or it loses that status.

See also: WindowActivated() in the BView class, MakeFocus()

214 – The Interface Kit

Member Functions BTextView

The Interface Kit – 215

BView

Derived from: public BReceiver

Declared in: <interface/View.h>

Overview

BView objects are the agents for drawing and message handling within windows. Each
object sets up and takes responsibility for a particular view, a rectangular area that’s
associated with at most one window at a time. The object draws within the view rectangle
and responds to reports of events elicited by the images drawn.

Classes derived from BView implement the actual functions that draw and handle
messages; BView merely provides the framework. For example, a BTextView object
draws and edits text in response to the user’s activity on the keyboard and mouse. A
BButton draws the image of a button on-screen and responds when the button is clicked.
BTextView and BButton inherit from the BView class—as do most classes in the Interface
Kit.

The following Kit classes derive, directly or indirectly, from BView:

BMenu BControl BScrollBar
BMenuBar BButton BScrollView
BPopUpMenu BCheckBox BBox
BListView BRadioButton BStringView
BTextView BPictureButton

Serious applications will need to define their own classes derived from BView.

Views and Windows

For a BView to do its work, you must attach it to a window. The views in a window are
arranged in a hierarchy—there can be views within views—with those that are most
directly responsible for drawing and message handling located at the terminal branches of
the hierarchy and those that contain and organize other views situated closer to its trunk
and root. A BView begins life unattached. You can add it to a hierarchy by calling the
AddChild() function of the BWindow, or of another BView.

216 – The Interface Kit

Overview BView

Within the hierarchy, a BView object plays two roles:

• It’s a BReceiver for messages delivered to the window thread. BViews implement
the functions that respond to the most common system messages—including those
that report keyboard and mouse events. They can also be targeted to receive
application-defined messages that affect what they view displays.

• It’s an agent for drawing. Adding a BView to a window gives it an independent
graphics environment. A BView draws on the initiative of the BWindow and the
Application Server, whenever they determine that the appearance of any part of the
view rectangle needs to be “updated.” It also draws on its own initiative in response
to events.

The relationship of BViews to BWindows and the framework for drawing and responding
to the user were discussed in the introduction to this chapter. The concepts and
terminology presented there are assumed in this class description. See especially “BView
Objects” on page 11, “The View Hierarchy” on page 13, “Drawing” beginning on page 18,
and “Responding to the User” beginning on page 41.

BViews can also be called upon to create bitmap images. See the BBitmap class for
details.

Drag and Drop

The BView class supports a drag-and-drop user interface. The user can transfer a parcel of
information from one place to another by dragging an image from a source view and
dropping it on a destination view—perhaps a view in a different window or even a
different application.

A source BView initiates dragging by calling DragMessage() from within its
MouseDown() function. The BView bundles all information relevant to the dragging
session into a BMessage object and passes it to DragMessage(). It also passes an image to
represent the data package on-screen.

The Application Server then takes charge of the BMessage object and animates the; image
as the user drags it on-screen. As the image moves across the screen, the views it passes
over are informed with MouseMoved() function calls. These notifications give views a
chance to show the user whether or not they’re willing to accept the message being
dragged. When the user releases the mouse button, dropping the dragged message the
destination BView’s MessageDropped() virtual function is called. The dragged
BMessage is passed to the BView as a MessageDropped() argument.

Aside from creating a BMessage object and passing it to DragMessage(), or
implementing MouseMoved() and MessageDropped() functions to handle any messages
that come its way, there’s nothing an application needs to do to support a drag-and-drop
user interface. The bulk of the work is done by the Application Server and Interface Kit.

The Interface Kit – 217

 BView Overview

Locking the Window

If a BView is attached to a window, any operation that affects the view might also affect
the window and the BView’s shadow counterpart in the Application Server. For this
reason, any code that calls a BView function should first lock the window—so that one
thread can’t modify essential data structures while another thread is using them. A
window can be locked by only one thread at a time.

By default, before they do anything else, almost all BView functions check to be sure the
caller has the window locked. If the window isn’t properly locked, they print warning
messages and fail.

This check should help you develop an application that correctly regulates access to
windows and views. However, it adds a certain amount of time to each function call.
Once your application has been debugged and is ready to ship, you can turn the check off
by calling BWindow’s SetDiscipline() function and passing it an argument of FALSE. The
discipline flag is separately set for each window.

BView functions can require the window to be locked only if the view has a window to
lock; the requirement can’t be enforced if the BView isn’t attached to a window.
However, as discussed under “Views and the Server” on page 30 of the introduction to this
chapter, many BView functions, including all those that depend on graphics parameters,
don’t work at all unless the view is attached—in which case the window must be locked.

Whenever the system calls a BView function to notify it of something—whenever it calls
WindowActivated(), Draw(), MessageReceived() or another hook function—it first locks
the window thread. The application doesn’t have to explicitly lock the window when
responding to an update, an interface message, or some other notification. The window is
already locked.

Derived Classes

When it comes time for a BView to draw, its Draw() virtual function is called
automatically. When it needs to respond to an event, a virtual function named after the
kind of event is called—MouseDown(), KeyDown(), MessageDropped(), and so on.
Classes derived from BView implement these hook functions to do the particular kind of
drawing and message handling characteristic of the derived class.

• Some classes derived from BView implement control devices—buttons, dials,
selection lists, check boxes, and so on—that translate user actions on the keyboard
and mouse into more explicit instructions for the application. In the Interface Kit,
BMenu, BListView, BButton, BCheckBox, and BRadioButton are examples of
control devices.

• Other BViews visually organize the display—for example, a view that draws a
border around and arranges other views, or one that splits a window into two or
more resizable panels. The BBox, BScrollBar, and BScrollView classes fall into this
category.

218 – The Interface Kit

Hook Functions BView

• Some BViews implement highly organized displays the user can manipulate, such
as a game board or a scientific simulation.

• Perhaps the most important BViews are those that permit the user to create,
organize, and edit data. These views display the current selection and are the focus
of most user actions. They carry out the main work of an application. BText view is
the only Interface Kit example of such a view.

Almost all the BView classes defined in the Interface Kit fall into the first two of these
groups. Control devices and organizational views can serve a variety of different kinds of
applications, and therefore can be implemented in a kit that’s common to all applications

However, the BViews that will be central to most applications fall into the last two groups.
Of particular importance are the BViews that manage editable data. Unfortunately, these
are not views that can be easily implemented in a common kit. Just as most applications
devise their own data formats, most applications will need to define their own data-
handling views.

Nevertheless, the BView class structures and simplifies the task of developing application-
specific objects that draw in windows and interact with the user. It takes care of the lower-
level details and manages the view’s relationship to the window and other views in the
hierarchy. You should make yourself familiar with this class before implementing your
own application-specific BViews.

Hook Functions

AttachedToWindow() Can be implemented to finish initializing the BView once it
becomes part of a window’s view hierarchy.

Draw() Can be implemented to draw the view.

FrameMoved() Can be implemented to respond to a message notifying the
BView that it has moved in its parent’s coordinate system.

FrameResized() Can be implemented to respond to a message informing the
BView that its frame rectangle has been resized.

KeyDown() Can be implemented to respond to a message reporting a
key-down event.

MakeFocus() Makes the BView the focus view, or causes it to give up
being the focus view; can be augmented to take any action
the change in status may require.

MessageDropped() Can be implemented to accept or reject a BMessage
dropped on the view.

The Interface Kit – 219

 BView Constructor and Destructor

MouseDown() Can be implemented to respond to a message reporting a
mouse-down event.

MouseMoved() Can be implemented to respond to a notification that the
cursor has entered the view’s visible region, moved within
the visible region, or exited from the view.

Pulse() Can be implemented to do something at regular intervals.
This function is called repeatedly when no other messages
are pending.

WindowActivated() Can be implemented to respond to a notification that the
BView’s window has become the active window, or has
lost that status.

Constructor and Destructor

BView()

BView(BRect frame, const char *name, ulong resizingMode, ulong flags)

Sets up a view with the frame rectangle, which is specified in the coordinate system of its
eventual parent, and assigns the BView an identifying name, which can be NULL.

When it’s created, a BView doesn’t belong to a window and has no parent. It’s assigned a
parent by having another BView adopt it with the AddChild() function. If the other view
is in a window, the BView becomes part of that window’s view hierarchy. A BView can
be made a child of the window’s top view by calling BWindow’s version of the
AddChild() function.

When the BView gains a parent, the values in frame are interpreted in the parent’s
coordinate system. The sides of the view must be aligned on screen pixels. Therefore, the
frame rectangle should not contain coordinates with fractional values. Fractional
coordinates will be rounded to the nearest whole number.

The resizingMode mask determines the behavior of the view when its parent is resized. It
should combine one constant for horizontal resizing,

B_FOLLOW_LEFT
B_FOLLOW_RIGHT
B_FOLLOW_LEFT_RIGHT
B_FOLLOW_H_CENTER

220 – The Interface Kit

Constructor and Destructor BView

with one for vertical resizing:

B_FOLLOW_TOP
B_FOLLOW_BOTTOM
B_FOLLOW_TOP_BOTTOM
B_FOLLOW_V_CENTER

For example, if B_FOLLOW_LEFT is chosen, the margin between the left side of the view and
left side of its parent will remain constant—the view’s left side will “follow” the parent’s
left side. Similarly, if B_FOLLOW_RIGHT is chosen, the view’s right side will follow the
parent’s right side. If B_FOLLOW_H_CENTER is chosen, the horizontal center of the view
will maintain a constant distance from the horizontal center of the parent.

If the constants name opposite sides of the view rectangle—left and right, or top and
bottom—the view will necessarily be resized in that dimension when the parent is.

If a side is not mentioned, the distance between that side of the view and the
corresponding side of the parent is free to fluctuate. This may mean that the view will
move within its parent’s coordinate system when the parent is resized. B_FOLLOW_RIGHT
plus B_FOLLOW_BOTTOM, for example, would keep a view from being resized, but the
view will move to follow the right bottom corner of its parent whenever the parent is
resized. B_FOLLOW_LEFT plus B_FOLLOW_TOP prevents a view from being resized and
from being moved.

In addition to the constants listed above, there are two other possibilities:

B_FOLLOW_ALL
B_FOLLOW_NONE

B_FOLLOW_ALL is a shorthand for B_FOLLOW_LEFT_RIGHT and B_FOLLOW_TOP_BOTTOM. It
means that the view will be resized in tandem with its parent, both horizontally and
vertically.

B_FOLLOW_NONE keeps the view at its absolute position on-screen; the parent view is
resized around it. (Nevertheless, because the parent is resized, the view may wind up
being moved in its parent’s coordinate system.)

< In additional to the resizingMode constants listed above, some obsoleted constants still
work:

B_FOLLOW_LEFT_TOP
B_FOLLOW_LEFT_BOTTOM
B_FOLLOW_TOP_RIGHT
B_FOLLOW_RIGHT_BOTTOM
B_FOLLOW_LEFT_TOP_RIGHT
B_FOLLOW_LEFT_TOP_BOTTOM
B_FOLLOW_LEFT_RIGHT_BOTTOM
B_FOLLOW_TOP_RIGHT_BOTTOM

A few of these constants are still used to set default parameters in classes derived from
BView. >

The Interface Kit – 221

 BView Constructor and Destructor

Typically, a parent view is resized because the user resizes the window it’s in. When the
window is resized, the top view is too. Depending on how the resizingMode flag is set
for the top view’s children and for the descendants of its children, automatic resizing can
cascade down the view hierarchy. A view can also be resized programmatically by the
ResizeTo() and ResizeBy() functions.

The resizing mode can be changed after construction with the SetResizingMode()
function.

The flags mask determines what kinds of notifications the BView will receive. It can be
any combination of these four constants:

B_WILL_DRAW Indicates that the BView has a Draw() function that
needs to be called on updates—the view isn’t
simply a container for other views; it does some
drawing on its own. If this flag isn’t set, the BView
won’t receive update notifications.

B_PULSE_NEEDED Indicates that the BView should receive Pulse()
notifications.

B_FRAME_EVENTS Indicates that the BView should receive
FrameResized() and FrameMoved() notifications
when its frame rectangle changes—typically as a
result of the automatic resizing behavior described
above. FrameResized() is called when the
dimensions of the view change; FrameMoved() is
called when the position of its left top corner in its
parent’s coordinate system changes.

B_FULL_UPDATE_ON_RESIZE Indicates that the entire view should be updated
when it’s resized. If this flag isn’t set, only the
portions that resizing adds to the view will be
included in the clipping region.

If none of these constants apply, flags can be NULL. The flags can be reset after
construction with the SetFlags() function.

See also: SetResizingMode(), SetFlags()

~BView()

virtual ~BView(void)

Removes the BView from the view hierarchy and ensures that each of its descendants is
also removed and destroyed.

222 – The Interface Kit

Member Functions BView

Member Functions

AddChild()

virtual void AddChild(BView *aView)

Makes aView a child of the BView. If aView already has a parent, it’s removed from that
view and added to this one. A view can have only one parent.

If the BView is attached to a window, aView and all of its descendants become attached to
the same window. Each of them is notified of this change through an
AttachedToWindow() function call.

See also: AddChild() in the BWindow class, AttachedToWindow(), RemoveChild()

AddLine() see BeginLineArray()

AttachedToWindow()

virtual void AttachedToWindow(void)

Implemented by derived classes to complete the initialization of the BView when it’s
assigned to a window. A BView is assigned to a window when it, or one of its ancestors in
the view hierarchy, becomes a child of a view already attached to a window.

AttachedToWindow() is called immediately after the BView is formally made a part of the
window’s view hierarchy and after it has become known to the Application Server. The
Window() function can identify which BWindow the BView belongs to.

All of the BView’s children, if it has any, also become attached to the window and receive
their own AttachedToWindow() notifications. However, the BView receives the
notification before any of its children do and before they are recognized as part of the
window’s view hierarchy. This function should therefore do nothing that depends on
descendent views being attached to the window. However, it can depend on ancestor
views being attached.

AttachedToWindow() is often implemented to set up a view’s graphics environment,
something that can’t be done before the view belongs to a window. For example:

void MyView::AttachedToWindow()
{
 MyBaseClass::AttachedToWindow();

 SetFontName("Emily");
 SetFontSize(14);
 SetLowColor(192, 192, 192);
}

The Interface Kit – 223

 BView Member Functions

The default (BView) version of AttachedToWindow() is empty.

See also: AddChild(), Window()

BeginLineArray(), AddLine(), EndLineArray()

void BeginLineArray(long count)

void AddLine(BPoint start, BPoint end, rgb_color color)

void EndLineArray(void)

These functions provide a more efficient way of drawing a large number of lines than
repeated calls to StrokeLine(). BeginLineArray() signals the beginning of a series of up to
count AddLine() calls; EndLineArray() signals the end of the series. Each AddLine() call
defines a line from the start point to the end point, associates it with a particular color, and
adds it to the array. The lines can each be a different color; they don’t have to be
contiguous. When EndLineArray() is called, all the lines are drawn—using the then
current pen size—in the order that they were added to the array.

These functions don’t change any graphics parameters. For example, they don’t move the
pen or change the current high and low colors. Parameter values that are in effect when
EndLineArray() is called are the ones used to draw the lines. The high and low colors are
ignored in favor of the color specified for each line.

The count passed to BeginLineArray() is an upper limit on the number of lines that can be
drawn. Keeping the count close to accurate and within reasonable bounds helps the
efficiency of the line-array mechanism. It’s a good idea to keep it less than 256; above that
number, memory requirements begin to impinge on performance.

See also: StrokeLine()

BeginPicture(), EndPicture()

void BeginPicture(BPicture *picture)

BPicture *EndPicture(void)

BeginPicture() instructs the Application Server to begin recording a set of drawing
instructions for a picture; EndPicture() instructs the Server to end the recording session. It
returns the same object that was passed to BeginPicture()-

The BPicture records exactly what the BView draws—and only what the BView draws—
between the BeginPicture() and EndPicture() calls. The drawing of other views is ignored,
as are function calls that don’t draw or affect graphics parameters. The picture captures
only primitive graphics operations—that is, functions defined in this class, such as
DrawString(), FillArc(), and SetFont(). If a complex drawing function (such as Draw()) is
called, only the primitive operations that it contains are recorded.

224 – The Interface Kit

Member Functions BView

A BPicture can be recorded only if the BView is attached to a window. The window it’s in
can be off-screen and the view itself can be hidden or reside outside the current clipping
region. However, if the window is on-screen and the view is visible, the drawing that the
BView does will both be captured in the picture and rendered in the window.

See also: the BPicture class, DrawPicture()

BeginRectTracking(), EndRectTracking()

void BeginRectTracking(BRect rect, ulong how= B_TRACK_WHOLE_RECT)

void EndRectTracking(void)

These functions instruct the Application Server to display a rectangular outline that will
track the movement of the cursor. BeginRectTracking() puts the rectangle on-screen and
initiates tracking; EndRectTracking() terminates tracking and removes the rectangle. The
initial rectangle, rect, is specified in the BView’s coordinate system.

This function supports two kinds of tracking, depending on the constant passed as the how
argument:

B_TRACK_WHOLE_RECT The whole rectangle moves with the cursor. Its
position changes, but its size remains fixed.

B_TRACK_RECT_CORNER The left top corner of the rectangle remains fixed
within the view while its right and bottom edges
move with the cursor.

Tracking is typically initiated from within a BView’s MouseDown() function and is
allowed to continue as long as a mouse button is held down. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;

 BRect rect(point, point);
 BeginRectTracking(rect, B_TRACK_RECT_CORNER);
 do {
 snooze(20 * 1000);
 GetMouse(&point, &buttons);
 } while (buttons);
 EndRectTracking();

 rect.SetRightBottom(point);
 . . .
}

This example uses BeginRectTracking() to drag out a rectangle from the point recorded for
a mouse-down event. It sets up a modal loop to periodically check on the state of the
mouse buttons. Tracking ends when the user releases all buttons. The right and bottom

The Interface Kit – 225

 BView Member Functions

sides of the rectangle are then updated from the cursor location last reported by the
GetMouse() function.

See also: ConvertToScreen(), GetMouse()

Bounds()

BRect Bounds(void) const

Returns the BView’s bounds rectangle. If the BView is attached to a window, this function
gets the current bounds rectangle from the Application Server. If not, it assigns the BView
a default coordinate system and returns a bounds rectangle that’s the same size and shape
as the frame rectangle, but with the left and top sides at 0.

See also: Frame()

ChildAt(), CountChildren()

BView *ChildAt(long index) const

long CountChildren(void) const

< The first of these functions returns the child BView at index, or NULL if the BView has
no such child. The second returns the number of children the BView has. Indices begin at
0 and the children are not arranged in any particular order. Don’t rely on these functions as
they may not remain in the API in this form. >

ConstrainClippingRegion()

virtual void ConstrainClippingRegion(BRegion *region)

Restricts the drawing that the BView can do to region.

The Application Server keeps track of a clipping region for each BView that’s attached to a
window. It clips all drawing the BView does to that region; the BView can’t draw
outside of it.

By default, the clipping region contains only the visible area of the view and, during an
update, only the area that actually needs to be drawn. By passing a region to this function,
an application can further restrict the clipping region. When calculating the clipping
region, the Server intersects it with the region provided. The BView can draw only in
areas common to the region passed and the clipping region as the Server would otherwise
calculate it. The region passed can’t expand the clipping region beyond what it otherwise
would be.

If called during an update, ConstrainClippingRegion() restricts the clipping region only
for the duration of the update.

226 – The Interface Kit

Member Functions BView

Calls to ConstrainClippingRegion() are not additive; each region that’s passed replaces
the region that was passed in the previous call.

See also: GetClippingRegion(), Draw()

ConvertToParent(), ConvertFromParent()

void ConvertToParent(BPoint *localPoint) const
void ConvertToParent(BRect *localRect) const

void ConvertFromParent(BPoint *parentPoint) const
void ConvertFromParent(BRect *parentRect) const

These functions convert points and rectangles to and from the coordinate system of the
BView’s parent. ConvertToParent() converts the point referred to by localPoint, or the
rectangle referred to by localRect, from the BView’s coordinate system to the coordinate
system of its parent. ConvertFromParent() does the opposite; it converts the point referred
to by parentPoint, or the rectangle referred to by parentRect, from the coordinate system
of the BView’s parent to the BView’s own coordinate system.

Both functions fail if the BView isn’t attached to a window.

See also: ConvertToScreen()

ConvertToScreen(), ConvertFromScreen()

void ConvertToScreen(BPoint *localPoint) const
void ConvertToScreen(BRect *localRect) const

void ConvertFromScreen(BPoint *screenPoint) const
void ConvertFromScreen(BRect *screenRect) const

These functions convert points and rectangles to and from the global screen coordinate
system. ConvertToScreen() converts the point referred to by localPoint, or the rectangle
referred to by localRect, from the BView’s coordinate system to the screen coordinate
system. ConvertFromScreen() makes the opposite conversion; it converts the point
referred to by screenPoint, or the rectangle referred to by screenRect, from the screen
coordinate system to the BView’s local coordinate system.

Neither function will work if the BView isn’t attached to a window.

See also: ConvertToScreen() in the BWindow class, ConvertToParent()

CopyBits()

void CopyBits(BRect source, BRect destination)

Copies the image displayed in the source rectangle to the destination rectangle, where
both rectangles lie within the view and are stated in the BView’s coordinate system.

The Interface Kit – 227

 BView Member Functions

If the two rectangles aren’t the same size, the source image is scaled to fit. If not all of the
destination rectangle lies within the BView’s visible region, the source image is clipped
rather than scaled.

If not all of the source rectangle lies within the BView’s visible region, only the visible
portion is copied. It’s mapped to the corresponding portion of the destination rectangle.
The BView is then invalidated so its Draw() function will be called to update the part of
the destination rectangle that can’t be filled with the source image.

CountChildren() see ChildAt()

DragMessage()

void DragMessage(BMessage *message, BBitmap *image, BPoint point)
void DragMessage(BMessage *message, BRect rect)

Initiates a drag-and-drop session. The first argument, message, is a BMessage object that
bundles the information that will be dragged and dropped on the destination view. Once
passed to DragMessage(), this object becomes the responsibility of—and will eventually
be freed by—the system. You shouldn’t free it yourself, try to access it later, or pass it to
another function. (Since data is copied when it’s added to a BMessage, only the copies are
automatically freed, not the originals.)

The second argument, image, represents the message on-screen; it’s the visible image that
the user drags. Like the BMessage, this BBitmap object becomes the responsibility of the
system; it will be freed when the message is dropped. If you want to keep the image
yourself, make a copy to pass to DragMessage(). The image isn’t dropped on the
destination BView; if you want the destination to have the image, you must add it to the
message as well as pass it as the image argument.

The final argument, point, locates the point within the image that’s aligned with the hot
spot of the cursor—that is, the point that’s aligned with the location passed to
MouseDown() or returned by GetMouse(). It’s stated within the coordinate system of the
source image and should lie somewhere within its bounds rectangle. The bounds
rectangle and coordinate system of a BBitmap are set when the object is constructed.

Alternatively, you can specify that an outline of a rectangle, rect, should be dragged
instead of an image. The rectangle is stated in the BView’s coordinate system.
(Therefore, a point argument isn’t needed to align it with the cursor.)

This function works only for BViews that are attached to a window.

See also: the BMessage class in the Application Kit, MessageDropped(), the BBitmap
class

228 – The Interface Kit

Member Functions BView

Draw()

virtual void Draw(BRect updateRect)

Implemented by derived classes to draw the updateRect portion of the view. The Update
rectangle is stated in the BView’s coordinate system. It’s the smallest rectangle that
encloses the current clipping region for the view.

Since the Application Server won’t render anything a BView draws outside its clipping
region, applications will be more efficient if they avoid sending drawing instructions to the
Server for images that don’t intersect with updateRect. For more efficiency and precision,
you can ask for the clipping region itself (by calling GetClippingRegion()) and confine
drawing to images that intersect with it.

A BView’s Draw() function is called (as the result of an update message) whenever the
view needs to present itself on-screen. This may happen when:

• The window the view is in is first shown on-screen, or shown after being hidden (see
the BWindow version of the Hide() function).

• The view is made visible after being hidden (see BView’s Hide() function).

• Obscured parts of the view are revealed, as when a window is moved from in high
of the view or an image is dragged across the view.

• The view is resized.

• The contents of the view are scrolled (see ScrollBy()).

• A child view is added, removed, or resized.

• A rectangle has been invalidated that includes at least some of the view (see
Invalidate()).

• CopyBits() can’t completely fill a destination rectangle within the view.

See also: UpdateIfNeeded() in the BWindow class, Invalidate(), GetClippingRegion()

DrawBitmap()

void DrawBitmap(const BBitmap *image)
void DrawBitmap(const BBitmap *image, BPoint point)
void DrawBitmap(const BBitmap *image, BRect destination)
void DrawBitmap(const BBitmap *image, BRect source, BRect destination)

Places a bitmap image in the view at the current pen position, at the point specified, or
within the designated destination rectangle. The point and the destination rectangle are
stated in the BView’s coordinate system.

The Interface Kit – 229

 BView Member Functions

If a source rectangle is given, only that part of the bitmap image is drawn. Otherwise, the
entire bitmap is placed in the view. The source rectangle is stated in the internal
coordinates of the BBitmap object.

If the source image is bigger than the destination rectangle, it’s scaled to fit.

See also: “Drawing Modes” on page 27 in the chapter introduction, the BBitmap class

DrawChar()

void DrawChar(char c)
void DrawChar(char c, BPoint point)

Draws the character c at the current pen position—or at the point specified—and moves
the pen to a position immediately to the right of the character. This function is equivalent
to passing a string of one character to DrawString(). The point is specified in the BView’s
coordinate system.

See also: DrawString()

DrawingMode() see SetDrawingMode()

DrawPicture()

void DrawPicture(const BPicture *picture)
void DrawPicture(const BPicture *picture, BPoint point)

Draws the previously recorded picture at the current pen position—or at the specified
point in the BView’s coordinate system. The point or pen position is taken as the
coordinate origin for all the drawing instructions recorded in the BPicture.

Nothing that’s done in the BPicture can affect anything in the BView’s graphics state—for
example, the BPicture can’t reset the current high color or the pen position. Conversely,
nothing in the BView’s current graphics state affects the drawing instructions captured in
the picture. The graphics parameters that were in effect when the picture was recorded
determine what the picture looks like.

See also: BeginPicture(), the BPicture class

230 – The Interface Kit

Member Functions BView

DrawString ()

void DrawString(const char *string)
void DrawString(const char *string, long length)
void DrawString(const char *string, BPoint point)
void DrawString(const char *string, long length, BPoint point)

Draws length characters of string—or, if the number of characters isn’t specified, all the
characters in the string, up to the null terminator (‘\0’).

This function places the first character on a baseline that begins at the current pen
position—or at the specified point in the BView’s coordinate system. It moves the pen to
the baseline immediately to the right of the last character drawn. A series of simple
DrawString() calls (with no point specified) will produce a continuous string. For example,
these two lines of code,

DrawString("tog");
DrawString("ether");

will produce the same result as this one:

DrawString("together");

See also: MovePenBy(), SetFontName()

EndLineArray() see BeginLineArray()

EndPicture() see BeginPicture()

EndRectTracking() see BeginRectTracking()

FillArc() see StrokeArc()

FillEllipse() see StrokeEllipse()

FillPolygon() see Stroke Polygon ()

FillRect() see StrokeRect()

FillRoundRect() see StrokeRoundRect()

FillTriangle() see StrokeTriangle()

The Interface Kit – 231

 BView Member Functions

FindView()

BView *FindView(const char *name) const

Returns the BView identified by name, or NULL if the view can’t be found. Names are
assigned by the BView constructor and can be modified by the SetName() function.

FindView() begins the search by checking whether the BView’s name matches name. If
not, it continues to search down the view hierarchy, among the BView’s children and more
distant descendants. To search the entire view hierarchy, use the BWindow version of this
function.

See also: FindView() in the BWindow class, SetName()

Flags() see SetFlags()

Flush(), Sync()

void Flush(void) const

void Sync(void) const

These functions flush the window’s connection to the Application Server. If the BView
isn’t attached to a window, neither function has an effect.

For reasons of efficiency, the window’s connection to the Application Server is buffered.
Drawing instructions destined for the Server are placed in the buffer and dispatched as a
group when the buffer becomes full. Flushing empties the buffer, sending whatever
instructions happen to be in it to the Server, even if it’s not yet full.

The buffer is automatically flushed on every update. However, if you do any drawing
outside the update mechanism—in response to interface messages, for example—you
need to explicitly flush the connection so that drawing instructions won’t languish in the
buffer while waiting for it to fill up or for the next update. You should also flush it if you
call any drawing functions from outside the window’s thread.

Flush() simply flushes the buffer and returns. It does the same work as BWindow’s
function of the same name.

Sync() flushes the connection, then waits until the Server has executed the last instruction
that was in the buffer before returning. This alternative to Flush() prevents the application
from getting ahead of the Server (ahead of what the user sees on-screen) and keeps both
processes synchronized.

It’s a good idea, for example, to call Sync(), rather than Flush(), after employing BViews to
produce a bitmap image (a BBitmap object). Sync() is the only way you can be sure the
image has been completely rendered before you attempt to draw with it.

232 – The Interface Kit

Member Functions BView

(Note that all BViews attached to a window share the same connection to the Application
Server. Calling Flush() or Sync() for any one of them flushes the buffer for all of them.)

See also: Flush() in the BWindow class, the BBitmap class

Frame()

BRect Frame(void) const

Returns the BView’s frame rectangle. The frame rectangle is first set by the BView
constructor and is altered only when the view is moved or resized. It’s stated in the
coordinate system of the BView’s parent.

See also: MoveBy(), ResizeBy(), the BView constructor

FrameMoved()

virtual void FrameMoved(BPoint parentPoint)

Implemented by derived classes to respond to a notification that the view has moved
within its parent’s coordinate system. parentPoint gives the new location of the left top
corner of the BView’s frame rectangle.

FrameMoved() is called only if the B_FRAME_EVENTS flag is set and the BView is
attached to a window

If the view is both moved and resized, FrameMoved() is called before FrameResized().
This might happen, for example, if the BView’s automatic resizing mode is
B_FOLLOW_TOP_RIGHT_BOTTOM and its parent is resized both horizontally and vertically.

The default (BView) version of this function is empty.

< Currently, FrameMoved() is also called when a hidden window is shown on-screen. >

See also: MoveBy(), FrameMoved() in the BWindow class, SetFlags()

FrameResized()

virtual void FrameResized(float width, float height)

Implemented by derived classes to respond to a notification that the view has been resized.
The arguments state the new width and height of the view. The resizing could have been
the result of a user action (resizing the window) or of a programmatic one (calling
ResizeTo() or ResizeBy()).

FrameResized() is called only if the B_FRAME_EVENTS flag is set and the BView is attached
to a window.

The Interface Kit – 233

 BView Member Functions

BView’s version of this function is empty.

See also: ResizeBy(), FrameResized() in the BWindow class, SetFlags()

GetCharEscapements(), GetCharEdges()

void GetCharEscapements(char charArray[], long numChars,
 short escapementArray[], float *factor) const

void GetCharEdges(char charArray[], long numChars,
 edge_info edgeArray[]) const

These two functions are designed for programmers who want to precisely position
characters on the screen or printed page. For each character passed in the charArray, they
write information about the horizontal dimension of the character into the
escapementArray or the edgeArray. Both functions assume the BView’s current font.
(Therefore, neither has any effect unless the BView is attached to a window.)

Escapement An “escapement” is simply the width of a character recorded in very small
units. The units are sufficiently tiny to permit detailed information to be kept in integer
form for every character in the font. Because the units are small, escapement values are
quite large. (The term “escapement” has its historical roots in the fact that the carriage of
a typewriter had to move or “escape” a certain distance after each character was typed to
make room for the next character.)

The escapement of a character measures the amount of horizontal room it requires when
positioned between other characters in a line of text. It includes a measurement of the
space required to display the character itself, plus some extra room on the left and right
edges to separate the character from its neighbors. In a proportionally spaced font, each
character has a distinctive escapement. The illustration below shows the approximate
escapements for the letters ‘l’ and ‘p’ as they might appear together in a word like “help”
or “ballpark.” The escapement for each character is the distance between the vertical
lines:

234 – The Interface Kit

Member Functions BView

GetCharEscapements() measures the same space that functions such as BView’s
StringWidth() and BTextView’s LineWidth() do, though it measures each character
individually and records the result in arbitrary (rather than coordinate) units.

The escapement of a character in a particular font is a constant no matter what the font
size. To convert an escapement value to coordinate units, you must multiply it by three
values:

• A floating-point conversion factor,
• The font size (in points), and
• The resolution of the output device.

GetCharEscapements() writes the conversion factor into the variable referred to by
factor. GetFontInfo() can provide the current font size. When the output device is a
printer, the resolution should be the actual resolution (the dpi or “dots per inch”) at which
it prints. When the output device is the screen, the resolution should be 72.0. (This
reflects the fact that screen pixels are taken to equal coordinate units—and one coordinate
unit is 1/72 of an inch, or roughly equivalent to one typographical point.)

Edges. Edge values measure how far a character outline is inset from its left and right
escapement boundaries. GetCharEdges() provides edge values in standard coordinate
units, not escapement units, that take the size of the current font into account. It places the
edge values into an array of edge_info structures. Each structure has a left and a right data
member, as follows:

typedef struct {
 float left;
 float right;
} edge_info;

The illustration below shows typical character edges. As in the illustration above, the
solid vertical lines mark escapement boundaries. The dotted lines mark off the part of
each escapement that’s an edge, the distance between the character outline and the
escapement boundary:

The Interface Kit – 235

 BView Member Functions

This is the normal case. The left edge is a positive value measured rightward from the left
escapement boundary. The right edge is a negative value measured leftward from the right
escapement boundary.

However, if the characters of a font overlap, the left edge can be a negative value and the
right edge can be positive. This is illustrated below:

Note that the italic ‘l’ extends beyond its escapement to the right, and that the ‘p’ begins
before its escapement to the left. In this case, instead of separating the adjacent characters,
the edges determine how much they overlap.

Edge values are specific to each character and depend on nothing but the character (and the
font). They don’t take into account any contextual information; for example, the right edge
for italic ‘l’ would be the same no matter what letter followed. Edge values therefore aren’t
sufficient to decide how character pairs can be kerned. Kerning is contextually dependent
on the combination of two particular characters.

See also: GetFontInfo()

GetClippingRegion()

void GetClippingRegion(BRegion *region) const

Modifies the BRegion object passed as an argument so that it describes the current
clipping region of the BView, the region where the BView is allowed to draw. It’s most
efficient to allocate temporary BRegions on the stack:

BRegion clipper;
GetClippingRegion(&clipper);
. . .

236 – The Interface Kit

Member Functions BView

Ordinarily, the clipping region is the same as the visible region of the view, the part of the
view currently visible on-screen. The visible region is equal to the view’s bounds
rectangle minus:

• The frame rectangles of its children,

• Any areas that are clipped because the view doesn’t lie wholly within the frame
rectangles of all its ancestors in the view hierarchy, and

• Any areas that are obscured by other windows or that lie in a part of the window
that’s off-screen.

The clipping region can be smaller than the visible region if the program restricted it by
calling ConstrainClippingRegion(). It will exclude any area that doesn’t intersect with the
region passed to ConstrainClippingRegion().

While the BView is being updated, the clipping region contains just those parts of the view
that need to be redrawn. This may be smaller than the visible region, or the region
restricted by ConstrainClippingRegion(), if:

• The update occurs during scrolling. The clipping region will exclude any of the
view’s visible contents that the Application Server is able to shift to their new
location and redraw automatically.

• The view rectangle has grown (because, for example, the user resized the window
larger) and the update is needed only to draw the new parts of the view.

• The update was caused by Invalidate() and the rectangle passed to Invalidate()
didn’t cover all of the visible region.

• The update was necessary because CopyBits() couldn’t fill all of a destination
rectangle.

This function works only if the BView is attached to a window. Unattached BViews can’t
draw and therefore have no clipping region.

See also: ConstrainClippingRegion(), Draw(), Invalidate()

GetFontInfo()

void GetFontInfo(font_info *fontInfo) const

Writes information about the BView’s current font into the structure referred to by
fontInfo. The font_info structure contains the following fields:

font_name name The name of the font, which can be as long as 32
characters, plus a null terminator. The name can be set
by BView’s SetFontName() function.

short size The size of the font in points. It can be set by
SetFontSize().

The Interface Kit – 237

 BView Member Functions

short shear The shear angle, which is 90.0° by default and can vary
between 45.0° and 135.0°. It can be set by
SetFontShear().

short rotation The angle of rotation, which is 0.0° by default. It’s set by
SetFontRotation().

short ascent How far characters ascend above the baseline.

short descent How far characters descend below the baseline.

short leading The amount of space separating lines (between the
descent of the line above and the ascent of the line
below).

The ascent, descent, and leading are measured in coordinate units. < The font_info
structure will be converted to floating-point values in a future release. >

See also: SetFontName()

GetKeys()

void GetKeys(key_info *keyInfo, bool checkQueue)

Writes information about the state of the keyboard into the key_info structure referred to
by keyInfo. This structure contains the following fields:

ulong char_code An ASCII character value, such as ‘a’ or B_BACKSPACE.

ulong key_code A code identifying the key that produced the character.

ulong modifiers A mask indicating which modifier keys are down and
which keyboard locks are on.

uchar key_states[16] A bit field that records the state of all the keys on the
keyboard, and all keyboard locks.

These fields match the BMessage entries that record information about a key-down event.

If the checkQueue flag is FALSE, GetKeys() provides information about the current state of
the keyboard.

However, if the checkQueue flag is TRUE, GetKeys() first checks the message queue to see
whether it contains any messages reporting keyboard (key-down or key-up) events. If
there are keyboard messages waiting in the queue, it takes the information from the oldest
message, places it in the keyInfo structure, and removes the message from the queue. Each
time GetKeys() is called, it gets another keyboard message from the queue. If the queue
doesn’t contain any keyboard messages, it reports the current state of the keyboard, just as
if checkQueue were FALSE.

238 – The Interface Kit

Member Functions BView

When called repeatedly in a loop, GetKeys() will empty the queue of keyboard messages
and then reflect the current state of the keyboard. In this way, you can be sure that your
application has not jumped ahead of the user and overlooked any reports of the user
keyboard actions.

This function never looks at the current message, even if it happens to report a keyboard
event and checkQueue is TRUE. The current message isn’t in the queue. To get information
about the current message, you must call BLooper’s CurrentMessage() function:

BMessage *current == myView->Window()->CurrentMessge();

If GetKeys() takes a keyboard message from the queue, all the key_info fields are filled in
from the message. However, if it captures the current state of the keyboard, the
char_code and key_code fields are set to 0; these fields are appropriate only for reporting
particular events.

When the modifiers field reflects the current keyboard state, it contains the same
information that the Modifiers() function returns.

The key_states array works identically to the “states” array passed in a key-down
message. See “Key States” on page 64 for information on how to read the array.

See also: Modifiers(), KeyDown(), “Keyboard Information” on page 55 of the chapter
introduction

GetMouse()

void GetMouse(BPoint *cursor, ulong *buttons, bool checkQueue = TRUE) const

Provides the location of the cursor and the state of the mouse buttons. The position of the
cursor is recorded in the variable referred to by cursor; it’s provided in the B View’s own
coordinates. A bit is set in the variable referred to by buttons for each mouse button that’s
down. This mask may be 0 (if no buttons are down) or it may contain one or more of the
following constants:

PRIMARY_MOUSE_BUTTON
SECONDARY_MOUSE_BUTTON
TERTIARY_MOUSE_BUTTON

The cursor doesn’t have to be located within the view for this function to work; it can be
anywhere on-screen. However, the BView must be attached to a window.

If the checkQueue flag is set to FALSE, GetMouse() provides information about the current
state of the mouse buttons and the current location of the cursor.

If checkQueue is TRUE, as it is by default, this function first looks in the message queue for
any pending reports of mouse-moved or mouse-up events. If it finds any, it takes the one
that has been in the queue the longest (the oldest message), removes it from the queue, and
reports the cursor location and button states that were recorded in the message. Each
GetMouse() call removes another message from the queue. If the queue doesn’t hold any

The Interface Kit – 239

 BView Member Functions

B_MOUSE_MOVED or B_MOUSE_UP messages, GetMouse() reports the current state of the
mouse and cursor, just as if checkQueue were FALSE.

This function is typically called from within a MouseDown() function to track the location
of the cursor and wait for the mouse button to go up. By having it check the message
queue, you can be sure that you haven’t overlooked any of the cursor’s movement or
missed a mouse-up event (quickly followed by another mouse-down) that might have
occurred before the first GetMouse() call.

See also: Modifiers()

Hide(), Show()

virtual void Hide(void)

virtual void Show(void)

These functions hide a view and show it again.

Hide() makes the view invisible without removing it from the view hierarchy. The visible
region of the view will be empty and the BView won’t receive update messages. If the
BView has children, they also are hidden.

Show() unhides a view that had been hidden. This function doesn’t guarantee that the
view will be visible to the user; it merely undoes the effects of Hide(). If the view didn’t
have any visible area before being hidden, it won’t have any after being shown again
(given the same conditions).

Calls to Hide() and Show() can be nested. For a hidden view to become visible again, the
number of Hide() calls must be matched by an equal number of Show() calls.

However, Show() can only undo a previous Hide() call on the same view. If the view
became hidden when Hide() was called to hide the window it’s in or to hide one of its
ancestors in the view hierarchy, calling Show() on the view will have no effect. For a view
to come out of hiding, its window and all its ancestor views must be unhidden.

Hide() and Show() can affect a view before it’s attached to a window. The view will reflect
its proper state (hidden or not) when it becomes attached. Views are created in an
unhidden state.

See also: Hide() in the BWindow class, IsHidden()

HighColor() see SetHighColor()

240 – The Interface Kit

Member Functions BView

Invalidate()

void Invalidate(BRect rect)
void Invalidate(void)

Invalidates the rect portion of the view, causing update messages—and consequently
Draw() notifications—to be generated for the BView and all descendants that lie wholly or
partially within the rectangle. The rectangle is stated in the BView’s coordinate system.

If no rectangle is specified, the BView’s entire bounds rectangle is invalidated.

Since only BViews that are attached to a window can draw, only attached BViews can be
invalidated.

See also: Draw(), GetClippingRegion(), UpdateIfNeeded() in the BWindow class

InvertRect()

void InvertRect(BRect rect)

Inverts all the colors displayed within the rect rectangle. A subsequent InvertRect() call
on the same rectangle restores the original colors.

The rectangle is stated in the BView’s coordinate system.

See also: system_colors() global function

IsFocus()

bool IsFocus(void) const

Returns TRUE if the BView is the current focus view for its window, and FALSE if it’s not.
The focus view changes as the user chooses one view to work in and then another—for
example, as the user moves from one text field to another when filling out an on-screen
form. The change is made programmatically through the MakeFocus() function.

See also: CurrentFocus() in the BWindow class, MakeFocus()

IsHidden()

bool IsHidden(void) const

Returns TRUE if the view has been hidden by the Hide() function, and FALSE otherwise.

This function returns TRUE whether Hide() was called to hide the BView itself, to hide an
ancestor view, or to hide the BView’s window. When a window is hidden, all its views are
hidden with it. When a BView is hidden, all its descendants are hidden with it.

The Interface Kit – 241

 BView Member Functions

If the view has no visible region—perhaps because it lies outside its parent’s frame
rectangle or is obscured by a window in front—this function may nevertheless return
FALSE. It reports only whether the Hide() function has been called to hide the view, hide
one of the view’s ancestors in the view hierarchy, or hide the window where the view is
located.

If the BView isn’t attached to a window, IsHidden() returns the state that it will assume
when it becomes attached. By default, views are not hidden.

See also: Hide()

KeyDown()

virtual void KeyDown(ulong aChar)

Implemented by derived classes to respond to a message reporting a key-down event.
Whenever a BView is the focus view of the active window, it receives a KeyDown()
notification for each character the user types, except for those that:

• Are produced while a Command key is held down. Command key events are
interpreted as keyboard shortcuts.

• Can operate the default button in a window. The BButton object’s KeyDown()
function is called, rather than the focus view’s.

The argument, aChar, names the character reported in the message. It’s an ASCII value
that takes into account the affect of any modifier keys that were held down or keyboard
locks that were in effect at the time. For example, Shift-i is reported as uppercase ‘I’
(0x49) and Control-i is reported as a B_TAB (0x09).

The character can be tested against ASCII codes and these constants:

B_BACKSPACE B_LEFT_ARROW B_INSERT
B_ENTER B_RIGHT_ARROW B_DELETE
B_SPACE B_UP_ARROW B_HOME
B_TAB B_DOWN_ARROW B_END
B_ESCAPE B_PAGE_UP
 B_FUNCTION_KEY B_PAGE_DOWN

Only keys that generate characters produce key-down events; the modifier keys on their
own do not.

You can determine which modifier keys were being held down at the time of the event by
calling BLooper’s CurrentMessage() function and looking up the “modifiers” entry in the
BMessage it returns. If aChar is B_FUNCTION_KEY and you want to know which key

242 – The Interface Kit

Member Functions BView

produced the character, you can look up the “key” entry in the BMessage and test it
against these constants:

B_F1_KEY B_F6_KEY B_F11_KEY
B_F2_KEY B_F7_KEY B_F12_KEY
B_F3_KEY B_F8_KEY B_PRINT_KEY (Print Screen)
B_F4_KEY B_F9_KEY B_SCROLL_KEY (Scroll Lock)
B_F5_KEY B_F10_KEY B_PAUSE_KEY

For example:

if (aChar == B_FUNCTION_KEY) {
 BMessage *msg = Window()->CurrentMessage();
 long key = msg->FindLong("key");
 if (msg->Error == B_NO_ERROR) {
 switch (key) {
 case B_F1_KEY:
 . . .
 break;
 case B_F2_KEY:
 . . .
 break;
 . . .
 }
 }
}

The BView version of KeyDown() is empty.

See also: “Key-Down Events” on page 48 and “Keyboard Information” on page 55) of the
chapter introduction, FilterKeyDown() and SetDefaultButton() in the BWindow class,
Modifiers()

LeftTop()

BPoint LeftTop(void) const

Returns the coordinates of the left top corner of the view—the smallest x and y coordinate
values within the bounds rectangle.

See also: LeftTop() in the BRect class, Bounds()

Looper() see Window()

LowColor() see SetHighColor()

The Interface Kit – 243

 BView Member Functions

MakeFocus()

virtual void MakeFocus(bool flag = TRUE)

Makes the BView the current focus view for its window (if flag is TRUE), or causes it to
give up that status (if flag is FALSE). The focus view is the view that displays the current
selection and is expected to handle reports of key-down events when the window is the
active window. There can be no more than one focus view per window at a time.

When called to make a BView the focus view, this function invokes MakeFocus() for the
previous focus view, passing it an argument of FALSE. It’s thus called twice—once for the
new and once for the old focus view.

Calling MakeFocus() is the only way to make a view the focus view; the focus doesn’t
automatically change on mouse-down events. BViews that can display the current
selection (including an insertion point) or that can accept pasted data should call
MakeFocus() in their MouseDown() functions.

A derived class can override MakeFocus() to add code that takes note of the change in
status. For example, a BView that displays selectable data may want to highlight the
current selection when it becomes the focus view, and remove the highlighting when it’s
no longer the focus view.

If the BView isn’t attached to a window, this function has no effect.

See also: CurrentFocus() in the BWindow class, IsFocus()

MessageDropped()

virtual bool MessageDropped(BMessage *message, BPoint point, BPoint offset)

Implemented by derived classes to read data from a message that the user dragged and
dropped on the view and to initiate whatever course of action this new information entails.
The BMessage object is freed after MessageDropped() returns, so you must copy any of
its data you want to keep.

When the message was dropped, the cursor was located at point within the BView’s
coordinate system and at offset within the rectangle or image the user dragged. < The
offset assumes a coordinate system with (0.0,0.0) at the left top corner of the dragged
rectangle or image. >

If the BView accepts the message, it should return TRUE. A return of FALSE rejects the
message and causes MessageDropped() to be called for the BView’s parent. The
notification works its way up the view hierarchy until it finds a BView that will return
TRUE, or it reaches the top view.

The BView version of this function always returns FALSE; by default, views don’t accept
dropped messages.

244 – The Interface Kit

Member Functions BView

Often the messages that can be successfully dropped on a view hold data that could also be
pasted from the clipboard. To handle this data in common code, MessageDropped() and
the Paste() function you define for the view can pass the data to a third function
implemented for this purpose. MessageDropped() would extract the data from the
message and Paste() would get it from the clipboard.

If a BView displays any of the data it takes from the message, it should generally make
itself the focus view:

bool MyView::MessageDropped(BMessage *message,
 BPoint point, BPoint offset)
{
 MakeFocus(TRUE);
 . . .
 return TRUE;
}

The messages that a user drags and drops on a view might have their source in any
application. The Browser will probably be a common source, since it permits user, to
drag representations of database records. The message in which the Browser packages the
dragged information is identical to one that reports a refs-received event. It has a single
entry named “refs” containing one or more record_ref (B_REF_TYPE) items and
B_REFS_RECEIVED as the command constant.

You can choose whether your version of MessageDropped() should handle these
messages or not. If it does, it might simply pass them to the RefsReceived() function you
implemented in a class derived from BApplication.

See also: “Message-Dropped Events” on page 51, FilterMessageDropped() in the
BWindow class, RefsReceived() in the BApplication class of the Application Kit,
MouseMoved(), the BMessage class

Modifiers()

ulong Modifiers(void) const

Returns a mask that has a bit set for each keyboard lock that’s on and for each modifier
state that’s set because the user is holding down a modifier key. The mask can be tested
against these constants:

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_CONTROL_KEY B_MENU_KEY B_SCROLL_LOCK
B_OPTION_KEY B_NUM_LOCK

No bits are set (the mask is 0) if no locks are on and none of the modifiers keys are down

The Interface Kit – 245

 BView Member Functions

If it’s important to know which physical key the user is holding down, the one on the right
or the one on the left, the mask can be further tested against these constants:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

By default, on a 101-key keyboard, the keys labeled “Alt(ernate)” function as the
Command modifiers, the key on the right labeled “Control” functions as the right Option
key, and only the left “Control” key is available to function as a Control modifier.
However, users can change this configuration with the Keyboard utility.

See also: “Modifier Keys” on page 59 of the introduction to the chapter, GetKeys()

MouseDown()

virtual void MouseDown(BPoint point)

Implemented by derived classes to respond to a message reporting a mouse-down event
within the view. The location of the cursor at the time of the event is given by point in the
BView’s coordinates.

MouseDown() functions are often implemented to track the cursor while the user holds the
mouse button down and then respond when the button goes up. You can call the
GetMouse() function to learn the current location of the cursor and the state of the mouse
buttons. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;
 . . .
 do {
 snooze(20 * 1000);
 GetMouse(&point, &buttons, TRUE);
 . . .
 } while (buttons);
 . . .
}

To get complete information about the mouse-down event, look inside the BMessage
object returned by BLooper’s CurrentMessage() function. The “clicks” entry in the
message can tell you if this mouse-down is a solitary event or one in a series constituting a
multiple click.

The BView version of MouseDown() is empty.

See also: “Mouse-Down Events” on page 49, FilterMouseDown() in the BWindow class,
GetMouse()

246 – The Interface Kit

Member Functions BView

MouseMoved()

virtual void MouseMoved(BPoint point, ulong transit, BMessage *message)

Implemented by derived classes to respond to reports of mouse-moved events associated
with the view. As the user moves the cursor over a window, the Application Server
generates a continuous stream of messages reporting where the cursor is located.

The first argument, point, gives the cursor’s new location in the BView’s coordinate
system. The second argument, transit, is one of three constants,

B_ENTERED_VIEW,
B_INSIDE_VIEW, or
B_EXITED_VIEW

which explains whether the cursor has just entered the visible region of the view, is now
inside the visible region having previously entered, or has just exited from the view.
When the cursor crosses a boundary separating the visible regions of two views (perhaps
moving from a parent to a child view, or from a child to a parent), MouseMoved() is called
for each of the BViews, once with a transit code of B_EXITED_VIEW and once with a code
of B_ENTERED_VIEW.

If the user is dragging a bundle of information from one location to another, the final
argument, message, is a pointer to the BMessage object that holds the information. If a
message isn’t being dragged, message is NULL.

A MouseMoved() function might be implemented to ignore the B_INSIDE_VIEW case and
respond only when the cursor enters or exits the view. For example, a BView might alter
its display to indicate whether or not it can accept a message that has been dragged to it.
Or it might be implemented to change the cursor image when it’s over the view.

MouseMoved() notifications should not be used to track the cursor inside a view. Use the
GetMouse() function instead. GetMouse() provides the current cursor location plus
information on whether any of the mouse buttons are being held down.

The default version of MouseMoved() is empty.

See also: “Mouse-Moved Events” on page 51, FilterMouseMoved() in the BWindow
class, DragMessage()

MoveBy(), MoveTo()

void MoveBy(float horizontal, float vertical)

void MoveTo(BPoint point)
void MoveTo(float x, float y)

These functions move the view in its parent’s coordinate system without altering its size.

MoveBy() adds horizontal coordinate units to the left and right components of the frame
rectangle and vertical units to the top and bottom components. If horizontal and vertical

The Interface Kit – 247

 BView Member Functions

are positive, the view moves downward and to the right. If they’re negative, it moves
upward and to the left.

MoveTo() moves the upper left corner of the view to point—or to (x, y)—in the parent
view’s coordinate system and adjusts all coordinates in the frame rectangle accordingly.

Neither function alters the BView’s bounds rectangle or coordinate system.

None of the values passed to these functions should specify fractional coordinates; the
sides of a view must line up on screen pixels. Fractional values will be rounded to the
closest whole number.

If the BView is attached to a window, these functions cause its parent view to be updated,
so the BView is immediately displayed in its new location. If it doesn’t have a parent or
isn’t attached to a window, these functions merely alter its frame rectangle.

See also: FrameMoved(), ResizeBy()

MovePenBy(), MovePenTo(), PenLocation()

void MovePenBy(float horizontal, float vertical)

void MovePenTo(BPoint point)
void MovePenTo(float x, float y)

BPoint PenLocation(void) const

These functions move the pen (without drawing a line) and report the current pen location.

MovePenBy() moves the pen horizontal coordinate units to the right and vertical units
downward. If horizontal or vertical are negative, the pen moves in the opposite direction.
MovePenTo() moves the pen to point—or to (x, y)—in the BView’s coordinate system.

PenLocation() returns the point where the pen is currently positioned in the BView’s
coordinate system. The default pen position is at (0.0, 0.0).

Some drawing functions also move the pen—to the end of whatever they draw. In
particular, this is true of StrokeLine(), DrawString(), and DrawChar(). Functions that stroke
a closed shape (such as StrokeEllipse()) don’t move the pen.

Like other functions that set graphics parameters, MovePenBy(), MovePenTo(), and
PenLocation() work only for BViews that are attached to a window.

See also: SetPenSize()

MoveTo() see MoveBy()

Name() see SetName()

248 – The Interface Kit

Member Functions BView

Parent()

BView *Parent(void) const

Returns the BView’s parent, or NULL if the BView doesn’t have one.

See also: AddChild()

PenLocation() see MovePenBy()

PenSize() see SetPenSize()

Pulse()

virtual void Pulse(void)

Implemented by derived classes to do something at regular intervals. Pulses are regularly
timed events, like the tick of a clock or the beat of a steady pulse. A BView receives
Pulse() notifications when no other messages are pending, but only if it asks for them with
the B_PULSE_NEEDED flag.

The interval between Pulse() calls can be set with BWindow’s SetPulseRate() function.
The default interval is around 500 milliseconds. The pulse rate is the same for all views
within a window, but can vary between windows.

Derived classes can implement a Pulse() function to do something that must be repeated
continuously. However, for time-critical actions, you should implement your own timing
mechanism.

The BView version of this function is empty.

See also: SetFlags(), the BView constructor, SetPulseRate() in the BWindow class

RemoveChild()

virtual bool RemoveChild(BView *childView)

Severs the link between the BView and childView, so that childView is no longer a child of
the BView. The childView retains all its own children and descendants, but they become
an isolated fragment of a view hierarchy, unattached to a window.

If it succeeds in removing childView, this function returns TRUE. If it fails, it returns FALSE.
It will fail if childView is not, in fact, a child of the BView.

See also: AddChild(), RemoveSelf()

The Interface Kit – 249

 BView Member Functions

RemoveSelf()

bool RemoveSelf(void)

Removes the BView from its parent and returns TRUE, or returns FALSE if the BView
doesn’t have a parent or for some reason can’t be removed from the view hierarchy.

This function acts just like RemoveChild(), except that it removes the BView itself rather
than one of its children.

See also: AddChild(), RemoveChild()

ResizeBy(), ResizeTo()

void ResizeBy(float horizontal, float vertical)

void ResizeTo(float width, float height)

These functions resize the view, without moving its left and top sides. ResizeBy() adds
horizontal coordinate units to the width of the view and vertical units to the height.
ResizeTo() makes the view width units wide and height units high. Both functions adjust
the right and bottom components of the frame rectangle accordingly.

Since a BView’s frame rectangle must be aligned on screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded to
the nearest whole integer.

If the BView is attached to a window, these functions cause its parent view to be updated,
so the BView is immediately displayed in its new size. If it doesn’t have a parent or isn’t
attached to a window, these functions merely alter its frame and bounds rectangles.

See also: FrameResized(), MoveBy(), Width() and Height() in the BRect class

ResizingMode() see SetResizingMode()

ScrollBy(), ScrollTo()

void ScrollBy(float horizontal, float vertical)

void ScrollTo(BPoint point)
void ScrollTo(float x, float y)

These functions scroll the contents of the view.

ScrollBy() adds horizontal to the left and right components of the BView’s bounds
rectangle, and vertical to the top and bottom components. This serves to shift the display
horizontal coordinate units to the left and vertical units upward. If horizontal and vertical
are negative, the display shifts in the opposite direction.

250 – The Interface Kit

Member Functions BView

ScrollTo() shifts the contents of the view as much as necessary to put point—or (x, y)—at
the upper left corner of its bounds rectangle. The point is specified in the BView’s
coordinate system.

Anything in the view that was visible before scrolling and also visible afterwards is
automatically redisplayed at its new location. The remainder of the view is invalidated, so
the BView’s Draw() function will be called to fill in those parts of the display that were
previously invisible. The update rectangle passed to Draw() will be the smallest rectangle
that encloses just these new areas. If the view is scrolled in only one direction, the update
rectangle will be exactly the area that needs to be drawn.

These function don’t work on BViews that aren’t attached to a window.

See also: GetClippingRegion()

SetDrawingMode(), DrawingMode()

virtual void SetDrawingMode(drawing_mode mode)

drawing_mode DrawingMode(void) const

These functions set and return the BView’s drawing mode. They work only for BViews
that are attached to a window.

The mode can be set to any of the following nine constants:

B_OP_COPY B_OP_MIN B_OP_ADD
B_OP_OVER B_OP_MAX B_OP_SUBTRACT
B_OP_ERASE B_OP_INVERT B_OP_BLEND

The default drawing mode is B_OP_COPY. It and the other modes are explained under
“Drawing Modes” on page 27 of the introduction to this chapter.

See also: “Drawing Modes” in the chapter introduction

SetFlags(), Flags()

virtual void SetFlags(ulong mask)

inline ulong Flags(void) const

These functions set and return the flags that inform the Application Server about the kinds
of notifications the BView should receive. The mask set by SetFlags() and the return value
of Flags() is formed from combinations of the following constants:

B_WILL_DRAW,
B_FULL_UPDATE_ON_RESIZE,
B_FRAME_EVENTS, and
B_PULSE_NEEDED

The Interface Kit – 251

 BView Member Functions

The flags are first set when the BView is constructed; they’re explained in the description
of the BView constructor.

To set just one of the flags, combine it with the current setting:

myView->SetFlags(Flags() | B_FRAME_EVENTS);

The mask passed to SetFlags() and the value returned by Flags() can be 0.

See also: the BView constructor, SetResizingMode()

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()

virtual void SetFontName(const char *name)

virtual void SetFontSize(float points)

virtual void SetFontRotation(float degrees)

virtual void SetFontShear(float angle)

These functions set characteristics of the font in which the BView draws text. The font is
part of the BView’s graphics state. It’s used by DrawString() and DrawChar() and assumed
by StringWidth(), GetFontInfo(), and GetCharEdges().

SetFontName() sets the precise name of the font, including the designation of whether it’s
bold, italic, oblique, black, narrow, or some other style. The name passed to this function
must be the same as the name assigned to the font by the vendor. For example, this code

SetFontName("Futura II Italic ATT");

sets the BView’s font to the TrueType™ italic Futura II font.

For SetFontName() to be successful, the name it’s passed must select a font that’s
installed on the user’s machine. The global get_font_name() function can provide the
names of all fonts that are currently installed. (Users can see the names listed in the
Keyboard application’s “Font” menu.)

A handful of fonts are provided with the release, including < Arial, Baskerville MT,
Courier New, Times New Roman, Symbol >, and their stylistic variations. < Additional
fonts can be installed by placing them in the proper subdirectory of /system/fonts and
rebooting the machine. >

The names of the bitmap fonts that come with the system are:

Emily
Erich
Kate

They’re available only in one size—9.0 points. The default font is “Kate”. If you ask for
a font that isn’t available, you’ll get Kate instead.

252 – The Interface Kit

Member Functions BView

< Currently, you must specifically ask for a bitmap font. In the future, bitmap equivalents
to the outline fonts will be automatically provided for on-screen display. >

SetFontSize() sets the size of the font. Valid sizes range from 4 points through 999 points.
< Currently, fractional font sizes are not supported. >

SetFontRotation() sets the rotation of the baseline. The baseline rotates counterclockwise
from an axis on the left side of the character. The default (horizontal) baseline is at) 0°.
For example, this code

SetFontRotation(45.0);
Drawstring("to the northeast");

would draw a string that extended upwards and to the right. < Currently, fractional angles
of rotation are not supported. >

SetFontShear() sets the angle at which characters are drawn relative to the baseline, The
default (perpendicular) shear for all font styles, including oblique and italic ones, is 90.0°.
The shear is measured counterclockwise and can be adjusted within the range 45.0°
(slanted to the right) through 135.0° (slanted to the left). < Currently, fractional shear
angles are not supported. >

These four font functions work only for BViews that are attached to a window. < The
SetFontSize(), SetFontRotation(), and SetFontShear() functions don’t work for bitmap
fonts. >

Derived classes can override these functions to take any collateral measures required by
the font change. For example, BTextView and BListView override them to redisplay the
text in the new font.

See also: GetFontInfo(), AttachedToWindow(), get_font_name()

SetHighColor(), HighColor(), SetLowColor(), LowColor()

virtual void SetHighColor(rgb_color color)
void SetHighColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color HighColor(void) const

virtual void SetLowColor(rgb_color color)
void SetLowColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color LowColor(void) const

These functions set and return the current high and low colors of the BView. They only
work for BViews that are attached to a window.

The high and low colors combine to form a pattern that’s passed as an argument to most
Stroke () and Fill () drawing functions. The B_SOLID_HIGH pattern is the high color
alone, and B_SOLID_LOW is the low color alone.

The Interface Kit – 253

 BView Member Functions

The default high color is black—red, green, and blue values all equal to 0. The default low
color is white—red, green, and blue values all equal to 255. < The alpha component of the
color is currently ignored. >

The versions of SetHighColor() and SetLowColor() that take separate arguments for the
red, blue, and green color components work by creating an rgb_color data structure and
passing it to the corresponding function that’s declared virtual. Therefore, if you want to
augment either function in some way, you need override only the rgb_color version.

See also: “Patterns” on page 25 of the chapter introduction, SetViewColor()

SetName(), Name()

void SetName(const char *string)

const char *Name(void) const

These functions set and return the name that identifies the BView. The name is originally
set by the BView constructor. SetName() assigns the BView a new name, and Name()
returns the current name. The string returned by Name() belongs to the BView object; it
shouldn’t be altered or freed.

See also: the BView constructor, FindView()

SetPenSize(), PenSize()

virtual void SetPenSize(float size)

float PenSize(void) const

SetPenSize() sets the size of the BView’s pen—the graphics parameter that determines the
thickness of stroked lines—and PenSize() returns the current pen size. The pen size is
translated from coordinate units to a device-specific number of pixels.

For stroking rectangles, the pen is a square and the size measures the number of pixels on
one of its sides. When it strokes a rectangle, the left top pixel in the square follows the
path of the line from pixel to pixel. Therefore, if the pen square has more than one pixel
on a side, it extends to the right and hangs below the path being stroked. As it moves
along the path, the pen paints all the pixels that it touches.

For stroking all other lines, the pen is a brush that’s centered on the line path and held
perpendicular to it. If the brush is broader than one pixel, it paints roughly the same
number of pixels on both sides of the path.

The default pen size is 1.0 coordinate unit. It can be set to any non-negative value,
including 0.0. If set to 0.0, the size is translated to 1 pixel for all output devices. This
guarantees that it will always draw the thinnest possible line no matter what the device.

Thus, lines drawn with pen sizes of 1.0 and 0.0 will look alike on the screen (one pixel
thick), but the line drawn with a pen size of 1.0 will be 1/72 of an inch thick when printed,

254 – The Interface Kit

Member Functions BView

however many printer pixels that takes, while the line drawn with a 0.0 pen size will be
just one pixel thick.

These functions can set and return the pen size only if the BView is attached to a window.

See also: “The Pen” on page 24 and “Picking Pixels to Stroke and Fill” on page 34 of the
chapter introduction, StrokeArc() and the other Stroke () functions, MovePenBy()

SetResizingMode(), ResizingMode()

virtual void SetResizingMode(ulong mode)

inline ulong ResizingMode(void) const

These functions set and return the BView’s automatic resizing mode. The resizing mode
is first set when the BView is constructed. The various possible modes are explained
where the constructor is described.

See also: the BView constructor, SetFlags()

SetSymbolSet()

virtual void SetSymbolSet(const char *name)

Determines the set of characters that the BView can display. A symbol set maps graphic
symbols (glyphs) to character values (ASCII codes). Sets differ mainly in which symbols
they associate with character values beyond the traditional ASCII range (above 0x7f),
though they sometimes also differ within the traditional range as well.

The default symbol set is “Macintosh”. However, there are many other possibilities to
choose from, including:

“IS() 8859/9 Latin 5”,
“Legal”,
“PC-850 Multilingual”, and
“Windows 3.1 Latin 2”.

The get_symbol_set_name() global function can provide a list of all currently available
symbol sets.

Except for the bitmap fonts, every font implements every symbol set. However, some
fonts may not provide all the characters in every set.

This function works only for BViews that are attached to a window. Derived classes can
override it to take any collateral measures required by the change in symbol set. For
example, BTextView and BListView override it to recalculate how displayed text is laid
out.

See also: SetFontName(), get_symbol_set_name()

The Interface Kit – 255

 BView Member Functions

SetViewColor(), ViewColor()

virtual void SetViewColor(rgb_color color)
void SetViewColor(uchar red, uchar green, uchar blue, uchar alpha = 0)

rgb_color ViewColor(void) const

These functions set and return the background color that’s shown in all areas of the view
rectangle that the BView doesn’t cover with its own drawing. When the clipping region is
erased prior to an update, it’s erased to the view color. When a view is resized to expose
new areas that it doesn’t draw in, the new areas are displayed in the view color.

The view color can be set only after the view is attached to a window. It’s best to set it
before the window is shown on-screen. The default color is white.

The version of SetViewColor() that takes separate arguments for the red, blue, and green
color components works by creating an rgb_color data structure and passing it to the
corresponding function that’s declared virtual. Therefore, you need override only the
rgb_color version to augment both functions.

< The alpha color component is currently ignored. >

See also: “The View Color” on page 22 of the introduction to the chapter, SetHighColor()

Show() see Hide()

StringWidth()

float StringWidth(const char *string) const
float StringWidth(const char *string, long length) const

Returns how much room is required to draw length characters of string in the BView’s
current font. If no length is specified, the entire string is measured, up to the null
character, ‘\0’, which terminates it. The return value totals the width of all the characters.
It measures, in coordinate units, the length of the baseline required to draw the string.

This function works only for BViews that are attached to a window (since only attached
views have a current font).

See also: GetFontInfo(), GetCharEscapements()

256 – The Interface Kit

Member Functions BView

StrokeArc(), FillArc()

void StrokeArc(BRect rect, float angle, float span,
 const pattern *aPattern = &B_SOLID_HIGH)

void StrokeArc(BPoint center, float xRadius, float yRadius,
 float angle, float span,
 const pattern *aPattern = &B_SOLID_HIGH)

void FillArc(BRect rect, float angle, float span,
 const pattern *aPattern = &B_SOLID_HIGH)

void FillArc(BPoint center, float xRadius, float yRadius,
 float angle, float span,
 const pattern *aPattern = &B_SOLID_HIGH)

These functions draw an arc, a portion of an ellipse. StrokeArc() strokes a line along the
path of the arc. FillArc() fills the wedge defined by straight lines stretching from the center
of the ellipse of which the arc is a part to the end points of the arc itself. For example:

The arc is a section of the ellipse inscribed in rect—or the ellipse located at center, where
the horizontal distance from the center to the edge of the ellipse is measured by xRadius
and the vertical distance from the center to the edge is measured by yRadius.

The arc starts at angle and stretches along the ellipse for span degrees, where angular
coordinates are measured counterclockwise with 0° on the right, as shown below:

For example, if angle is 180.0° and span is 90.0°, the arc would be the lower left quarter of
the ellipse. The same arc would be drawn if angle were 270.0° and span were -90.0°.
< Currently, angle and span measurements in fractions of a degree are not supported.

The Interface Kit – 257

 BView Member Functions

The width of the line drawn by StrokeArc() is determined by the current pen size. Both
functions draw using aPattern—or, if no pattern is specified, using the current high color.
Neither function alters the current pen position.

See also: StrokeEllipse()

StrokeEllipse(), FillEllipse()

void StrokeEllipse(BRect rect, const pattern *aPattern = &B_SOLID_HIGH)
void StrokeEllipse(BPoint center, float xRadius, float yRadius,
 const pattern *aPattern = &B_SOLID_HIGH)

void FillEllipse(BRect rect, const pattern *aPattern = &B_SOLID_HIGH)
void FillEllipse(BPoint center, float xRadius, float yRadius,
 const pattern *aPattern = &B_SOLID_HIGH)

These functions draw an ellipse. StrokeEllipse() strokes a line around the perimeter of the
ellipse and FillEllipse() fills the area the ellipse encloses.

The ellipse has its center at center. The horizontal distance from the center to the edge of
the ellipse is measured by xRadius and the vertical distance from the center to the edge is
measured by yRadius. If xRadius and yRadius are the same, the ellipse will be a circle.

Alternatively, the ellipse can be described as one that’s inscribed in rect. If the rectangle is
a square, the ellipse will be a circle.

The width of the line drawn by StrokeEllipse() is determined by the current pen size. Both
functions draw using aPattern—or, if no pattern is specified, using the current high color.
Neither function alters the current pen position.

See also: SetPenSize()

StrokeLine()

void StrokeLine(BPoint start, BPoint end,
 const pattern *aPattern = &B_SOLID_HIGH)
void StrokeLine(BPoint end, const pattern *aPattern = &B_SOLID_HIGH)

Draws a straight line between the start and end points—or, if no starting point is given,
between the current pen position and end point—and leaves the pen at the end point.

This function draws the line using the current pen size and the specified pattern. If no
pattern is specified, the line is drawn in the current high color. The points are specified in
the BView’s coordinate system.

See also: SetPenSize(), BeginLineArray()

258 – The Interface Kit

Member Functions BView

StrokePolygon(), FillPolygon()

void StrokePolygon(BPolygon *polygon,
 const pattern *aPattern = &B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, long numPoints,
 const pattern *aPattern = &B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, long numPoints, BRect rect,
 const pattern *aPattern = &B_SOLID_HIGH)

void StrokePolygon(BPolygon *polygon,
 const pattern *aPattern = &B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, long numPoints,
 const pattern *aPattern = &B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, long numPoints, BRect rect,
 const pattern *aPattern = &B_SOLID_HIGH)

These functions draw a polygon with an arbitrary number of sides. StrokePolygon()
strokes a line around the edge of the polygon using the current pen size. If a pointList is
specified rather than a BPolygon object, this function strokes a line from point to point,
connecting the first and last points if they aren’t identical. FillPolygon() fills in the entire
area enclosed by the polygon.

Both functions must calculate the frame rectangle of a polygon constructed from a point
list—that is, the smallest rectangle that contains all the points in the polygon. If you know
what this rectangle is, you can make the function somewhat more efficient by passing it as
the rect parameter.

Both functions draw using the specified pattern—or, if no pattern is specified, in the
current high color. Neither function alters the current pen position.

< Currently, StrokePolygon() doesn’t accept pen sizes other than 1 or patterns other than
the default. >

See also: SetPenSize(), the BPolygon class

StrokeRect(), FillRect()

void StrokeRect(BRect rect, const pattern *aPattern = &B_SOLID_HIGH)

void FillRect(BRect rect, const pattern *aPattern = &B_SOLID_HIGH)

These functions draw a rectangle. StrokeRect() strokes a line around the edge of the
rectangle; the width of the line is determined by the current pen size. FillRect() fills in the
entire rectangle.

Both functions draw using the pattern specified by aPattern—or, if no pattern is specified,
in the current high color. Neither function alters the current pen position.

See also: SetPenSize(), StrokeRoundRect()

The Interface Kit – 259

 BView Member Functions

StrokeRoundRect(), FillRoundRect()

void StrokeRoundRect(BRect rect, float xRadius, float yRadius,
 const pattern *aPattern = &B_SOLID_HIGH)

void FillRoundRect(BRect rect, float xRadius, float yRadius,
 const pattern *aPattern = &B_SOLID_HIGH)

These functions draw a rectangle with rounded corners. The corner arc is one-quarter of
an ellipse, where the ellipse would have a horizontal radius equal to xRadius and a vertical
radius equal to yRadius.

Except for the rounded corners of the rectangle, these functions work exactly like
StrokeRect() and FillRect().

Both functions draw using the pattern specified by aPattern—or, if no pattern is specified,
in the current high color. Neither function alters the current pen position.

See also: StrokeRect(), StrokeEllipse()

StrokeTriangle(), FillTriangle()

void StrokeTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
 const pattern *aPattern = &B_SOLID_HIGH)
void StrokeTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
 BRect rect,
 const pattern *aPattern = &B_SOLID_HIGH)

void FillTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
 const pattern *aPattern = &B_SOLID_HIGH)
void FillTriangle(BPoint firstPoint, BPoint secondPoint, BPoint thirdPoint,
 BRect rect,
 const pattern *aPattern = &B_SOLID_HIGH)

These functions draw a triangle, a three-sided polygon. StrokeTriangle() strokes a line the
width of the current pen size from the first point to the second, from the second point to the
third, then back to the first point. FillTriangle() fills in the area that the three points enclose.

Each function must calculate the smallest rectangle that contains the triangle. If you know
what this rectangle is, you can make the function marginally more efficient by passing it as
the rect parameter.

Both functions do their drawing using the pattern specified by aPattern—or, if no pattern
is specified, in the current high color. Neither function alters the current pen position.

< Currently, StrokeTriangle() doesn’t accept pen sizes other than 1 or patterns other than
the default. >

See also: SetPenSize()

260 – The Interface Kit

Member Functions BView

Sync() see Flush()

Window(), Looper()

BWindow *Window(void) const

virtual BLooper *Looper(void) const

Both these functions return the BWindow to which the BView belongs, or NULL if the
BView hasn’t yet been attached to a window. Looper() overrides the virtual function first
declared in the BReceiver class to return the BWindow as a pointer to a BLooper object.
Window() returns it more directly as a pointer to a BWindow.

See also: Looper() in the BReceiver class of the Application Kit, AddChild() in both this
and the BWindow class, AttachedToWindow()

WindowActivated()

virtual void WindowActivated(bool active)

Implemented by derived classes to take whatever steps are necessary when the BView’s
window becomes the active window, or when the window gives up that status. If active is
TRUE, the window has become active. If active is FALSE, it no longer is the active window.

All objects in the view hierarchy receive WindowActivated() notifications when the status
of the window changes.

BView’s version of this function is empty.

See also: WindowActivated() in the BWindow class

The Interface Kit – 261

BWindow

Derived from: public BLooper

Declared in: <interface/Window.h>

Overview

The BWindow class defines an application interface to windows. Each BWindow object
corresponds to one window in the user interface.

At the most basic level, it’s the Application Server’s responsibility to provide an
application with the windows it needs. The Server allocates the memory each window
requires, renders images in the window on instructions from the application, and manages
the user interface. It equips windows with all the accouterments that let users activate,
move, resize, reorder, hide, and close them. These user actions are not mediated by the
application; they’re handled within the Application Server alone. However, the Server
sends the application messages notifying it of user actions that affect the window. A class
derived from BWindow can implement virtual functions such as FrameResized(),
QuitRequested(), and WindowActivated() to respond to these messages.

BWindow objects are the application’s interface to the Server’s windows:

• Creating a BWindow object instructs the Application Server to produce a window
that can be displayed to the user. The BWindow constructor determines what kind
of window it will be and how it will behave. The window is initially hidden; the
Show() function makes it visible on-screen.

• BWindow functions give the application the ability to manipulate the window
programmatically—to activate, move, resize, reorder, hide, and close it just as a user
might.

• Classes derived from BWindow can implement functions that respond to interface
messages affecting the window.

BWindow objects communicate directly with the Server. However, before this
communication can take place, the constructor for the BApplication object must establish
an initial connection to the Server. You must construct the BApplication object before the
first BWindow.

262 – The Interface Kit

Overview BWindow

View Hierarchy

A window can display images, but it can’t produce them. To draw within a window, an
application needs a collection of various BView objects. For example, a window might
have several check boxes or radio buttons, a list of names, some scroll bars, and a
scrollable display of pictures or text—all provided by objects that inherit from the BView
class.

These BViews are created by the application and are associated with the BWindow by
arranging them in a hierarchy under a top view, a view that fills the entire content area of
the window. Views are added to the hierarchy by making them children of views already in
the hierarchy, which at the outset means children of the top view.

A BWindow doesn’t reveal the identity of its top view, but it does have functions that act
on the top view’s behalf. For example, BWindow’s AddChild() function adds a view to
the hierarchy as a child of the top view. Its FindView() function searches the view
hierarchy beginning with the top view.

Window Threads

Each window runs in its own thread—both in the Application Server and in the
application. When it’s constructed, a BWindow object spawns a window thread for the
application and begins running a message loop where it receives reports of user actions
associated with the window. You don’t have to call Run() to get the message loop going,
as you do for other BLoopers; Run() is called for you at construction time.

Actions initiated from a BWindow’s message loop are executed in the window’s thread.
This, of course, includes all actions that are spun off from the original message. For
example, if the user clicks a button in a window and this initiates a series of calculations
involving a variety of objects, those calculations will be executed in the thread of the
window where the button is located (unless the calculation explicitly spawns other threads
or posts messages to other BLoopers).

Quitting

To “close” a window is to remove the window from the screen, quit the message loop, kill
the window thread, and delete the BWindow object. As is the case for other BLoopers,
this process is initiated by a request to quit—a B_QUIT_REQUESTED message.

For a BWindow, a request to quit is an event that might be reported from the Application
Server (as when the user clicks a window’s close button) or from within the application (as
when the user clicks a “Close” menu item).

To respond to quit-requested messages, classes derived from BWindow implement
QuitRequested() functions. QuitRequested() can prevent the window from closing, or
take whatever action is appropriate before the window is destroyed. It typically interacts
with the user, asking, for example, whether recent changes to a document should be saved.

The Interface Kit – 263

 BWindow Hook Functions

QuitRequested() is a hook function declared in the BLooper class; it’s not documented
here. See the BLooper class in the Application Kit for information on the function and on
how classes derived from BWindow might implement it.

Hook Functions

FilterKeyDown() Can be implemented to filter reports of key-down events
before they’re dispatched by calling the focus view’s
KeyDown() function.

FilterMessageDropped() Can be implemented to filter reports of message-dropped
events before they’re dispatched by calling a BView’s
MessageDropped() function.

FilterMouseDown() Can be implemented to filter reports of mouse-down events
before they’re dispatched by calling a BView’s
MouseDown() function.

FilterMouseMoved() Can be implemented to filter reports of mouse-moved
events before they’re dispatched by calling a BView’s
MouseMoved() function.

FrameMoved() Can be implemented to take note of the fact that the
window has moved.

FrameResized() Can be implemented to take note of the fact that the
window has been resized.

MenusWillShow() Can be implemented to make sure menu data structures are
up-to-date before the menus are displayed to the user.

Minimize() Removes the window from the screen and replaces it with
its minimized representation, or restores the window if it
was previously minimized; can be reimplemented to
provide a different representation for a minimized window.

SavePanelClosed() Can be implemented to take note when the window’s save
panel closes.

SaveRequested() Can be implemented to save the document displayed in the
window when the user requests it in the save panel.

WindowActivated() Can be implemented to take whatever action is necessary
when the window becomes the active window, or when it
loses that status.

264 – The Interface Kit

Constructor and Destructor BWindow

Zoom() Zooms the window to a larger size, or from the large size
to its previous state; can be reimplemented to the modify
target window size or make other adjustments.

Constructor and Destructor

BWindow()

BWindow(BRect frame, const char *title, window_type type, ulong flags)

Produces a new window with the frame content area, spawns a new thread of execution for
the window, and begins running a message loop in that thread.

The first argument, frame, measures only the content area of the window; it excludes the
border and the title tab at the top. The window’s top view will be exactly the same size
and shape as its frame rectangle—though the top view is located in the window’s
coordinate system and the window’s frame rectangle is specified in the screen coordinate
system.

For the window to become visible on-screen, the frame rectangle you assign it must lie
within the frame rectangle of the screen. You can find the current dimensions of the screen
by calling get_screen_info(). In addition, both the width and height of frame must be
greater than 0.

Since a window is always aligned on screen pixels, the sides of its frame rectangle must
have integral coordinate values. Any fractional coordinates that are passed in frame will
be rounded to the nearest whole number.

The second argument, title, sets the title the window will display if it has a tab and also
determines the name of the window thread. The thread name is a string that prefixes “w>”
to the title in the following format:

"w>title"

If the title is long, only as many characters will be used as will fit within the limited length
of a thread name. (Only the thread name is limited, not the window title.) The title (and
thread name) can be changed with the SetTitle() function.

The title can be NULL or an empty string.

The type of window is set by one of the following constants:

B_MODAL_WINDOW A modal window, one that disables other activity
in the application until the user dismisses it. It
has a border but no tab to display a title.

B_BORDERED_WINDOW An ordinary (nonmodal) window with a border
but no tab.

The Interface Kit – 265

 BWindow Constructor and Destructor

B_TITLED_WINDOW A window with a border and a tab. Most
windows are of this type. The title is displayed
in the tab.

B_SHADOWED_WINDOW A window with a border and tab, and a drop
shadow on its right and bottom sides.

The tab, border, and drop shadow are drawn around the window’s frame rectangle.

The final argument, flags, is a mask that determines the behavior of the window. It’s
formed by combining constants from the following set:

B_NOT_MOVABLE Prevents the user from being able to move the
window. By default, a window with a tab at the
top is movable.

B_NOT_H_RESIZABLE Prevents the user from resizing the window
horizontally. A window is horizontally resizable
by default.

B_NOT_V_RESIZABLE Prevents the user from resizing the window
vertically. A window is vertically resizable by
default.

B_NOT_RESIZABLE Prevents the user from resizing the window in
any direction. This constant is a shorthand that
you can substitute for the combination of
B_NOT_H_RESIZABLE and B_NOT_V_RESIZABLE. A
window is resizable by default.

B_NOT_CLOSABLE Prevents the user from closing the window
(eliminates the close button from its tab).
Windows with title tabs have a close button by
default.

B_NOT_ZOOMABLE Prevents the user from zooming the window
larger or smaller (eliminates the zoom button
from the window tab). Windows with tabs are
zoomable by default.

B_NOT_MINIMIZABLE Prevents the user from collapsing the window to its
minimized form. Windows can be minimized
by default.

B_WILL_ACCEPT_FIRST_CLICK Enables the BWindow to receive mouse-down
and mouse-up messages even when it isn’t the
active window. By default, a click in a window
that isn’t the active window brings the window to
the front and makes it active, but doesn’t get
reported to the application. If a BWindow
accepts the first click, the event gets reported to

266 – The Interface Kit

Member Functions BWindow

 the application, but it doesn’t make the window
active. The BView that responds to the mouse-
down message must take responsibility for
activating the window.

B_WILL_FLOAT Causes the window to float in front of other
windows.

If flags is 0, the window will be one the user can move, resize, close, and zoom. It won’t
float or accept the first click.

The window’s message loop reads messages delivered to the window and dispatches them
by calling a virtual function of the responsible object. The responsible object is usually
one of the BViews in the window’s view hierarchy. Views are notified of system messages
through MouseDown(), KeyDown(), MessageDropped(), MouseMoved() and other
virtual function calls. However, sometimes the responsible object is the BWindow itself.
It handles FrameMoved(), QuitRequested(), WindowActivated() and other notifications.

The message loop begins to run when the BWindow is constructed and continues until the
window is told to quit and the BWindow object is deleted. Everything the window thread
does is initiated by a message of some kind.

See also: SetFlags(), SetTitle()

~BWindow()

virtual ~BWindow(void)

Frees all memory that the BWindow allocated for itself.

Call the Quit() function to destroy the BWindow object; don’t use the delete operator.
Quit() does everything that’s necessary to shut down the window—such as remove its
connection to the Application Server and get rid of its views—and invokes delete at the
appropriate time.

See also: Quit()

Member Functions

Activate()

void Activate(bool flag = TRUE)

Makes the BWindow the active window (if flag is TRUE), or causes it to relinquish that
status (if flag is FALSE). When this function activates a window, it reorders the window to
the front <of its tier>, highlights its tab, and makes it the window responsible for handling
subsequent keyboard events. When it deactivates a window, it undoes all these things. It

The Interface Kit – 267

 BWindow Member Functions

reorders the window to the back <of its tier> and removes the highlighting from its tab.
Another window (the new active window) becomes the target for keyboard events.

When a BWindow is activated or deactivated (whether programmatically through this
function or by the user), it and all the BViews in its view hierarchy receive
WindowActivated() notifications.

This function will not activate a window that’s hidden.

See also: WindowActivated() in this and the BView class

AddChild()

virtual void AddChild(BView *aView)

Adds aView to the hierarchy of views associated with the window, making it a child of the
window’s top view. If aView already has a parent, it’s forcibly removed from that family
and adopted into this one. A view can live with but one parent at a time.

This function calls aView’s AttachedToWindow() function to inform it that it now belongs
to the BWindow. Every view that descends from aView also becomes attached to the
window and receives its own AttachedToWindow() notification.

See also: AddChild() and AttachedToWindow() in the BView class, RemoveChild()

AddShortcut(), RemoveShortcut()

void AddShortcut(ulong aChar, ulong modifiers, BMessage *message)
void AddShortcut(ulong aChar, ulong modifiers, BMessage *message,
 BReceiver *target)

void RemoveShortcut(ulong aChar, ulong modifiers)

These functions set up, and tear down, keyboard shortcuts for the window. A shortcut is a
character (aChar) that the user can type, in combination with the Command key and
possibly one or more other modifiers to issue an instruction to the application. For
example, Command-r might rotate what’s displayed within a particular view. The
instruction is issued by posting a BMessage to the window thread.

Keyboard shortcuts are commonly associated with menu items. However, do not use
these functions to set up shortcuts for menus; use the BMenuItem constructor instead.
These BWindow functions are for shortcuts that aren’t associated with a menu.

AddShortcut() registers a new window-specific keyboard shortcut. The first two
arguments, aChar and modifiers, specify the character and the modifier states that together
will issue the instruction, modifiers is a mask that combines any of the usual modifier

268 – The Interface Kit

Member Functions BWindow

constants (see the Modifiers() function for the full list). Typically, it’s one or more of these
four (or it’s 0):

B_SHIFT_KEY
B_CONTROL_KEY
B_OPTION_KEY
B_COMMAND_KEY

B_COMMAND_KEY is assumed; it doesn’t have to be specified. The character value that’s
passed as an argument should reflect the modifier keys that are required. For example, if
the shortcut is Command-Shift-C, aChar should be ‘C, not ‘c’.

The instruction that the shortcut issues is embodied in a model message that the BWindow
will copy and post whenever it’s notified of a key-down event matching the aChar and
modifiers combination (including B_COMMAND_KEY).

Before posting the message, it adds one data entry to the copy:

Data name Type code Description

 “when” B_DOUBLE_TYPE When the key-down event occurred, as
measured in microseconds from the time
the machine was last booted.

The model message shouldn’t contain an entry of the same name.

The message is posted to the BWindow. If a target BReceiver object is specified, it will be
named as the message receiver. If a target isn’t specified, the current focus view will be
named as the receiver. If there is no focus view, the BWindow will act as the receiver.

The message is dispatched by calling the receiver’s MessageReceived() function. If you
add a keyboard shortcut to a window, you must implement a MessageReceived() function
that can respond to the message the shortcut generates.

(Note, however, that if the message has B_QUIT_REQUESTED or the constant for another
interface message as its what data member, it will be dispatched by calling a specific
function, like QuitRequested(), not MessageReceived().)

RemoveShortcut() unregisters a keyboard shortcut that was previously added.

See also: MessageReceived(), FilterKeyDown(), the BMenuItem constructor

Bounds()

BRect Bounds(void) const

Returns the current bounds rectangle of the window. The bounds rectangle encloses the
content area of the window and is stated in the window’s coordinate system. It’s exactly
the same size as the frame rectangle, but its left and top sides are always 0.0.

See also: Frame()

The Interface Kit – 269

 BWindow Member Functions

ChildAt(), CountChildren()

BView *ChildAt(long index) const

long CountChildren(void) const

< These first of these functions returns the child BView at index, or NULL if there’s no such
child of the BWindow’s top view. Indices begin at 0 and there are no gaps in the list. The
second function returns the number of children the top view has. Do not rely on these
functions as they may not remain in the API. >

Close() see Quit()

CloseSavePanel() see RunSavePanel()

ConvertToScreen(), ConvertFromScreen()

void ConvertToScreen(BPoint *windowPoint) const
void ConvertToScreen(BRect *windowRect) const

void ConvertFromScreen(BPoint *screenPoint) const
void ConvertFromScreen(BRect *screenRect) const

These functions convert points and rectangles to and from the global screen coordinate
system. ConvertToScreen() converts the point referred to by windowPoint, or the
rectangle referred to by windowRect, from the window coordinate system to the screen
coordinate system. ConvertFromScreen() makes the opposite conversion; it converts the
point referred to by screenPoint, or the rectangle referred to by screenRect, from the
screen coordinate system to the window coordinate system.

The window coordinate system has its origin, (0.0, 0.0), at the left top corner of the
window’s content area.

See also: ConvertToScreen() in the BView class

CurrentFocus(), PreferredReceiver()

BView *CurrentFocus(void) const

virtual BReceiver *PreferredReceiver(void) const

Both these functions return the current focus view for the BWindow, or NULL if no view is
currently in focus. CurrentFocus() returns the object as a BView, and PreferredReceiver()
overrides the BLooper function to return it as a BReceiver.

The focus view is the BView that’s responsible for showing the current selection and
handling keyboard messages when the window is the active window.

270 – The Interface Kit

Member Functions BWindow

Various other objects in the Interface Kit, such as BButtons and BMenuItems, call
PreferredReceiver() to discover where they should target messages posted to the
BWindow when a specific receiver hasn’t been designated. This mechanism permits these
objects to target the current focus view. Thus, a menu item or a control device can be set
up to always act on whatever BView happens to be displaying the current selection.

See also: MakeFocus() and IsFocus() in the BView class, SetTarget() in the BControl,
BListView, and BMenuItem classes, PreferredReceiver() in the BLooper class

DefaultButton() see SetDefaultButton()

DisableUpdates(), EnableUpdates()

void DisableUpdates(void)

void EnableUpdates(void)

These function disable automatic updating within the window, and re-enable it again.
Updating is enabled by default, so every user action that changes a view and every
program action that invalidates a view’s contents causes the view to be automatically
redrawn.

This may be inefficient when there are a number of changes to a view, or to a group of
views within a window. In this case, you can temporarily disable the updating mechanism
by calling DisableUpdates(), make the changes, then call EnableUpdates() to re-enable
updating and have all the changes displayed at once.

See also: Invalidate() in the BView class, UpdateIfNeeded()

DispatchMessage()

virtual void DispatchMessage(BMessage *message, BReceiver *receiver)

Overrides the BLooper function to dispatch messages as they’re received by the window
thread. This function is called for you each time the BWindow takes a message from its
queue. It dispatches the message by calling the virtual function that’s designated to begin
the application’s response.

• It dispatches system messages by calling a message-specific virtual function
implemented for the BWindow or the responsible BView. See “Hook Functions for
Interface Messages” on page 43 of the introduction to this chapter for a list of these
functions.

• It dispatches other messages by calling the targeted receiver’s MessageReceived()
function.

The Interface Kit – 271

 BWindow Member Functions

Derived classes can override DispatchMessage() to make it dispatch specific kinds of
messages in other ways. For example:

void MyWindow::DispatchMessage(BMessage *message)
{
 if (message->what == MAKE_PREDICTIONS)
 predictor->GuessAbout(message);
 else
 BWindow::DispatchMessage(message);
}

The message loop deletes every message it receives when the function that
DispatchMessage() calls, and DispatchMessage() itself, return. The message should not
be deleted in application code (unless DetachCurrentMessage() is first called to detach it
from the message loop).

See also: the BMessage class, DispatchMessage() and CurrentMessage() in the
BLooper class

EnableUpdates() see DisableUpdates()

FilterKeyDown()

virtual bool FilterKeyDown(ulong *aChar, BView **target)

Implemented by derived classes to interpret a key-down message before the window’s
focus view (or its default button) is notified with a KeyDown() function call. The first
argument, aChar, points to the character recorded in the message. The second argument,
target, points to the focus BView that’s slated to receive the KeyDown() notification.

FilterKeyDown() is called for every key-down event that’s reported to the window, except
for those that might correspond to keyboard shortcuts. If it returns TRUE, the KeyDown()
virtual function implemented for the target view will be called. If it returns FALSE,
KeyDown() isn’t called and the key-down message isn’t handled (except to the extent that
FilterKeyDown() itself might be implemented to handle it).

Before returning TRUE, this function can change the aChar value that will be passed to
KeyDown(). (This, however, won’t change the “char” entry of the BMessage object that

272 – The Interface Kit

Member Functions BWindow

reported the event and that CurrentMessage() returns). It can also change the target
BView to another view located within the same window. For example:

bool MyView::FilerKeyDown(ulong *aChar, BView **target)
{
 if (*target->IsVeryMuchDisabled())
 *target = *target->Parent();
 . . .
 if (*aChar == B_ENTER)
 *aChar = B_TAB;
 . . .
}

Neither FilterKeyDown() nor KeyDown() is called for key-down events that are potential
keyboard shortcuts—that is, for key-down events that are produced while holding down a
Command key.

The BWindow version of FilterKeyDown() makes no changes to either the character or the
target BView and simply returns TRUE.

See also: KeyDown() in the BView class, AddShortcut(), Modifiers(), “Key-Down
Events” on page 48 of the introduction

FilterMessageDropped()

virtual bool FilterMessageDropped(BMessage *message, BPoint point,
 BView **target)

Implemented by derived classes to preview a message-dropped event before
MessageDropped() is called for any of the window’s BViews. The first argument,
message, is the dropped message (not the message that reports the message-dropped event,
but the message that the user dragged and dropped). The second argument, point, is the
location of the cursor when the message was dropped; it’s stated in the window’s
coordinate system.

The third argument, target, points to the BView that’s scheduled to receive the
MessageDropped() notification. It’s the view located at point. However,
FilterMessageDropped() can be implemented to replace the target BView with another
view located within the same window. The replacement BView will then be notified
instead.

FilterMessageDropped() is called whenever the user drops a dragged message within the
window. By returning TRUE, it permits the target’s MessageDropped() function to be
called. By returning FALSE, it prevents any BView from notified of the message-dropped
event.

The default version of FilterMessageDropped() simply returns TRUE.

See also: MessageDropped() in the BView class, CurrentMessage() in the BLooper
class, “Message-Dropped Events” on page 51 of the introduction

The Interface Kit – 273

 BWindow Member Functions

FilterMouseDown()

virtual bool FilterMouseDown(BPoint point, BView **target)

Implemented by derived classes to return TRUE if the mouse-down event located at point
should be handled by a subsequent call to the target view’s MouseDown() function, and
FALSE if MouseDown() should not be called. The point is stated in the target view’s
coordinate system.

Before returning TRUE, this function can alter the BView that will receive the
MouseDown() notification—simply by changing the object that target points to. The
replacement target must be located in view hierarchy of the same window.

FilterMouseDown() is called for every mouse-down message the window receives.
BWindow’s default version of the function never alters point and always returns TRUE.

See also: MouseDown() in the BView class, CurrentMessage() in the BLooper class,
“Mouse-Down Events” on page 49 in the chapter introduction

FilterMouseMoved()

virtual bool FilterMouseMoved(BPoint point, ulong area, BMessage *message,
 BView **target)

Implemented by derived classes to preview a mouse-moved event before MouseMoved()
is called for any of the window’s BViews. FilterMouseMoved() is called once for every
mouse-moved message the window receives. It receives messages only while the cursor is
moving over the window.

The message reports that the user has moved the cursor to a new point in the window’s
coordinate system. Normally, the BView that the cursor is over is notified by calling its
MouseMoved() virtual function. If the cursor has moved out of one view and into another,
both BViews are notified. However, by returning FALSE, FilterMouseMoved() prevents any
BViews from being notified of the event. A return of TRUE permits MouseMoved() to be
called.

The first argument, point, is the current location of the cursor, stated in the window’s
coordinate system. The second argument, area, conveys which part of the window the
cursor is over. It will be one of the following constants:

B_CONTENT_AREA The cursor is over the content area of the window.

B_CLOSE_AREA The cursor is over the close button in the title tab.

B_ZOOM_AREA The cursor is over the zoom button in the title tab.

B_TITLE_AREA The cursor is inside the title tab, but not over either the
close button or zoom button.

B_RESIZE_AREA The cursor is over the area in the right bottom corner
where the window can be resized.

274 – The Interface Kit

Member Functions BWindow

B_ZOOM_AREA The cursor is over the zoom button in the title tab.

B_MINIMIZE_AREA < Currently unused. >

B_UNKNOWN_AREA It’s unknown where the cursor is, probably because it just
left the window.

If the cursor is over a BView in the window’s content area, a pointer to the view is passed
as the final argument, target. If the cursor isn’t over a BView, target points to a NULL
value.

In the normal course of events, the target view will receive a MouseMoved() notification,
provided FilterMouseMoved() returns TRUE. However, before returning TRUE,
FilterMouseMoved() can alter the target view. Depending on which BView is chosen, the
replacement BView will receive a MouseMoved() notification informing it either that the
cursor has just entered it—even though the cursor is really inside another view—or that
the cursor has moved somewhere else inside it, having previously entered—even though
the cursor is actually no longer inside the view. If the cursor had previously entered the
target view passed to this function, that view will be notified that the cursor has left it,
even though it really hasn’t.

If the user is moving the cursor to drag a BMessage object, the third argument, message,
points to the dragged BMessage. If nothing is being dragged, message is NULL.

The BWindow version of this function simply returns TRUE.

See also: MouseMoved() and DragMessage() in the BView class, “Mouse-Moved
Events” on page 51 of the chapter introduction

FindView()

BView *FindView(BPoint point) const
BView *FindView(const char *name) const

Returns the view located at point within the window, or the view tagged with name. The
point is specified in the window’s coordinate system (the coordinate system of its top
view), which has the origin at the upper left corner of the window’s content area.

If no view is located at the point given, or no view within the window has the name given,
this function returns NULL.

See also: FindView() in the BView class

The Interface Kit – 275

 BWindow Member Functions

Flush()

void Flush(void) const

Flushes the window’s connection to the Application Server, sending whatever happens
to be in the out-going buffer to the Server. The buffer is automatically flushed on every
update and after each message.

This function has the same effect as the Flush() function defined for the BView class.

See also: Flush in the BView class

Frame()

BRect Frame(void) const

Asks the Application Server for the current frame rectangle for the window and returns it.
The frame rectangle encloses the content area of the window and is stated in the screen
coordinate system. It’s first set by the BWindow constructor, and is modified as the
window is resized and moved.

See also: MoveBy(), ResizeBy(), the BWindow constructor

FrameMoved()

virtual void FrameMoved(BPoint screenPoint)

Implemented by derived classes to respond to a notification that the window has moved.
The move—which placed the left top corner of the window’s content area at screenPoint
in the screen coordinate system—could be the result of the user dragging the window or of
the program calling MoveBy() or MoveTo(). If the user drags the window, FrameMoved()
is called repeatedly as the window moves. If the program moves the window, it’s called
just once to report the new location.

The default version of this function does nothing.

See also: MoveBy(), “Window-Moved Events” on page 53 of the chapter introduction

FrameResized()

virtual void FrameResized(float width, float height)

Implemented by derived classes to respond to a notification that the window’s content area
has been resized to a new width and height. The resizing could be the result of the
program calling ResizeTo(), ResizeBy(), or Zoom()—in which case FrameResized() is
called just once to report the window’s new size—or of a user action—in which case it’s
called repeatedly as the user drags a corner of the window to resize it.

276 – The Interface Kit

Member Functions BWindow

The default version of this function does nothing.

See also: ResizeBy(), “Window-Resized Events” on page 54 of the chapter introduction

Hide(), Show()

virtual void Hide(void)

virtual void Show(void)

These functions hide the window so it won’t be visible on-screen, and show it again.

Hide() removes the window from the screen. If it happens to be the active window, Hide()
also deactivates it. Hiding a window hides all the views attached to the window. While the
window is hidden, its BViews respond TRUE to IsHidden() queries.

Show() puts the window back on-screen. It places the window in front of other windows
and makes it the active window.

Calls to Hide() and Show() can be nested; if Hide() is called more than once, you’ll need to
call Show() an equal number of times for the window to become visible again.

A window begins life hidden (as if Hide() had been called once); it takes an initial call to
Show() to display it on-screen.

See also: IsHidden()

IsActive()

bool IsActive(void) const

Returns TRUE if the window is currently the active window, and FALSE if it’s not.

See also: Activate()

IsFront()

bool IsFront(void) const

Returns TRUE if the window is currently the frontmost window on-screen, and FALSE if it’s
not.

The Interface Kit – 277

 BWindow Member Functions

IsHidden()

bool IsHidden(void) const

Returns TRUE if the window is currently hidden, and FALSE if it isn’t.

Windows are hidden at the outset. The Show() function puts them on-screen, and Hide()
can be called to hide them again.

If Show() has been called to unhide the window, but the window is totally obscured by
other windows or occupies coordinates that don’t intersect with the physical screen,
IsHidden() will nevertheless return FALSE, even though the window isn’t visible.

See also: Hide()

IsSavePanelRunning() see RunSavePanel()

MenusWillShow()

virtual void MenusWillShow(void)

Implemented by derived classes to make sure menus are up-to-date before they’re placed
on-screen. This function is called just before menus belonging to the window are about to
be shown to the user. It gives the BWindow a chance to make any required alterations—
for example, disabling or enabling particular items—so that the menus are in synch with
the current state of the window.

See also: the BMenu and BMenuItem classes

Minimize()

virtual void Minimize(bool minimize)

Removes the window from the screen and replaces it with a token representation, if the
minimize flag is TRUE—or restores the window to the screen and removes the token, if
minimize is FALSE.

This function can be called to minimize or unminimize the window. It’s also called by the
BWindow to respond to B_MINIMIZE messages, which are posted automatically when the
user double-clicks the window tab to minimize the window, and when the user double-
clicks the token to restore the window. It can be reimplemented to provide a different
minimal representation for the window.

See also: “Minimize Instructions” on page 48 of the chapter introduction, Zoom()

278 – The Interface Kit

Member Functions BWindow

Modifiers()

ulong Modifiers(void) const

Returns a mask that has a bit set for each modifier key the user is holding down and for
each keyboard lock that’s set. The mask can be tested against these constants:

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_CONTROL_KEY B_MENU_KEY B_SCROLL_LOCK
B_OPTION_KEY B_NUM_LOCK

If a Shift, Command, Control, or Option key is down, the mask can be further tested
against the following constants to reveal which key it is, the one on the left or the one on
the right:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

No bits are set (the mask is 0) if none of the modifiers keys are down and no locks are on.

See also: Modifiers() and GetKeys() in the BView class, CurrentMessage() in the
BLooper class

MoveBy(), MoveTo()

void MoveBy(float horizontal, float vertical)

void MoveTo(BPoint point)
void MoveTo(float x, float y)

These functions move the window without resizing it. MoveBy() adds horizontal
coordinate units to the left and right components of the window’s frame rectangle and
vertical units to the frame’s top and bottom. If horizontal and vertical are negative, the
window moves upward and to the left. If they’re positive, it moves downward and to the
right. MoveTo() moves the left top corner of the window’s content area to point—or
(x, y)—in the screen coordinate system; it adjusts all coordinates in the frame rectangle
accordingly.

None of the values passed to these functions should specify fractional coordinates; a
window must be aligned on screen pixels. Fractional values will be rounded to the closest
whole number.

Neither function alters the BWindow’s coordinate system or bounds rectangle.

When these functions move a window, a window-moved event is reported to the window.
This results in the BWindow’s FrameMoved() function being called.

See also: FrameMoved()

The Interface Kit – 279

 BWindow Member Functions

NeedsUpdate()

bool NeedsUpdate(void) const

Returns TRUE if any of the views within the window need to be updated, and FALSE if
they’re all up-to-date.

See also: UpdateIfNeeded()

PreferredReceiver() see CurrentFocus()

Quit(), Close()

virtual void Quit(void)

inline void Close(void)

Quit() gets rid of the window and all its views. This function removes the window from
the screen, deletes all the BViews in its view hierarchy, destroys the window thread,
removes the window’s connection to the Application Server, and, finally, deletes the
BWindow object.

Use this function, rather than the delete operator, to destroy a window. Quit() applies the
operator after it empties the BWindow of views and severs its connection to the
application and Server. It’s dangerous to apply delete while these connections remain
intact.

BWindow’s Quit() works much like the BLooper function it overrides. When called from
the BWindow’s thread, it doesn’t return. When called from another thread, it returns after
all previously posted messages have been responded to and the BWindow and its thread
have been destroyed.

Close() is a synonym of Quit(). It simply calls Quit() so if you override Quit(), you’ll
affect how both functions work.

See also: QuitRequested() and Quit() in the BLooper class, QuitRequested() in the
BApplication class

RemoveChild()

virtual bool RemoveChild(BView *aView)

Removes aView from the BWindow’s view hierarchy, but only if aView was added to the
hierarchy as a child of the window’s top view (by calling BWindow’s version of the
AddChild() function).

If aView is successfully removed, RemoveChild() returns TRUE. If not, it returns FALSE.

See also: AddChild()

280 – The Interface Kit

Member Functions BWindow

RemoveMouseMessages()

void RemoveMouseMessages(void)

< Removes messages reporting mouse-down and mouse-up events from the window’s
message queue. Don’t rely on this function; it’s likely to be removed from the API.
Instead, get the BMessageQueue and call its RemoveMessage() function, as follows:

myWindow->MessageQueue()->RemoveMessage(MOUSE_DOWN);
myWindow->MessageQueue()->RemoveMessage(MOUSE_UP)

>

See also: MessageQueue() in the BLooper class of the Application Kit

RemoveShortcut() see AddShortcut()

ResizeBy(), ResizeTo()

void ResizeBy(float horizontal, float vertical)

void ResizeTo(float width, float height)

These functions resize the window, without moving its left and top sides. ResizeBy() adds
horizontal coordinate units to the width of the window and vertical units to its height.
ResizeTo() makes the content area of the window width units wide and height units high.
Both functions adjust the right and bottom components of the frame rectangle accordingly.

Since a BWindow’s frame rectangle must line up with screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded to
the nearest whole number.

When a window is resized, either programmatically by these functions or by the user, the
BWindow’s FrameResized() virtual function is called to notify it of the change.

See also: FrameResized()

RunSavePanel(), CloseSavePanel(), IsSavePanelRunning()

long RunSavePanel(const char *tentativeName = NULL,
 const char *windowTitle = NULL,
 const char *buttonLabel = NULL,
 BMessage *message = NULL)

void CloseSavePanel(void)

bool IsSavePanelRunning(void) const

RunSavePanel() requests the Browser to display a panel where the user can choose how to
save the document displayed in the window. The panel permits the user to navigate the file
system and type in file and directory names.

The Interface Kit – 281

 BWindow Member Functions

The arguments to this function are all optional. They’re used to configure the panel:

• If passed a tentativeName for the document displayed in the window, the save panel
will place it in a text field where the user can type a name for the file. The name
might designate an existing file, or it might simply be a placeholder name like
“UNNAMED” or “UNTITLED-3”. If a tentativeName isn’t passed, the text field
will be empty.

• If another windowTitle is not specified, the title of the window will include the
tentative file name. It will be “Save tentativeName As...” preceded by the name of
the application. The name is enclosed in quotes. For example:

WishMaker : Save "UNTITLED-3" As...

 If a tentativeName isn’t passed, the quotes will be empty.

• If a buttonLabel isn’t provided, the principal button in the panel (the default button)
will be labeled “Save”. (The panel also has a “Cancel” button.)

• If a message is passed, it can contain entries that further configure the panel. It also
serves as a model for the message that reports the directory and file name the user
selected. If a message isn’t provided, this information will be reported in a standard
B_SAVE_REQUESTED message.

If the message has one or both of the following entries, they will be used to help configure
the panel:

Data name Type code Description

“directory” B_REF_TYPE The record_ref for the directory that the
panel should display when it first comes
on-screen. If this entry is absent, the panel
will initially display the current directory
of the current volume.

“frame” B_RECT_TYPE A BRect that sets the size and position of
the panel in screen coordinates. If this
entry is absent, the Browser will choose an
appropriate frame rectangle for the panel.

When the user finishes choosing where to save the file and operates the “Save” (or
buttonLabel) button, the file panel sends a message to the BWindow (through the
BApplication object). If a customized message is provided, it’s used as the model for the

282 – The Interface Kit

Member Functions BWindow

message that’s sent. If a message isn’t provided, a standard B_SAVE_REQUESTED message
is sent instead. In either case, it has two data entries:

Data name Type code Description

“name” B_STRING_TYPE The name of the file in which the
document should be saved.

“directory” B_REF_TYPE A record_ref reference to the directory
where the file should reside.

A B_SAVE_REQUESTED message is dispatched by calling the SaveRequested() hook
function; the “name” and “directory” are passed as arguments to SaveRequested(). This
function should be implemented to create the file, if necessary, and save the document.
RunSavePanel() doesn’t do this work; it simply delivers a BMessage object with the
information you need to do the job.

A customized message works much like the model messages assigned to BControl objects
and BMenuItems. The save panel makes a copy of the model, adds the “name” and
“directory” entries (as described above) to the copy, and delivers the copy to the
BWindow. Other entries in the message remain unchanged.

The message can have any command constant you choose. If it’s B_SAVE_REQUESTED, the
“name” and “directory” will be extracted from the message and passed to
SaveRequested(). Otherwise, nothing is extracted and the message is dispatched by
calling MessageReceived().

The save panel doesn’t automatically disappear when the user operates the “Save” (or
buttonLabel) button; it remains on-screen until CloseSavePanel() is called (or until the
application quits). You can choose to leave the panel on-screen if the user hasn’t chosen a
valid file name. IsSavePanelRunning() will report whether the save panel is currently
displayed on-screen. A BWindow can run only one save panel at a time.

The save panel is automatically closed when user operates the “Cancel” button.
Whenever it’s closed, by the user or the application, a B_PANEL_CLOSED message is sent to
the application and the SavePanelClosed() hook function is called.

RunSavePanel() returns B_NO_ERROR if it succeeds in getting the Browser to put the panel
on-screen. If the Browser isn’t running or the save panel already is, it returns B_ERROR. If
the Browser is running but the application can’t communicate with it, it returns an error
code that indicates what went wrong; these codes are the same as those documented for the
BMessenger class in the Application Kit.

See also: SaveRequested(), SavePanelClosed()

The Interface Kit – 283

 BWindow Member Functions

SavePanelClosed()

virtual void SavePanelClosed(BMessage *message)

Implemented by derived classes to take note when the save panel is closed. The message
argument contains information about how the panel was closed and its state at the time
it was closed. It has entries under the names “frame” (the panel’s frame rectangle),
“directory” (the directory the panel displayed), and “canceled” (whether the user closed
the panel). Some of this information can be retained to configure the panel the next time it
runs.

See also: “Panel-Closed Events” on page 55 of the chapter introduction, RunSavePanel()

SaveRequested()

virtual void SaveRequested(record_ref directory, const char *filename)

Implemented by derived classes to save the document displayed in the window. This
function is called when the BWindow receives a B_SAVE_REQUESTED message from the
save panel. It reports that the user has asked for the file to be saved in the directory
indicated and assigned the specified filename. The file may already exist, or the
application may need to create it to carry out the request.

There’s no guarantee that the directory and filename are valid.

If the file can be saved as requested, you may want this function to call CloseSavePanel()
to remove the panel from the screen. If the file can’t be saved, SaveRequested() should
notify the user. In some cases, you may want to leave the panel on-screen so the user can
try again with a different directory or file name.

See also: RunSavePanel()

ScreenChanged()

virtual void ScreenChanged(BRect frame, color_space mode)

Implemented by derived classes to respond to a notification that the screen configuration
has changed. This function is called for all affected windows when:

• The number of pixels the screen displays (the size of the pixel grid) is altered,
• < The screen changes its location in the screen coordinate system, or
• The color mode of the screen changes. >

frame is the new frame rectangle of the screen, and mode is its new color space.

284 – The Interface Kit

Member Functions BWindow

< Currently, there can be only one monitor per machine, so the screen can’t change where
its located in the screen coordinate system. Moreover, there is no way to change the
screen color space. Only the pixel grid can change. >

See also: set_screen_size(), “Screen-Changed Events” on page 54 of the chapter
introduction

SetDefaultButton(), DefaultButton()

void SetDefaultButton(BButton *button)

BButton *DefaultButton(void) const

SetDefaultButton() makes button the default button for the window—the button that the
user can operate by pressing the Enter key. DefaultButton() returns the button that
currently has that status, or NULL if there is no default button.

At any given time, only one button in the window can be the default. SetDefaultButton()
may, therefore, affect two buttons: the one that’s forced to give up its status as the default
button, and the one that acquires that status. Both buttons are redisplayed, so that the user
can see which one is currently the default, and both are notified of their change in status
through MakeDefault() virtual function calls.

If the argument passed to SetDefaultButton() is NULL, there will be no default button for the
window. The current default button loses its status and is appropriately notified with a
MakeDefault() function call.

The Enter key can operate the default button only while the window is the active window.
However, the BButton doesn’t have to be the focus view. Normally, the focus view is
notified of key-down messages the window receives. But if the character reported is
B_ENTER, the default button is notified instead (provided there is a default button).

See also: MakeDefault() in the BButton class

SetDiscipline()

void SetDiscipline(bool flag)

Sets a flag that determines how much programming discipline the system will enforce.
When flag is TRUE, as it is by default, Kit functions will check to be sure various rules are
adhered to. For example, most BView functions will require the caller to first lock the
window. < Currently, this is the only rule that comes under the discipline flag. > When
flag is FALSE, these rules are not enforced.

The discipline flag should be set to TRUE while an application is being developed.
However, once it has matured, and it’s clear that none of the rules are being disobeyed, the

The Interface Kit – 285

 BWindow Member Functions

flag can be set to FALSE. This will eliminate various checking operations and improve
performance.

See also: “Locking the Window” in the BView class overview

SetMainMenuBar()

void SetMainMenuBar(BMenuBar *menuBar)

Makes the specified BMenuBar object the “main” menu bar for the window—the object
that’s at the root of the menu hierarchy that users can navigate using the keyboard.

If a window contains only one BMenuBar view, it’s automatically designated the main
menu bar. If there’s more than one BMenuBar in the window, the last one added to the
window’s view hierarchy is considered to be the main one.

If there’s a “true” menu bar displayed along the top of the window, its menu hierarchy is
the one that users should be able to navigate using the keyboard. This function can be
called to make sure that the BMenuBar object at the root of that hierarchy is the “main”
menu bar.

See also: the BMenuBar class

SetPulseRate()

void SetPulseRate(long milliseconds)

Sets how often Pulse() is called for the BWindow’s views.

By turning on the B_PULSE_NEEDED flag, a BView can request periodic Pulse()
notifications. By default, pulse messages are posted every 500 milliseconds, as long as no
other messages are pending. Each message causes Pulse() to be called for every BView
that requested the notification.

SetPulseRate() permits you to set a different interval. The interval set should not be less
than 100 milliseconds; differences less than 50 milliseconds may not be noticeable. A
finer granularity can’t be guaranteed.

All BViews attached to the same window share the same pulse rate.

See also: Pulse() in the BView class

286 – The Interface Kit

Member Functions BWindow

SetSizeLimits(), SetZoomLimits()

void SetSizeLimits(float minWidth, float maxWidth,
 float minHeight, float maxHeight)

void SetZoomLimits(float maxWidth, float maxHeight)

These functions set limits on the size of the window. The user won’t be able to resize the
window beyond the limits set by SetSizeLimits()—to make it have a width less than
minWidth or greater than maxWidth, nor a height less than minHeight or greater than
maxHeight. By default, the minimums are sufficiently small and the maximums
sufficiently large to accommodate any window within reason.

SetSizeLimits() constrains the user, not the programmer. It’s legal for an application to set a
window size that falls outside the permitted range. The limits are imposed only when the
user attempts to resize the window; at that time, the window will jump to a size that’s
within range.

SetZoomLimits() sets the maximum size that the window will zoom to (when the Zoom()
function is called). The maximums set by SetSizeLimits() also apply to zooming; the
window will zoom to the screen size or to the smaller of the maximums set by these two
functions.

Since the sides of a window must line up on screen pixels, the values passed to both
functions should be whole numbers.

See also: the BWindow constructor, Zoom()

SetTitle(), Title()

void SetTitle(const char *newTitle)

const char *Title(void) const

These functions set and return the window’s title. SetTitle() replaces the current title with
newTitle. It also renames the window thread in the following format:

"w>newTitle"

where as many characters of the newTitle are included in the thread name as will fit.

Title() returns a pointer to the current title. The returned string is null-terminated. It
belongs to the BWindow object, which may alter the string or free the memory where it
resides without notice. Applications should ask for the title each time it’s needed and
make a copy for their own purposes.

A window’s title and thread name are originally set by an argument passed to the
BWindow constructor.

See also: the BWindow constructor

The Interface Kit – 287

 BWindow Member Functions

SetZoomLimits() see SetSizeLimits()

Show() see Hide()

Title() see SetTitle()

UpdateIfNeeded()

void UpdateIfNeeded(void)

Causes the Draw() virtual function to be called immediately for each BView object that
needs updating. If no views in the window’s hierarchy need to be updated, this function
does nothing.

BView’s Invalidate() function generates an update message that the BWindow receives
just as it receives other messages. Although update messages take precedence over other
kinds of messages the BWindow receives, the window thread can respond to only one
message at a time. It will update the invalidated view as soon as possible, but it must
finish responding to the current message before it can get the update message.

This may not be soon enough for a BView that’s engaged in a time-consuming response to
the current message. UpdateIfNeeded() forces an immediate update, without waiting to
return the BWindow’s message loop. However, it works only if called from within the
BWindow’s thread.

(Because the message loop expedites the handling of update messages, they’re never
considered the current message and are never returned by BLooper’s CurrentMessage()
function.)

See also: Draw() in the BView class, Invalidate() in the BView class, NeedsUpdate()

WindowActivated()

virtual void WindowActivated(bool active)

Implemented by derived classes to make any changes necessary when the window
becomes the active window, or when it ceases being the active window. If active is TRUE,
the window has just become the new active window, and if active is FALSE, it’s about to
give up that status to another window.

The BWindow receives a WindowActivated() notification whenever its status as the active
window changes. Each of its BViews is also notified.

See also: WindowActivated() in the BView class

288 – The Interface Kit

Member Functions BWindow

Zoom()

void Zoom(void)
virtual void Zoom(BPoint leftTop, float width, float height)

Zooms the window to a larger size—or, if already zoomed larger, restores it to its previous
size.

The simple version of this function can be called to simulate the user operating the zoom
button in the window tab. It resizes the window to the full size of the screen, or to the size
previously set by SetSizeLimits() and SetZoomLimits(). However, if the width and height of
the window are both within five coordinate units of the fully zoomed size, it restores the
window to the size it had before being zoomed.

To actually change the window’s size, the simple version of Zoom() calls the virtual
version. The virtual version is also called by the system in response to a B_ZOOM system
message. The system generates this message when the user clicks the zoom button in the
window’s title tab.

The arguments to the virtual version propose a width and height for the window and a
location for the left top corner of its content area in the screen coordinate system. It can be
overridden to change these dimensions or to resize the window differently.

Zoom() may both move and resize the window, resulting in FrameMoved() and
FrameResized() notifications.

See also: SetSizeLimits(), ResizeBy()

The Interface Kit – 289

Global Functions

This section describes the global (nonmember) functions defined in the Interface Kit. All
these functions deal with aspects of the system-wide environment for the user interface—
the keyboard, the screen, installed fonts and symbol sets, and the list of possible colors.

The Application Server maintains this environment. Therefore, for any of these functions
to work, your application needs a connection to the Server. The connection they all
depend on is the one established when the BApplication object is constructed.
Consequently, none of them should be called before a BApplication object is present in
your application.

count_fonts() see get_font_name()

count_screens() see get_screen_info()

count_symbol_sets() see get_symbol_set_name()

desktop_color() see set_desktop_color()

get_click_speed() see set_click_speed()

get_dock_width()

<interface/InterfaceDefs.h>

long get_dock_width(float *width)

Writes the current width of the dock into the variable referred to by width. Since the dock
floats on top of other windows, this function can help determine how much usable screen
space is actually available. It returns B_NO_ERROR if successful and B_ERROR if not.

See also: get_screen_info()

290 – The Interface Kit

 Global Functions

get_font_name(), count_fonts()

<interface/InterfaceDefs.h>

void get_font_name(long index, font_name *name)

long count_fonts(void)

These two functions are used in combination to get the names of all installed fonts. For
example:

long numFonts = count_fonts();
font_name buf;

for (long i = 0; i < numFonts; i++) {
 get_font_name(i, &buf);
 . . .
}

The names of all installed fonts are kept in an alphabetically ordered list.
get_font_name() reads one of the names from the list, the name at index, and copies it into
the name buffer. Font names can be up to 64 characters long, plus a null terminator.
Indices begin at 0.

count_fonts() returns the number of fonts currently installed, the number of names in the
list.

See also: GetFontInfo() and SetFontName() in the BView class

get_keyboard_id()

<interface/InterfaceDefs.h>

long get_keyboard_id(ushort *theId)

Obtains the keyboard identifier from the Application Server and writes it into the variable
referred to by theId. This number reveals what kind of keyboard is currently attached to
the computer.

The identifier for the standard 101-key keyboard—and for keyboards with a similar set of
keys—is 0x83ab. < Currently, this is the only value this function can provide. > See “Key
Codes” on page 56 for illustrations showing the keys found on a standard keyboard.

If unsuccessful for any reason, get_keyboard_id() returns B_ERROR. If successful, it
returns B_NO_ERROR.

get_mouse_map() see set_mouse_map()

get_mouse_speed() see set_mouse_map()

get_mouse_type() see set_mouse_map()

The Interface Kit – 291

 Global Functions

get_screen_info(), count_screens()

<interface/InterfaceDefs.h>

void get_screen_info(screen_info *theInfo)
void get_screen_info(long index, screen_info *theInfo)

long count_screens(void)

These functions provide information about the monitors (screens) that are currently
hooked up to the BeBox.

Each screen that’s attached to the machine is identified by an index into a system-wide
screen list. The screen at index 0 is the one that has the origin of the screen coordinate
system at its left top corner. Other screens in the list are unordered; they’re located
elsewhere in the screen coordinate system that the first screen defines. < Currently,
multiple screens are not supported, so the screen at index 0 is the only one in the list. >

get_screen_info() writes information about the screen at index into the screen_info
structure referred to by theInfo. If no index is mentioned, this function assumes the screen
at index 0. The screen_info structure contains the following fields:

color_space mode The depth and color interpretation of pixel data in
the screen’s frame buffer. (See the BBitmap class
description for an explanation of the various
color_space modes.)

BRect frame The frame rectangle of the screen—the rectangle
that defines the size and location of the screen in
the screen coordinate system.

void *bits A pointer to the frame buffer.

long bytes_per_row The number of bytes used to specify one row of
pixel data in the frame buffer.

count_screens() returns the number of screens (monitors) that are attached to the
computer. < Currently, no more than one screen can be attached, so this function always
returns 1. >

See also: the BBitmap class

get_symbol_set_name(), count_symbol_sets()

<interface/InterfaceDefs.h>

void get_symbol_set_name(long index, symbol_set_name *name)

long count_symbol_sets(void)

These functions are used to get the names of all available symbol sets. They work much
like the parallel font functions get_font_name() and count_fonts().

292 – The Interface Kit

 Global Functions

A symbol set associates character symbols (glyphs) with character codes (ASCII values).
They differ mainly in how they extend the standard ASCII set—how they assign
characters to codes above 0x7f.

get_symbol_set_name() gets one name from the list of symbol sets, the name at index,
and copies it into the name buffer. count_symbol_sets() returns the total number of
symbol sets (the number of names in the list).

Unlike font names, the names of symbol sets are not arranged alphabetically.

Every font implements every symbol set. However, some fonts implement particular sets
more fully than others—that is, some characters in a symbol set may not be available in
some fonts. But the position of each character in the set (its character code) remains the
same across all fonts.

See also: SetSymbolSet() in the BView class, get_font_name()

index_for_color()

<interface/InterfaceDefs.h>

uchar index_for_color(rgb_color aColor)
uchar index_for_color(uchar red, uchar green, uchar blue, uchar alpha = 0)

Returns an index into the list of 256 colors that comprise the B_COLOR_8_BIT color space.
The value returned picks out the listed color that most closely matches a full B_RGB_24_BIT
color—specified either as an rgb_color value, aColor, or by its red, green, and blue
components. < (The alpha component is currently ignored.) >

The returned index identifies a color in the B_COLOR_8_BIT color space. It can, for
example, be passed to BBitmap’s SetBits() function.

To find the fully specified color that an index picks out, you have to get the color list from
the system color map. For example, if you first obtain the index for the “best fit” color that
most closely matches an arbitrary color,

uchar index = index_for_color(134, 210, 6);

you can then use the index to locate that color in the color list:

rgb_color bestFit = system_colors()->color_list[index];

See also: system_colors(), the BBitmap class

The Interface Kit – 293

 Global Functions

lock_screen(), unlock_screen()

<interface/InterfaceDefs.h>

void lock_screen(long index = 0)

void unlock_screen(long index = 0)

These functions lock and unlock the screen at index. Indices begin at 0. The screen at
index 0 is the one that has the origin of the screen coordinate system at its left top corner.
< Currently, only one monitor can be attached to the BeBox, so the index should always
be0.>

While a screen is locked, its frame buffer—and consequently the on-screen display—
won’t change. Updates are held until the screen is unlocked again.

The screen should be locked before reading pixel data directly from the frame buffer. The
locking thread should not communicate with the Application Server until the screen is
unlocked.

See also: get_screen_info()

restore_key_map() see system_key_map()

set_click_speed(), get_click_speed()

<interface/InterfaceDefs.h>

long set_click_speed(double interval)

long get_click_speed(double *interval)

These functions set and supply the timing for multiple-clicks. For successive mouse-
down events to count as a multiple-click, they must occur within the interval set by
set_click_speed() and provided by get_click_speed(). The interval is measured in
microseconds; it’s usually set by the user in the Mouse preferences application. The
smallest possible interval is 100,000 microseconds (0.1 second).

If successful, these functions return B_NO_ERROR; if unsuccessful, they return an error
code, which may be just B_ERROR.

See also: set_mouse_map()

294 – The Interface Kit

 Global Functions

set_desktop_color(), desktop_color()

<interface/InterfaceDefs.h>

void set_desktop_color(rgb_color color, bool makeDefault = TRUE)

rgb_color desktop_color(void)

These functions set and return the color of the so-called “desktop”—the bare backdrop
against which windows are displayed. The color is the same for all screens attached to the
same machine. set_desktop_color() makes an immediate change in the desktop color
displayed on-screen; desktop_color() returns the color currently displayed.

If the makeDefault flag is TRUE, the color that’s set becomes the default color for the
desktop; it’s the color that will be shown the next time the machine is booted. If the flag is
FALSE, the color is set only for the current session.

Users can change the default color with the Desktop application found in /preferences.

set_keyboard_locks()

<interface/InterfaceDefs.h>

void set_keyboard_locks(ulong modifiers)

Turns the keyboard locks—Caps Lock, Num Lock, and Scroll Lock—on and off. The
keyboard locks that are listed in the modifiers mask passed as an argument are turned on;
those not listed are turned off. The mask can be 0 (to turn off all locks) or it can contain
any combination of the following constants:

B_CAPS_LOCK
B_NUM_LOCK
B_SCROLL_LOCK

See also: system_key_map(), Modifiers() in the BView class

set_modifier_key()

<interface/InterfaceDefs.h>

void set_modifier_key(ulong modifier, ulong key)

Maps a modifier role to a particular key on the keyboard, where key is a key identifier and
modifier is one of the these constants:

B_CAPS_LOCK B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_NUM_LOCK B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_SCROLL_LOCK B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_MENU_KEY B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

The key in question serves as the named modifier key, unmapping any key that previously
played that role. The change remains in effect until the default key map is restored.

The Interface Kit – 295

 Global Functions

Modifier keys can also be mapped by calling system_key_map() and altering the
key_map structure directly. This function is merely a convenient alternative for
accomplishing the same thing.

See also: system_key_map()

set_mouse_map(), get_mouse_map(), set_mouse_type(),
get_mouse_type(), set_mouse_speed(), get_mouse_speed()

<interface/InterfaceDefs.h>

long set_mouse_map(mouse_map *map)

long get_mouse_map(mouse_map *map)

long set_mouse_type(long numButtons)

long get_mouse_type(long *numButtons)

long set_mouse_speed(long acceleration)

long get_mouse_speed(long *acceleration)

These functions configure the mouse and supply information about the current
configuration. The configuration should usually be left to the user and the Mouse
preferences application.

set_mouse_map() maps the buttons of the mouse to their roles in the user interface, and
get_mouse_map() writes the current map into the variable referred to by map. The
mouse_map structure has a field for each button on a three-button mouse:

ulong left The button on the left of the mouse
ulong right The button on the right of the mouse
ulong middle The button in the middle, between the other two buttons

Each field is set to one of the following constants:

PRIMARY_MOUSE_BUTTON
SECONDARY_MOUSE_BUTTON
TERTIARY_MOUSE_BUTTON

If both the left and right fields are set to PRIMARY_MOUSE_BUTTON, they both function as
the primary button; if either is set to PRIMARY_MOUSE_BUTTON, it functions as the
secondary button; and so on.

set_mouse_type() informs the system of how many buttons the mouse actually has. If it
has two buttons, only the left and right fields of the mouse_map are operative. If it has
just one button, only the left field is operative. set_mouse_type() writes the current
number of buttons into the variable referred to by numButtons.

set_mouse_speed() sets the speed of the mouse—the acceleration of the cursor image on
screen relative to the actual speed at which the user moves the mouse on its pad. An
acceleration value of 0 means no acceleration. The maximum acceleration is 20, though

296 – The Interface Kit

 Global Functions

even 10 is too fast for most users. set_mouse_speed() writes the current acceleration into
the variable referred to by acceleration.

All six functions return B_NO_ERROR if successful, and an error code, typically B_ERROR,
if not.

set_screen_size()

<interface/InterfaceDefs.h>

void set_screen_size(long index, float width, float height,
 bool makeDefault = TRUE)

Sets the size of the pixel grid displayed on the monitor at index in the screen list. < Since a
BeBox currently can have only one monitor, index should always be 0. >

The grid is the size of the screen measured in pixels—the number of pixels that it displays
horizontally and vertically. Only two screen sizes are currently supported—640 x 480 and
800 x 600—so the width and height passed to this function should match these values.

If the makeDefault flag is TRUE, the new screen size becomes the default and will be used
the next time the machine reboots. If the flag is FALSE, the change is for the current session
only; the machine will reboot in the previously determined default screen size.

When the size of the screen grid changes, every affected BWindow object is notified with
a ScreenChanged() function call. < Since there’s currently only one screen, all windows
are affected and all, whether on-screen or hidden, receive ScreenChanged()
notifications. >

It’s usually left to the user to set the screen size, with the Desktop preferences application.

See also: ScreenChanged() in the BWindow class, get_screen_info()

system_colors()

<interface/InterfaceDefs.h>

color_map *system_colors(void)

Returns a pointer to the system’s color map. The color map defines the set of 256 colors
that can be displayed in the B_COLOR_8_BIT color space. A single set of colors is shared
by all applications connected to the Application Server.

The Interface Kit – 297

 Global Functions

The color_map structure is defined in interface/InterfaceDefs.h and contains the
following fields:

long id An identifier that the Server uses to distinguish one
color map from another.

rgb_color color_list[256] A list of the 256 colors, expressed as rgb_color
structures. Indices into the list can be used to
specify colors in the B_COLOR_8_BIT color space.
See the index_for_color() function above.

uchar inversion_map[256] A mapping of each color in the color_list to its
opposite color. Indices are mapped to indices. An
example of how this map might be used is given
below.

uchar index_map[32768] An array that maps RGB colors—specified using
five bits per component—to their nearest
counterparts in the color list. An example of how
to use this map is also given below.

The inversion_map is a list of indices into the color_list where each index locates the
“inversion” of the original color. The inversion of the n’th color in color_list would be
found as follows:

uchar inversionIndex = system_colors()->inversion_map[n];
rgb_color inversionColor =
 system_colors()->color_list[inversionIndex];

Inverting an inverted index returns the original index, so this code

uchar color = system_colors()->inversion_map[inversionIndex];

would return n. < Inverted colors are used, primarily, for highlighting. Given a color, its
highlight complement is its inversion. >

The index_map maps every RGB combination that can be expressed in 15 bits (five bits
per component) to a single color_list index that best approximates the original RGB data.
The following example demonstrates how to squeeze 24-bit RGB data into a 15-bit
number that can be used as an index into the index_map:

long rgb15 = (((red & 0xf8) << 7) |
 ((green & 0xf8) << 2) |
 ((blue & 0xf8) << 3)) ;

Most applications won’t need to use the index map directly; the index_for_color() function
performs the same conversion with less fuss (no masking and shifting required).
However, applications that implement repetitive graphic operations, such as dithering,
may want to access the index map themselves, and thus avoid the overhead of an
additional function call.

298 – The Interface Kit

 Global Functions

You should never modify or free the color_map structure returned by this function.

See also: index_for_color()

system_key_map(), restore_key_map()

<interface/InterfaceDefs.h>

key_map *system_key_map(void)

void restore_key_map(void)

The first of these functions returns a pointer to the system’s key map—the structure that
describes the role of each key on the keyboard. The second function restores the default
key map, in case any of its fields have been changed.

The system key map is shared by all applications. An application can alter values in
the structure that system_key_map() returns—and thus alter the roles that the keys
play—but it should make sure that those changes are local to itself and don’t affect other,
unsuspecting applications. In particular, it should:

• Modify the key map only when one of its windows becomes the active window, and

• Restore the default key map when it no longer has the active window.

Through the Keyboard utility, users can configure the keyboard to their liking. The user’s
preferences affect all applications; they’re captured in the default key map and stored in a
file (system/Key_map).

When the machine reboots or when restore_key_map() is called, the key map is read from
this file. If the file doesn’t exist, the original map encoded in the Application Server is
used.

The key_map structure contains a large number of fields, but it can be broken down into
these five parts:

• A version number.

• A series of fields that determine which keys will function as modifier keys—such as
Shift, Control, or Num Lock.

• A field that sets the initial state of the keyboard locks in the default key map.

• A series of ordered tables that assign character values to keys. Keys assigned a
value other than -1 produce key-down events when pressed. This includes almost
all the keys on the keyboard (all except for a handful of modifier keys).

• A series of tables that locate the dead keys for diacritical marks and determine how
a combination of a dead key plus another key is mapped to a particular character.

The following sections describe each part of the key_map structure in turn.

The Interface Kit – 299

 Global Functions

Version The first field of the key map is a version number:

ulong version An internal identifier for the key map.

The version number doesn’t change when the user configures the keyboard, and shouldn’t
be changed programmatically either. You can ignore it.

Modifiers Modifier keys set states that affect other user actions on the keyboard and
mouse. Eight modifier states are defined—Shift, Control, Option, Command, Menu, Caps
Lock, Num Lock, and Scroll Lock. These states are discussed under “Modifier Keys” on
page 59 of the introduction. They overlap, but don’t exactly match the key caps found on
a standard keyboard—which generally has a set of Alt(ernate) keys, rarely Option keys,
and only sometimes Command and Menu keys. Because of these differences, the mapping
of keys to modifiers is the area of the key map most open to the user’s personal judgement
and taste, and consequently to changes in the default configuration. Applications are urged
to respect the user’s preferences.

Since two keys, one on the left and one on the right, can be mapped to the Shift, Control,
Option, and Command modifiers, the keyboard can have as many as twelve modifier keys.
The key_map structure has one field for each key:

ulong caps_key The key that functions as the Caps Lock key—by
default, this is the key labeled “Caps Lock,” key
0x3b.

ulong scroll_key The key that functions as the Scroll Lock key—by
default, this is the key labeled “Scroll Lock,” key
0x0f.

ulong num_key The key that functions as the Num Lock key—by
default, this is the key labeled “Num Lock,” key
0x22.

ulong left_shift_key A key that functions as a Shift key—by default,
this is the key on the left labeled “Shift,” key 0x4b.

ulong right_shift_key Another key that functions as a Shift key—by
default, this is the key on the right labeled “Shift,”
key 0x56.

ulong left_command_key A key that functions as a Command key—by
default, this is the left “Alt” key, key 0x5d.

ulong right_command_key Another key that functions as a Command key—by
default, this is the right “Alt” key, key 0x5f.

ulong left_control_key A key that functions as a Control key—by default,
this is the key labeled “Control” on the left, key
0x5c.

300 – The Interface Kit

 Global Functions

ulong right_control_key Another key that functions as a Control key—by
default, this key is not mapped. (The value of the
field is set to 0.)

ulong left_option_key A key that functions as an Option key—by default,
this is the key that’s labeled “Command” (or that
has a command symbol) on the left of some
keyboards, key 0x66. This key doesn’t exist on,
and therefore isn’t mapped for, a standard 101-key
keyboard.

ulong right_option_key A key that functions as an Option key—by default,
this is the key labeled “Control” on the right, key
0x60.

ulong menu_key A key that initiates keyboard navigation of the
menu hierarchy—by default, this is the key labeled
“Menu,” key 0x68. This key doesn’t exist on, and
therefore isn’t mapped for, a standard 101-key
keyboard.

Each field names the key that functions as that modifier. For example, when the user holds
down the key whose code is set in the right_option_key field, the B_OPTION_KEY and
B_RIGHT_OPTION_KEY bits are turned on in the modifiers mask that the various Modifiers()
functions return. When the user then strikes a character key, the B_OPTION_KEY state
influences the character that’s generated.

If a modifier field is set to a value that doesn’t correspond to an actual key on the keyboard
(including 0), that field is not mapped. No key fills that particular modifier role.

Keyboard locks One field of the key map sets initial modifier states:

ulong lock_settings A mask that determines which keyboard locks are
turned on when the machine reboots or when the
default key map is restored.

The mask can be 0 or may contain any combination of these three constants:

B_CAPS_LOCK
B_SCROLL_LOCK
B_NUM_LOCK

It’s 0 by default; there are no initial locks.

Altering the lock_settings field has no effect unless the altered key map is made the
default (by writing it to a file that replaces system/Key_map).

The Interface Kit – 301

 Global Functions

Character maps The principal job of the key map is to assign character values to keys.
This is done in a series of nine tables:

ulong control_map[128] The characters that are produced when a Control
key is down but both Command keys are up.

ulong option_caps_shift_map[128]
The characters that are produced when Caps Lock
is on and both a Shift key and an Option key are
down.

ulong option_caps_map[128]
The characters that are produced when Caps Lock
is on and an Option key is down.

ulong option_shift_map[128]
The characters that are produced when both a Shift
key and an Option key are down.

ulong option_map[128] The characters that are produced when an Option
key is down.

ulong caps_shift_map[128] The characters that are produced when Caps Lock
is on and a Shift key is down.

ulong caps_map[128] The characters that are produced when Caps Lock
is on.

ulong shift_map[128] The characters that are produced when a Shift key
is down.

ulong normal_map[128] The characters that are produced when none of the
other tables apply.

Each of these tables is an array of 128 characters (declared as ulongs). Key codes are used
as indices into the arrays. The value stored at any particular index is the character
associated with that key. For example, the code assigned to the M key is 0x52; the
characters to which the M key is mapped are recorded at index 0x52 in the various arrays.

The tables are ordered. Character values from the first applicable array are used, even if
another array might also seem to apply. For example, if Caps Lock is on and a Control key
is down (and both Command keys are up), the control_map array is used, not caps_map.
If a Shift key is down and Caps Lock is on, the caps_shift_map is used, not shift_map or
caps_map.

Notice that the last eight tables (all except control_map) are paired, with a table that
names the Shift key (_shift_map) preceding an equivalent table without Shift:

• option_caps_shift_map is paired with option_caps_map,

• option_shift_map with option_map,

• caps_shift_map with caps_map, and

• shift_map with normal_map.

302 – The Interface Kit

 Global Functions

These pairings are important for a special rule that applies to keys on the numerical
keypad when Num Lock is on:

• If the Shift key is down, the non-Shift table is used.
• However, if the Shift key is not down, the Shift table is used.

In other words, Num Lock inverts the Shift and non-Shift tables for keys on the numerical
keypad.

Not every key needs to be mapped to a character. If the value recorded in a table is -1, the
key corresponding to that index is not mapped to a character given the particular modifier
states the table represents. Generally, modifier keys are not mapped to characters, but all
other keys are, at least for some tables. Key-down events are not generated for -1
character values.

Dead keys Next are the tables that map combinations of keys to single characters. The
first key in the combination is “dead”—it doesn’t produce a key-down event until the user
strikes another character key. When the user hits the second key, one of two things will
happen: If the second key is one that can be used in combination with the dead key, a
single key-down event reports the combination character. If the second key doesn’t
combine with the dead key, two key-down events occur, one reporting the dead-key
character and one reporting the second character.

There are five dead-key tables:

ulong acute_dead_key[32]
The table for combining an acute accent (´) with
other characters.

ulong grave_dead_key[32]
The table for combining a grave accent (`) with
other characters.

ulong circumflex_dead_key[32]
The table for combining a circumflex (ˆ) with other
characters.

ulong dieresis_dead_key[32]
The table for combining a dieresis (¨) with other
characters.

ulong tilde_dead_key[32] The table for combining a tilde (˜) with other
characters

The tables are named after diacritical marks that can be placed on more than one character.
However, the name is just a mnemonic; it means nothing. The contents of the table
determine what the dead key is and how it combines with other characters. It would be
possible, for example, to remap the tilde_dead_key table so that it had nothing to do with
a tilde.

The Interface Kit – 303

 Global Functions

Each table consists of a series of up to 16 character pairs, where each character is declared
as a ulong. The first character in the pair is the one that must be typed immediately after
the dead key. The second character is the resulting character, the character that’s produced
by the combination of the dead key plus the first character in the pair. For example, if the
first character is ‘o’, the second might be ‘ô’—meaning that the combination of a dead key
plus the character ‘o’ produces a circumflexed ‘ô’.

The character pairs in the default grave_dead_key array look something like this:

' ', '`',
'A', 'À',
'E', 'È',
'I', 'Ì',
'O', 'Ò',
'U', 'Ù',
'a', 'à',
'e', 'è',
'i', 'ì',
'o', 'ò',
'u', 'ù',
. . .

By convention, the first pair in each array is a space followed by the dead-key character
itself. This pair does double duty: It states that the dead key plus a space yields the dead-
key character, and it also names the dead key. The system understands what the dead key
is from the second character in the array. Any key that produces that character while an
Option key is held down will be dead and will combine to produce the characters listed in
the array.

The Option key is an essential ingredient; a key is dead only when an Option key is held
down and only if it’s mapped (in the four option_ _map tables) to the second character
listed in one of the dead-key arrays.

See also: GetKeys() and Modifiers() in the BView class, “Keyboard Information” in the
chapter introduction, set_modifier_key()

304 – The Interface Kit

 Global Functions

The Interface Kit – 305

Constants and Defined Types

This section lists the various constants and types that the Interface Kit defines to support
the work done by its principal classes. The Kit is a framework of cooperating classes;
almost all of its programming interface can be found in the class descriptions presented in
previous sections of this chapter. Most of the constants and types listed here have already
been explained in the descriptions of class member functions. Only one or two have not
yet been mentioned in full detail. All of them are noted here and briefly described. If a
more lengthy discussion is to be found under a class or a member function, you’ll be
referred to that location.

Constants are listed first, followed by defined types. Constants that are defined as part of
an enumeration type are presented with the other constants, rather than with the type.
They’re listed in the “Constants” section under the type name.

Constants

alert_type Constants

<interface/Alert.h>

Enumerated constant

B_EMPTY_ALERT
B_INFO_ALERT
B_IDEA_ALERT
B_WARNING_ALERT
B_STOP_ALERT

These constants designate the various types of alert panels that are recognized by the
system. The type corresponds to an icon that’s displayed in the alert window.

See also: the BAlert constructor

306 – The Interface Kit

Constants	 Constants	and	Defined	Types

alignment Constants

<interface/InterfaceDefs.h>

Enumerated constant

B_ALIGN_LEFT
B_ALIGN_RIGHT
B_ALIGN_CENTER

These constants define the alignment data type. They determine how lines of text are
aligned by BTextView and BStringView objects.

See also: SetAlignment() in the BTextView class

button_width Constants

<interface/Alert.h>

Enumerated constant

B_WIDTH_AS_USUAL
B_WIDTH_FROM_LABEL
B_WIDTH_FROM_WIDEST

These constants define the button_width type. They determine how the width of the
buttons in an alert panel will be set—whether they’re set to an standard (minimal) width, a
width just sufficient to accommodate the button’s own label, or a width sufficient to
accommodate the widest label of all the buttons.

See also: the BAlert constructor

Character Constants

<interface/InterfaceDefs.h>

Enumerated constant Character value

B_BACKSPACE 0x08
B_ENTER 0x0a
B_RETURN 0x0a (same as B_ENTER or ‘\n’)
B_SPACE 0x20 (same as “)
B_TAB 0x09 (same as ‘\t’)
B_ESCAPE 0x1b
B_LEFT_ARROW 0x1c
B_RIGHT_ARROW 0x1d
B_UP_ARROW 0x1e
B_DOWN_ARROW 0x1f

The Interface Kit – 307

 Constants	and	Defined	Types Constants

Enumerated constant Character value

B_INSERT 0x05
B_DELETE 0x7f
B_HOME 0x01
B_END 0x04
B_PAGE_UP 0x0b
B_PAGE_DOWN 0x0c
B_FUNCTION_KEY 0x10

These constants stand for the ASCII characters they name. Constants are defined only for
characters that normally don’t have visible symbols.

See also: “Function Key Constants” below

color_space Constants

<interface/InterfaceDefs.h>

Enumerated constant Meaning

B_MONOCHROME_1_BIT One bit per pixel, where 1 is black and 0 is white.
B_GRAYSCALE_8_BIT 256 gray values, where 255 is black and 0 is white.
B_COLOR_8_BIT Colors specified as 8-bit indices into the color map.
B_RGB_24_BIT Colors as 8-bit red, green, and blue components.

These constants define the color_space data type. A color space describes two properties
of bitmap images:

• How many bits of information there are per pixel (the depth of the image), and

• How those bits are to be interpreted (whether as colors or on a grayscale, what the
color components are, and so on).

See the “Colors” section in the chapter introduction for a fuller explanation of the four
different color spaces currently defined for this type.

See also: “Colors” on page 25, the BBitmap class

Control States

<interface/Control.h>

Enumerated constant Value

B_CONTROL_ON 1
B_CONTROL_OFF 0

These constants define the possible states of a typical control device.

See also: SetValue() in the BControl class

308 – The Interface Kit

Constants	 Constants	and	Defined	Types

Cursor Transit Constants

<interface/View.h>

Enumerated constant Meaning

B_ENTERED_VIEW The cursor has just entered a view.
B_INSIDE_VIEW The cursor has moved within the view.
B_EXITED_VIEW The cursor has left the view

These constants describe the cursor’s transit through a view. Each MouseMoved()
notification includes one of these constants as an argument, to inform the BView whether
the cursor has entered the view, moved while inside the view, or exited the view.

See also: MouseMoved() in the BView class

drawing_mode Constants

<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_OP_COPY B_OP_ADD
B_OP_OVER B_OP_SUBTRACT
B_OP_ERASE B_OP_MIN
B_OP_INVERT B_OP_MAX
B_OP_BLEND

These constants define the drawing_mode data type. The drawing mode is a BView
graphics parameter that determines how the image being drawn interacts with the image
already in place in the area where it’s drawn. The various modes are explained under
“Drawing Modes” in the chapter introduction.

See also: “Drawing Modes” on page 27, SetDrawingMode() in the BView class

Font Name Length

<interface/InterfaceDefs.h>

Defined constant Value

B_FONT_NAME_LENGTH 64

This constant defines the maximum length of a font name. It’s used in the definition of the
font_name type.

See also: font_name under “Defined Types” below

The Interface Kit – 309

 Constants	and	Defined	Types Constants

Function Key Constants

<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_F1_KEY B_F9_KEY
B_F2_KEY B_F10_KEY
B_F3_KEY B_F11_KEY
B_F4_KEY B_F12_KEY
B_F5_KEY B_PRINT_KEY (the “Print Screen” key)
B_F6_KEY B_SCROLL_KEY (the “Scroll Lock” key)
B_F7_KEY B_PAUSE_KEY
B_F8_KEY

These constants stand for the various keys that are mapped to the B_FUNCTION_KEY
character. When the B_FUNCTION_KEY character is reported in a key-down event, the
application can determine which key produced the character by testing the key code
against these constants. (Control-p also produces the B_FUNCTION_KEY character.)

See also: “Character Mapping” on page 61 of the introduction to this chapter

Interface Messages

<app/AppDefs.h>

Enumerated constant Enumerated constant

B_ZOOM B_KEY_DOWN
B_MINIMIZE B_KEY_UP
 B_MOUSE_DOWN
B_WINDOW_RESIZED B_MOUSE_UP
B_WINDOW_MOVED B_MOUSE_MOVED
B_WINDOW_ACTIVATED
B_QUIT_REQUESTED B_MESSAGE_DROPPED
B_SCREEN_CHANGED
 B_VIEW_RESIZED
B_SAVE_REQUESTED B_VIEW_MOVED
B_PANEL_CLOSED B_VALUE_CHANGED

B_PULSE

These constants identify interface messages—system messages that are delivered to
BWindow objects. Each constant names an instruction to do something in particular
(B_ZOOM) or a type of event (B_KEY_DOWN).

See also: “Interface Messages” on page 41 of the introduction to this chapter

310 – The Interface Kit

Constants	 Constants	and	Defined	Types

Menu Bar Borders

<interface/MenuBar.h>

Enumerated constant Meaning

B_BORDER_FRAME Put a border around the entire frame rectangle.
B_BORDER_CONTENTS Put a border around the group of items only.
B_BORDER_EACH_ITEM Put a border around each item.

These constants can be passed as an argument to BMenuBar’s SetBorder() function.

See also: SetBorder() in the BMenuBar class

menu_layout Constants

<interface/Menu.h>

Enumerated constant Meaning

B_ITEMS_IN_ROW Menu items are arranged horizontally, in a row.
B_ITEMS_IN_COLUMN Menu items are arranged vertically, in a column.
B_ITEMS_IN_MATRIX Menu items are arranged in a custom fashion.

These constants define the menu_layout data type. They distinguish the ways that items
can be arranged in a menu or menu bar—they can be laid out from end to end in a row like
a typical menu bar, stacked from top to bottom in a column like a typical menu, or
arranged in some custom fashion like a matrix.

See also: the BMenu and BMenuBar constructors

Modifier States

<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_SHIFT_KEY B_OPTION_KEY
B_LEFT_SHIFT_KEY B_LEFT_OPTION_KEY
B_RIGHT_SHIFT_KEY B_RIGHT_OPTION_KEY

B_CONTROL_KEY B_COMMAND_KEY
B_LEFT_CONTROL_KEY B_LEFT_COMMAND_KEY
B_RIGHT_CONTROL_KEY B_RIGHT_COMMAND_KEY

B_CAPS_LOCK B_MENU_KEY
B_SCROLL_LOCK
B_NUMLOCK

These constants designate the Shift, Option, Control, Command, and Menu modifier keys
and the lock states set by the Caps Lock, Scroll Lock, and Num Lock keys. They’re
typically used to form a mask that describes the current, or required, modifier states.

The Interface Kit – 311

 Constants	and	Defined	Types Constants

For each variety of modifier key, there are constants that distinguish between the keys that
appear at the left and right of the keyboard, as well as one that lumps both together. For
example, if the user is holding the left Control key down, both B_CONTROL_KEY and
B_LEFT_CONTROL_KEY will be set in the mask.

See also: Modifiers() in the BView and BWindow classes, AddShortcut() in the
BWindow class, the BMenu constructor

Mouse Buttons

<interface/View.h>

Enumerated constant

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

These constants name the mouse buttons. Buttons are identified, not by their physical
positions, but by their roles in the user interface.

See also: GetMouse() in the BView class, set_mouse_map()

orientation Constants

<interface/InterfaceDefs.h>

Enumerated constant

B_HORIZONTAL
B_VERTICAL

These constants define the orientation data type that distinguishes between the vertical
and horizontal orientation of graphic objects. It’s currently used only to differentiate scroll
bars.

See also: the BScrollBar and BScrollView classes

Pattern Constants

<interface/InterfaceDefs.h>

const pattern B_SOLID_HIGH = { 0xff, 0xff, 0xff, 0xff, 0xff,0xff, 0xff, 0xff }

const pattern B_SOLID_LOW = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }

const pattern B_MIXED_COLORS
 = { 0xaa, 0x55, 00xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55 }

These constants name the three standard patterns defined in the Interface Kit.

312 – The Interface Kit

Constants	 Constants	and	Defined	Types

B_SOLID_HIGH is a pattern that consists of the high color only. It’s the default pattern for all
BView drawing functions that stroke lines and fill shapes.

B_SOLID_LOW is a pattern with only the low color. It’s used mainly to erase images
(to replace them with the background color).

B_MIXED_COLORS alternates pixels between the high and low colors in a checkerboard
pattern. The result is a halftone midway between the two colors. This pattern can produce
fine gradations of color, especially when the high and low colors are set to two colors that
are already quite similar.

See also: “Patterns” on page 25 of the chapter introduction, the pattern defined type
below

Resizing Modes

<interface/View.h>

Defined constants

B_FOLLOW_LEFT
B_FOLLOW_RIGHT
B_FOLLOW_LEFT_RIGHT
B_FOLLOW_H_CENTER

B_FOLLOW_TOP
B_FOLLOW_BOTTOM
B_FOLLOW_TOP_BOTTOM
B_FOLLOW_V_CENTER

B_FOLLOW_ALL
B_FOLLOW_NONE

These constants are used to set the behavior of a view when its parent is resized. They’re
explained under the BView constructor.

See also: the BView constructor, SetResizingMode() in the BView class

Tracking Constants

<interface/View.h>

Enumerated constant Meaning

B_TRACK_WHOLE_RECT Drag the whole rectangle around.
B_TRACK_RECT_CORNER Drag only the left bottom corner of the rectangle.

These constants determines how BView’s BeginRectTracking() function permits the user to
drag (or drag out) a rectangle.

See also: BeginRectTracking() in the BView class

The Interface Kit – 313

 Constants	and	Defined	Types Constants

Transparency Constants

<interface/InterfaceDefs.h>

const uchar B_TRANSPARENT_8_BIT
const rgb_color B_TRANSPARENT_24_BIT

These constants set transparent pixel values in a bitmap image. B_TRANSPARENT_8_BIT
designates a transparent pixel in the B_COLOR_8_BIT color space, and
B_TRANSPARENT_24_BIT designates a transparent pixel in the B_RGB_24_BIT color space.

Transparency is explained the “Drawing Modes” section of the chapter introduction.
Drawing modes other than B_OP_COPY preserve the destination image where a source
bitmap is transparent.

See also: “Drawing Modes” on page 27, the BBitmap class

View Flags

<interface/View.h>

Enumerated constant Meaning

B_FULL_UPDATE_ON_RESIZE Include the entire view in the clipping region.
B_WILL_DRAW Allow the BView to draw.
B_PULSE_NEEDED Report pulse events to the BView.
B_FRAME_EVENTS Report view-resized and view-moved events.

These constants can be combined to form a mask that sets the behavior of a BView object.
They’re explained in more detail under the class constructor. The mask is passed to the
constructor, or to the SetFlags() function.

See also: the BView constructor, SetFlags() in the BView class

Window Areas

<interface/Window.h>

Enumerated constant

B_UNKNOWN_AREA
B_TITLE_AREA
B_CONTENT_AREA
B_RESIZE_AREA
B_CLOSE_AREA
B_ZOOM_AREA

These constants name the various parts of a window. They’re used in messages that report
mouse-moved events to designate the area where the cursor is located.

See also: FilterMouseMoved() in the BWindow class

314 – The Interface Kit

Constants	 Constants	and	Defined	Types

Window Flags

<interface/Window.h>

const long B_NOT_MOVABLE
const long B_NOT_H_RESIZABLE
const long B_NOT_V_RESIZABLE
const long B_NOT_RESIZABLE
const long B_WILL_ACCEPT_FIRST_CLICK
const long B_NOT_CLOSABLE
const long B_NOT_ZOOMABLE
const long B_NOT_MINIMIZABLE
const long B_WILL_FLOAT

These constants set the behavior of a window. They can be combined to form a ma^k that’s
passed to the BWindow constructor.

See also: the BWindow constructor

window_type Constants

<interface/Window.h>

Enumerated constant Meaning

B_SHADOWED_WINDOW The window has a title bar and a shadowed bolder.
B_TITLED_WINDOW The window has a title bar.
B_BORDERED_WINDOW The window has a border but no title bar.
B_MODAL_WINDOW The window is a modal window.
B_BACKDROP_WINDOW The window is the backdrop for the whole screen.
B_QUERY_WINDOW The window displays the results of a query.

These constants define the window_type data type. They describe the various kinds of
windows that can be requested from the Application Server. Two of them,
B_BACKDROP_WINDOW and B_QUERY_WINDOW, are used only by the Browser
application. The others can be used by any application when constructing a window.

See also: the BWindow constructor

The Interface Kit – 315

 Constants	and	Defined	Types	 Defined	Types

Defined Types

alert_type

<interface/Alert.h>

typedef enum {. . .} alert_type

These constants name the various types of alert panel.

See also: “alert_type Constants” above and the BAlert constructor

alignment

<interface/InterfaceDefs.h>

typedef enum {. . .} alignment

Alignment constants determine where lines of text are placed in a view.

See also: “alignment Constants” above and SetAlignment() in the BTextView class

button_width

<interface/Alert.h>

typedef enum {. . .} button_width

These constants name the methods that can be used to determine how wide to make the
buttons in an alert panel.

See also: “button_width Constants” above and the BAlert constructor

color_map

<interface/InterfaceDefs.h>

typedef struct {
 long id;
 rgb_color color_list[256];
 uchar inversion_map[256];
 uchar index_map[32768];
} color_map

This structure contains information about the color context provided by the Application
Server. There’s one and only one color map for all applications connected to the Server.
Applications can obtain a pointer to the color map by calling the global system_colors()
function. See that function for information on the various fields.

See also: system_colors() global function

316 – The Interface Kit

Defined	Types	 Constants	and	Defined	Types

color_space

<interface/InterfaceDefs.h>

typedef enum {. . .} color_space

Color space constants determine the depth and interpretation of bitmap images. They’re
described under “Colors” in the introduction.

See also: “color_space Constants” above, “Colors” on page 25, the BBitmap class

drawing_mode

<interface/InterfaceDefs.h>

typedef enum {. . .} drawing_mode

The drawing mode determines how source and destination images interact. The various
modes are explained in the chapter introduction under “Drawing Modes”.

See also: “Drawing Modes” on page 27, “drawing_mode Constants” above

edge_info

<interface/View.h>

typedef struct {
 float left;
 float right;
} edge_info

This structure records information about the location of a character outline within the
horizontal space allotted to the character. Edges separate one character from adjacent
characters on the left and right. They’re explained under the GetCharEdges() function in
the BView class.

See also: GetCharEscapements() and GetFontInfo() in the BView class

The Interface Kit – 317

 Constants	and	Defined	Types	 Defined	Types

font_info

<interface/View.h>

typedef struct {
 font_name name;
 float size;
 float shear;
 float rotation;
 float ascent;
 float descent;
 float leading;
} font_info

This structure holds information about a BView’s current font. Its fields are explained
under the GetFontInfo() function in the BView class.

See also: GetFontInfo() and SetFontName() in the BView class

font_name

<interface/InterfaceDefs.h>

typedef char font_name[FONT_NAME_LENGTH + 1]

This type defines a string long enough to hold the name of a font—64 characters plus the
null terminator.

See also: SetFontName() in the BView class, get_font_name() global function

key_info

<interface/View.h>

typedef struct {
 ulong char_code;
 ulong key_code;
 ulong modifiers;
 uchar key_states[16];
} key_info

This structure is used by BView’s GetKeys() function to return all known information
about what the user is currently doing on the keyboard.

See also: GetKeys() in the BView class, “Keyboard Information” on page 55 of the
introduction to this chapter

318 – The Interface Kit

Defined	Types	 Constants	and	Defined	Types

key_map

<interface/InterfaceDefs.h>

typedef struct {
 ulong version;
 ulong caps_key;
 ulong scroll_key;
 ulong num_key;
 ulong left_shift_key;
 ulong right_shift_key;
 ulong left_command_key;
 ulong right_command_key;
 ulong left_control_key;
 ulong right_control_key;
 ulong left_option_key;
 ulong right_option_key;
 ulong menu_key;
 ulong lock_settings;
 ulong control_map[128];
 ulong option_caps_shift_map[128];
 ulong option_caps_map[128];
 ulong option_shift_map[128];
 ulong option_map[128];
 ulong caps_shift_map[128];
 ulong caps_map[128];
 ulong shift_map[128];
 ulong normal_map[128];
 ulong acute_dead_key[32];
 ulong grave_dead_key[32];
 ulong circumflex_dead_key[32];
 ulong dieresis_dead_key[32];
 ulong tilde_dead_key[32];
} key_map

This structure maps the physical keys on the keyboard to their functions in the user
interface. It holds the tables that assign characters to key codes, set up dead keys, and
determine which keys function as modifiers. There’s just one key map shared by all
applications running on the same machine. It’s returned by the system_key_map()
function.

See also: system_key_map() global function

The Interface Kit – 319

 Constants	and	Defined	Types	 Defined	Types

menu_layout

<interface/Menu.h>

typedef enum {. . .} menu_layout

This type distinguishes the various ways that items can arranged in a menu or menu bar.

See also: the BMenu class, “menu_layout Constants” above

mouse_map

<interface/InterfaceDefs.h>

typedef struct {
 ulong left;
 ulong right;
 ulong middle;
} mouse_map

This structure maps mouse buttons to their roles as the PRIMARY_MOUSE_BUTTON,
SECONDARY_MOUSE_BUTTON, or TERTIARY_MOUSE_BUTTON.

See also: set_mouse_map()

orientation

<interface/InterfaceDefs.h>

typedef enum {. . .} orientation

This type distinguishes between the B_VERTICAL and B_HORIZONTAL orientation of scroll
bars.

See also: the BScrollBar and BScrollView classes

pattern

<interface/InterfaceDefs.h>

typedef struct {
 uchar data[8];
} pattern

A pattern is a arrangement of two colors—the high color and the low color—in an 8-pixel
by 8-pixel square. Pixels are specified in rows, with one byte per row and one bit per
pixel. Bits marked 1 designate the high color; those marked 0 designate the low color. An
example and an illustration are given under “Patterns” on page 25 of the introduction to
this chapter.

See also: “Pattern Constants” above, “Patterns” in the chapter introduction

320 – The Interface Kit

Defined	Types	 Constants	and	Defined	Types

rgb_color

<interface/InterfaceDefs.h>

typedef struct {
 uchar red;
 uchar green;
 uchar blue;
 uchar alpha;
} rgb_color

This type specifies a full color in the B_RGB_24_BIT color space. Each component, except
alpha, can have a value ranging from a minimum of 0 to a maximum of 255.

< The alpha component, which is designed to specify the coverage of the color (how
transparent or opaque it is), is currently ignored. However, an rgb_color can be made
completely transparent by assigning it the special value, B_TRANSPARENT_24_BIT. >

See also: SetHighColor() in the BView class

screen_info

<interface/InterfaceDefs.h>

typedef struct {
 color_space mode;
 BRect frame;
 void *bits;
 long bytes_per_row;
 long reserved;
} screen_info

This structure holds information about a screen. Its fields are explained under the
get_screen_info() global function.

See also: get_screen_info() global function

symbol_set_name

<interface/InterfaceDefs.h>

typedef font_name symbol_set_name

This type defines a string long enough to hold the name of a symbol set—64 characters
plus the null terminator. The names of symbol sets are subject to the same length
constraint as the names of fonts, which is why this type is a redefinition of font_name.

See also: get_symbol_set_name() global function

The Interface Kit – 321

 Constants	and	Defined	Types	 Defined	Types

window_type

<interface/Window.h>

typedef enum {. . .} window_type

This type describes the various kinds of windows that can be requested from the
Application Server.

See also: the BWindow constructor, “window_type Constants” above

322 – The Interface Kit

Defined	Types	 Constants	and	Defined	Types

The Media Kit – 1

5 The Media Kit

Introduction 3

BAudioSubscriber 5
Overview. .5

Sound Hardware . .5
Inputs . .7
Converters .7
Streams . .8
Outputs . .8
Controlling the Hardware 9

Sound Data . 10
Receiving and Broadcasting Sound Data 11

Constructor and Destructor . 11
Member Functions . 12

BSoundFile 17
Overview. 17
Constructor and Destructor . 17
Member Functions . 18

BSubscriber 21
Overview. 21

Identifying a Server . 22
Subscribing. 22

The Stream . 22
The Clique . 22
Waiting for Access 24

Entering the Stream . 24
Positioning your BSubscriber 24
Receiving and Processing Buffers 25
Exiting the Stream 26
Processing Data in a Member Function 27

Constructor and Destructor . 28
Member Functions . 28

2 – The Media Kit

Global Functions, Constants, and Defined Types 35
Global Functions. 35
Constants. 36
Defined Types . 37

Media Kit Inheritance Hierarchy

BMessenger
(Application Kit) BSubscriber

BSoundFile

BAudioSubscriber

BFile
(Storage Kit)

The Media Kit – 3

5 The Media Kit

The Media Kit gives you tools that let you generate, examine, manipulate, and realize (or
render) medium-specific data in real-time. It also lets you synchronize the transmission of
data to different media devices, allowing you to build applications that can easily
incorporate and coordinate audio and video (for example).

There are three layers in the Media Kit:

• Through the classes provided by the module layer, you create data-generating and
manipulating modules that can be plugged into each other to create an ever-
narrowing data-processing tree. The tree terminates at a global scheduling object.
Every application can have its own processing tree, or it can share branches or even
individual modules with other applications. Synchronization between data from
different media is handled by the scheduler: All you have to do is define and hook
up the data-processing modules.

• At the subscriber layer are classes that let you talk directly to the media servers that
are provided by the Kit. For each distinct medium there’s a distinct server—but
there’s only one server per medium per computer. Corresponding to each server is a
BSubscriber-derived class. Through instances of these classes you can receive and
send data to the server.

• The stream layer lets you access the “data-streaming” facilities of the Kit. A data
stream (as used by the Kit) is a sequence of programming entities that each get
access to a set of data buffers. There are no servers or other media-specific
constraints at this layer; you can actually use the classes in the stream layer to
design a streamlined, intra-computer, data-transmission application (currently,
streams can’t broadcast over a network).

These three layers are interconnected: The module layer is built on top of the subscriber
layer, which is built on top of the stream layer. Most high-level media applications will
want to use the module layer exclusively. If you need more control or greater efficiency,
head for the subscriber layer. The stream layer is the least useful to media applications,
but, as mentioned above, it may find a home in applications—media-specific or not—that
want to set up an efficient, real-time data pipeline.

Currently, only the subscriber and stream layers of the Media Kit are implemented, and, in
this release, only the subscriber layer is documented.

At the subscriber layer, the Kit provides two classes:

4 – The Media Kit

• BSubscriber defines the basic rules to which all subscribers must adhere. If you
want to use the subscriber layer, this is where you start to learn about it.

• BAudioSubscriber provides additional functionality that speaks directly to the
Audio Server. The Audio Server is a background application that manages sound
data that arrives through the microphone or line-in jacks, and that sends sound data
to the internal speaker and line-out jacks. All subscribers that you create, for now,
will be instances of BAudioSubscriber.

The Kit also provides a BSoundFile class that lets you read the data in a sound file, and
global functions that let you play sound files.

Note: The Media Kit and the Midi Kit don’t mix. The functionality that’s currently
provided by the Midi Kit will, in a future release, be subsumed by the Media Kit.

The Media Kit – 5

BAudioSubscriber

Derived from: public BSubscriber

Declared in: <media/AudioSubscriber.h>

Overview

BAudioSubscriber objects perform two functions:

• They let your application receive, process, and broadcast sound data.
• They let you control certain aspects of the sound hardware.

Ultimately, the first point is the more interesting of the two: Recording, generating, and
manipulating sound data is a bit more amusing than simply setting the volume levels of the
hardware devices. But to understand how and what data is received by your
BAudioSubscriber objects, and what happens when you broadcast data through an object,
you should first understand how the hardware is configured. The next section examines
the sound hardware; following that is a description of the sound data that appears in your
application.

Sound Hardware

The sound hardware consists of a number of physical devices (jacks, converters, and the
like), a signal path that routes audio data between these devices, and “control points”
along the signal path that let you adjust the format and flow of the audio data. These
elements are depicted in the following illustration.

6 – The Media Kit

Overview BAudioSubscriber

• The four large boxes (“inputs,” “converters,” “streams,” and “outputs”) divide the
signal path into manageable territories; each territory is examined in separate
sections, below.

• The smaller boxes (“MIC,” “CD,” and so on) are actual or virtual sound devices.

• The long arrowed lines show how the devices are connected. A single line indicates
a single channel, a double line means stereo. The arrowhead at the end of each line
indicates the direction of the signal.

• The circled arrows show where the software can exhibit gain control over a device.
Each control point is labelled as it’s known to the Media Kit. A shaded circle means

The Media Kit – 7

 BAudioSubscriber Overview

 the control point has a volume control and a mute. An unshaded circle signifies a
mute but no volume control.

Inputs

There are three analog audio input devices:

• The microphone. The microphone jack at the back of the computer accepts a stereo
mini-phone (1/8”) plug. The analog microphone signal has its own volume control
and mute, and also allows a 20 dB boost. The microphone signal then feeds into the
input MUX.

• Line-in. The stereo line-in jacks at the back of the computer bring a line-level
analog signal into the computer. This signal can be routed directly to the audio
output devices, and fed to the MUX. The direct-to-output, or “through,” path has its
own volume control and mute; this control point is called B_LINE_IN_THROUGH by
the Kit.

• CD input. The CD (analog) input has the same features as line-in: The CD signal
can be sent through to the output (B_CD_THROUGH), and it can be fed to the MUX.

Note that the microphone signal doesn’t have a through path.

To bring an analog signal into your application (so you can record it, for example), the
signal must pass through the input MUX:

• The MUX is a “mutually exclusive” device that lets you choose a single (analog)
input from some number of candidate signals. In other words, you can bring in the
microphone signal or the line-in signal or the CD signal, but you can’t bring in any
two or all of them at the same time. The MUX passes the input signal to its output
without conversion to digital representation or other modification.

Converters

There are two sound data converters, the analog-to-digital converter (ADC) and the
digital-to-analog converter (DAC):

• The ADC takes the analog signal that it reads from the MUX and converts it to
digital representation. It does this by producing a series of samples, or
instantaneous measurements of the signal’s amplitude. The ADC control point is
called B_ADC_IN.

• The DAC converts digital sound data into a continuous analog signal. The DAC
control point is called B_DAC_OUT.

Acting as a sort of “short-circuit” between these two devices is the loopback:

8 – The Media Kit

Overview BAudioSubscriber

• The loopback path takes the digital signal straight out of the ADC and sends it to the
DAC. This path (which can be muted, but doesn’t have a volume control) is
intended, primarily, to simulate a “through” path for the microphone signal. There’s
little reason to send the line-in or CD signal down the loopback path since they have
actual through paths built in.

Streams

The ADC stream and DAC stream are the centerpieces of the BAudioSubscriber class. By
subscribing to the ADC stream you can receive the samples that are emitted by the ADC;
and by subscribing to the DAC stream, you can send buffers of digital sound data to the
DAC.

To enter the ADC stream you must create a BAudioSubscriber, subscribe to the stream (by
passing B_ADC_STREAM as the first argument to Subscribe()), and then call EnterStream().
At that point, your object will begin receiving buffers of ADC-converted data from the
audio server. The buffers show up as arguments to the object’s stream function.

Similarly, the DAC stream universe is broached by subscribing to and entering the
B_DAC_STREAM.

If you’re unfamiliar with the concepts of subscription, entering a stream, and the stream
function, take a break and read the BSubscriber specification.

Outputs

The output devices take analog signals and broadcast them to hardware that can turn the
signals into sound.

• The output mixer mixes the signal from the DAC with the signals from the line-in
and CD through paths. You can control the output of this mix at the B_MASTER_OUT
control point.

• The mixed signal is presented at the stereo line-out jacks at the back of the
computer. This is the same signal that’s presented at the headphone jack.

• The stereo signal is mixed to mono (and attenuated by 6 dB) and sent to the abysmal
internal speaker. The speaker has its own volume and mute control
(B_SPEAKER_OUT).

The Media Kit – 9

 BAudioSubscriber Overview

Controlling the Hardware

To set the volume level of a particular sound device, you use BAudioSubscriber’s
SetVolume() function. The function takes three arguments:

• A constant that represents the device you want to control.
• A float that sets the volume level of the left channel of the device.
• A float that does the same for the right channel.

The device constants are listed below; they correspond to the named control points shown
in the hardware diagram:

• B_CD_THROUGH
• B_LINE_IN_THROUGH
• B_ADC_IN
• B_LOOPBACK
• B_DAC_OUT
• B_MASTER_OUT
• B_SPEAKER_OUT

All volume levels are floating-point numbers in the range [0.0, 1.0], where 0.0 is
inaudible, and 1.0 is maximum volume. If you’re setting a single-channel device (in other
words, the speaker), the left channel level is used—the value you pass as the right channel
level is ignored. If you want to set one channel of a stereo device but leave the other at its
present level, pass the B_NO_CHANGE constant for the no-change channel.

In the example below, a BAudioSubscriber is used to set the volume of the CD-through
signal:

BAudioSubscriber *setter = BAudioSubscriber("setter");

/* Set the right channel of the CD through signal
 * to half the maximum volume, and leave the left channel
 * alone.
 */
setter->SetVolume(B_CD_THROUGH, B_NO_CHANGE, 0.5);

To mute a device, you disable it; or, more precisely, you set it to be not enabled. This is
done through the EnableDevice() function. As with SetVolume(), the function’s first
argument is the constant that represents the device you want to control. The second
argument is a boolean that states whether you want to enable (TRUE) or disable (FALSE) the
device. For example:

/* Mute the internal speaker. */
setter->EnableDevice(B_SPEAKER_OUT, FALSE);

The GetVolume() and IsDeviceEnabled() functions retrieve the current volume and
enabled state of a given device. (As a convenience, GetVolume() returns volume and
enabled status; see the function description for details.)

The microphone’s 20 dB boost is toggled through the BoostMic() function. The state of
the boost is retrieved by IsMicBoosted().

10 – The Media Kit

Overview BAudioSubscriber

Sound Data

Sound, as it appears—so to speak—in nature, is propagated by the continuous fluctuation
of air pressure. This fluctuation is called a sound wave. The digital representation of a
sound wave consists of a series of discrete measurements of the instantaneous pressure (or
amplitude) of the wave at precise, (typically) equally-spaced points in time. Each
measurement is called a sample. There are five attributes that characterize a digital sound
sample:

• The size of a single sound sample (the Media Kit expresses this measurement in
bytes-per-sample).

• The order of bytes in a multiple-byte sample.

• The number of samples in a “frame” of sound, where each sample in the frame is
meant to be played at the same time. For example, a stereo sound would have two
samples-per-frame. Samples-per-frame is commonly called the channel count.

• The number of frames that should be played in a second. This is commonly called
the sampling rate.

• The mapping from the value of a digital sample to a specific sound wave amplitude.
The Media Kit calls this the sample format. Usually, the mapping is linear: When
you double the value of a sample, you double the amplitude to which it corresponds.

The Be sound hardware (both the ADC and the DAC) allows the following sound attribute
settings:

• Sample size can be one or two bytes-per-sample.

• Byte-ordering is either most-significant-byte first (B_BIG_ENDIAN), or least-
significant-byte first (B_LITTLE_ENDIAN).

• The channel count can be one (mono) or two (stereo).

• The sampling rates, expressed as frames-per-second, that are supported by the
hardware are: 5510, 6620, 8000, 9600, 11025, 16000, 18900, 22050, 27420, 32000,
33075, 37800, 44100, 48000.

• There are two sample formats: The linear format, represented by the constant
B_LINEAR_SAMPLES, can be used with either one- or two-byte samples. The “mu-
law” format (B_MULAW_SAMPLES) can only be used with one-byte samples. Mu-law
is a quasi-exponential mapping that attempts to minimize “quantization noise” by
dedicating more bits, proportionally, to low amplitude values than to high amplitude
values.

The ADC and DAC use the same sampling rate. You can set the sampling rate through
BAudioSubscriber’s SetSamplingRate() function, but you can’t specify which device you
intend the setting to apply to: It always applies to both.

The Media Kit – 11

 BAudioSubscriber Constructor and Destructor

As for the other sound data parameters (sample size, byte order, channel count, and sample
format), the ADC and the DAC maintain independent settings. For example, you can set
the DAC to expect two-byte linear samples while the ADC produces one-byte mu-law
samples. The functions that set these sound format attributes are SetDACSampleInfo() and
SetADCSampleInfo(). Your BAudioSubscriber needn’t subscribe before setting the DAC
or ADC parameters.

Note: Currently, one-byte linear sample data is assumed to be unsigned. The most
important implication of this is that you can only play one source of 8-bit linear sound at a
time. If you try to mix two 8-bit sound sources, you’ll have to shift the data yourself. This
will be fixed in the next release.

Receiving and Broadcasting Sound Data

A BAudioSubscriber object receives buffers of sound data from one of the Audio Server’s
two buffer streams:

• The buffers that flow along the ADC stream are filled with sound data that’s been
brought into the computer, passed through the MUX, and converted by the ADC.
Data buffers that are received by your objects will already be filled with the data that
was converted by the ADC.

• The buffers that flow along the DAC stream are ultimately dumped into the DAC.

Keep in mind that there’s only one Audio Server-per-Be Machine; this means that there’s
only one sound-in and one sound-out stream, as well. So take care in receiving and
manipulating the data that your BAudioSubscribers receive; any changes to the data that
you make will affect all downstream subscribers.

Also note that the sound-in stream isn’t automatically “connected” to the sound-out
stream. If you want to grab data from the ADC and send it to the DAC, you have to
subscribe to both streams through two separate BAudioSubscriber objects, and then
coordinate the hand off of data from the ADC stream object to the DAC stream object.

Constructor and Destructor

BAudioSubscriber()

BAudioSubscriber(char *name)

Creates and returns a new BAudioSubscriber object. The object is given the name that
you pass as name; the length of the name shouldn’t exceed 32 characters (this length is
represented by the B_OS_NAME_LENGTH constant, as defined by the Operating System
Kit). The name is provided as a convenience and needn’t be unique.

After creating a BAudioSubscriber, you typically do the following (in this order):

12 – The Media Kit

Member Functions BAudioSubscriber

• Subscribe the object to one of the Audio Server’s buffer streams (either
B_ADC_STREAM or B_DAC_STREAM) by calling Subscribe().

• Allow the object to begin receiving buffers by calling EnterStream().

See also: BSubscriber::Subscribe(), BSubscriber::EnterStream()

~BAudioSubscriber()

virtual ~BAudioSubscriber(void)

Destroys the BAudioSubscriber.

Member Functions

ADCInput(), SetADCInput()

long ADCInput(void)

long SetADCInput(long device)

These functions get and set the device that feeds into the MUX (and so to the ADC). Valid
device constants are:

• B_MIC_IN
• B_CD_IN
• B_LINE_IN

You don’t need to be subscribed to the ADC stream in order to call these functions.

BoostMic(), IsMicBoosted()

long BoostMic(bool boost)

bool IsMicBoosted(void)

BoostMic() enables or disables the 20 dB boost on the microphone signal. IsMicBoosted()
returns the state of the boost. Your BAudioSubscriber must be subscribed to the DAC
stream to successfully call these functions.

GetADCSampleInfo(), GetDACSampleInfo(), SamplingRate()

long GetADCSampleInfo(long *bytesPerSample,
 long *channelCount,

The Media Kit – 13

 BAudioSubscriber Member Functions

 long *byteOrder,
 long *sampleFormat)

long GetDACSampleInfo(long *bytesPerSample,
 long *channelCount,
 long *byteOrder,
 long *sampleFormat)

long SamplingRate(void)

These functions return the values of the various sound data parameters. GetADC returns
(by reference) the sound parameters that are used in the ADC stream. GetDAC does the
same for the DAC stream. SamplingRate() returns (directly) the sampling rate, which is
held in common by the two streams.

See the description of SetADCSampleInfo() for a list of parameter values that you can
expect to see.

See also: SetADCSampleInfo() GetDACSampleInfo() see GetADCSampleInfo()

SetADCSampleInfo(), SetDACSampleInfo(), SetSamplingRate()

long SetADCSampleInfo(long bytesPerSample,
 long channelCount,
 long byteOrder,
 long sampleFormat)

long SetDACSampleInfo(long bytesPerSample,
 long channelCount,
 long byteOrder,
 long sampleFormat)

long SetSamplingRate(long samplingRate)

These functions set the values of the sound data attributes used by (respectively) the ADC
stream (SetADC), DAC stream (SetDAC), and both streams (SetSamplingRate()). The
arguments to the SetADC and SetDAC functions are:

• bytesPerSample is the size of a single sound sample measured in bytes. Acceptable
values are 1 and 2.

• channelCount is the number of samples in a “frame” of sound. Acceptable values
are 1 (mono) and 2 (stereo).

• byteOrder is the order of bytes in a multiple-byte sample. The ordering is either
B_BIG_ENDIAN or B_LITTLE_ENDIAN.

14 – The Media Kit

Member Functions BAudioSubscriber

• sampleFormat is the data format of a single sample. Linear format
(B_LINEAR_SAMPLES) can be used for one- or two-byte samples; mu-law format
(B_MULAW_SAMPLES) can be used for 1-byte samples.

The SetSamplingRate() function sets the sampling rate for both the ADC stream and the
DAC stream:

• The following sampling rates are supported by the sound hardware: 5510, 6620,
8000, 9600, 11025, 16000, 18900, 22050, 27420, 32000, 33075, 37800, 44100,
48000.

These functions don’t flinch at wildly inappropriate parameter settings. The values of the
arguments that you pass in are always rounded to the nearest acceptable value for the
particular parameter.

See also: GetADCSampleInfo()

SetDACSampleInfo() see SetADCSampleInfo()

SetVolume(), GetVolume(), EnableDevice(), IsDeviceEnabled(),
EnableDevice()

long SetVolume(long device,
 float leftVolume,
 float rightVolume)

long GetVolume(long device,
 float *leftVolume,
 float *rightVolume,
 bool isEnabled)

long EnableDevice(long device, bool enable)

bool IsDeviceEnabled(long device)

These functions set and return (by reference) the left and right volume levels, and the
enabled status of the device that’s identified by the first argument. Valid device constants
are:

• B_ADC_IN
• B_CD_THROUGH
• B_LINE_IN_THROUGH
• B_LOOPBACK
• B_DAC_OUT
• B_MASTER_OUT
• B_SPEAKER_OUT

Volume values are floating-point numbers that are clipped within the range [0.0, 1.0].
Across this range, the amplitude of a sound waveform is increased logarithmically; this
results, perceptually, in a linear increase in volume.

The Media Kit – 15

 BAudioSubscriber Member Functions

Note that you can’t set the volume of the B_LOOPBACK device (it doesn’t have a volume
control). Also, the speaker is monophonic; when you set or retrieve the volume of the
B_SPEAKER_OUT device, only the leftVolume argument is used.

You needn’t be subscribed to call these functions.

16 – The Media Kit

Member Functions BAudioSubscriber

The Media Kit – 17

BSoundFile

Derived from: public BFile

Declared in: <media/SoundFile.h>

Overview

A BSoundFile object can read sound data from a file. The association between a
BSoundFile object and a sound file is established through the use of a record ref, as
explained in the BFile documentation.

The BSoundFile functions let you examine the data in the sound file, read the data into a
buffer (that you must allocate yourself), and position a “frame pointer” in the file. The
frame pointer locates the first audio frame that’s considered when the BSoundFile next
reads the file.

Currently, BSoundFile can read AIFF and “standard” UNIX sound files. If it encounters
a sound file that it doesn’t understand, it assumes that the data in the file is 44.1 kHz, 16-
bit stereo data, and that the file doesn’t have a header (it reads from the very first byte).

Note: WAV sound file support will be added in the next release.

Constructor and Destructor

BSoundFile()

BSoundFile(void)
BSoundFile(record_ref ref)

Creates and returns a new BSoundFile object. The first version of the constructor must
be followed by a call to SetRef().

Warning: Currently, only the first version of the constructor—the version that doesn’t
accept an argument—works. Don’t try to set a BSoundFile’s ref by passing the ref as an
argument to the constructor.

Be	Incorporated	Confidential

18 – The Media Kit

Member Functions BSoundFile

~BSoundFile()

virtual ~BSoundFile(void)

Closes the BSoundFile’s sound file and destroys the object. The data in the sound file
isn’t affected.

Member Functions

CountFrames()

long CountFrames(void)

Returns the number of frames of sound that are in the object’s file. If the object isn’t
associated with a file, this returns zero.

FileFormat()

long FileFormat(void)

Returns a constant that identifies the type of sound file that this object is associated with.
Currently, three types of sound files are recognized: B_AIFF_FILE, B_UNIX_FILE and
B_UNKNOWN_FILE. AIFF is the Apple-defined sound format. The B_UNIX_FILE constant
represents the sound file format that’s used on many UNIX-based computers.
B_UNKNOWN_FILE is returned for all other formats. (WAV sound file support will be
added in the next release.)

B_UNKNOWN_FILE isn’t as useless as it sounds: Any file that is so identified is
considered to contain “raw” sound data. You can shape this data into a recognizable
format by setting the data format parameters directly, through calls to
SetSamplingRate(), SetChannelCount(), and so on. In this case, you’ll also probably
need to position the frame pointer to the first frame—in other words, you have to read
past the file’s header, if any, yourself. Thus primed, subsequent reads of the file will
retrieve the “correct” amount of data.

FrameIndex() see SetFrameIndex()

FramesRemaining()

long FramesRemaining(void)

Returns the number of unread frames in the file.

Be	Incorporated	Confidential

The Media Kit – 19

 BSoundFile Member Functions

ReadFrames()

virtual long ReadFrames(char *buffer, long frameCount)

Reads (as many as) frameCount frames of data into buffer. The function returns the
number of frames that were actually read (and increments the frame pointer by that
amount). When you hit the end of the file, this function returns 0.

SamplingRate(), CountChannels(), SampleSize(), FrameSize(),
ByteOrder(), SampleFormat()

long SamplingRate(void)

long CountChannels(void)

long SampleSize(void)

long FrameSize(void)

long ByteOrder(void)

long SampleFormat(void)

These functions return information about the format of the data that’s found in the
object’s sound file:

• SamplingRate() returns the sampling rate.

• CountChannels() returns the number of channels of sound.

• SampleSize() returns the size, in bytes, of a single sample.

• FrameSize() is a convenience function that give the number of bytes in a single
frame of sound (it’s the same as CountChannels() * SampleSize()).

• ByteOrder() returns a constant that represents the order of samples within a frame.
It’s either B_BIG_ENDIAN or B_LITTLE_ENDIAN.

• SampleFormat() returns a constant that represents the data format of a single
sample. It’s one of: B_LINEAR_SAMPLES, B_MULAW_SAMPLES, B_FLOAT_SAMPLES,
or B_UNDEFINED_SAMPLES.

These functions returns default values if the object isn’t associated with a file. The
defaults are:

• 44100 frames per second
• 2 channels
• 2 bytes per sample (16-bit samples)
• 4 bytes per frame
• Bytes are ordered MSB first (B_BIG_ENDIAN)
• The sample format is B_LINEAR_SAMPLES

Be	Incorporated	Confidential

20 – The Media Kit

Member Functions BSoundFile

SeekToFrame(), FrameIndex()

virtual long SeekToFrame(ulong index)

long FrameIndex(void)

Theses function set and return the location of the “frame pointer.” The frame pointer
points to the next frame that will be read from the file. The first frame in a file is frame
zero.

If you try to set the frame pointer to a location that’s outside the bounds of the data, the
pointer is set to the frame at the nearest extreme.

SetSamplingRate(), SetChannelCount(), SetSampleSize(),
SetByteOrder(), SetSampleFormat()

virtual long SetSamplingRate(long samplingRate)

virtual long SetChannelCount(long channelCount)

virtual long SetSampleSize(long bytesPerSample)

virtual long SetByteOrder(long byteOrder)

virtual long SetSampleFormat(long sampleFormat)

If the file format of your BSoundFile is B_UNKNOWN_FILE, you can use these functions
to tell the object how to interpret the format of its data. These functions don’t change
the actual data—neither as it’s represented within the object, nor as it resides in the
file—they simply prime the object for subsequent reads of the data.

The candidate values for the functions are:

• samplingRate can be any number, but will be rounded to the nearest hardware-
supported sampling rate when the data is played. The sampling rates that the
hardware supports are: 5510, 6620, 8000, 9600, 11025, 16000, 18900, 22050,
27420, 32000, 33075, 37800, 44100, 48000.

• channelCount is usually 1 (mono) or 2 (stereo). You can set the data to a higher
count but the hardware will only playback 2 channels at a time.

• sampleSize is usually 2 (16 bit samples). But it can also be 1 (the usual setting for
mu-law encoding) or 4 (floating-point data).

• byteOrder is either B_BIG_ENDIAN or B_LITTLE_ENDIAN

• sampleFormat is one of B_LINEAR_SAMPLES, B_MULAW_SAMPLES, B_FLOAT_
SAMPLES, or B_UNDEFINED_SAMPLES.

Each function returns the value that was actually implanted.

Be	Incorporated	Confidential

The Media Kit – 21

BSubscriber

Derived from: public BObject

Declared in: <media/Subscriber.h>

Overview

BSubscriber objects receive and process buffers of media-specific data. These buffers are
allocated and sent (to the BSubscriber) by a media server; for example, buffers of audio
data are sent by the Audio Server. Furthermore, each server can control more than one
buffer stream (the Audio Server has a sound-in stream and a sound-out stream). Each
BSubscriber can receive buffers from only one stream; however, more than one
BSubscriber can “subscribe” to the same stream. The collection of a server’s
BSubscribers stand shoulder-to-shoulder and pass buffers down the stream, in the style of
a bucket brigade. When a BSubscriber receives a buffer it does something to it—typically,
it examines, adds to, or filters the data it finds there—and then passes it to the next
BSubscriber (or, more accurately, lets the server pass it to the next BSubscriber).

The media servers take care of managing the data buffers in their streams—they allocate
new buffers, pass them between BSubscribers, clear existing buffers for re-use, and so on.
A BSubscriber’s primary tasks are these (and in this order):

• Identifying the media server stream that it wants to get buffers from.

• Subscribing, or applying for acceptance by the server.

• Entering the server’s buffer stream. By entering the stream, the BSubscriber begins
receiving data buffers from the server.

• Processing the data that it finds in the buffers that it receives.

The BSubscribers that subscribe to the same stream needn’t belong to the same
application. This means that your BSubscriber may be examining, adding to, or filtering
data that was generated in another application.

Most buffer streams need to “flow” quickly and uninterruptedly (this is especially true of
the Audio Server’s streams). The processing that a single BSubscriber performs when it
receives a buffer from the server should be as brief and efficient as possible.

22 – The Media Kit

Overview BSubscriber

Identifying a Server

BSubscriber is an abstract class—you never construct instances of BSubscriber directly.
Instead, you construct instances of one of its derived classes. Each BSubscriber-derived
class provided by the Media Kit corresponds to a particular media server. Identifying a
server, therefore, is implied by the act of choosing a BSubscriber-derived class with which
you instantiate an object.

Currently, the only BSubscriber-derived class that’s supplied by the Media Kit is
BAudioSubscriber. Instances of this class receive buffers from, obviously enough, the
Audio Server.

Subscribing

The first thing you do with your BSubscriber object, once you’ve constructed it, is to ask
its server’s permission to be sent buffers of data. This is performed through the
Subscribe() function. Subscription doesn’t cause buffers to actually be sent, but it does
get the BSubscriber into the ballpark. The act by which a BSubscriber receives buffers
(the EnterStream() function) depends on a successful subscription.

As part of a BSubscriber’s subscription, it must tell the server which stream it wants to
enter, which other BSubscribers it’s willing to share the buffer stream with, and whether
it’s willing to wait for “undesirable” brethren to get out of the stream before it gets in. The
object’s opinions on these topics are registered through arguments to the Subscribe()
function:

long Subscribe(long stream, subscriber_id clique, bool willWait)

The arguments are discussed in the following sections.

The Stream

A server can shepherd more than one stream. For example, the Audio Server controls
access to two streams: The sound-out stream terminates at the DAC, the sound-in stream
begins at the ADC. You identify the stream you want by using one of the stream constants
defined by the server. The Audio Server defines the constants B_DAC_STREAM for sound-
out and B_ADC_STREAM for sound-in. Other (potential) single-stream servers may provide
Subscribe() functions (in their corresponding BSubscriber-derived classes) that exclude
the stream argument.

A BSubscriber may only subscribe to one stream at a time.

The Clique

A BSubscriber’s clique (passed as the clique argument to Subscribe()) identifies the cabal
of BSubscribers that the calling object is willing to share the server’s buffer stream with.

The Media Kit – 23

 BSubscriber Overview

The value of clique acts as a “key” to the stream: To gain access to the stream, you have to
have the proper key.

Here’s how it works: The first BSubscriber that calls Subscribe() passes some value as the
clique argument. This value becomes the key to the buffer stream; any other BSubscriber
that wants to subscribe (to the same server) must pass the same clique value (with one
exception, as described later). The actual value that’s used to represent the clique is
irrelevant; matching is the only concern. A given clique value is enforced until all objects
that subscribed with that value have unsubscribed (trough the Unsubscribe() function).

Note: The clique argument is type cat as a subscriber_id. Such values are tokens that
uniquely identify BSubscriber objects among all extant BSubscribers of the same class
(across all applications). That the clique is represented as a subscriber_id is primarily a
convenience: Just as the actual clique value has no significance, neither does its type
imply any special properties about the clique.

With regard to cliques, there are four types of BSubscribers: Those that want utterly
exclusive access to the buffer stream, those that are willing to share access with certain
(but not all) other BSubscribers, those that will share with any other BSubscriber, and
those that want to crash the party.

• If a BSubscriber wants to have exclusive access to the stream—if it doesn’t want
any other BSubscriber to be able to enter the stream while it’s subscribed—then the
object passes some value as the clique argument, but keeps the value a secret.
Typically, the object’s own subscriber_id value is used as the argument; the ID()
function supplies this value:

/* FirstSubscriber is assumed to be a valid BSubscriber
 * object (currently, it must be an instance of
 * BAudioSubscriber).
 */
subscriber_id firstID = FirstSubscriber->ID();
FirstSubscriber->Subscribe(firstID, ...);

• If the first subscriber wants to share the stream with subsequent subscribers, the
initial clique value must be used in those subsequent subscriptions:

/* First... */
subscriber_id firstID = FirstSubscriber->ID();
FirstSubscriber->Subscribe(firstID, ...);
...

/* Notice that the second subscriber passes the
 * first subscriber’s ID value as the clique argument.
 */
SecondSubscriber->Subscribe(firstID, ...);

 To share the stream with certain BSubscribers in other applications (or in certain
other applications), the first subscriber’s application would have to broadcast the
first subscriber’s ID value (through a BMessage, for example).

24 – The Media Kit

Overview BSubscriber

• To share the stream between all BSubscribers in all applications is easy: You pass
the B_SHARED_SUBSCRIBER_ID constant as the value for clique:

FirstSubscriber->Subscribe (B_SHARED_SUBSCRIBER_ID, ...).;

 Note, however, that the B_SHARED_SUBSCRIBER_ID clique doesn’t guarantee that a
BSubscriber will be allowed in the stream. If some other non-shared BSubscriber
has already set the clique to some other value, a BSubscriber that passes
B_SHARED_SUBSCRIBER_ID will be turned down.

• If you just don’t care who’s in the stream or whether they like you or not, use the
constant B_INVISIBLE_SUBSCRIBER_ID as the clique value. This will get you in
regardless of—and without changing—the current clique setting. If you’re the first
subscriber, the next subscriber will be allowed in regardless of his clique
specification, and the stream’s clique will be set to this subsequent value. For
example, if the stream is empty and you subscribe with an
B_INVISIBLE_SUBSCRIBER_ID clique, and then another subscriber subscribes with
B_SHARED_SUBSCRIBER_ID while you’re still in the stream, all subsequent
subscribers will also have to specify B_SHARED_SUBSCRIBER_ID.

Waiting for Access

If a BSubscriber is denied access to a server because it didn’t pass the correct clique value,
it can either give up immediately, or wait for the current clique members to unsubscribe.
This is expressed in the Subscribe()’s final argument, the boolean willWait:

• If willWait is FALSE, Subscriber,) returns immediately, regardless of its success in
gaining access to the server. (The measure of its success is given by the function’s
return value.)

• If it’s TRUE, the function doesn’t return until the BSubscriber has successfully
subscribed. There’s no time-out provision, so the wait is indefinite. (Yes, there is a
SetTimeout() function; no, it doesn’t apply to subscription.)

Entering the Stream

Having successfully subscribed to a server’s stream, the BSubscriber’s next task is to enter
stream. By this, the object will begin receiving buffers of data.

Positioning your BSubscriber

The EnterStream() function, through which a BSubscriber enters a stream, takes a number
of arguments. The first two arguments position the BSubscriber with respect to the other
BSubscriber objects that are already in the stream (if any):

virtual long EnterStream(subscriber_id neighbor, bool before, ...)

The Media Kit – 25

 BSubscriber Overview

The neighbor argument identifies the BSubscriber that you want the entering BSubscriber
to stand next to; before places the entering object before (TRUE) or after (FALSE) the
neighbor. The neighbor needn’t belong to the same application as the entering object, but
it must already have entered the stream.

If you want to place the BSubscriber at one or the other end of the stream (or to add the
first BSubscriber to the stream), you pass NULL as the neighbor. A before value of TRUE
thus places the BSubscriber at the “front” of the stream (the object will be the first to
receive each buffer that flows through the stream), and a value of FALSE places it at the
“back” (it’s the last to receive buffers before they’re realized or recycled).

A BSubscriber’s position in the stream can’t be “locked.” If, for example, you place your
BSubscriber to stand at the back of the stream, some other BSubscriber—from some other
application, possibly—can come along later and also claim the back. Your object will be
bumped forward (towards the front of the stream) to make room.

Receiving and Processing Buffers

After your BSubscriber has entered the buffer stream, it will begin receiving buffers of
data. The third, fourth, and last arguments to EnterStream() pertain to the means by which
your object receives these buffers:

EnterStream(..., void *userData, StreamFn streamFunction, ..., bool background)

The arguments, taken out of order, are:

• streamFunction is a pointer to a boolean-returning function (the complete protocol
is given below) that will be invoked once for each buffer that’s received.

• userData is a pointer-sized value that will be passed as an argument to
streamFunction.

• The value of background is used to determine whether streamFunction will be
executed in a separate thread (TRUE) or in the same thread (FALSE) as that in which
EnterStream() was called. If you run in the background, EnterStream() returns
immediately; if not, the function doesn’t return until the object has exited the
stream.

Of initial interest, here, is the “stream function” that you must supply: This is global
function that’s invoked once for each buffer that the BSubscriber receives. The protocol
for the function (which is typedef’d as StreamFn) is:

bool stream_function(void *userData, char *buffer, long count)

• userData is taken from the userData argument you passed to EnterStream().
• buffer is a pointer to the buffer that has just arrived.
• count is the number of bytes of data in the buffer.

You have to implement the stream function yourself; the Media Kit doesn’t supply any
stream function candidates. From within your implementation of the function, you’re

26 – The Media Kit

Overview BSubscriber

expected to process the data in buffer as fits your intentions. As mentioned earlier, your
processing should be designed with efficiency in mind. The only hard rule by which you
should abide is this:

Don’t Clear the Buffer

If you’re generating data, you should add it into the data that you find in the buffer.
Thank-you.

When you’re done with your processing, you simply return from the stream function. You
don’t have to do anything to send the buffer to the next BSubscriber in the stream; the
Media Kit takes care of that for you. The value that the stream function returns is
important: If it returns TRUE, the BSubscriber continues receiving buffers; if it returns
FALSE, the object is removed from the stream.

Note: Although the stream function must be global, it’s often convenient to use an object
to manage the actual data-processing. See “Processing Data in a Member Function” on
page 27 for details.

Exiting the Stream

There are two (unexceptional) ways to remove a BSubscriber from a buffer stream; The
first was mentioned above: Return FALSE from the stream function. The second method is
to call ExitStream() directly. The ExitStream() function is particularly useful if you’re
running the stream function in the background and want to pull the trigger from the main
thread.

Whichever method is used, the BSubscriber’s “completion function” is invoked upon
exiting the stream. This is an optional call-back function, similar to the stream function in
its application, that you supply as the fifth argument to EnterStream():

EnterStream(..., CompletionFn completionFunction, ...)

The protocol for the completion function is:

long completion_function(void *userData, long error)

• The userData value is, again, taken from the EnterStream() call.
• error is a code that explains why the BSubscriber is exiting the stream.

Normally, error is B_NO_ERROR. This means that the BSubscriber is exiting naturally:
Either because the stream function returned FALSE or because ExitStream() was called. If
error is B_TIMED_OUT, then the BSubscriber is exiting because of a delay in receiving the
next buffer. (You set the time-out limit through BSubscriber’s SetTimeout() function,
specifying the limit in microseconds; by default the object will wait forever.) Any other
error code will have been generated by a lower-level entity and can be lumped into the
general category of “something went wrong.”

The Media Kit – 27

 BSubscriber Overview

The completion function is executed in the same thread as the stream function. If this isn’t
a background thread, the value returned by the completion function is then returned by
EnterStream(). If you are using a background thread, the return value is lost.

You can perform whatever clean-up is necessary in your implementation of the completion
function. If you’re running in the background, this clean-up can include deleting the
BSubscriber object itself (if the function knows the identity of the object). But don’t try
this trick if you’re not running in the background; such a maneuver will void the warranty
on your mattress.

Processing Data in a Member Function

As mentioned above, the stream function must be a global function. But it’s easier to
create a class that will perform the actual data-processing. This is where the userData
argument comes in: The argument is provided, primarily, so you can identify the object
that will perform the processing. The implementation of the stream function would, then,
look like something this:

bool my_stream_function(void *userData,
 char *buffer,
 long count)
{
/* Cast userData to the proper class (we’ll call it
 * SoundMaker for this example), and invoke the object’s
 * data-processing function (we’ll call it MakeSound()),
 * passing along the buffer and byte-count.
 */
return (((SoundMaker *)userData)->MakeSound(buffer,count));
}

This implies, of course, that you must pass an existing object as the userData argument
when you call EnterStream():

/* Create a SoundMaker and pass it to EnterStream(). */
SoundMaker *beeper = new SoundMaker();
...

/* MySubscriber is assumed to be an instance of a
 * BSubscriber-derived class that has successfully
 * subscribed to the server.
 */
MySubscriber->EnterStream(NULL, TRUE,
 beeper, my_stream_function, ...);

This methodology works equally well for the completion function.

28 – The Media Kit

Constructor and Destructor BSubscriber

Constructor and Destructor

BSubscriber()

BSubscriber(char *name)

Creates and returns a new BSubscriber object. The object is given the name that you pass
as name; the length of the name shouldn’t exceed 32 characters (this length is represented
by the B_OS_NAME_LENGTH constant, as defined by the Operating System Kit). The name
is provided as a convenience and needn’t be unique (across the set of all BSubscribers).

After creating a BSubscriber, you typically do the following (in this order):

• Subscribe the object to a buffer stream by calling Subscribe().
• Allow the object to begin receiving buffers by calling EnterStream().

The construction of a BSubscriber never fails. This function doesn’t set the object’s Error()
value.

See also: Subscribe(), EnterStream()

~BSubscriber()

virtual ~BSubscriber(void)

Destroys the BSubscriber. You can delete a BSubscriber from within an implementation
of the object’s “completion function” (as defined by the EnterStream() function), but only
if the function is executed in a background thread.

It isn’t necessary to tell the object to exit the buffer stream or to unsubscribe it before
deleting. These actions will happen automatically.

Member Functions

Clique()

subscriber_id Clique(void)

Returns the clique (a subscriber_id value) that this BSubscriber used in its most recent
attempt to subscribe. The attempt need not have been successful, nor is there any
guarantee that the object hasn’t since unsubscribed. If the object hasn’t attempted to
subscribe, this returns B_NO_SUBSCRIBER_ID.

See also: Subscribe()

The Media Kit – 29

 BSubscriber Member Functions

EnterStream()

virtual long EnterStream(subscriber_id neighbor,
 bool before,
 void *userData,
 StreamFn streamFunction,
 CompletionFn completionFunction,
 bool background)

Causes the BSubscriber to begin receiving buffers of data from the media server. The
object must have successfully subscribed (through a call to Subscribe()) for this function
to succeed.

The arguments to this function (and the function in general) is the topic of most of the
overview to this class; look there for the whole story. Briefly, the arguments are:

• neighbor identifies the BSubscriber that this object will stand next to in the buffer
stream. If neighbor is NULL, this BSubscriber will be positioned at the front or the
back of the stream (depending on the value of the next argument).

• before, if TRUE, places this BSubscriber immediately before neighbor in the stream.
If it’s FALSE, this object is placed after neighbor. If neighbor was NULL, this object is
placed at the front or back of the stream as before is TRUE or FALSE.

• userData is a pointer-sized value that’s forwarded as an argument to the stream and
completion functions (specified in the next two arguments to EnterStream()).

• streamFunction is a global function that’s called once for every buffer that’s sent to
the BSubscriber. The protocol for the function is:

bool stream_function(void *userData, char *buffer, long count)

 The userData argument, here, is taken literally as the userData value passed to
EnterStream(). A pointer to the buffer itself is passed as buffer, count is the number
of bytes of data in the buffer. If the stream function returns TRUE, the object
continues to receive buffers; if it returns FALSE, it exits the stream.

• completionFunction is a global function that’s called after the BSubscriber has
finished processing its last buffer. Its protocol is:

long completion_function(void *userData, long error)

 userData, again, is taken from the argument to EnterStream() error is a code that
describes why the object is leaving the stream. B_NO_ERROR means that the object
has received an ExitStream() call, or that the stream function returned FALSE. An
error of B_TIMED_OUT means the time limit between buffer receptions (as set through
SetTimeout()) has expired. The value returned by the completion function becomes
the value that’s returned by EnterStream() (if the function isn’t running in the
background, as described in the next argument.)

 The completion function is optional. A value of NULL is accepted.

30 – The Media Kit

Member Functions BSubscriber

• background, if TRUE, causes the stream and completion functions to be executed in a
separate thread (the Kit spawns the thread for you). In this case, EnterStream()
returns immediately. If it’s FALSE, the functions are executed synchronously within
the EnterStream() call.

If the designated neighbor isn’t in the buffer stream, EnterStream() returns
SUBSCRIBER_NOT_FOUND. Otherwise, if background is TRUE, EnterStream() immediately
returns B_NO_ERROR; if it’s FALSE, EnterStream() returns the value returned by the
completion function. If a completion function isn’t supplied, EnterStream() returns a
value (B_NO_ERROR or otherwise) that indicates the success of the communication with
the server (unless something’s gone wrong, the return, in this case, should be
B_NO_ERROR). In all cases, the Error() value is set to the value returned here.

Calling EnterStream() while you’re already in the stream isn’t disallowed. But be aware
of the consequences: If the object is in the stream, ExitStream() is invoked automatically
before the second and all subsequent calls to EnterStream().

See also: ExitStream()

Error()

long Error(void)

Returns an error code that reflects the success of the function that was most recently
invoked upon this object. The error codes that a particular function uses are listed in that
function’s description.

ExitStream()

virtual long ExitStream(void)

Causes the BSubscriber to leave the buffer stream after it completes the processing of its
current buffer. This function always returns B_NO_ERROR (and sets Error()) to do the same.

See also: EnterStream()

ID()

subscriber_id ID(void)

Returns the subscriber_id value that uniquely identifies this BSubscriber. A subscriber
ID is issued when the object subscribes to a buffer stream; it’s withdrawn when the object
unsubscribes. ID values are used, primarily, to position a BSubscriber with respect to
some other BSubscriber within a buffer stream.

If the BSubscriber isn’t currently subscribed to a stream, B_NO_SUBSCRIBER_ID is
returned.

The Media Kit – 31

 BSubscriber Member Functions

Name()

long Name(subscriber_id id, char *name)

Returns, by reference in name, the name of the subscriber identified by id. If id is NULL,
the name of the calling BSubscriber is returned.

SetTimeout(), Timeout()

void SetTimeout(double microseconds)

double Timeout(void)

These functions set and return the amount of time, measured in microseconds, that a
BSubscriber that has entered the buffer stream is willing to wait from the time that it
finishes processing one buffer till the time that it gets the next. If the time limit expires
before the next buffer arrives, the BSubscriber exits the stream and the completion
function is called with its error argument set to B_TIMED_OUT.

A time limit of 0 (the default) means no time limit—the BSubscriber will wait forever for
its next buffer.

See also: EnterStream()

StreamParameters()

long StreamParameters(long *bufferSize,
 long *bufferCount,
 bool *isRunning,
 long *subscriberCount,
 subscriber_id *clique)

Returns information about the stream to which the BSubscriber has successfully
subscribed:

• bufferSize is the size, in bytes, of the buffers that the object will receive.

• bufferCount is the number of buffers that are used in the stream.

• isRunning is TRUE if the stream is currently running, and FALSE if it isn’t.

• subscriberCount is the number of BSubscriber objects that are currently subscribed
to the stream (whether or not they’ve actually entered).

• clique is the currently enforced clique value for the stream.

You can set the buffer size and buffer count parameters (and so fine-tune the latency of the
stream) through the SetStreamBuffers() function. isRunning can be toggled through calls
to StartStreaming() and StopStreaming(). The other two parameters (subscriberCount and
clique) vary as subscribers come and go.

32 – The Media Kit

Member Functions BSubscriber

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_RESOURCE_UNAVAILABLE is returned. Otherwise, the function returns B_NO_ERROR.

SetStreamBuffers()

long SetStreamBuffers(long bufferSize, long bufferCount)

Sets the size (in bytes) and number of buffers that are used to transport data through the
stream. Although it’s up to the server to set these values to reasonable values, you (can
fine-tune the performance of the stream by fiddling with this function:

• By decreasing the size and/or number of buffers, you can decrease the latency of the
stream (the time it takes for a buffer to get from one end of the stream to the other).
However, if you go too far in this direction, you run the risk of falling out of real
time.

• By increasing the buffer size and count, you help ensure the real-time integrity of
the stream, but you increase its latency.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_RESOURCE_UNAVAILABLE is returned. Otherwise, the function returns B_NO_ERROR.

The Audio Server initializes its streams to use eight buffers (per stream), where each
buffer is a single page (4096 bytes). Currently, there’s no way to automatically restore
these default values after you’ve mangled one of the audio streams.

StartStreaming(), StopStreaming()

long StartStreaming(void)

long StopStreaming(void)

Starts and stops the passing of buffers through the stream to which the BSubscriber is
subscribed. By default, the stream is running (it’s “streaming”). You should only need to
call StartStreaming() if a previous invocation of StopStreaming() was made.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_RESOURCE_UNAVAILABLE is returned. Otherwise, the function returns B_NO_ERROR.

Subscribe()

virtual long Subscribe(long stream, subscriber_id clique, bool willWait)

Asks for admission into the server’s list of BSubscribers to which it (the server) will send
buffers of data. Subscribing doesn’t cause the BSubscriber to begin receiving buffers, it
simply gives the object the right to do so. (To receive buffers, you must invoke
EnterStream() on a BSubscriber that has successfully subscribed.)

The arguments are described fully in the overview to this class. Briefly, they are:

The Media Kit – 33

 BSubscriber Member Functions

• stream is a constant that identifies the specific stream within the server that you wish
to subscribe to. The Audio Server provides two stream constants: B_DAC_STREAM
(sound-out), and B_ADC_STREAM (sound-in).

• The clique argument is used as a “key” to the server. If there are no other currently-
subscribed objects, any clique value is accepted and the BSubscriber is admitted.
Subsequent subscriptions (by other BSubscribers) are then denied if they don’t
match this clique value. Conversely, if some other object has successfully
subscribed (and hasn’t since unsubscribed) this object must pass the clique value by
which the currently-subscribed object gained admittance. The special
B_INVISIBLE_SUBSCRIBER_ID value, when used as the clique, will let you invade any
stream, any time.

• The willWait argument tells the server whether this BSubscriber will wait for the
coast to clear if the immediate attempt to subscribe is denied.

A successful subscription returns B_NO_ERROR. If the subscription is denied (because
stream doesn’t identify a valid stream, or the clique value isn’t acceptable) and the
BSubscriber isn’t waiting, Subscribe() returns RESOURCE_NOT_AVAILABLE. The Error()
value is set to the value returned directly here.

Note: The timeout value that you can set through the SetTimeout() function doesn’t apply
to subscription (it only applies to the inter-buffer lacuna). A BSubscriber that’s willing to
wait for admission might be waiting a long time.

See also: Unsubscribe()

Timeout() see SefTimeout()

Unsubscribe()

virtual long Unsubscribe(void)

Revokes the BSubscriber’s access to its media server and sets its subscriber ID to
B_NO_SUBSCRIBER_ID. If the object is currently in the server’s buffer stream, it’s removed
and the object’s “completion function” (as set by the EnterStream() function) is called.
When you delete a BSubscriber, it’s automatically unsubscribed.

The function returns B_NO_ERROR if the object was successfully unsubscribed. Other
error codes signify a problem in communicating with the server. The Error() value is set to
the value returned directly here.

See also: Subscribe()

34 – The Media Kit

Member Functions BSubscriber

The Media Kit – 35

Global Functions, Constants, and
Defined Types

This section lists parts of the Media Kit that aren’t contained in classes.

Global Functions

beep()

<media/Beep.h>

sound_handle beep(void)

beep() plays the system beep. The sound is played in a background thread and beep()
returns immediately. If you want to re-synchronize with the sound playback, pass the
sound_handle token (returned by this function) as the argument to sound_wait(). This
will cause your thread to wait until the sound has finished playing.

beep() will mix other sounds, but it never waits if it the immediate attempt to play is
thwarted.

play_sound()

<media/Beep.h>

sound_handle play_sound(record_ref soundRef,
 bool willMix,
 bool willWait,
 bool background)

Plays the sound file identified by soundRef. The file’s data portion mustn’t already be
open.

The willMix and willWait arguments are used to determine how the function behaves
with regard to other sounds:

• If you want your sound to play all by itself, set willMix to FALSE. If you don’t care
if it’s mixed with other sounds, set it to TRUE.

• If you want your sound to play immediately (whether or not you’re willing to
mix), set willWait to FALSE. If you’re willing to wait for the sound playback
resources to become available, set willWait to TRUE.

Be	Incorporated	Confidential

36 – The Media Kit

Constants	 Global	Functions,	Constants,	and	Defined	Types

Note that setting willMix to TRUE doesn’t ensure that your sound will play immediately.
If the sound playback resources are claimed for exclusive access by some other process,
you’ll be blocked, even if you’re willing to mix.

The background argument, if TRUE, tells the function to spawn a thread in which to play
the sound. The function, in this case, returns immediately. If background is FALSE, the
sound is played synchronously and play_sound() won’t return until the sound has
finished.

The sound_handle value that’s returned is a token that represents the sound playback.
This token is only valid if you’re playing in the background; you would use it in a
subsequent call to stop_sound() or wait_for_sound().

sound_stop()

long stop_sound(sound_handle handle)

Stops the playback of the sound identified by handle, a value that was returned by a
previous call to beep() or play_sound().

wait_for_sound()

long wait_for_sound(sound_handle handle)

Causes the calling thread to block until the sound identified by handle has finished
playing. The handle value should have been returned by a previous call to beep() or
play_sound().

Constants

Byte Order Constants

<media/MediaDefs.h>

Constant Meaning

B_BIG_ENDIAN MSB first
B_LITTLE_ENDIAN LSB first

These constants are used by BAudioSubscriber and BSoundFile objects to describe the
order of bytes within a sound sample.

Be	Incorporated	Confidential

The Media Kit – 37

 Global	Functions,	Constants,	and	Defined	Types	 Defined	Types

Sample Format Constants

<media/MediaDefs.h>

Constant Meaning

B_LINEAR_SAMPLES Linear quantization
B_FLOAT_SAMPLES Floating-point samples
B_MULAW_SAMPLES Mu-law encoding
B_UNDEFINED_SAMPLES Anything else.

These constants represent the sample formats that are recognized by the sound
hardware.

Defined Types

sound_handle

<media/Beep.h>

typedef sem_id sound_handle

The sound_handle type is a token that represents sounds that are currently being played
through calls to beep() or play_sound().

subscriber_id

<media/MediaDefs.h>

typedef sem_id subscriber_id

The subscriber_id type is a token that uniquely identifies—system-wide—a BSubscriber
object for a particular server.

Be	Incorporated	Confidential

38 – The Media Kit

Defined	Types	 Global	Functions,	Constants,	and	Defined	Types

Be	Incorporated	Confidential

The Midi Kit – 1

6 The Midi Kit

Introduction 3

BMidi 5
Overview. .5

Forming Connections .5
Message Generation and the Run() Function 7
Spray Functions .8
Input Functions. .8

Creating a MIDI Filter 9
Time . 10

Spraying Time and the B_NOW Macro 10
Hook Functions . 11
Constructor and Destructor . 12
Member Functions . 13
Input and Spray Functions . 15

BMidiPort 19
Overview. 19

Opening the Ports . 19
Run() and the Input Functions 19
Looping through a BMidiPort Object 20

Constructor and Destructor . 20
Member Functions . 20

BMidiStore 23
Overview. 23

Recording . 23
Timestamps . 24
Erasing and Editing a Recording 24

Playback . 24
Setting the Current Event. 25

Reading and Writing MIDI Files. 25
Constructor and Destructor . 26
Member Functions . 27

2 – The Midi Kit

BMidiText 31
Overview. 31
Constructor and Destructor . 32
Member Functions . 32

Midi Kit Inheritance Hierarchy

BObject
(Support Kit) BMidi

BMidiStore

BMidiText

BMidiPort

The Midi Kit – 3

6 The Midi Kit

The Musical Instrument Digital Interface (MIDI) is a standard for representing and
communicating musical data. Its fundamental notion is that instantaneous musical events
generated by a digital musical device can be encapsulated as “messages” of a known
length and format. These messages can then be transmitted to other computer devices
where they’re acted on in some manner. The MIDI standard allows digital keyboards to
be de-coupled from synthesizer boxes, lets computers record and playback performances
on digital instruments, and so on.

The Midi Kit understands the MIDI software format (including Standard MIDI Files).
With the Kit, you can create a network of objects that generate and broadcast MIDI
messages. Applications built with the Midi Kit can read MIDI data that’s brought into the
computer through a MIDI port, process the data, write it to a file, and send it back out
through the same port. The Kit contains four classes:

• The BMidi class is the centerpiece of the Kit. It defines the tenets to which all
MIDI-processing objects adhere, and provides much of the machinery that realizes
these ideas. BMidi is abstract—you never create direct instances of the class.
Instead, you construct and connect instances of the other Kit classes, all of which
derive from BMidi. You can also create your own classes that derive from BMidi.

• BMidiPort knows how to read MIDI data from and write it to a MIDI hardware port.

• BMidiStore provides a means for storing MIDI data, and for reading, writing, and
performing Standard MIDI Files.

• BMidiText is a debugging aid that translates MIDI messages into text and prints
them to standard output. You should only need this class while you’re designing
and fine-tuning your application.

To use the Midi Kit, you should have a working knowledge of the MIDI specification; no
attempt is made here to describe the MIDI software format.

The Be Computer comes equipped with four MIDI (hardware) ports. These are standard
MIDI ports that accept standard MIDI cables—you don’t need a MIDI interface box. The
ports are aligned vertically at the back of the computer. Top-to-bottom they are MIDI-
In A, MIDI-Out A, MIDI-In B, and MIDI-Out B. Currently, unfortunately, the MIDI Kit
only talks to the top set of ports (MIDI-In A and MIDI-Out A).

4 – The Midi Kit

The Midi Kit – 5

BMidi

Derived from: public BObject

Declared in: <midi/Midi.h>

Overview

BMidi is the centerpiece of the Midi Kit. It defines the fundamental concepts of the Kit by
providing the mechanisms and functions that create a MIDI performance. BMidi is
abstract; all other Kit classes—and any class that you want to design to take part in a
performance—derive from BMidi. When you create a BMidi-derived class, you do so
mainly to re-implement the hook functions that BMidi provides. The hook function allow
instances of your class to behave in a fashion that the other objects will understand.

The functions that BMidi declares fall into four categories:

• Connection functions. The connection functions let you connect the output of one
BMidi object to the input of another BMidi object.

• Message-generation functions. Some BMidi objects generate (or otherwise
procure) MIDI data. To do this, a derived class must implement the Run() hook
function. Run() is the brains of a MIDI performance; other performance functions,
such as Start() and Stop() control the performance.

• “Spray” functions. If a BMidi object wants to send a MIDI message to other BMidi
objects, it does so by calling one of the output, or “spray,” functions. There’s a
spray function for each type of MIDI message; for example, SprayNoteOn()
corresponds to MIDI’S Note On message type. When a message is sprayed, it’s sent
to each of the objects that are connected to the output of the sprayer.

• Input functions. When a message is sprayed, the receivers of the message are
notified by the automatic invocation of particular “input” functions. For example,
when a BMidi object calls SprayNoteOn(), each of the objects that it’s connected to
becomes the target of the NoteOn() function. How the object responds depends on
the object’s class—input functions are virtual; the BMidi class implementations are
empty.

Forming Connections

A fundamental concept of the Midi Kit is that MIDI data should “stream” through your
application, passing from one BMidi-derived object to another. Each object does

6 – The Midi Kit

Overview BMidi

whatever it’s designed to do: Sends the data to a MIDI port, writes it to a file, modifies it
and passes it on, and so on.

You form the chain of BMidi objects that propagate MIDI data by connecting them to each
other. This is done through BMidi’s Connect() function. The function takes a single
argument—the object you want the caller to connect to. By calling Connect(), you
connect the output of the calling object to the input of the argument.

For example, let’s say you want to record a MIDI performance—in other words, you want
to connect a keyboard to your computer, play it, and have the performance recorded in a
file. To set this up, you connect a BMidiPort object (which reads data from the MIDI
port) to a BMidiStore (which stores the data that’s sent to it and can write it to a file):

/* Connect the output of a BMidiPort to the input of a
 * BMidiStore.
 */
BMidiPort *m_port = new BMidiPort();
BMidiStore *m_store = new BMidiStore();

m_port->Connect (m_store) ;

Simply connecting the objects isn’t enough, however; you have to tell the BMidiPort to
start listening to the MIDI port, by calling its Start() function. This is explained in a later
section.

Once you’ve made the recording, you could play it back by re-connecting the objects in
the opposite direction:

/* We’ll disconnect first, although this isn’t strictly
 * necessary.
 */
m_port->Disconnect(m_store);
m_store->Connect(m_port);

In this configuration, a Start() call to m_store would cause its MIDI data to flow into the
BMidiPort (and thence to a synthesizer, for example, for realization).

You can connect any number of BMidi objects to the output of another BMidi object, as
depicted below:

The configuration in the illustration is created thus:

The Midi Kit – 7

 BMidi Overview

a_object->Connect(b_object);
a_object->Connect(c_object);
a_object->Connect(d_object);

Every BMidi object knows which objects its output is connected to; you can get a BList of
these objects through the Connections() function. For example, a_object, above, would
list b_object, c_object, and d_object as its connections.

Similarly, the same BMidi object can be the argument in any number of Connect() calls,
as shown below and depicted in the following illustration:

b_object->Connect(a_object)
c_object->Connect(a_object)
d_object->Connect(a_object)

a_object doesn’t know about the objects that are connected to its input. In other words,
when you use a BMidi object as the argument to a Connect() method, the argument object
isn’t informed.

Message Generation and the Run() Function

To generate MIDI data, you implement, in a BMidi-derived class, the Run() function. An
implementation of Run() should include a while loop that, on each circuit, produces the
data for (ideally) a single MIDI message, and then sprays the message to the connected
objects. To predicate the loop you test the value of the KeepRunning() boolean function.

The outline of a Run() implementation looks like this:

void MyMidi::Run()
{
 while (KeepRunning()) {
 /* Generate data and spray. */
 }
}

To tell an object to perform its Run() function, you call the object’s Start() function—you
never call Run() directly. This causes the object to spawn a thread (its “run” thread) and
execute Run() within it. When you’re tired of the object’s performance, you call its Stop()
function.

8 – The Midi Kit

Overview BMidi

The Run() function is needed in classes that want to introduce new MIDI data into a
performance. For example, in its implementation of Run(), BMidiStore sprays messages
that correspond to the MIDI data that it stores. In its Run(), a BMidiPort reads data from
the MIDI port and produces messages accordingly. If you’re generating MIDI data
algorithmically, or reading your own file format (BMidiStore can read standard MIDI
files), then you’ll need to implement Run(). If, on the other hand, you’re creating an object
that “filters” data—that accepts data at its input, modifies it, then sprays it—you won’t
need Run().

Another point to keep in mind is that the Run() function can “run ahead” of real time. It
doesn’t have to generate and spray data precisely at the moment that the data needs to be
realized. This is further explained in the section ‘Time” on page 10.

Important: The BMidi-derived classes that you create must implement Run(), even if they
don’t generate MIDI data; “do-nothing” implementations are acceptable, in this case. For
example, if you’re creating a filter (as described in a later section), your Run() function
could be, simply

void MidiFilter::Run()
{}

Spray Functions

The spray functions are used (primarily) within a Run() loop to send data to the running
object’s connections (the objects that are connected to the running object’s output).
There’s a separate spray function for each of the MIDI message types: SprayNoteOn(),
SprayNoteOff(), SprayPitchBend(), and so on. The arguments that these functions take are
the data items that comprise the specific messages. The spray functions also take an
additional argument that gives the message a time-stamp, as explained later (again, in the
“Time” section).

As with Run(), you never call spray functions directly; they should only be called within
the implementation of a BMidi-derived class.

Input Functions

The input functions take the names of the MIDI messages to which they respond:
NoteOn() responds to a Note On message; NoteOff() responds to a Note Off;
KeyPressure() to a Key Pressure change, and so on. These are all hook (virtual) functions.
BMidi doesn’t provide a default implementation for any of them; it’s up to each BMidi-
derived class to decide how to respond to MIDI messages.

Input functions are never invoked directly; they’re automatically called when a running
object sprays MIDI data.

Every BMidi object automatically spawns an “input” thread when it’s constructed. It’s in
this thread that input functions are executed. The input thread is always running—the

The Midi Kit – 9

 BMidi Overview

Start() and Stop() functions don’t affect it. As soon as you construct an object, it’s ready to
receive data.

For example, let’s say, once again, you have a BMidiPort connected to a BMidiStore:

m_port->Connect(m_store);

Now you open the port (a BMidiPort detail that doesn’t extend to other BMidi-derived
classes) and tell the BMidiPort to start running:

m_port->Open("midi1");
m_port->Start();

As the BMidiPort is running, it sends data to its output. Since the BMidiStore is
connected to the BMidiPort’s output, it receives this data automatically in the form of
input function invocations. In other words, when m_port calls its SprayNoteOn() function
(which it does in its Run() loop), m_store’s NoteOn() function is automatically called. As
an instance of BMidiStore, the m_store object caches the data that it receives through the
input functions.

You can derive your own BMidi classes that implement the input functions in other ways.
For example the following implementation of NoteOn(), in a proposed class called
NoteCounter(), simply keeps track of the number of times each key (in the MIDI sense) is
played:

void NoteCounter::NoteOn(uchar channel, uchar keyNumber,
 uchar velocity, ulong time)
{
 /* We’ll assume the class has allocated an array that
 * holds the key counters.
 */
 keyCounter[keyNumber]++;
}

Note that the NoteOn() function in the example includes a time argument (the other
arguments should be familiar if you understand the MIDI specification). This argument is
explained in the “Time” section.

Creating a MIDI Filter

Some BMidi classes may want to create objects that act as filters: They receive data,
modify it, and then pass it on. To do this, you call the appropriate spray functions from
within the implementations of the input functions. Below is the implementation of the
NoteOn() function for a proposed class called Transposer. It takes each Note On,
transposes it up a half step, and then sprays it:

void Transposer::NoteOn(uchar channel, uchar keyNumber,
 uchar velocity, ulong time)
{
 uchar new_key = max(keyNumber + 1, 127);

10 – The Midi Kit

Overview BMidi

 SprayNoteOn(channel, new_key, velocity, time);
}

There’s a subtle but important distinction between a filter class and a “performance” class
(where the latter is a class that’s designed to actually realize the MIDI data it receives).
The distinction has to do with time, and is explained in the next section. An implication of
the distinction that affects the current discussion is that it may not be a great idea to invest,
in a single object, the ability to filter and perform MIDI data. By way of calibration, both
BMidiStore and BMidiPort are performance classes—objects of these classes realize the
data they receive, the former by caching it, the latter by sending it out the MIDI port. In
neither of these classes do the input functions spray data.

Time

As pointed out earlier, every spray and input function takes a final time argument. This
argument declares when the message that the function represents should be performed.
The argument is given as an absolute measurement in ticks, or milliseconds. Tick 0 occurs
when you boot your computer; the tick counter automatically starts running at that point.
To get the current tick measurement, you call the global, operating system-defined
system_time() function and divide by 1000.0 (system_time() returns microseconds).

A convention of the Midi Kit holds that time arguments are applied at an object’s input. In
other words, the implementation of a BMidi-derived input function would look at the time
argument, wait until the designated time, and then do whatever it does that it does do.
However, this only applies to BMidi-derived classes that are designed to perform MIDI
data, as the term was defined in the previous section. Objects that filter data shouldn’t
apply the time argument.

To apply the time argument, you call the SnoozeUntil() function, passing the value of time.
For example, a “performance” NoteOn() function would look like this:

void MyPerformer::NoteOn(uchar channel, uchar keyNumber,
 uchar velocity, ulong time)
{
 SnoozeUntil(time);
 /* Perform the data here. */
}

If time designates a tick that has already tocked, SnoozeUntil() returns immediately;
otherwise it tells the input thread to snooze (it calls the snooze() function) until the
designated tick is at hand.

Spraying Time and the B_NOW Macro

If you’re implementing the Run() function, then you have to generate a time value yourself
(to pass as the final argument to a spray function). The value you generate depends on
what your class is doing:

The Midi Kit – 11

 BMidi Hook Functions

• If your class conjures MIDI data that needs to be performed immediately, you
should use the B_NOW macro as the value of the time arguments that you pass to
your spray functions. B_NOW is simply a cover for system_time()/l000.0
(converted to an integer). By using B_NOW as the time argument you’re declaring
that the data should be performed in the same tick in which it was generated. This
probably won’t happen; by the time the input functions are called and the data
realized, a few ticks will have elapsed. In this case, the expected SnoozeUntil() calls
(within the input function implementations) will see that the time value has passed,
and so will return immediately, allowing the data to be realized as quickly as
possible. The lag between the time that you generate the data and the time it’s
realized depends on a number of factors, such as how loaded down your machine is
and how much processing your BMidi objects perform. But the Midi Kit machinery
itself shouldn’t impose a latency that’s beyond the tolerability of a sensible musical
performance.

• If you’re generating data ahead of its performance time, you need to compute the
time value so that it pinpoints the correct time in the future. For example, if you
want to create a class that generates a note every 100 milliseconds, you would need
to do something like this:

void MyTicker::Run()
{
 ulong when = B_NOW;
 uchar key_num;
 while (KeepRunning()) {

 /* Make a new note.
 */
 SprayNoteOn(1, 60, 64, when);

 /* Turn the note off 99 ticks later. */
 when += 99;
 SprayNoteOff(1, 60, 0, when);

 /* Bump runningTime so the next Note On
 * will be 100 ticks after this one.
 */
 when += 1;
 }
}

 When a MyTicker object is told to start running, it will busily churn out notes as fast
as possible and rely on its connected objects to apply the time-stamps in their input
functions.

Hook Functions

Run() Contains a loop that generates and broadcasts MIDI
messages.

12 – The Midi Kit

Constructor and Destructor BMidi

Start() Starts the object’s run loop. Can be overridden to provide
pre-running adjustments.

Stop() Stops the object’s run loop. Can be overridden to perform
post-running clean-up.

The input functions (NoteOn(), NoteOff(), and so on) are also hook functions. These are
listed in the section “Input and Spray Functions” on page 15.

Constructor and Destructor

BMidi()

BMidi(void)

Creates and returns a new BMidi object. The object’s input thread is spawned and started
in this function—in other words, BMidi objects are born with the ability to accept
incoming messages. The run thread, on the other hand, isn’t spawned until Start() is
called.

~BMidi()

virtual ~BMidi(void)

Kills the input and run threads after they’ve gotten to suitable stopping points (as defined
below), deletes the list that holds the connections (but doesn’t delete the objects contained
in the list), then destroys the BMidi object.

The input thread is stopped after all currently-waiting input messages have been read. No
more messages are accepted while the input queue is being drained. The run thread is
allowed to complete its current pass through the run loop and then told to stop (in the
manner of the Stop() function).

While the destructor severs the connections that this BMidi object has formed, it doesn’t
sever the connections from other objects to this one. For example, consider the following
(improper) sequence of calls:

/* DON’T DO THIS... */
a_midi->Connect(b_midi);
b_midi->Connect(c_midi);
delete b_midi;

The delete call severs the connection from b_midi to c_midi, but it doesn’t disconnect
a_midi and b_midi. You have to disconnect the object’s “back-connections” explicitly:

/* ...DO THIS INSTEAD */
a_midi->Connect(b_midi);

The Midi Kit – 13

 BMidi Member Functions

b_midi->Connect(c_midi);
. . .
a_midi->Disconnect(b_midi);
delete b_midi;

See also: Stop()

Member Functions

Connect()

void Connect(BMidi *toObject)

Connects the BMidi object’s output to toObject input. The BMidi object can connect its
output to any number of other objects. Each of these connected objects receives an input
function call as the BMidi sprays messages. For example, consider the following setup:

my_midi->Connect(your_midi);
my_midi->Connect(his_midi);
my_midi->Connect(her_midi);

The output of my_midi is connected to the inputs of your_midi, his_midi, and her_midi.
When my_midi calls a spray function—SprayNoteOn(), for example—each of the other
objects receives an input function call—in this case, NoteOn().

Any object that’s been the argument in a Connect() call should ultimately be disconnected
through a call to Disconnect(). In particular, care should be taken to disconnect objects
when deleting a BMidi object, as described in the destructor.

See also: the BMidi destructor, Connections(), IsConnected()

Connections()

inline BList *Connections(void)

Returns a BList that contains the objects that this object has connected to itself. In other
words, the objects that were arguments in previous calls to Connect(). When a BMidi
object sprays, each of the objects in its connection list becomes the target of an input
function invocation, as explained in the class description.

See also: Connect(), Disconnect(), IsConnected()

14 – The Midi Kit

Member Functions BMidi

Disconnect()

void Disconnect(BMidi *toObject)

Severs the BMidi’s connection to the argument. The connection must have previously
been formed through a call to Connect() with a like disposition of receiver and argument.

See also: Connect()

IsConnected()

inline bool IsConnected(BMidi *toObject)

Returns TRUE if the argument is present in the receiver’s list of connected objects.

See also: Connect(), Connections()

IsRunning()

bool IsRunning(void)

Returns TRUE if the object’s Run() loop is looping; in other words, if the object has received
a Start() function call, but hasn’t been told to Stop() (or otherwise hasn’t fallen out of the
loop).

See also: Start(), Stop()

KeepRunning()

protected:

bool KeepRunning(void)

Used by the Run() function to predicate its while loop, as explained in the class
description. This function should only be called from within Run().

See also: Run(), Start(), Stop()

Run()

private:

void Run(void)

A BMidi-derived class places its data-generating machinery in the Run() function, as
described in the section “Message Generation and die Run() Function” on page 7.

See also: Start(), Stop(), KeepRunning()

The Midi Kit – 15

 BMidi Input and Spray Functions

SnoozeUntil()

void SnoozeUntil(ulong tick)

Puts the calling thread to sleep until tick milliseconds have elapsed since the computer was
booted. This function is meant to be used in the implementation of the input functions, as
explained in the section “Time” on page 10.

Start()

virtual void Start(void)

Tells the object to begin its run loop and execute the Run() function. You can override this
function in a BMidi-derived class to provide your own pre-running initialization. Make
sure, however, that you call the inherited version of this function within your
implementation.

See also: Stop(), Run()

Stop()

virtual void Stop(void)

Tells the object to halt its run loop. Calling Stop() tells the KeepRunning() function to
return FALSE, thus causing the run loop (in the Run() function) to terminate. You can
override this function in a BMidi-derived class to predicate the stop, or to perform post-
performance clean-up (as two examples). Make sure, however, that you invoke the
inherited version of this function within your implementation.

See also: Start(), Run()

Input and Spray Functions

The protocols for the input and spray functions are given below, grouped by the MIDI
message to which they correspond (the input function for each group is shown first, the
spray function is second).

16 – The Midi Kit

Input and Spray Functions BMidi

See the class description for more information on these functions.

Channel Pressure

virtual void ChannelPressure(uchar channel,
 uchar pressure,
 ulong time = B_NOW)

protected:

void SprayChannelPressure(uchar channel,
 uchar pressure,
 ulong time)

Control Change

virtual void ControlChange(uchar channel,
 uchar controlNumber,
 uchar controlValue,
 ulong time = B_NOW)

protected:

void SprayControlChange(uchar channel,
 uchar controlNumber,
 uchar controlValue,
 ulong time)

Key Pressure

virtual void KeyPressure(uchar channel,
 uchar note,
 uchar pressure,
 ulong time = B_NOW)

protected:

void SprayKeyPressure(uchar channel,
 uchar note,
 uchar pressure,
 ulong time)

Note Off

virtual void NoteOff(uchar channel,
 uchar note,
 uchar velocity,
 ulong time = B_NOW)

protected:

void SprayNoteOff(uchar channel,
 uchar note,
 uchar velocity,
 ulong time)

The Midi Kit – 17

 BMidi Input and Spray Functions

Note On

virtual void NoteOn(uchar channel,
 uchar note,
 uchar velocity,
 ulong time = B_NOW)

protected:

void SprayNoteOn(uchar channel,
 uchar note,
 uchar velocity,
 ulong time)

Pitch Bend

virtual void PitchBend(uchar channel,
 uchar lsb,
 uchar msb,
 ulong time = B_NOW)

protected:

void SprayPitchBend(uchar channel,
 uchar lsb,
 uchar msb,
 ulong time)

Program Change

virtual void ProgramChange(uchar channel,
 uchar programNumber,
 ulong time = B_NOW)

protected:

void SprayProgramChange(uchar channel,
 uchar programNumber,
 ulong time)

System Common

virtual void SystemCommon(uchar status,
 uchar data1,
 uchar data2,
 ulong time = B_NOW)

protected:

void SpraySystemCommon(uchar status,
 uchar data1,
 uchar data2,
 ulong time)

System Exclusive

18 – The Midi Kit

Input and Spray Functions BMidi

virtual void SystemExclusive(void *data,
 long dataLength,
 ulong time = B_NOW)

protected:

void SpraySystemExclusive(void *data,
 long dataLength,
 ulong time)

SystemRealTime

virtual void SystemRealTime(uchar status,
 ulong time = B_NOW)

protected:

void SpraySystemRealTime(uchar status,
 ulong time)

Tempo Change

virtual void TempoChange(long beatsPerMinute,
 ulong time = B_NOW)

protected:

void SprayTempoChange(long beatsPerMinute,
 ulong time)

The Midi Kit – 19

BMidiPort

Derived from: public BObject

Declared in: <midi/MidiPort.h>

Overview

The BMidiPort class provides the mechanisms for reading MIDI data that appears at the
MIDI-In port, and for writing MIDI data to the MIDI-Out port. Although the BeBox has
two pairs of MIDI-In and MIDI-Out hardware ports, BMidiPort objects only read from the
“A” set. These are the top two MIDI ports on the back of the computer: MIDI-In A is the
top port, MIDI-Out A is immediately below.

You can create and use any number of BMidiPort objects in your application. The
immutable number of hardware MIDI ports doesn’t dictate the number of objects.

Opening the Ports

To obtain data from the MIDI-In port or send data to the MIDI-Out port, you must first
open the ports. BMidiPort’s Open() function opens both ports. The function’s single
argument is a string that names the in/out pair that you’re opening. The two pairs of MIDI
ports are named “midi1” and “midi2”; thus, currently, the argument must be “midi1”:

BMidiPort *m_port = new BMidiPort();
m_port->Open("midi1");

When you’re finished with the ports, you can close them through the Close() function.
The ports are closed automatically when the BMidiPort object is destroyed.

Run() and the Input Functions

According to the BMidi rules, a BMidi-derived class implementation of Run() should
create and spray MIDI messages. Furthermore, the implementations of the input functions
should realize the messages they receive.

The BMidiPort implementation of Run() produces messages by reading them from the
MIDI-In port and spraying them to the connected objects. The input functions send MIDI
messages to the MIDI-Out port. Linguistically, this might seem backwards, but it makes
sense if you think of a BMidiPort as representing not only the hardware port, but whatever
is connected to the port. For example, if you’re reading data that’s generated by an

20 – The Midi Kit

Constructor and Destructor BMidiPort

external synthesizer, the Run() function can be thought of as encapsulating the synthesizer
itself. From this perspective, the message-generation description of Run() is reasonable.
Similarly, the input functions fulfill their message-realization promise when you consider
them to be (for example) the synthesizer that’s connected to the MIDI-Out port.

Looping through a BMidiPort Object

It’s possible to use the same BMidiPort object to accept data from MIDI-In and broadcast
data to MIDI-Out. You can even connect a BMidiPort object to itself to create a “MIDI
through” effect: Anything that shows up at the MIDI-In port will automatically be sent
out the MIDI-Out port.

Constructor and Destructor

BMidiPort()

BMidiPort(void)

Connects the object to the MIDI-In and MIDI-Out ports. The MIDI-Out connection is
active from the construction of the object: Messages that arrive through the input
functions are automatically sent to the MIDI-Out port. To begin reading from the MIDI-In
port, you have to invoke the object’s Start() function.

~BMidiPort()

virtual ~BMidiPort(void)

Closes the connections to the MIDI ports.

Member Functions

AllNotesOff()

bool AllNotesOff(bool controlOnly, ulong time = B_NOW)

Commands the BMidiPort object to issue an All Notes Off MIDI message to the MIDI-
Out port. If controlOnly is TRUE, only the All Notes Off message is sent. If it’s FALSE, a
Note Off message is also sent for every key number on every channel.

The Midi Kit – 21

 BMidiPort Member Functions

Close()

void Close(void)

Closes the object’s MIDI ports. The ports should have been previously opened through a
call to Open().

Open()

long Open(const char *name)

Opens a pair of MIDI ports, as identified by name, so the object can read and write MIDI
data. This function always opens a MIDI-In and a MIDI-Out port; currently, the only pair
you can open are identified as “midi1”. The object isn’t given exclusive access to the
ports that it has opened—other BMidiPort objects, potentially from other applications, can
open the same MIDI ports. When you’re finished with the ports, you should close them
through a (single) call to Close().

The function returns B_NO_ERROR if the ports were successfully opened.

22 – The Midi Kit

Member Functions BMidiPort

The Midi Kit – 23

BMidiStore

Derived from: public BMidi

Declared in: <midi/MidiStore.h>

Overview

The BMidiStore class defines a MIDI recording and playback mechanism. The MIDI
messages that a BMidiStore object receives (at its input) are stored as events in an event
list, allowing a captured performance to be played back later. The object can also read and
write—or import and export—standard MIDI files. Typically, the performance and file
techniques are combined: A BMidiStore is often used to capture a performance and then
export it to a file, or to import a file and then perform it.

Recording

The ability to record a MIDI performance is vested in BMidiStore’s input functions
(NoteOn(), NoteOff(), and so on, as declared by the BMidi class). When a BMidiStore
input function is invoked, the function fabricates a discrete event based on the data it has
received in its arguments, and adds the event to its event list. The event list, in a manner
of speaking, is the recording.

Since the ability to record is provided by the input functions, you don’t need to tell a
BMidiStore to start recording; it can record from the moment it’s constructed.

For example, to record a performance from an external MIDI keyboard, you connect a
BMidiStore to a BMidiPort object and then tell the BMidiPort to start:

/* Record a keyboard performance. */
BMidiStore *MyStore = new BMidiStore();
BMidiPort *MyPort = new BMidiPort();

MyPort->Connect(MyStore);
MyPort->Start();
/* Start playing... */

At the end of the performance, you tell the BMidiPort to stop:

MyPort->Stop();

24 – The Midi Kit

Overview BMidiStore

Timestamps

Events are added to a BMidiStore’s event list immediately upon arrival. Each event is
given a timestamp as it arrives; the value of the timestamp is the value of the time
argument that was passed to the input function by the “upstream” object’s spray function.
For example, the time argument that a BMidiPort object passes through its spray functions
is always NOW. Since NOW is a shorthand for “the current tick,” and since time tends to
move forward at a reasonably steady rate, the events that are recorded from a BMidiPort
are guaranteed to be in chronological order (as they appear in the event list).

There’s no guarantee that other spraying objects will generate time arguments that proceed
in chronological order, however. And the BMidiStore object doesn’t time-sort its events
as they arrive; thus, after a recording has been made, events in the event list might not be
in chronological order. If you want to ensure that the events are properly ordered, you
should call Sort() after you’ve added events to the event list.

Erasing and Editing a Recording

You can’t. If you make a mistake while you’re recording (for example) and want to try
again, you can simulate emptying the object by disconnecting the input to the
BMidiStore, destroying the object, making a new one, and re-connecting. For example:

MyPort->Disconnect(MyStore);
delete MyStore;
MyStore = new BMidiStore();
MyPort->Connect(MyStore);

Editing the events in the event list is less than impossible (were such a state possible). You
can’t do it, and you can’t simulate it. If you want to edit a MIDI data, you have to provide
your own BMidi-derived class.

Playback

To “play” a BMidiStore’s list of events, you call the object’s Start() function. For
example, by reversing the roles taken by the BMidiStore and BMidiPort objects, you can
send the BMidiStore’s recording to an external synthesizer:

/* First we disconnect the objects. */
MyPort->Disconnect(MyStore);

/* Now connect in the other direction...*/
MyStore->Connect(MyPort);

/* ...and start the playback. */
MyStore->Start();

As described in the BMidi class specification, Start() invokes Run(). In BMidiStore’s
implementation of Run(), the function reads events in the order that they appear in the
event list, and sprays the appropriate messages to the connected objects. You can interrupt

The Midi Kit – 25

 BMidiStore Overview

a BMidiStore playback by calling Stop(); uninterrupted, the object will stop by itself after
it has sprayed the last event in the list.

The events’ timestamps are used as the time arguments in the spray functions that are
called from within Run(). But with a twist: The time argument that’s passed in the first
spray call (for a given performance) is always B_NOW; subsequent time arguments are re-
computed to maintain the correct timing in relation to the first event. In other words, when
you tell a BMidiStore to start playing, the first event is performed immediately regardless
of the actual value of its timestamp.

Setting the Current Event

A playback needn’t begin with the first event in the event list. You can tell the
BMidiStore to start somewhere in the middle of the list by calling SetCurrentEvent()
before starting the playback. The function takes an integer argument that gives the
index of the event that you want to begin with.

If you want to start playing from a particular time offset into the event list, you first have
to figure out which event lies at that time. To do this, you ask for the event that occurs at
or after the time offset (in milliseconds) through the EventAtDelta() function. The value
that’s returned by this function is suitable as the argument to SetCurrentEvent(). Here, we
prime a playback to begin three seconds into the event list:

long firstEvent = MyStore->EventAtDelta(3000);
MyStore->SetCurrentEvent(firstEvent);

Keep in mind that EventAtDelta() returns the index of the first event at or after the desired
offset. If you need to know the actual offset of the winning event, you can pass its index to
DeltaOfEvent():

long firstEvent = MyStore->EventAtDelta(3000);
long actualDelta = MyStore->DeltaOfEvent(firstEvent);

Reading and Writing MIDI Files

You can also add events to a BMidiStore’s event list by reading, or importing, a Standard
MIDI File. To do this, you locate the file that you want to read, create a BFile to represent
it, and pass the object to the Import() function:

BFile midi_file;

/* We’ll assume that a_dir is a legitimate directory. */
if (a_dir.Contains("myfile.mid"))
{
 /* Get the file...*/
 a_dir.GetFile("myfile.mid", &midi_file);

 /* ...and import it. */

26 – The Midi Kit

Constructor and Destructor BMidiStore

 MyStore->Import(&midi_file);
}

Note that the BFile object isn’t open (you shouldn’t call BFile’s OpenData() before you
call Import()).

You can import any number of files into the same BMidiStore object. After you import a
file, the event list is automatically sorted.

One thing you shouldn’t do is import a MIDI file into a BMidiStore that contains events
that were previously recorded from a BMidiPort (in an attempt to mix the file and the
recording). Nor does the reverse work: You can’t import a file and then record from a
BMidiPort. The file’s timestamps are incompatible with those that are generated for
events that are received from the BMidiPort; the result certainly won’t be satisfactory.

To write the event list as a MIDI file, you call BMidiStore’s Export() function:

BFile midi_file;

/* We’ll assume that a_dir is a legitimate directory. The
 * file should be empty, so we delete it first if it exists.
 */
if (a_dir.Contains("myfile.mid"))
{
 a_dir.GetFile("myfile.mid", &midi_file);
 a_dir.Remove(&midi_file);
}

/* Create the file. */
a_dir.Create(&midi_file);

/* And export the BMidiStore. */
MyStore->Export(&midi_file, 1);

Export()’s second argument is an integer that declares the format of the file. The MIDI
specification provides three formats: 0, 1, and 2. As with Import(), the BFile mustn’t be
open.

Constructor and Destructor

BMidiStore()

BMidiStore(void)

Creates a new, empty BMidiStore object.

The Midi Kit – 27

 BMidiStore Member Functions

~BMidiText()

virtual ~BMidiStore(void)

Frees the memory that the object allocated to store its events.

Member Functions

BeginTime()

inline ulong BeginTime(void)

Returns the time, in ticks, at which the most recent performance started. This function is
only valid if the object has actually performed.

CountEvents()

inline ulong CountEvents(void)

Returns the number of events in the object’s event list.

CurrentEvent()

inline ulong CurrentEvent(void)

Returns the index of the event that will be performed next.

See also: SetCurrentEvent()

DeltaOfEvent()

ulong DeltaOfEvent(ulong index)

Returns the “delta time” of the index’th event in the object’s list of events. An event’s delta
time is the time span, in ticks, between the first event in the event list and itself.

See also: EventAtDelta()

EventAtDelta()

ulong EventAtDelta(ulong delta)

Returns the index of the event that occurs on or after delta ticks from the beginning of the
event list.

See also: DeltaOfEvent()

28 – The Midi Kit

Member Functions BMidiStore

Export()

void Export(BFile *aFile, long format)

Writes the object’s event list as a standard MIDI file in the designated format. The BFile
must be allocated, must refer to an actual file, and its data portion must not be open. The
events are time-sorted before they’re written.

See also: Import()

Import()

void Import(BFile *aFile)

Reads the standard MIDI file from the BFile given by the argument. The BFile’s data
portion must not be open.

See also: Export()

SetCurrentEvent()

void SetCurrentEvent(ulong index)

Sets the object’s “current event”—the event that it will perform next—to the event at index
in the event list.

See also: CurrentEvent()

SetTempo()

void SetTempo(ulong beatsPerMinute)

Sets the object’s tempo—the speed at which it performs events—to beatsPerMinute. The
default tempo is 60 beats-per-minute.

See also: Tempo()

SortEvents()

void SortEvents(bool force = FALSE)

Time-sorts the events in the BMidiStore. The object maintains a (conservative) notion of
whether the events are already sorted; if force is FALSE (the default) and the object doesn’t
think the operation is necessary, the sorting isn’t performed. If force is TRUE, the operation
is always performed, regardless of its necessity.

The Midi Kit – 29

 BMidiStore Member Functions

Tempo()

ulong Tempo(void)

Returns the object’s tempo in beats-per-minute.

See also: SetTempo()

30 – The Midi Kit

Member Functions BMidiStore

The Midi Kit – 31

BMidiText

Derived from: public BMidi

Declared in: <midi/MidiText.h>

Overview

A BMidiText object displays, to standard output, a textual description of each MIDI
message it receives. You use BMidiText objects to debug and monitor your application; it
has no other purpose.

To use a BMidiText object, you construct it and connect it to some other BMidi object as
shown below:

BMidiText *midiText;

midiText = new BMidiText();
otherMidiObj->Connect(midiText);

/* Start a performance here ... */

BMidiText’s output (the text it displays) is timed: When it receives a MIDI message that’s
timestamped for the future, the object waits until that time has come to display its textual
representation of the message. While it’s waiting, the object won’t process any other in-
coming messages. Because of this, you shouldn’t connect the same BMidiText object to
more than one BMidi object. To monitor two or more MIDI-producing objects, you
should connect a separate BMidiText object to each.

The text that’s displayed by a BMidiText follows this general format:

timestamp: MESSAGE TYPE; message data

(Message-specific formats are given in the function descriptions, below.) Of particular
note is the timestamp field. Its value is the number of milliseconds that have elapsed since
the object received its first message. The time value is computed through the use of an
internal timer; to reset this timer—a useful thing to do between performances, for
example—you call the ResetTimer() function.

The BMidiText class doesn’t generate or spray MIDI messages, so the performance and
connection functions that it inherits from BMidi have no effect.

32 – The Midi Kit

Constructor and Destructor BMidiText

Constructor and Destructor

BMidiText()

BMidiText(void)

Creates a new BMidiText object. The object’s timer is set to zero and doesn’t start ticking
until the first message is received. (To force the timer to start, call ResetTimer(TRUE).)

~BMidiText()

virtual ~BMidiText(void)

Does nothing.

Member Functions

ChannelPressure()

virtual void ChannelPressure(char channel,
 char pressure,
 ulong time = B_NOW)

Responds to a Channel Pressure message by printing the following:

timestamp: CHANNEL PRESSURE; channel = channel, pressure = pressure

The channel and pressure values are taken directly from the arguments that are passed to
the function. The timestamp value is the number of milliseconds that have elapsed since
the timer started (see ResetTimer() for more information on time).

ControlChange()

virtual void ControlChange(char channel,
 char ctrl_num,
 char ctrl_value,
 ulong time = B_NOW)

Responds to a Control Change message by printing the following:

timestamp: CONTROL CHANGE; channel = channel, control = ctrl_num, value =
ctrl_value

The channel, ctrl_num, and ctrl_value values are taken directly from the arguments that
are passed to the function. The timestamp value is the number of milliseconds that have
elapsed since the timer started (see ResetTimer() for more information on time).

The Midi Kit – 33

 BMidiText Member Functions

KeyPressure()

virtual void KeyPressure(char channel,
 char note,
 char pressure,
 ulong time = B_NOW)

Responds to a Key Pressure message by printing the following:

timestamp: KEY PRESSURE; channel = channel, note = note, pressure = pressure

The channel, note, and pressure values are taken directly from the arguments that are
passed to the function. The timestamp value is the number of milliseconds that have
elapsed since the timer started (see ResetTimer() for more information on time).

NoteOff()

virtual void NoteOff(char channel,
 char note,
 char velocity,
 ulong time = B_NOW)

Responds to a Note Off message by printing the following:

timestamp: NOTE OFF; channel = channel, note = note, velocity = velocity

The channel, note, and velocity values are taken directly from the arguments that are
passed to the function. The timestamp value is the number of milliseconds that have
elapsed since the timer started (see ResetTimer() for more information on time).

NoteOn()

virtual void NoteOn(char channel,
 char note,
 char velocity,
 ulong time = B_NOW)

Responds to a Note On message by printing the following:

timestamp: NOTE ON; channel = channel, note = note, velocity = velocity

The channel, note, and velocity values are taken directly from the arguments that are
passed to the function. The timestamp value is the number of milliseconds that have
elapsed since the timer started (see ResetTimer() for more information on time).

PitchBend()

virtual void PitchBend(char channel,
 char lsb,

34 – The Midi Kit

Member Functions BMidiText

 char msb,
 ulong time = B_NOW)

Responds to a Pitch Bend message by printing the following:

timestamp: PITCH BEND; channel = channel, lsb = lsb, msb = msb

The channel, lsb, and msb values are taken directly from the arguments that are passed to
the function. The timestamp value is the number of milliseconds that have elapsed since
the timer started (see ResetTimer() for more information on time).

ProgramChange()

virtual void ProgramChange(char channel,
 char program_num,
 ulong time = B_NOW)

Responds to a Program Change message by printing the following:

timestamp: PROGRAM CHANGE; channel = channel, program = program_num

The channel and program_num values are taken directly from the arguments that are
passed to the function. The timestamp value is the number of milliseconds that have
elapsed since the: timer started (see ResetTimer() for more information on time).

ResetTimer()

void ResetTimer(bool start = FALSE)

Sets the object’s internal timer to zero. Lacking a start argument—or with a start of
FALSE—the timer doesn’t start ticking until the next MIDI message is received. If start is
TRUE, the timer begins immediately.

The timer value is used to compute the timestamp that’s displayed at the beginning of each
message description.

SystemCommon()

virtual void SystemCommon(char status,
 char data1,
 char data2,
 ulong time = B_NOW)

Responds to a Program Change message by printing the following:

timestamp: SYSTEM COMMON; status = status, data1 = data1, data2= data2

The Midi Kit – 35

 BMidiText Member Functions

The channel, data1, and data2 values are taken directly from the arguments that are
passed to the function. The timestamp value is the number of milliseconds that have
elapsed since the timer started (see ResetTimer() for moire information on time).

SystemExclusive()

virtual void SystemExclusive(void *data,
 long data_length,
 ulong time = B_NOW)

Responds to a Program Change message by printing the following:

timestamp: SYSTEM EXCLUSIVE;

This is followed by the data itself, starting on the next line. The data is displayed in
hexadecimal, byte by byte. The timestamp value is the number of milliseconds that have
elapsed since the timer started (see ResetTimer() for more information on time).

SystemRealTime()

virtual void SystemRealTime(char status,
 ulong time = B_NOW)

Responds to a Program Change message by printing the following:

timestamp: SYSTEM REAL TIME; status = status

The status value is taken directly from the arguments that are passed to the function. The
timestamp value is the number of milliseconds that have elapsed since the timer started
(see ResetTimer() for more information on time).

36 – The Midi Kit

Member Functions BMidiText

The Kernel Kit – 1

7 The Kernel Kit

Introduction 3

Threads and Teams 5
Overview. .5

Spawning and Running a Thread 5
Loading an Executable .6
The Entry Function. .7

The Entry Function’s Argument 7
Using a C++ Entry Function 8
Entry Function Return Values 9

Thread Names . 10
Thread Priority . 10
Synchronizing Threads. 11
Controlling a Thread . 11
Passing Data to a Thread 13

Functions. 15

Ports 23
Overview. 23

Creating a Port . 23
The Message Queue . 24
Port Messages . 24

Message Ownership 25
Function Descriptions . 25

Semaphores 29
Overview. 29

How Semaphores Work 29
The Thread Queue . 30
The Thread Count . 30
Using a Semaphore as a Lock 31
Deleting a Semaphore . 33
Using Semaphores to Impose an Execution Order. 33
Broadcasting Semaphores 35

Functions. 36

2 – The Kernel Kit

Areas 39
Overview. 39

Identifying an Area. 39
Using an Area . 40
Cloning an Area . 40

Functions. 41

Images 49
Overview. 49

Loading an App Image . 49
Using an Add-on Image 51

Compiling an Add-on Image 51
Loading an Add-on Image 52
Symbols. 52
Function Symbol Encoding. 53

Functions. 54

Miscellaneous Functions 57
Overview. 57
Atomic Functions . 57
Time Functions . 58
Byte Swapping. 58
System Information . 59

Constants, Defined Types, and Structures 61
Constants. 61
Defined Types and Structures . 64

The Kernel Kit – 3

7 The Kernel Kit

The Kernel Kit is a collection of C functions that let you define and control the contexts in
which your application operates. There are five main topics in the Kit:

• Threads. A thread is a synchronous computer process. By creating multiple
threads, you can make your application perform different tasks at (virtually) the
same time.

• Ports. A port can be thought of as a mailbox for threads: A thread can write a
message to a port, and some other thread (or, less usefully, the same thread) can then
retrieve the message.

• Semaphores. A semaphore is a system-wide counting variable that can be used as a
lock that protects a piece of code. Before a thread is allowed to execute the code, it
must acquire the semaphore that guards it. Semaphores can also be used to
synchronize the execution of two or more threads.

• Areas. The area functions let you allocate large chunks of virtual memory. The two
primary features of areas are: They can be locked into the CPU’s on-chip memory,
and the data they hold can be shared between applications.

• Images. An image is compiled code that, depending on its type, can be executed or
dynamically linked into a running application. By loading and unloading images
you can make run-time decisions about the resources that your application has
access to.

The rest of this chapter describes these topics in detail. The final two sections
(“Miscellaneous Functions” and “Constants, Defined Types, and Structures”) tie up the
loose ends and describe the associated API—constants, macros, data types, and so on—
that support the Kit functions.

4 – The Kernel Kit

The Kernel Kit – 5

Threads and Teams

Declared in: <kernel/OS.h>

Overview

A thread is a synchronous computer process that executes a series of program instructions.
Every application has at least one thread: When you launch an application, an initial
thread—the main thread—is automatically created (or spawned) and told to run. The
main thread executes the ubiquitous main() function, winds through the functions that are
called from main(), and is automatically deleted (or killed) when main() exits.

The Be operating system is multi-threaded: From the main thread you can spawn and run
additional threads; from each of these threads you can spawn and run more threads, and so
on. All the threads in all applications run concurrently and asynchronously with each other.
Furthermore, threads are independent of each other; most notably, a given thread doesn’t
own the other threads it has spawned. For example, if thread A spawns thread B, and
thread A dies (for whatever reason), thread B will continue to run.

Although threads are independent, they do fall into groups called teams. A team consists
of a main thread and all other threads that “descend” from it (that are spawned by the main
thread directly, or by any thread that was spawned by the main thread, and so on). Viewed
from a higher level, a team is the group of threads that are created by a single application.
All the threads in a particular team share the same address space: Global variables that are
declared by one thread will be visible to all other threads in that team. You can’t
“transfer” threads from one team to another. The team is set when the thread is spawned;
it remains the same throughout the thread’s life.

The following sections describe how to spawn, control, and examine threads and teams.

Spawning and Running a Thread

You spawn a thread by calling the spawn_thread() function. The function assigns and
returns a system-wide thread_id number that you use to identify the new thread in
subsequent function calls. Valid thread_id numbers are positive integers; you can check
the success of a spawn thus:

thread_id my_thread;

if ((my_thread = spawn_thread(...)) < B_NO_ERROR)
 /* failure */

6 – The Kernel Kit

Overview Threads and Teams

else
 /* success */

The arguments to spawn_thread(), which are examined throughout this description,
supply information such as what the thread is supposed to do, the urgency of its operation,
and so on.

Spawning a thread isn’t enough to make it run. To tell a thread to start running, you must
pass its thread_id number to either the resume_thread() or wait_for_thread() function:

• resume_thread() starts the new thread running and immediately returns. The new
thread runs concurrently and asynchronously with the thread in which
resume_thread() was called.

• wait_for_thread() starts the thread running but doesn’t return until the thread has
finished.

Of these two functions, resume_thread() is the more common means for starting a thread.
For more information on wait_for_thread(), see the function description on page 22; for
the balance of the current topic, wait_for_thread() is ignored.

The spawn_thread() and resume_thread() function calls are often nested:

if (resume_thread(my_thread = spawn_thread(...)) < B_NO_ERROR)
 /* failure, in either spawning or running. */
else
 /* the thread was successfully spawned and is running. */

There are, however, situations in which you may need or want to separate the two calls.
One such situation, in which data is sent to the thread before the thread is told to run, is
described in “Passing Data to a Thread” on page 13. Separating the calls can also improve
your application’s response to the user: spawn_thread() involves some overhead that you
may want to incur while your application is being set up (for example), rather than when
the thread begins performing.

Loading an Executable

A conceptual neighbor of spawning a thread is the act of loading an executable (or loading
an app image). This is performed by calling the load_executable() function. Loading an
executable causes a separate program, identified as a file, to be launched by the system.
The program is loaded in a separate thread that’s spawned (and returned) by the
iood_executable() call. An important difference between spawn_thread() and
load_executable() is that the latter creates a new team for the thread it spawns.

As with spawn_thread(), a call to load_executable() must be followed by
resume_thread() or wait_for_thread()—the new thread isn’t run until one of the latter
functions is called.

For more information on the load_executable() function, see “Images” beginning on
page 49.

The Kernel Kit – 7

 Threads and Teams Overview

The Entry Function

When you call spawn_thread(), you must identify the new thread’s entry function. This is
a global C function (or a static C++ member function) that the new thread will execute
when it’s told to run. When the entry function exits, the thread is automatically killed by
the operating system.

A thread’s entry function assumes the following protocol:

long thread_entry(void *data);

The protocol signifies that the function can return a value (to whom the value is returned is
a topic that will be explored later), and that it accepts a pointer to a buffer of arbitrarily-
typed data. (The function’s name isn’t prescribed by the protocol; in other words, an entry
function doesn’t have to be named “thread_entry”.)

You specify a thread’s entry function by passing a pointer to the function as the first
argument to spawn_thread(); the last argument to spawn_thread() is forwarded as
the entry function’s data argument. Since data is delivered as a void *, you have to cast
the value to the appropriate type within your implementation of the entry function. For
example, let’s say you define an entry function called lister() that takes a pointer to a BList
object as an argument:

long lister(void *data)
{
 /* Cast the argument. */
 BList *listObj = (BList *)data;
 . . .
}

To create and run a thread that would execute the lister() function, you would call
spawn_thread() and resume_thread() thus:

/* Spawn the thread; the final argument--a BList object that’s
 * assumed to exist--will be passed as the argument to the
 * lister() function when the thread starts running.
 */
if ((my_thread = spawn_thread(lister, ..., (void *)listObj))
 < B_NO_ERROR)
 /* failure */

/* Run the thread. */
if (resume_thread(my_thread) < B_NO_ERROR)
 /* failure */

. . .

The Entry Function’s Argument

With regard to the entry function’s data argument, there are three points worth noting:

8 – The Kernel Kit

Overview Threads and Teams

• Although the data argument can point to any amount and type of data, the argument
is almost always a pointer to an object (as shown above). Passing an object is
particularly useful if you want to redirect the entry function to a member function of
that object. This is explained in the next section.

• The spawn_thread() function doesn’t copy the data that data points to. Changes to
the pointed-to data that are made between the spawn_thread() and resume_thread()
calls will be seen by the entry function.

• Because of the no-copy condition, you should never pass a pointer to data that’s
allocated locally (on the stack). Spoken emphatically and as a general rule,

An entry function’s argument should point to global data.

 The reason for this restriction is that there’s no guarantee that the entry function will
receive any CPU attention before the stack frame from which spawn_thread() was
called is destroyed. Thus, the entry function won’t necessarily have a chance to
copy the pointed-to data before that data vanishes. There are ways around this
restriction—for example, you could use a semaphore to ensure that the entry
function has copied the argument before the calling frame exits. A better solution, if
you absolutely must pass locally-allocated data, is to use the inter-thread data-
sending mechanism described in the section “Passing Data to a Thread” on page 13.

Using a C++ Entry Function

If you’re up in C++ territory, you’ll probably want to define a class member function that
you can use as a thread’s entry function. Unfortunately, you can’t pass a normal (non-
static) member function directly as the entry function argument to spawn_thread()—the
system won’t know which object it’s supposed to invoke the function on (it won’t have a
this pointer). To get from here to there, you have to declare two member functions:

• a static member function that is, literally, the entry function,

• and a non-static member function that the static function can invoke. This non-static
function will perform the intended work of the entry function.

To “connect” the two functions, you pass an object of the appropriate class (through the
data argument) to the static function, and then allow the static function to invoke the non-
static function upon that object. An example is called for:

/* Our MyList class derives from BList. It contains two
 * functions--the static FakeLister(), and the non-static
 * Lister(). The latter will be invoked by the former.
 */
class MyList : BList {
public:
 static long FakeLister(void *arg);
 long Lister();
};

The Kernel Kit – 9

 Threads and Teams Overview

/* FakeLister() will be used as an entry function. But it
 * doesn’t really do anything--it simply casts its argument as
 * a MyList object, and then invokes the "real" entry
 * function, Lister(), upon that object.
 */
long MyList::FakeLister(void *arg)
{
 MyList *obj = MyList *arg;
 return (obj->Lister ()) ;
}

/* Lister() performs the actual work. Notice that it doesn’t
 * have to adhere to the entry function protocol (since it
 * isn’t going to spawn_thread()).
 */
long MyList::Lister()
{
 /* do something here */
 . . .
 return (whatever);
}

The spawn_thread() call for this set up would look like this:

spawn_thread(MyList::FakeLister, ..., (void *)MyListObj)

Again, the final argument (which will be forwarded as the data argument to the entry
function) must already exist, and should be global. To fit in this example, the MyListObj
object should be an instance of the MyList class.

Note: If you aren’t familiar with static member functions, you should consult a C++
textbook. Briefly, the only thing you need to know for the purposes of the technique
shown here, is that a static function’s implementation can’t call (non-static) member
functions nor can it refer to member data. Maintain the form demonstrated above and
you’ll be rewarded in heaven.

Entry Function Return Values

The entry function’s protocol declares that the function should return a long value when it
exits. This value can only be captured by sitting in a wait_for_thread() call until the entry
function exits. wait_for_thread() takes two arguments: The thread_id of the thread that
you’re waiting for, and a pointer to a long into which the value returned by that thread’s
entry function will be placed. For example:

thread_id other_thread;
long other_thread_return;

/* We’ll dispense with error checks for this example. */
other_thread = spawn_thread(...);
resume_thread(other_thread);

10 – The Kernel Kit

Overview Threads and Teams

. . .
wait_for_thread(other_thread, &other_thread_return);

The system doesn’t cache a thread’s return value in anticipation of a subsequent wait on
that thread: If the target thread is already dead, wait_for_thread() will return immediately
(with an error code as described in the function’s full description), and the second
argument will be: set to an invalid value. If you’re late for the train, you’ll miss the boat.

Warning: Currently, you must pass a valid pointer as the second argument to
wait_for_thread(); you mustn’t pass NULL even if you’re not interested in the return value.
Also, you mustn’t wait for the thread that’s calling wait_for_thread().

Thread Names

A thread can be given a name which you assign through the second argument to
spawn_thread(). The name can be 32 characters long (as represented by the
B_OS_NAME_LENGTH constant) and needn’t be unique—more than one thread can have the
same name.

You can look for a thread based on its name by passing the name to the find_thread()
function; the function returns the thread_id of the so-named thread. If two or more
threads bear the same name, the find_thread() function returns the first of these threads
that it finds. (Currently, there’s no way to retrieve the second and subsequent identically-
named threads.)

You can retrieve the thread_id of the calling thread by passing NULL to find_thread():

thread_id this_thread = find_thread(NULL);

To retrieve a thread’s name, you must look in the thread’s thread_info structure. This
structure is described in the function description for get_thread_info() on page 16.

Dissatisfied with a thread’s name? Use the rename_thread() function to change it. Fool
your friends.

Thread Priority

To provide a multi-threaded environment, the CPUs must divide their attention between
the candidate threads, executing a few instructions from this thread, then a few from that
thread, and so on. But the division of attention isn’t always equal: You can assign a
higher or lower priority to a thread and so declare it to be more or less important than
other threads.

You assign a thread’s priority as the third argument to spawn_thread(). There are four
priority constants that you can use for this assignation (listed here from least to most
attention):

The Kernel Kit – 11

 Threads and Teams Overview

• B_LOW_PRIORITY represents the lowest priority. It’s meant for threads that don’t
need much attention and that certainly don’t want to interrupt other threads to get
what little attention they deserve.

• B_NORMAL_PRIORITY is the most common priority—this is the priority used for all
main threads, for example. If your thread isn’t controlling a user interface object,
and doesn’t need real-time interaction or response:, you should set it to this priority.

• B_DISPLAY_PRIORITY is used for threads that control user interface objects. For
example, the thread that’s spawned when you create a BWindow object is given
display priority. If your thread needs to compete with the active window (which
should be rare given the objects that are provided by the Interface Kit), then use this
priority.

• B_REALTIME_PRIORITY is the highest priority. It should only be used by threads that
need as much attention as possible, even if this means degrading the responsiveness
of the user interface. The only threads that should consider this priority are those
that control real-time processes, such as music synthesis that’s driven by user
events. The Media Kit makes use of this priority when it spawns a thread that runs a
“stream function.”

Although higher priority threads get more attention than those with lower priority, the
system tries to be fair about scheduling. If a thread is starving for attention, the system
will occasionally throw it a few cycles even if there are higher-priority threads that are
ready to run.

Synchronizing Threads

There are times when you may want a particular thread to pause at a designated point until
some other (known) thread finishes some task. Here are three ways to effect this sort of
synchronization:

• The most general means for synchronizing threads is to use a semaphore. The
semaphore mechanism is described in great detail in the major section
“Semaphores” beginning on page 29.

• Synchronization is sometimes a side-effect of sending data between threads. This is
explained in “Passing Data to a Thread” on page 13, and in the major section
“Ports” beginning on page 23

• Finally, you can tell a thread to wait for some other thread to die by calling
wait_for_thread(), as described earlier.

Controlling a Thread

There are three ways to control a thread while it’s running:

12 – The Kernel Kit

Overview Threads and Teams

• You can put a thread to sleep for some number of microseconds through the
snooze() function. After the thread has been asleep for the requested time, it
automatically resumes execution with its next instruction. snooze() only works
on the calling thread: The function doesn’t let you identify an arbitrary thread as
the subject of its operation. In other words, whichever thread calls snooze() is the
thread that’s put to sleep.

• You can suspend the execution of any thread through the suspend_thread()
function. The function takes a single thread_id argument that identifies the thread
you wish to suspend. The thread remains suspended until you “unsuspend” it
through a call to resume_thread() or wait_for_thread().

• You can kill a thread—any thread—through the kill_thread() function. You should
only need to do this in exceptional cases; keep in mind that a thread will die a
natural death when it reaches the end of its entry function. If you’re feeling
particularly frustrated, try killing an entire team of threads: The kill_team() function
is just such a purgative.

As mentioned earlier, the control that’s visited upon a thread doesn’t influence the
“children” that have been spawned from that thread. For example, consider the following:

/* Here, the main thread spawns say_oh which spawns say_ah.
 */
long say_ah(void *data)
{
 while (1)
 printf("ah");
 return 0;
}

long say_oh(void *data)
{
 resume__thread (spawn_thread (say_ah, ...));
 while (1)
 printf("oh");
 return 0;
}

main()
{
 thread__id oh_thread;
 oh_thread = resume_thread(spawn_thread(say_oh,...))
 snooze(1000000);
 kill_thread(oh_thread);
}

The main thread spawns (and runs) say_oh(), which spawns and runs say_ah() and then
starts spitting out the word “oh”. say_ah(), in the meantime, is printing the word “ah”.
The main loop snoozes for one second before killing the “oh”-printing thread. The three
important points, here, are:

The Kernel Kit – 13

 Threads and Teams Overview

• The main thread’s snooze() call doesn’t affect the other threads; they continue
printing their “ah”s and “oh”s while the main thread sleeps.

• The assassination of the “oh” thread doesn’t affect the “ah” thread, even though
“ah” was spawned from “oh”.

• Similarly, the death of the main thread (as the main() function exits) doesn’t stop the
“ah” thread.

The last point is worth keeping in mind: The death of the main thread doesn’t cause the
other threads in that team to die. All other threads continue until they reach the ends of
their entry functions, or until some other force kills them (such as the kill thread_id
command-line program). However, when the main thread goes down it takes the team’s
heap and all its statically allocated objects (among other team-wide resources) with it.
Threads that linger beyond the death of the main thread may be seriously crippled.

Passing Data to a Thread

There are three ways to pass data to a thread:

• Through the argument to the entry function, as described in “The Entry Function’s
Argument” beginning on page 7.

• By using a port (or, at a higher level, by sending a BMessage). Ports are described
in the next major section (“Ports”); BMessages are: part of the Application Kit.

• By sending data to the thread through the send_data() and receive_data()
functions, as described below.

The send_data() function sends data from one thread to another. With each send_data()
call, you can send two packets of information:

• a single four-byte value (this is called the code),
• and an arbitrarily long buffer of arbitrarily-typed data.

The function’s four arguments identify, in order,

• the thread that you want to send the data to,
• the four-byte code,
• a pointer to the buffer of data,
• and the size of the buffer of data, in bytes.

In the following example, the main thread spawns a thread and then sends it some data:

main(int argc, char *argv[])
{
 thread_id otherthread;

 /* Spawn the thread. */
 other_thread = spawn_thread(a_func, "Other thread",

14 – The Kernel Kit

Overview Threads and Teams

 B_NORMAL_PRIORITY, NULL);

 /* Send some data. */
 if (send_data(other_thread, 63, "Hello", 5) < B_NO_ERROR)
 /* failure */
 else:
 /* success */
 ...

 /* Now start the other thread. */
 if (resume_thread(other_thread) < B_NO_ERROR)
 ...
}

The send_data() call copies the code and the buffer (the second and third arguments) into
the target thread’s “data cache” and then (usually) returns immediately. In some cases, the
four-byte code is all you need to send; in such cases, the buffer pointer can be NULL (and
the buffer size set to 0).

To retrieve the data that’s been sent to it, the target thread (having been told to run) calls
receive_data(). This function returns the four-byte code directly, and copies the contents
of the data buffer into its second argument. It also returns, by reference in its first
argument, the thread_id of the thread that sent the data (in other words, the thread in
which send_data() was called). This is demonstrated in the example implementation of
my_func(), below:

long my_func (void *data)
{
 thread_id sender;
 long code;
 char buf[512];

 /* The last argument to receive_data() gives the size
 * of the buffer into which the data is copied.
 */
 code = receive_data(&sender, (void *)buf, 512);
 . . .
}

A slightly annoying aspect of this mechanism is that there isn’t any way for the data-
receiving thread to determine how much data has been sent. If the buffer that the receiver
allocates isn’t big enough to accommodate all the data, the left-over portion is simply
thrown away.

As shown in the examples, send_data() is called before the target thread is running. This
feature of the system is essential in situations where you want the target thread to receive
some data as its first act (as demonstrated in the implementation of my_func()). However,
send_data() isn’t limited to this use—you can also send data to a thread that’s already
running.

A thread’s data buffer isn’t a queue; it can only hold one data-transmission at a time. If
you call send_data() twice with the same target thread, the second call will block until the

The Kernel Kit – 15

 Threads and Teams Functions

target reads the first transmission through a call to receive_data(). Analogously,
receive_data() will block if there isn’t (yet) any data to receive.

If you want to make sure that you never block when receiving data, you should call
has_data() before calling receive_data(). has_data() takes a thread_id argument, and
returns TRUE if that thread has any data waiting to be read:

if (has_data(find_thread(NULL)))
 /* The calling thread has some unread data, so the
 * receive_data() call won’t block.
 */
 code = receive_data(...);

You can also use has_data() to query the target thread before sending it data. This, you
hope, will ensure that the send_data() call won’t block:

if (!has_data(target_thread))
 /* The target doesn’t have any unread data, so the
 * send_data() call won’t block.
 */
 send_data(...);

This usually works, but be aware that there’s a race condition between the has_data() and
send_data() calls. If some other thread sends data to your target in that time interval, your
send_data() (might) block.

Functions

find_thread()

thread_id find_thread(const char *name)

Finds and returns the thread with the given name. A name argument of NULL returns the
calling thread. If name doesn’t identify a thread, the B_NAME_NOT_FOUND error constant
is returned.

A thread’s name is assigned when the thread is spawned. The name can be changed
thereafter through the rename_thread() function. Keep in mind that thread names needn’t
be unique: If two (or more) threads boast the same name, a find_thread() call on that
name returns the first so-named thread that it finds.

get_team_info(), get_nth_team_info()

long get_team_info(team_id team, team_info *info)
long get_nth_team_info(long n, team_info *info)

These functions copy, into the info argument, the team_info structure for a particular team:

16 – The Kernel Kit

Functions Threads and Teams

• The get_team_info() function retrieves information for the team identified by team.

• The get_nth_team_info() function retrieves team information for the n’th team
(zero-based) of all teams currently running on your computer. By calling this
function with a monotonically increasing n value, you can retrieve information for
all teams. When, in this scheme, the function no longer returns B_NO_ERROR, all
teams will have been visited.

The team_info structure is defined as:

typedef struct {
 team_id team;
 long object_count;
 long thread_count;
 long area_count;
 thread_id debugger_nub_thread;
 port_id debugger_nub_port;
} team_info

The structure’s fields are described below:

Field Meaning

team The team_id of this team.

object_count The number of “objects” or executable files (including
libraries) that are loaded in the team.

thread_count The number of threads that comprise the team.

area_count The number of areas that the team can reference.

debugger_nub_thread A thread that’s used by the debugger to execute
operations on this team.

debugger_nub_port A port that’s used by the debugger to communicate
with
this team.

Both functions return B_NO_ERROR upon success. If the designated team isn’t found—
because team in get_team_info() isn’t valid, or n in get_nth_team_info() is out-of-
bounds—the functions return BAD_TEAM_ID.

get_thread_info(), get_nth_thread_info()

long get_thread_info(thread_id thread, thread_info *info)

long get_nth_thread_info(team_id team, long n, thread_info *info)

These functions copy, into the info argument, the thread_info structure for a particular
thread:

The Kernel Kit – 17

 Threads and Teams Functions

• The get_thread_info() function gets this information for the thread identified by
thread.

• The get_nth_thread_info() function retrieves thread information for the n’th thread
(zero-based) within the team identified by team. If team is 0 (zero), all teams are
considered. You use this function to retrieve the info structures of all the threads in
a team (or in all teams) by repeatedly calling the function with a monotonically
increasing value of n—the actual value of n has no other significance. When, in this
scheme, the function no longer returns B_NO_ERROR, all candidate threads will have
been visited.

The thread_info structure is defined as:

typedef struct {
 thread_id thread;
 team_id team;
 char name[B_OS_NAME_LENGTH];
 thread_state state;
 int priority;
 sem_id sem;
 double time;
 char *stack_base;
 char *stack_end;
} thread_info

The fields in the structure are:

Field Meaning

id The thread_id number of the thread.
team The team_id of the thread’s team.
name The name assigned to the thread.
state A constant that describes what the thread is currently doing. (The

thread state constants are listed in the next table.)
priority A constant that represents the level of attention the thread gets.
sem If the thread is waiting to acquire a semaphore, this is the sem_id

number of that semaphore. The sem field is only valid if the
thread’s state is B_THREAD_WAITING

time The amount of time, in microseconds, the thread has spent being
attended to by the CPUs.

stack_base A pointer to the first byte in the thread’s execution stack.
stack_end A pointer to the last byte in the thread’s execution stack.

18 – The Kernel Kit

Functions Threads and Teams

The last two fields are only meaningful if you understand the execution stack format.
Keep in mind that the stack grows down, from higher to lower addresses. Thus,
stack_base will always be greater than stack_end.

The value of the state field is one of following thread_state constants:

Constant Meaning

B_THREAD_RUNNING The thread is currently receiving attention from a CPU.

B_THREAD_READY The thread is waiting for its turn to receive attention.

B_THREAD_SUSPENDED The thread has been suspended or is freshly-spawned and
is waiting to start.

B_THREAD_WAITING The thread is waiting to acquire a semaphore. (Note that
when a thread is sitting in a wait_for_thread() call, or is
waiting to read from or write to a port, it’s actually
waiting to acquire a semaphore.) When in this state, the
sem field of the thread_info structure is set to the sem_id
number of the semaphore the thread is attempting to
acquire.

B_THREAD_RECEIVING The thread is sitting in a receive_data() function call.

B_THREAD_ASLEEP The thread is sitting in a snooze() call.

Both functions return B_NO_ERROR upon success. If the designated thread isn’t found—
because thread in get_thread_info() isn’t valid, or n in get_nth_thread_info() is out of
bounds—the functions return B_BAD_THREAD_ID. If its team argument is invalid,
get_nth_thread_info() return B_BAD_TEAM_ID.

See also: get_team_info()

has_data()

bool has_data(thread_id thread)

Returns TRUE if the given thread has any unread data that’s been sent to it through a
previous send_data() call; otherwise returns FALSE.

See also: send_data(), receive_data()

kill_team()

long kill_team(team_id team)

Kills all the threads in the given team. You should only call this function as a last resort;
killing a team can leave your system in an ugly state. If the team argument isn’t valid,
B_BAD_TEAM_ID is returned. Otherwise, the function returns B_NO_ERROR.

The Kernel Kit – 19

 Threads and Teams Functions

kill_thread()

long kill_thread(thread_id thread)

Kills the given thread. To kill the calling thread, use the construction

kill_thread(find_thread(NULL))

If the thread argument isn’t valid, B_BAD_THREAD_ID is returned. Otherwise, the function
returns B_NO_ERROR.

receive_data()

long receive_data(thread_id *sender,
 void *buf,
 long buf_size)

Receives data that’s been sent to the thread through a previous send_data() function call.
Typically, and most usefully, the send_data() call will have been made from another
thread.

The data that’s been sent is copied into the buffer pointed to by buf. The buf_size
argument tells the function how many bytes of data to copy. If you don’t want to receive
any data—if the value returned directly by the function, as described below, is sufficient—
you set buf to NULL and buf_size to 0.

The thread_id of the thread that sent the data (in other words, the thread that called
send_data()) is returned by reference in the sender argument. The value that’s returned
directly by the function is the value that was passed as the code argument to send_data().

Each receive_data() call matches exactly one send_data() call: If send_data() sent more
data than buf can accommodate, the unaccommodated portion is discarded—a second
receive_data() call will not read the “rest” of the data. Conversely, if receive_data()
asks for more data than was sent, the function returns with the excess portion of buf
unmodified—receive_data() doesn’t wait for another send_data() call to provide more
data with which to fill up the buffer.

If there isn’t any data to receive, receive_data() blocks until there is some. In some
instances, you may want to call has_data() as a predicate for the call to receive_data().

See also: send_data(), has_data()

rename_thread()

long rename_thread(thread_id thread, const char *name)

Changes the name of the given thread to name. Keep in mind that the maximum length of
a thread name is B_OS_NAME_LENGTH (32 characters).

20 – The Kernel Kit

Functions Threads and Teams

If the thread argument isn’t a valid thread_id number, B_BAD_THREAD_ID is returned.
Otherwise, the function returns B_NO_ERROR.

resume_thread()

long resume_thread(thread_id thread)

Tells a new or suspended thread to begin executing instructions. If the thread has just been
spawned, its execution begins with the entry-point function (keep in mind that a freshly
spawned thread doesn’t run until told to do so through this function). If the thread was
previously suspended (through suspend_thread()), it continues from where it was
suspended.

This function only works on threads that have a status of THREAD_SUSPENDED (newly
spawned threads are born with this state). You can’t use this function to resume a thread
that’s sleeping (B_THREAD_ASLEEP status), waiting to acquire a semaphore
(B_THREAD_WAITING), or waiting for a message (B_THREAD_RECEIVING).

If the thread argument isn’t a valid thread_id number, B_BAD_THREAD_ID is returned. If
the thread exists but isn’t suspended, B_BAD_THREAD_STATE is returned. Otherwise, the
function returns B_NO_ERROR.

See also: wait_for_thread()

send_data()

long send_data(thread_id thread, long code, void *buffer, long buffer_size)

Sends information to the thread given in the thread argument (this is the “target” thread).
There are two pants to the information that you send:

• You can send a single long-sized datum through the code argument.

• You can send a variable-length buffer of data through buffer. The length of the
buffer, in bytes, is given by buffer_size.

If you only need to send the code datum, you should set buffer to NULL and buffer_size to
0. Note that send_data() copies the data that’s pointed to by buffer. Changes that you
make to buffer after send_data() returns won’t affect the data that’s received by the target
thread.

The information that you send through send_data() is retrieved by the target thread when
it (the target) calls the receive_data() function. Normally, send_data() returns
immediately (after copying the data in buffer)—it doesn’t wait for the target to call
receive_data(). However, send_data() will block (and the calling thread will assume the
B_THREAD_WAITING status) if the target has data that it hasn’t yet read.

The Kernel Kit – 21

 Threads and Teams Functions

If sufficient memory in which to copy the data in buffer couldn’t be allocated, this function
fails and returns NO_MEMORY. If thread doesn’t identify a valid thread, BAD_THREAD_ID
is returned. Otherwise, the function succeeds and returns NO_ERROR.

See also: receive_data(), has_data()

snooze()

long snooze(double microseconds)

Pauses the calling thread for the given number of microseconds. The thread’s state is set
to B_THREAD_ASLEEP while it’s snoozing and restored to its previous state when it awakes.

The function returns B_ERROR if microseconds is less than 0.0, otherwise it returns
B_NO_ERROR. Note that it isn’t illegal to put a thread to sleep for 0.0 microseconds, but
neither is it effectual; a call of snooze(0.0) is, essentially, ignored.

spawn_thread()

thread_id spawn_thread(thread_entry func,
 const char *name,
 long priority,
 void *data)

Creates a new thread and returns its thread_id identifier (a positive integer). The
arguments are:

• func is a pointer to the thread’s entry function. This is the function that the thread
will execute when it’s told to run.

• name is the name that you wish to give the thread. It can be, at most,
B_OS_NAME_LENGTH (32) characters long.

• priority is the CPU priority level of the thread. It takes one of the following
constant values (listed here from lowest to highest):

Priority Constant Use

B_LOW_PRIORITY Non-crucial computation
B_NORMAL_PRIORITY The default priority
B_DISPLAY_PRIORITY Threads that control interlace objects
B_REALTIME_PRIORITY Threads that need real-time response

 For a complete explanation of these constants, see “Thread Priority” on page 10.

• data is forwarded as the argument to the thread’s entry function.

A newly spawned thread is in a suspended state (B_THREAD_SUSPENDED). To tell the
thread to run, you pass its thread_id to the resume_thread() function. The thread will

22 – The Kernel Kit

Functions Threads and Teams

continue to run until the entry-point function exits, or until the thread is explicitly killed
(through a call to kill_thread() or kill_team()).

If all thread_id numbers are currently in use, spawn_thread() returns
B_NO_MORE_THREADS; if the operating system lacks the memory needed to create the
thread (which should be rare), B_NO_MEMORY is returned.

suspend_thread()

long suspend_thread(thread_id thread)

Halts the execution of the given thread, but doesn’t kill the thread entirely. The thread
remains suspended until it is told to run through the resume_thread() function.

This function only works on threads that have a status of B_THREAD_RUNNING or
B_THREAD_READY. In other words, you can’t suspend a thread that’s sleeping, waiting to
acquire a semaphore, waiting to receive data, or that’s already suspended.

If the thread argument isn’t a valid thread_id number, B_BAD_THREAD_ID is returned. If
the thread exists, but is neither running nor ready to run, B_BAD_THREAD_STATE is returned.
Otherwise, the function returns B_NO_ERROR.

wait_for_thread()

long wait_for_thread(thread_id thread, long *exit_value)

This function causes the calling thread to wait until thread (the “target thread”) has died.
When the target thread is dead, the value that was returned by its entry function is returned
by reference in exit_value. If the target thread’s entry function didn’t exit naturally—if the
target was assassinated through a kill_thread() call, for example—the value returned in
exit_value will be unreliable (unfortunately, there’s currently no way to tell how the target
died).

If the target thread has already exited or is otherwise invalid, this function returns
B_BAD_THREAD_ID, otherwise it returns B_NO_ERROR. If the thread is killed while you’re
waiting for it, the function returns B_NO_ERROR (but, as noted above, the value in
exit_value will be unreliable).

Note: An invalid thread argument will, in certain circumstances, cause the function to
return B_ERROR. This will be corrected in the next release (such that a bad thread will
always return B_BAD_THREAD_ID).

See also: resume_thread()

The Kernel Kit – 23

Ports

Declared in: <kernel/OS.h>

Overview

A port is a system-wide message repository into which a thread can copy a buffer of data,
and from which some other thread (or, less usefully, the same thread) can then retrieve the
buffer. This repository is implemented as a first-in/first-out queue: A port stores its
messages in the order in which they’re received, and it relinquishes them in the order in
which they’re stored.

There are other ways to send data between threads. Most notably, the data-sending and
-receiving mechanism provided by the send_data() and receive_data() functions can also
transmit data between threads. But note these differences between using a port and using
the send_data()/receive_data() functions:

• A port can hold more than one message at a time. A thread can only hold one at a
time. Because of this, the function that writes data to a port (write_port()) rarely
blocks. Sending data to a thread will block if the thread has a previous, unread
message.

• The messages that are transmitted through a port aren’t directed at a specific
recipient—they’re not addressed to a specific thread. A message that’s been written
to a port can be read by any thread. send_data(), by definition, has a specific thread
as its target.

Creating a Port

Each port is represented by a unique, system-wide port_id number (a positive integer).
The create_port() function creates a new port and assigns it a port_id number. Although
ports are accessible to all threads, the port_id numbers aren’t disseminated by the
operating system; if you create a port and want some other thread to be able to write to or
read from it, you have to broadcast the port_id number to that thread. Typically, ports are
used within a single team. The easiest way to broadcast a port_id number to the threads in
a team is to declare it as a global variable.

A thread doesn’t “own” the ports that it creates. Most significantly, the ports that a thread
creates aren’t freed when the thread is killed. The operating system provides a limited
number of port identifiers, so it’s important that you delete your ports (through the
delete_port() function) when they’re no longer needed.

24 – The Kernel Kit

Overview Ports

The Message Queue

The functions write_port() and read_port() send information through a port by placing and
removing messages in the port’s message queue. Technically, write_port() places a
message at the tail of the port’s message queue; read_port() removes the message at the
head of the queue and returns it the caller.

The length of a port’s message queue—the number of messages that it can hold at a time—
is set when the port is created. write_port() blocks if the queue is full; it returns when
room is made in the queue by an invocation of read_port(). Similarly, if the queue is
empty, read_port() blocks until write_port() is called. As a convenience, the
B_MAX_PORT_COUNT constant provides a reasonable queue length (although see the
warning, below).

Note: When a thread is waiting in a write_port() or read_port() call, its state is
B_THREAD_SEM_WAIT—in other words, it’s waiting to acquire a (system-defined)
semaphore. For each port, there are two such semaphores: one for reading and another for
writing. Both semaphores are given the same name as the port. See “Threads and Teams”
on page 5 for more information about thread state.

Warning: Although each port has its own message queue, all ports share a global “queue
slot” pool—there are only so many message queue slots that can be used by all ports taken
cumulatively. If too many port queues are allowed to fill up, the slot pool will drain,
which will cause write_port() calls on less-than-full ports to block. To avoid this situation,
you should make; sure that your write_port() and read_port() calls are reasonably balanced.

Port Messages

A port message—the data that’s sent through a port—consists of a “message code” and a
“message buffer.” Either of these elements can be used however you like, but they’re
intended to fit these purposes:

• The message code (a single integer) should be a mask, flag, or other predictable
value that gives a general representation of the flavor or import of the message. For
this to work, the sender and receiver of the message must agree on the meanings of
the values that the code can take.

• The data in the message buffer can elaborate upon the code, identify the sender of
the message, or otherwise supply additional information. The length of the buffer
isn’t restricted. To get the length of the message buffer that’s at the head of a port’s
queue, you call the port_buffer_size() function.

The message code and message buffer are set and retrieved as separate arguments to the
write_port() and read_port() functions; see the function descriptions, below, for the precise
protocol.

When you read a port, you have to supply a buffer into which the port mechanism can
copy the data from the message buffer in the port’s queue. If the buffer that you supply

The Kernel Kit – 25

 Ports Function Descriptions

isn’t large enough to accommodate the message, the unread portion will be lost—the next
call to read_port() won’t finish reading the message.

You typically allocate the buffer that you pass to read_port() by first calling
port_buffer_size(), as shown below:

char *buf;
long size;
long code;

/* We’ll assume that my_port is valid.
 * port_buffer_size() will block until a message shows up.
 */
if ((size = port_buffer_size(my_port) < B_NO_ERROR)
 /* Handle the error */

if (size > 0)
 buf = (char *)malloc(size * sizeof(char));
else
 buf = 0;

/* Now we can read the buffer. */
if (read_port(my_port, &code, (void *)buf, size) < B_NO_ERROR)
 /* Handle the error */

Message Ownership

Just as ports aren’t owned by the threads that create them, neither are messages owned by
the threads that place them in a port’s queue. For example, if you write a message to a port
and then kill the thread that wrote the message, the message remains in the port’s queue.
Furthermore, you can’t “erase” a message once it’s been written to a port—the only way to
remove a message from a port queue is to read it.

Function Descriptions

create_port

port_id create_port(long queue_length, const char *name)

Creates a new port and returns its port_id number. The port’s name is set to name and the
length of its message queue is set to queue_length. Neither the name nor the queue length
can be changed once they’re set. The name shouldn’t exceed B_OS_NAME_LENGTH (32)
characters.

In setting the length of a port’s message queue, you’re telling it how many messages it can
hold at a time. When the queue is filled—when it’s holding queue_length messages—
subsequent invocations of write_port() (on that port) block until room is made in the queue
for the additional messages. The minimum queue length is one. As a convenience, you

26 – The Kernel Kit

Function Descriptions Ports

can use the B_MAX_PORT_COUNT constant as the queue_length value; this constant
represents the (ostensible) maximum port queue length.

The function returns B_BAD_ARG_VALUE if queue_length is out of bounds (less than one or
greater than the maximum capacity). It returns B_NO_MORE_PORTS if all port_id numbers
are currently being used.

delete_port()

long delete_port(port_id port)

Deletes the given port. The port’s message queue doesn’t have to be empty—you can
delete a port that’s holding unread messages—however, you can’t delete a port if there are
any threads that are blocked in read_port() or write_port() calls on the port.

The function returns B_BAD_PORT_ID if port isn’t a valid port; it returns B_PORT_BUSY if
there are any blocked threads waiting to use it. Otherwise it returns B_NO_ERROR.

find_port()

port_id find_port(const char *port_name)

Returns the port_id of the named port. If the argument doesn’t name an existing port,
B_NAME_NOT_FOUND is returned.

get_port_name()

long get_port_name(port_id port, char *name)

Copies the port’s name, as assigned by the create_port() function, into name. The name
should be at least B_OS_NAME_LENGTH bytes long. If the port doesn’t have a name, the
name argument is returned as a NULL string.

If port is a valid port identifier, the function returns B_NO_ERROR; otherwise,
B_BAD_PORT_ID is returned.

port_buffer_size()

long port_buffer_size(port_id port)

Returns the length of the message buffer for the message that’s at the head of port’s queue.
You call this function in order to allocate a sufficiently large buffer in which to retrieve the
message data. As with read_port(), this function blocks if the port is currently empty.

If port doesn’t identify an existing port, B_BAD_PORT_ID is returned.

The Kernel Kit – 27

 Ports Function Descriptions

port_count()

long port_count(port_id port)

Returns the number of messages that are currently in port’s message queue. If port isn’t a
valid port identifier, B_BAD_PORT_ID is returned.

read_port()

long read_port(port_id port,
 long *msg_code,
 void *msg_buf,
 long buf_size)

Removes the message at the head of port’s message queue and returns its contents in the
msg_code and msg_buf arguments. The size of the msg_buf buffer, in bytes, is given in
buf_size. See the write_port() function for more information on the final three arguments.

If port’s message queue is empty when you call read_port(), the function will block. It
returns when some other thread writes a message to the port through write_port().

The function returns B_BAD_PORT_ID if port isn’t valid, otherwise it returns B_NO_ERROR.
(Note that if the port is deleted while this function is blocked, the function will
immediately return B_BAD_PORT_ID.)

write_port()

long write_port(port_id port,
 long msg_code,
 void *msg_buf,
 long buf_size)

Places a message at the tail of port’s message queue. The message consists of msg_code
and msg_buf:

• msg_code holds the message code. This is a mask, flag, or other predictable value
that gives a general representation of the message.

• msg_buf is a pointer to a buffer that can be used to supply additional information.
You pass the length of the buffer, in bytes, as the value of the buf_size argument.
The buffer can be arbitrarily long.

If the port’s queue is full when you call write_port(), the junction will block. It returns
when a read_port() call frees a slot in the queue for the new message.

The function returns B_BAD_PORT_ID if port isn’t valid, otherwise it returns B_NO_ERROR.
(Note that if the port is deleted while this function is blocked, the function will
immediately return B_BAD_PORT_ID.)

28 – The Kernel Kit

Function Descriptions Ports

The Kernel Kit – 29

Semaphores

Declared in: <kernel/OS.h>

Overview

A semaphore is a token that’s used in a multi-threaded operating system to coordinate
access, by competing threads, to “protected” resources or operations. This coordination
usually takes one of these tacks:

• The most common use of semaphores is to limit the number of threads that can
execute a piece of code at the same time. The typical limit is one—in other words,
semaphores are most often used to create mutually exclusive locks.

• Semaphores can also be used to impose the order in which a series of interdependent
operations are performed.

Examples of these uses are given in sections below.

How Semaphores Work

A semaphore acts as a key that a thread must acquire in order to continue execution. Any
thread that can identify a particular semaphore can attempt to acquire it by passing its
sem_id identifier—a system-wide number that’s assigned when the semaphore is
created—to the acquire_sem() function. The function doesn’t return until the semaphore
is actually acquired. (An alternative function, acquire_sem_timeout() lets you specify a
limit, in microseconds, on the amount of time you’re willing to wait for the semaphore to
be acquired. Unless otherwise noted, characteristics ascribed to acquire_sem() apply to
acquire_sem_timeout() as well.)

When a thread acquires a semaphore, that semaphore (typically) becomes unavailable for
acquisition by other threads (in the rarer case, more than one thread is allowed to acquire
the semaphore at a time; the precise determination of availability is explained in “The
Thread Count” on page 30). The semaphore remains unavailable until it’s passed in a call
to the release_sem() function.

The code that a semaphore “protects” lies between the calls to acquire_sem() and
release_sem(). The disposition of these functions in your code usually follows this
pattern:

acquire_sem(my_semaphore);
/* Protected code goes here. */
release_sem(my_semaphore);

30 – The Kernel Kit

Overview Semaphores

Keep in mind, however, that these function calls needn’t be so explicitly balanced. A
semaphore can be acquired within one function and released in another. Acquisition and
release of the same semaphore can even be performed by two different threads; an
example of this is given in “Using Semaphores to Impose an Execution Order” on
page 33.

The Thread Queue

Every semaphore has its own thread queue: This is a list that identifies the threads that are
waiting to acquire the semaphore. A thread that attempts to acquire an unavailable
semaphore is placed at the tail of the semaphore’s queue. Each call to release_sem()
“releases” the thread at the head of that semaphore’s queue (if there are any waiting
threads), allowing the thread to return from its call to acquire_sem().

Semaphores don’t discriminate between acquisitive threads—they don’t prioritize or
otherwise reorder the threads in their queues—the oldest waiting thread is always the next
to be released.

The Thread Count

To assess availability, a semaphore looks at its thread count. This is a counting variable
that’s initialized when the semaphore is created. The ostensible (although, as we shall see,
not entirely accurate) meaning of a thread count’s initial value, which is passed as the first
argument to create_sem(), is the number of threads that can acquire the semaphore at a
time. For example, a semaphore that’s used as a mutually exclusive lock takes an initial
thread count of 1—in other words, only one thread can acquire the semaphore at a time.

Calls to acquire_sem() and release_sem() alter the semaphore’s thread count:
acquire_sem() decrements the count, and release_sem() increments it. When you call
acquire_sem(), the function looks at the thread count (before decrementing it) to
determine if the semaphore is available: If the count is greater than zero, the semaphore is
available and so the function returns immediately, allowing the thread to continue (in other
words, without having to pass through the queue). If the count is zero or less, the
semaphore is unavailable, and so the thread is placed in the semaphore’s thread queue.

The initial thread count isn’t an inviolable limit on the number of threads that can acquire
a given semaphore—it’s simply the initial value for the semaphore’s thread count variable.
For example, if you create a semaphore with an initial thread count of 1 and then
immediately call release_sem() five times, the semaphore’s thread count will increase to
6. Furthermore, although you can’t initialize the thread count to less-than-zero, an initial
value of zero itself is common—it’s an integral part of using semaphores to impose an
execution order (as exemplified later).

Summarizing the description above, there are three significant thread count value ranges:

• A positive thread count (n) means that there are no threads in the semaphore’s
queue, and the next n acquire_sem() calls will return without blocking.

The Kernel Kit – 31

 Semaphores Overview

• If the count is 0, there are no queued threads, but the next acquire_sem() call will
block.

• A negative count (-n) means there are n threads in the semaphore’s thread queue,
and the next call to acquire_sem() will block.

You can get a semaphore’s thread count by calling get_sem_count(); the count is returned
by reference in the second argument.

Using a Semaphore as a Lock

As mentioned above, the most common use of semaphores is to ensure that only one
thread is executing a certain piece of code at a time. The following example demonstrates
this use.

Consider an application that manages a one-job-at-a-time device such as a printer. When
the application wants to start a new print job (upon a request from some other application,
no doubt) it spawns and runs a thread to perform the actual data transmission. Given the
nature of the device, each spawned thread must be allowed to complete its transmission
before the next thread takes over. However, your application wants to accept print
requests (and so spawn threads) as they arrive.

To ensure that the spawned threads don’t interrupt each other, you can define a semaphore
that’s acquired and released—that, in essence, is “locked” and “unlocked”—as a thread
begins and ends its transmission, as shown below. The thread functions that are used in
the example are described in “Threads and Teams” on page 5.

/* Include the semaphore API declarations. */
#include <OS.h>

/* The semaphore is declared globally so the spawned threads
 * will be able to get to it (there are other ways of
 * broadcasting the sem_id, but this is the easiest).
 */
sem_id print_sem;

/* print_something() is the data-transmission function.
 * The data itself would probably be passed as an argument
 * (which isn’t shown in this example).
 */
long print_something(void *data);

32 – The Kernel Kit

Overview Semaphores

main ()
{
 /* Create the semaphore with an initial thread count of 1.
 * If the semaphore can’t be created (error conditions
 * are listed later), we exit. The second argument to
 * create_sem(), as explained in the function
 * descriptions is a handy string name for the semaphore.
 */
 if ((print_sem = create_sem(l, "print sem")) < B_NO_ERROR)
 exit -1;

 while (1)
 {
 /* Wait-for-a-request code and break conditions
 * go here.
 */

 /* Spawn a thread that calls print_something(). */
 if (resume_thread(spawn_thread(print_something ...))
 < B_NO_ERROR)
 break;
 }

 /* Acquire the semaphore and delete it (as explained
 * later)
 */
 acquire_sem(print_sem);
 delete_sem(print_sem);
 exit 0;
}

long print_something(void *data)
{
 /* Acquire the semaphore; an error means the semaphore
 * is no longer valid. And we’ll just die if it’s no good.
 */
 if (acquire_sem(print_sem) < B_NO_ERROR)
 return 0;

 /* The code that sends data to the printer goes here. */

 /* Release the semaphore. */
 release_sem(print_sem);

 return 0;
}

The acquire_sem() and release_sem() calls embedded in the print_something() function
“protect” the data-transmission code. Although any number of threads may concurrently
execute print_something(), only one at a time is allowed to proceed past the
acquire_sem() call.

The Kernel Kit – 33

 Semaphores Overview

Deleting a Semaphore

Notice that the example explicitly deletes the print_sem semaphore before it exits. The
operating system can support only a limited number of semaphores at a time, so it’s
important that you delete your semaphores when you’re finished with them.

You’re allowed to delete a semaphore even if it still has threads in its queue. However,
you usually want to avoid this, so deleting a semaphore may require some thought. In the
example, the main thread (the thread that executes the main() function) makes sure all
print threads have finished by acquiring the semaphore before deleting it. When the main
thread is allowed to continue (when the acquire_sem() call returns) the queue is sure to be
empty and all print jobs will have completed.

When you delete a semaphore, all its queued threads are immediately allowed to
continue—they all return from acquire_sem() at once. You can distinguish between a
“normal” acquisition and a “semaphore deleted” acquisition by the value that’s returned
by acquire_sem() (the specific return values are listed in the function descriptions,
below).

Using Semaphores to Impose an Execution Order

Semaphores can also be used to coordinate threads that are performing separate
operations, but that need to perform these operations in a particular order. In the following
example, an application repeatedly spawns, in no particular order, threads that either write
to or read from a global buffer. Each writing thread must complete before the next reading
thread starts, and each written message must be fully read exactly once. Thus, the two
operations must alternate (with a writing thread going first). Two semaphores are used to
coordinate the threads that perform these operations:

/* Here’s the global buffer. */
char buf[1024];

/* The ok_to_read and ok_to_write semaphores inform the
 * appropriate threads that they can proceed.
 */
sem_id ok_to_write, ok_to_read;

/* These are the writing and reading functions. */
long write_it(void *data);
long read_it(void *data);

main()
{
 /* These will be used when we delete the semaphores. */
 long write_count, read_count;

 /* Create the semaphores. ok_to_write is created with a
 * thread count of 1; ok_to_read’s count is set to 0.
 * This is explained below.

34 – The Kernel Kit

Overview Semaphores

 */
 if ((ok_to_write = create_sem(1, "write sem"))<B_NO_ERROR)
 return (B_ERROR);

 if ((ok_to_read = create_sem(0, "read sem")) < B_NO_ERROR)
 {
 delete_sem(ok_to_write);
 return (B_ERROR);
 }

 bzero(buf,1024);

 /* Spawn some reading and writing threads. */
 while(1)
 {
 if (...) /* spawn-a-writer condition */
 resume_thread(spawn_thread(write_it, ...));
 if (...) /* spawn-a-reader condition */
 resume_thread(spawn_thread(read_it, ...);
 if (...) /* break condition */
 break;
 }

 /* It’s time to delete the semaphores. First, get the
 * semaphores’ thread counts.
 */
 if (get_sem_count(ok_to_write, &write_count) < B_NO_ERROR)
 {
 delete_sem(ok_to_read);
 return (B_ERROR);
 }

 if (get_sem_count(ok_to_read, &read_count) < B_NO_ERROR)
 {
 delete_sem(ok_to_write);
 return (B_ERROR);
 }

 /* Place this thread at the end of whichever queue is
 * shortest (or the writing queue if they’re equal).
 * Remember: thread count is decremented as threads
 * are placed in the queue, so the shorter queue is
 * the one with the greater thread count.
 */
 if (write_count >= read_count)
 acquire_sem(ok_to_write);
 else
 acquire_sem(ok_to_read);

 /* Delete the semaphores and exit. */
 delete_sem(ok_to_write);
 delete_sem(ok_to_read);
 return (B_NO_ERROR);
}

The Kernel Kit – 35

 Semaphores Overview

long write_it(void *data)
{
 /* Acquire the writing semaphore. */
 if (acquire_sem(ok_to_write) < B_NO_ERROR)
 return (B_ERROR);

 /* Write to the buffer. */
 strncpy(buf, (char *)data, 1023);

 /* Release the reading semaphore. */
 return (release_sem(ok_to_read));
}

long read_it(void *data)
{
 /* Acquire the reading semaphore. */
 if (acquire_sem(ok_to_read) < B_NO_ERROR)
 return (B_ERROR);

 /* Read the message and do something with it. */
 ...

 /* Release the writing semaphore. */
 return (release_sem(ok_to_write));
}

Notice the distribution of the acquire_sem() and release_sem() calls for the respective
semaphores: The writing function acquires the writing semaphore (ok_to_write) and then
releases the reading semaphore (ok_to_read). The reading function does the opposite.
Thus, after the buffer has been written to, no other thread can write to it until it has been
read (and vice versa).

By setting ok_to_write’s initial thread count to 1 and ok_to_read’s initial thread count to
zero, you ensure that a writing operation will be performed first. If a reading thread is
spawned first, it will block until a writing thread releases: the ok_to_read semaphore.

When it’s semaphore-deletion time in the example, the main thread acquires one of the
semaphores. Specifically, it acquires the semaphore that has the fewer threads in its
queue. This allows the remaining (balanced) pairs of reading and writing threads to
complete before the semaphores are deleted, and throws away any unpaired reading or
writing threads. (Actually, the unpaired threads aren’t “thrown away” as the semaphore
upon which they’re waiting is deleted, but by the error check in the first line of the reading
or writing function. As mentioned earlier, deleting the semaphore releases its queued
threads, allowing them, in this instance, to rush to their deaths.)

Broadcasting Semaphores

The sem_id number that identifies a semaphore is a system-wide token—the sem_id
values that you create in your application will identify your semaphores in all other
applications as well. It’s possible, therefore, to broadcast the sem_id numbers of the

36 – The Kernel Kit

Functions Semaphores

Semaphores that you create and so allow other applications to acquire and release them—
but it’s not a very good idea. A semaphore is best controlled if it’s created, acquired,
released, and deleted within the same team. If you want to provide a protected service or
resource to other applications, you should follow the model used by the examples: Your
application should accept messages from other applications and then spawn threads that
acquire and release the appropriate semaphores.

Functions

acquire_sem(), acquire_sem_count(), acquire_sem_timeout()

long acquire_sem(sem_id sem)

long acquire_sem_count(sem_id sem, long count)

long acquire_sem_timeout(sem_id sem, double timeout)

These functions attempt to acquire the semaphore identified by the sem argument. Except
in the case of an error, acquire_sem() and acquire_sem_count() don’t return until the
semaphore has actually been acquired. acquire_sem_timeout() provides a timeout
facility: If the semaphore hasn’t been acquired within timeout microseconds, the function
returns anyway.

The acquire_sem() and acquire_sem_timeout() functions acquire the semaphore but once
(they decrement the thread count by one); acquire_sem_count() attempts to acquire the
semaphore count times (it decrements the thread count by count).

Other than the timeout and the acquisition count, there’s no difference between the three
acquisition functions. Specifically, any semaphore can be acquired through any of these
functions; you always release a semaphore through release_sem() (or
release_sem_count()) regardless of which function you used to acquire it.

To determine if the semaphore is available, the function looks at the semaphore’s thread
count (before decrementing it):

• If the thread count is positive, the semaphore is available and the current acquisition
succeeds. The acquire_sem() or acquire_sem_timeout() function returns
immediately upon acquisition.

• If the thread count is zero or less, the calling thread is placed in the semaphore’s
thread queue where it waits for a corresponding release_sem() call to de-queue it
(or for the timeout to expire).

If the sem argument doesn’t identify a valid semaphore, B_BAD_SEM_ID is returned. It’s
possible for a semaphore to become invalid while an acquisitive thread is waiting in the
semaphore’s queue. For example, if your thread calls acquire_sem() on a valid (but
unavailable) semaphore, and then some other thread deletes the semaphore, your thread
will return B_BAD_SEM_ID from its call to acquire_sem(). If acquire_sem_timeout()
surpasses its designated time limit, it returns B_TIMED_OUT.

The Kernel Kit – 37

 Semaphores Functions

If the semaphore is successfully acquired, the functions return B_NO_ERROR.

create_sem()

sem_id create_sem(long thread_count, const char *name)

Creates a new semaphore and returns a system-wide sem_id number that identifies it. The
arguments are:

• thread_count initializes the semaphore’s thread count, the counting variable that’s
decremented and incremented as the semaphore is acquired and released
(respectively). You can pass any non-negative number as the count, but you
typically pass either 1 or 0, as demonstrated in the examples above.

• name is an optional string name that you can assign to the semaphore. The name is
meant to be used only for debugging. A semaphore’s name needn’t be unique—any
number of semaphores can have the same name.

Valid sem_id numbers are positive integers. You should always check the validity of a
new semaphore through a construction such as

if ((my_sem = create_sem(1,"My Semaphore")) < B_NO_ERROR)
 /* If it’s less than B_NO_ERROR, my_sem is invalid. */

The function returns one of the following codes if the semaphore couldn’t be created:

Return Code Meaning

B_BAD_ARG_VALUE Invalid thread_count value (less than zero).
B_NO_MEMORY Not enough memory to allocate the semaphore’s name.
B_NO_MORE_SEMS All valid sem_id numbers are being used.

The operating system allows only a limited number of semaphores at a time. Because of
this, you should delete your semaphores when you’re finished with them.

delete_sem()

long delete_sem(sem_id sem)

Deletes the semaphore identified by the argument and marks the identifier as invalid. If
there are any threads waiting in the semaphore’s thread queue, they’re immediately de-
queued and so allowed to continue execution.

If sem is a valid semaphore identifier, this function returns B_NO_ERROR; otherwise it
returns B_BAD_SEM_ID.

38 – The Kernel Kit

Functions Semaphores

get_sem_count()

long get_sem_count(sem_id sem, long *thread_count)

Returns, by reference in thread_count, the value of the semaphore’s thread count variable:

• A positive thread count (n) means that there are no threads in the semaphore’s
queue, and the next n acquire_sem() calls will return without blocking.

• If the count is zero, there are no queued threads, but the next acquire_sem() call
will block.

• A negative count (-n) means there are n threads in the semaphore’s thread queue and
the next call to acquire_sem() will block.

If sem is a valid semaphore identifier, the function returns B_NO_ERROR; otherwise,
B_BAD_SEM_ID is returned (and the value of the thread_count argument that you pass in
isn’t changed).

get_sem_name()

long get_sem_name(sem_id sem, char *name)

Copies the semaphore’s name, as assigned by the create_sem() function, into name. The
name buffer should be at least B_OS_NAME_LENGTH (32) characters long. If the
semaphore doesn’t have a name, the name argument is returned as a NULL string.

A semaphore’s name is only meant to be used as a debugging aid.

If sem is a valid semaphore identifier, the function returns B_NO_ERROR; otherwise, B_
BAD_SEM_ID is returned.

release_sem(), release_sem_count()

long release_sem(sem_id sem)

long release_sem_count(sem_id sem, long count)

The release_sem() function de-queues the thread that’s waiting at the head of the
semaphore’s thread queue (if any), and increments the semaphore’s thread count.
release_sem_count() does the same, but for count threads.

If sem is a valid semaphore identifier, these functions return B_NO_ERROR; if it’s invalid,
they return B_BAD_SEM_ID. Note that if a released thread deletes the semaphore (before
the releasing function returns), these functions will still return B_NO_ERROR.

The count argument to release_sem_count() must be greater than zero; the function
returns B_BAD_ARG_VALUE otherwise.

The Kernel Kit – 39

Areas

Declared in: <kernel/OS.h>

Overview

An area is a chunk of virtual memory. As such, it has all the expected properties of virtual
memory: It has a starting address, a size, the locations that comprise it are contiguous, and
it maps to (possibly non-contiguous) physical memory. The primary differences between
an area and “standard” virtual memory (memory that you allocate through malloc(), for
example) are these:

• Different areas can refer to the same physical memory. Put another way, different
virtual memory addresses can map to the same physical locations. Furthermore, the
different areas needn’t belong to the same application. By creating and “cloning”
areas, applications can easily share the same data.

• You can specify that the area’s physical memory be locked into the CPU’s on-chip
memory (or “core”) when it’s created, locked on a page-by-page basis as pages are
swapped in, or that it be swapped in and out as needed.

• Areas always start on a page boundary, and are allocated in integer multiples of the
size of a page. (A page is 4096 bytes, as represented by the B_PAGE_SIZE constant.)

• You can specify the starting address of the area’s virtual memory. The specification
can require that the area start precisely at a certain address, anywhere above a
certain address, or anywhere at all.

• An area can be read- and write-protected.

Because areas are large—4096 bytes minimum—you don’t create them arbitrarily. The
two most compelling reasons to create an area are the two first points listed above: To
share data among different applications, and to lock memory into core.

Identifying an Area

An area is uniquely identified (across your computer) by its area_id number. The area_id
is assigned automatically by create_area(), a function that does what it says. Most of the
area functions require an area_id argument.

If you want to share an area with another application, you can broadcast the area’s area_id
number, but it’s recommended that, instead, you publish the area’s name. Given an area

40 – The Kernel Kit

Overview Areas

name, a “remote” application can retrieve the area’s ID number by calling find_area(); the
function returns an area_id number based on the area name argument. Note, however that
area names are rot unique—any number of areas can be assigned the same name (the
assignment is made when the area is created).

Because area names aren’t unique, they should be considered to be “one-time” identifiers
only. Once you’ve gotten an area_id value through the find_area() function, all
subsequent area calls that refer to that area should be done on the basis of the ID—you
shouldn’t call find_area() each time. Multiple calls to find_area() with the same name
won’t all necessarily return the same area_id (consider the case where more than one
instantiation of the same application is running on your computer).

You can also find areas through the area_at() function. The function takes an index
argument that’s used to locate and return the area in the system’s list of areas. This list
includes all areas—not just the areas that have been created by the calling thread (or team.
area_at() is intended to be used for system diagnostics; it isn’t meant as a means for
communicating ;areas between applications (for example).

Using an Area

Ultimately, you use an area for the virtual memory that it represents. In other words, you
create an area because you want some memory to which you can write and from which
you can read data. These acts are performed in the usual manner, through references to
specific addresses. Setting a pointer to a location within the area, and checking that you
haven’t exceeded the area’s memory bounds as you increment the pointer (while reading
or writing) are your own responsibility. To do this properly, you need to know the area’s
starting address and its extent:

• An area’s starting address is maintained as the address field in its area_info
structure; you retrieve the area_info for a particular area through the
get_area_info() function.

• The size of the area (in bytes) is given as the size field of its area_info structure.

Cloning an Area

If you want to read or write another area’s data, the first thing you should do, having
acquired an area_info, is “clone” the area. You do this by calling the clone_area() function.
The function returns a new area_info number that identifies your clone of the original area.
All further references to the area should be based on the ID of the clone.

Areas have no concept of “ownership.” An area created through clone_area() is just as
valid as one crested through create_area(). The significance of this is particularly felt
when you delete your areas: The memory that underlies an area isn’t freed until all areas
that refer to it have been deleted. Thus, if you clone an area and then the original area is
deleted, your clone will still be valid—the memory that it refers to won’t be yanked out

The Kernel Kit – 41

 Areas Functions

from underneath it. The areas that you create in your application are automatically deleted
when your application exits. To force a deletion, you can call delete_area().

The physical memory that lies beneath a cloned area is never implicitly copied—the area
mechanism doesn’t perform a “copy-on-write” (for example). If two areas refer to the
same memory because of cloning, a data modification that’s affected through one area will
be seen by the other area.

Functions

area_at()

area_id area_at(long index)

Returns the area_id of the area that resides at the index’th slot in the system’s list of areas.
This list includes all areas that the system has allocated, not just those areas that “belong”
to the calling thread (or to its team). Valid index values start at zero; if index is out-of-
bounds, B_ERROR is returned.

This function is provided to aid system diagnostics; you shouldn’t use it to “find” a
specific area. Typically, you would use this function if you want to examine the paging
and memory use statistics for each area (these statistics are provided by the final four fields
of the area_info structure).

See also: get_area_info(). find_area(), area_for()

area_for()

area_id area_for(void *addr)

Returns the area_id of the area that contains the given address. The argument needn’t be
the starting address of an area, nor must it start on a page; boundary. If it lies anywhere
within an area, the ID of that area is returned.

The address is taken to be in the local address space; accordingly, the area that’s returned
will also be local—it will have been created (or cloned) by your application.

If the address doesn’t lie within an area, B_ERROR is returned.

See also: find_area()

clone_area()

long clone_area(const char *clone_name,
 void **clone_addr,
 ulong clone_addr_spec,

42 – The Kernel Kit

Functions Areas

 ulong clone_protection,
 area_id source_area)

Creates a new area (the clone area) that maps to the same physical memory as an existing
area (the source area). The arguments are:

• clone_name is the name that you wish to assign to the clone area. Note well that this
argument doesn’t identify the source area. Area names are, at most,
B_OS_NAME_LENGTH (32) characters long.

• clone_addr points to the address at which you want the clone area to start; it must be
a multiple of B_PAGE_SIZE (4096). The function sets the value pointed to by
clone_addr to the area’s actual starting address—it may be different from the one
you requested. The constancy of *clone_addr depends on the value of
clone_addr_spec, as explained next.

• clone_addr_spec is one of four constants that describes how clone_addr is to be
interpreted. The first three constants, B_EXACT_ADDRESS, B_BASE_ADDRESS, and
B_ANY_ADDRESS, have the same meaning as they do for create_area() (for more
information, see the create_area() description). The fourth constant,
B_CLONE_ADDRESS, specifies that the address of the cloned area should be the same
as the address of the source area. Cloning the address is convenient if you have two
(or more) applications that want to pass pointers to each other—by using cloned
addresses, the applications won’t have to offset the pointers that they receive. For
both the B_ANY_ADDRESS and B_CLONE_ADDRESS specifications, the clone_addr
argument is ignored.

• clone_protection is one or both of B_READ_AREA and B_WRITE_AREA. These have
the same meaning as in create_area(); keep in mind, as described there, that a
cloned area can have a protection that’s different from that of its source.

• source_area is the area_id of the area that you wish to clone. You usually supply
this value by passing an area name to the find_area() function.

Usually, the source area and clone area are in two different applications. It’s possible to
clone an area from a source that’s in the same application, but there’s not much reason to
do so unless you want the areas to have different protections.

If area_clone() clone is successful, the clone’s area_id is returned. Otherwise, the
function returns one of the following error constants:

Constant Meaning

B_BAD_VALUE Bad argument value; you passed an unrecognized
constant for addr_spec or lock, the addr value isn’t a
multiple of B_PAGE_SIZE, you set addr_spec to
B_EXACT_ADDRESS or B_CLONE_ADDRESS but the
address request couldn’t be fulfilled, or source_area
doesn’t identify an existing area.

B_NO_MEMORY Not enough memory to allocate the system structures that
support this area.

The Kernel Kit – 43

 Areas Functions

B_ERROR Some other system error prevented the area from being
created.

create_area()

area_id create_area(const char *name,
 void **addr,
 ulong addr_spec,
 long size, ulong lock,
 ulong protection)

Creates an new area and returns its area_id. The arguments are:

• name is the name that you wish to assign to the area. It needn’t be unique. Area
names are, at most, B_OS_NAME_LENGTH (32) characters long.

• addr points to the address at which you want the area to start. The value of *addr
must signify a page boundary; in other words, it must be an integer multiple of
B_PAGE_SIZE (4096). Note that this is a pointer to a pointer: *addr—not addr—
should be set to the desired address; you then pass the address of addr as the
argument, as shown below:

/* Set the address to a page boundary. */
char *addr = (char *)(4096 * 100);

/* Pass the address of addr as the second argument. */
create_area("my area", &addr, ...);

 The function sets the value of *addr to the area’s actual starting address—it may be
different from the one you requested. The constancy of *addr depends on the value
of addr_spec, as explained next.

• addr_spec is a constant that tells the function how the *addr value should be
applied. There are three address specification constants:

 B_EXACT_ADDRESS means you want the value of *addr to be taken literally and
strictly. If the area can’t be allocated at that location, the function fails.

 B_BASE_ADDRESS means the area can start at a location equal to or greater than
*addr.

 B_ANY_ADDRESS means *addr is ignored; the starting address is determined by the
system.

 (A fourth specification, B_CLONE_ADDRESS, is only used by the clone_area()
function.)

• size is the size, in bytes, of the area. The size must be an integer multiple of
B_PAGE_SIZE (4096). The upper limit of size depends on the available swap space
(or core, if the area is locked).

44 – The Kernel Kit

Functions Areas

• lock describes how the physical memory should be treated with regard to swapping.
There are three locking constants:

 B_FULL_LOCK means the area’s memory is immediately locked into core and won’t
be swapped out.

 B_LAZY_LOCK allows individual pages of memory to be brought into core through
the natural order of things and then locks them.

 B_NO_LOCK means pages are never locked, they’re swapped in and out as needed.

• protection is a mask that describes whether the memory can be written and read.
You form the mask by adding the constants B_READ_AREA (the area can be read) and
B_WRITE_AREA (it can be written). The protection you describe applies only to this
area. If your area is cloned, the clone can specify a different protection.

The areas you create should eventually be deleted through the delete_area() function.
Undeleted areas are automatically deleted when your application exits.

If create_area() is successful, the new area_id number is returned. If it’s unsuccessful,
one of the following error constants is returned:

Constant Meaning

B_BAD_VA1UE Bad argument value. You passed an unrecognized
constant for addr_spec or lock, the addr or size value
isn’t a multiple of B_PAGE_SIZE, or you set addr_spec to
B_EXACT_ADDRESS but the address request couldn’t be
fulfilled.

B_NO_MEMORY Not enough memory to allocate the necessary system
structures that support this area. Note that this error code
doesn’t mean that you asked for too much physical
memory.

B_ERROR Some other system error prevented the area from being
created. Most notably, B_ERROR is returned if size is too
large.

delete_area()

long delete_area(area_id area)

Deletes the designated area. If no one other area maps to the physical memory that this
area represents, the memory is freed. If area doesn’t designate an actual area, this
function returns B_ERROR; otherwise it returns B_NO_ERROR.

The Kernel Kit – 45

 Areas Functions

find_area()

area_id find_area(const char *name)

Returns an area that has a name that matches the argument. Area names needn’t be
unique—successive calls to this function with the same argument value may not return the
same area_id.

If the argument doesn’t identify an existing area, the B_NAME_NOT_FOUND error code is
returned.

See also: area_for(), area_at()

get_area_info()

long get_area_info(area_id area, area_info *info)

Copies information about area into the area_info structure designated by info. The
structure is defined as:

typedef struct area_info {
 area_id area;
 char name[B_OS_NAME_LENGTH];
 void *address;
 long size;
 ulong lock;
 ulong protection;
 team_id team;
 long ram_size;
 long copy_count;
 long in_count;
 long out_count;
} area_info;

The fields are:

• area is the area_id that identifies the area. This will be the same as the function’s
area argument.

• name is the name that was assigned to the area when it was created or cloned.

• address is a pointer to the area’s starting address.

• size is the size of the area, in bytes.

• lock is a constant that represents the area’s locking scheme. This will be one of
B_FULL_LOCK, B_LAZY_LOCK, or B_NO_LOCK.

• protection specifies whether the area’s memory can be read and written. It’s a
combination of B_READ_AREA and B_WRITE_AREA.

46 – The Kernel Kit

Functions Areas

• team is the team_id of the thread that created or cloned this area.

The final four fields give information about the area that’s useful in diagnosing system use.
The fields are particularly valuable if you’re hunting for memory leaks:

• ram_size gives the amount of the area, in bytes, that’s currently swapped in.

• copy_count is total number of times that any of the pages in the area have been
copied because a process has written to them (in other words, it’s a “copy-on-write”
count).

• in_count is a count of the total number of times any of the pages in the area have
been swapped in.

• out_count is a count of the total number of times any of the pages in the area have
been swapped out.

If the area argument doesn’t identify an existing area, the function returns B_BAD_VALUE;
otherwise it returns B_NO_ERROR.

resize_area()

long resize_area(area_id area, long new_size)

Sets the size of the designated area to new_size, measured in bytes. The new_size
argument must be a multiple of B_PAGE_SIZE (4096).

Size modifications affect the end of the area’s existing memory allocation: If you’re
increasing the size of the area, the new memory is added to the end of the old; if you’re
shrinking the area, end pages are released and freed. In neither case does the area’s starting
address change, nor is existing data modified (expect, of course, for data that’s lost due to
shrinkage).

If the function is successful, B_NO_ERROR is returned. Otherwise one of the following
error codes is returned:

Constant Meaning

B_BAD_VALUE Either area doesn’t signify a valid area, or new_size isn’t
a multiple of B_PAGE_SIZE.

B_NO_MEMORY Not enough memory to allocate the system structures that
support the new portion of the area. This should only
happen if you’re increasing the size of the area. Note that
this error code doesn’t mean that you asked for too much
physical memory.

B_ERROR Some other system error prevented the area from being
created. Most notably, B_ERROR is returned if new_size is
too large.

The Kernel Kit – 47

 Areas Functions

set_area_protection ()

long set_area_protection(area_id area, ulong new_protection)

Sets the given area’s read and write protection. The new_protection argument is a mask
that specifies one or both of the values B_READ_AREA and B_WRITE_AREA. The former
means that the area can be read; the latter, that it can be written to. Note that an area’s
protection only applies to access to the underlying memory through that specific area
(more specifically, it applies to addresses that lie within the area). Different clones of the
same memory may have different protections.

The function fails (the old protection isn’t changed) and returns B_BAD_VALUE if area
doesn’t identify a valid area; otherwise it returns B_NO_ERROR.

48 – The Kernel Kit

Functions Areas

The Kernel Kit – 49

Images

Declared in: <kernel/image.h>

Overview

An image is compiled code; put another way, an image is what the compiler produces.
There are three types of images:

• An app image is an application. Every application, obviously, has a single app
image.

• A library image is a dynamically linked library (DLL). Most applications link with
the two system libraries (libbe.so and libc.so) that Be provides.

• An add-on image is an image that you load into your application as it’s running.
Symbols from the add-on image are linked and references are resolved when the
image is loaded. Thus, an add-on image provides a sort of “heightened dynamic
linking” beyond that of a DLL.

The following sections explain how to load and run an app image, and how to load an add-
on image (instructions for creating a DLL will be published later).

Loading an App Image

Loading an app image is like running a “sub-program.” The image that you load is
launched in much the same way as had you double-clicked it in the Browser, or launched it
from the command line. It runs in its own team—it doesn’t share the address space of the
application from which it was launched—and, generally, leads its own life.

To load an app image, you call the load_executable() function. The function takes, as its
first argument, a BFile object that represents the image file. Having located the file, the
function creates a new team, spawns a main thread in that team, and then returns the
thread_id of that thread to you. The returned thread won’t be running—to cause it to run
you pass the thread_id to resume_thread() or wait_for_thread() (which are explained in
the major section “Threads and Teams”).

In addition to the BFile argument, load_executable() takes an argc/argv argument pair
(which are forwarded to the new thread’s main() function), as well as a pointer to an array
of environment variables (strings).

50 – The Kernel Kit

Overview Images

• The argc/argv arguments must be set up properly—you can’t just pass 0 and NULL.
To properly instantiate the arguments, the first string in the argv array must be the
name of the image file (in other words, the name of the program that you’re going to
launch). You then install any other arguments you want in the array, and terminate
the array with a NULL entry, argc is set to the number of entries in the argv array (not
counting the terminating NULL).

• Typically, you set the environment variable pointer to point to the global environ
array (which you must declare as an extern).

The following example demonstrates a typical use of load_executable().

#include <image.h> /* load_executable() */
#include <OS.h> /* wait_for_thread() */
#include <stdlib.h> /* malloc() */
...
/* Here’s how you declare the environment variable array. */
extern char **environ;

/* Now declare the other bits. */
BFile exec_file;
record_ref exec_ref;

/* Let’s use agv/agc just in case we’re in a main()
 * call ourselves.
 */
char **agv;
int age;
thread_id exec_thread;
int return_value;

/* Get the ref to the executable and set the BFile with it.
 * We use get ref for path() here (and search for an
 * executable file called "/my_apps/adder"); for more
 * information on the BFile manipulations, see the Storage Kit
 * chapter. Notice, also, that we’re being a bit lax about
 * checking for errors.
 */
get_ref_for_path("/my_apps/adder", &exec_ref);
exec_file.SetRef(exec_ref);

/* Set up the agv array. Let’s pretend the adder program
 * takes two integers, adds them together, and returns the
 * result as main()’s exit code. There are three arguments,
 * so we allocate agv to hold four pointers (to include the
 * final NULL). Then we allocate and copy the three
 * string arguments.
 */
age = 3;

agv = (char **)malloc(sizeof(char *) * (age + 1));

The Kernel Kit – 51

 Images Overview

agv[0] = (char *)malloc(strlen("adder")+1);
strcpy(argv[0], "adder");

agv[1] = (char *)malloc(2);
strcpy(agv[1], "5");

agv[2] = (char *)malloc(2);
strcpy(agv[2], "3") ;

agv[3] = NULL;

/* Finally, we call load_executable. */
exec_thread = load_executable(&exec_file, age, agv, environ);

/* At this point, exec_thread is suspended (the natural
 * state of a newly-spawned thread). In order to retrieve
 * its return value, we use wait_for_thread() to tell the
 * thread to run.
 */
wait_for_thread(exec_thread, &return_value);

/* return_value should be 8 (i.e. 5 + 3). */

Simple? You bet.

Using an Add-on Image

To use an add-on image, you need to compile its code in a special fashion, load the
compiled image (from a running application), and then (from that application) play with
the symbols that the image brings with it. Note that unlike loading an executable, loading
an add-on doesn’t create a separate team or even spawn another thread. The whole point
of loading an add-on is to bring the image into your application’s address space so you can
call the functions and fiddle with the variables that the add-on defines.

The following sections demonstrate these acts.

Compiling an Add-on Image

To compile an add-on image, you modify the “loader flags” that you pass to the compiler.
In the makefile for your add-on image, add the following line:

LDFLAGS := -G -nodefaults -export all referenced_files

Here’s what the flags do:

• The -G flag tells the compiler to create a shared library. There’s actually no
difference between the binary that holds a library image, and one that holds an add-
on image.

52 – The Kernel Kit

Overview Images

• -nodefaults tells the compiler not to use the standard loader defaults that it might
otherwise inherit.

• -export all tells the compiler to create a symbol table that includes all (non- static)
symbols that it finds in the add-on code.

• referenced_files is a list of other image files (typically libraries) that contain symbols
that the add-on references. For example, if the code in your add-on calls a system
function such as spawn_thread(), you would need to include the libbe.so library in
the list. Note that the library needs to be specified as a full pathname that locates the
file as it resides on the machine on which you’re compiling. If you’re compiling on
the BeBox, for example, the libraries list would probably look like this:

LDFLAGS := -G -nodefaults -export all /system/lib/libbe.so

Loading an Add-on Image

To load an add-on into your application, you call the load_add_on() function. The
function takes a pointer to a BFile object that refers to the add-on file, and returns an
image_id number that uniquely identifies the image within your application’s address
space.

For example, let’s say you’ve created an add-on image that’s stored in the file
/addons/adder (the add-on will perform the same adding operation that was demonstrated
in the load_executable() example). The code that loads the add-on would look like this:

/* For brevity, we won’t check errors. */
BFile addon_file;
record_ref addon_ref;
image_id addon_image;

/* Establish the file’s ref. */
get_ref_for_path("/addons/adder", &addon_ref);
addon_file.SetRef(addon_ref);

/* Load the add-on. */
addon_image = load_add_on(&addon_file) ;

Symbols

After you’ve loaded an add-on into your application, you’ll want to examine the symbols
that it has brought with it. To get information about a symbol, you call the
get_image_symbol() function. The function’s first three arguments identify the symbol
that you want to get:

• The first argument is the image_id of the add-on that “owns” the symbol.

• The second argument is the symbol’s name. This assumes, of course, that you know
the name. In general, using an add-on implies just this sort of cooperation.

The Kernel Kit – 53

 Images Overview

• The third is an integer that gives the symbol’s symbol type. The only types you
should care about are variables (for which you pass 1) and functions (you pass 2).
(Symbolic constants for these values will be issued in the next release.)

The function returns, by reference in its final argument, a pointer to the symbol’s address.
For example, let’s say the adder add-on code looks like this:

long addend1 = 0;
long addend2 = 0;

long adder(void)
{
 return (addend1 + addend2);
}

To examine the variables (“addend1” and “addend2”), you would call
get_image_symbol() thus:

long *var_a1, *var_a2;

/* addon_image is the image_id that was returned by the
 * load_add_on() call in the previous example.
 */
get_image_symbol{addon_image, "addend1", 1, &var_a1);
get_image_symbol(addon_image, "addend2", 1, &var_a2);

To get the symbol for the adder() function is a bit more complicated. The compiler
renames a function’s symbol in order to encodes the data types of the function’s
arguments. The encoding scheme is explained in the next section; to continue with the
example, we’ll simply accept that the adder() function’s symbol is

adder__Fv

And so...

long (*func_add)();
get_image_symbol(addon_image, "adder__Fv", 2, &func_add);

Now that we’ve retrieved all the symbols, we can set the values of the two addends and
call the function:

*var_al = 5 ;
*var_a2 = 3 ;
long return_value = (*func_add)();

Function Symbol Encoding

The compiler encodes function symbols according to this format:

functionName__F<arg1Type><arg2Type><arg3Type>....

54 – The Kernel Kit

Functions Images

where the argument type codes are

Code Type

i int
1 long
f float
d double
c char
v void

In addition, if the argument is declared as unsigned, the type code character is preceded by
“U”. If it’s a pointer, the type code (and, potentially, the “U”) is preceded by “P”; a
pointer to a pointer is preceded by “PP”. For example, a function that’s declared as

void Func(long, unsigned char **, float *, double);

would have the following symbol name:

Func__FlUPPcPfd

Note that typedef’s are translated to their natural types. So, for example, this:

void dump_thread(thread_id, bool);

becomes

dump_thread__FlUc

Functions

get_nth_image_info()

long get_nth_image_info(team_id team,
 long n,
 image_info *info)

Returns information about the n’th image (of whatever type) that’s loaded into team. The
information is returned in the image_info structure argument. The structure is defined as:

typedef struct {
 long volume;
 long directory;
 char name[B_FILE_NAME_LENGTH];
 void *text;
 long text_size;
 void *data;
 long data_size;
 image_type type;
} image_info

The Kernel Kit – 55

 Images Functions

The volume and directory fields are, practically speaking, private. The other fields are:

Field Meaning

name The name of the file whence sprang the image.
text The address of the image’s text segment.
text_size The size of the text segment, in bytes;.
data The address of the data segment.
data_size The size of the data segment.
type A constant that tells whether this is an app, library, or add-on image.

The self-explanatory image_type constants are:

• B_APP_IMAGE
• B_LIBRARY_IMAGE
• B_ADD_ON_IMAGE

The function returns B_ERROR if the designated image doesn’t exist. Otherwise, it returns
B_NO_ERROR.

get_nth_image_symbol(), get_image_symbol()

long get_nth_image_symbol(image_id image,
 long n,
 char *name,
 int *name_length,
 int *symbol_type,
 void **location)

long get_image_symbol(image_id image,
 char *symbol_name,
 int symbol_type,
 void **location)

get_nth_image_symbol() returns information about the n’th symbol in the given image.
The information is returned in the arguments:

• name is the name of the symbol. You have to allocate the name buffer before you
pass it in—the function copies the name into the buffer.

• You point name_length to an integer that gives the length of the name buffer that
you’re passing in. The function uses this value to truncate the string that it copies
into name. The function then resets name_length to the full (untruncated) length of
the symbol’s name (plus one byte to accommodate a terminating NULL). To ensure
that you’ve gotten the symbol’s full name, you should compare the in-going value of
name_length with the value that the function sets it to. If the in-going value is less
than the full length, you then re-call get_nth_image_symbol() with an adequately
lengthened name buffer, and an increased name_length value.

 Keep in mind that name_length is reset each time you call
get_nth_image_symbol(). If you’re calling the function iteratively (to retrieve all

56 – The Kernel Kit

Functions Images

 the symbols in an image), you’ll need to reset the name_length value before each
call.

• The function sets symbol_type to 1 if the symbol is a variable, or 2 if the symbol is a
function. The argument’s value going into the function is of no consequence.

• The function sets location to point to the symbol’s address.

Currently, the only way to get an image_id number is to load an add-on image. Since you
don’t (actively) load your app image or library images, you can’t discover their image_id
numbers, so you can’t step through their symbols.

resolve_image_symbol() returns, in location, a pointer to the address of the symbol that’s
identified by the image, symbol_name, and symbol_type arguments. An example
demonstrating the use of this function is given in “Symbols” on page 52.

The functions return B_ERROR if the designated image or symbol is invalid. Otherwise,
they return B_NO_ERROR.

load_add_on(), unload_add_on()

image_id load_add_on(BFile *file)

long unload_add_on(image_id image)

load_add_on() loads an add-on image, identified by file, into your application’s address
space. The function returns an image_id that represents the loaded image, image_id
numbers are positive integers; if this function returns a negative number, the load failed.
An example that demonstrates the use of load_add_on() is given in “Loading an Add-on
Image” on page 52.

unload_add_on() removes the add-on image identified by the argument. The image’s
symbols are removed, and the memory that they represent is freed. If the argument
doesn’t identify a valid image, the function returns B_ERROR. Otherwise, it returns
B_NO_ERROR.

load_executable()

thread_id load_executable(BFile *file,
 int argc,
 const char **argv,
 const char **env)

Loads an app image into the system (it doesn’t load the image into the caller’s address
space), creates a separate team for the new application, and spawns and returns the team’s
main thread. To start the application running, you need to pass the thread to
resume_thread() or wait_for_thread(). An example that demonstrates the use of this
function is given in “Loading an App Image” on page 49.

If the thread_id value is negative (less than B_NO_ERROR), the load failed.

The Kernel Kit – 57

Miscellaneous Functions

Declared in: <kernel/OS.h>

Overview

The functions listed below are useful, but don’t fall under a grand heading such as threads
or ports.

Atomic Functions

atomic_add(), atomic_and(), atomic_or()

long atomic_add(void *atomic_variable, long add_value)
long atomic_and(void *atomic_variable, long and_value)
long atomic_or(void *atomic_variable, long or_value)

These functions perform the named operation (addition, bitwise AND, or bitwise OR) on
the value found in atomic_variable, thus:

*atomic_variable += add_value
*atomic_variable &= and_value
*atomic_variable |= or_value

The functions return the previous value of *atomic_variable (in other words, they return
the value that atomic_variable pointed to before the operation was performed).

The significance of these functions is that they’re guaranteed to be atomic: If two threads
attempt to access the same atomic variable at the same time (through these functions), one
of the two threads will be made to wait until the other thread has completed the operation
and updated the atomic_variable value.

58 – The Kernel Kit

Time Functions Miscellaneous Functions

Time Functions

real_time_clock(), set_real_time_clock(), time_zone(),
set_time_zone()

long real_time_clock(void)
void set_real_time_clock(long seconds)

long time_zone(void)
void set_time_zone(long seconds)

These functions measure and set time in seconds:

• real_time_clock() returns a measure of the number of seconds that have elapsed
since the beginning of January 1st, 1970. time_zone() is a time-zone based offset,
in seconds;, that you can add to the value returned by real_time_clock() to get a
notion of the actual (current) time of day.

• set_real_time_clock() and set_time_zone() set the values for the system’s clock and
time zone variables.

These functions aren’t intended for scrupulously accurate measurement.

system_time()

double system_time(void)

Returns the number of microseconds that have elapsed since the computer was last booted.

Byte Swapping

read_16_swap(), read_32_swap(), write_16_swap(), write_32_swap()

short read_16_swap(void *address)
long read_32_swap(void *address)

void write_16_swap(void *address, short value)
void write_32_swap(void *address, long value)

The read functions read a 16 or 32 bit value from address, reverse the order of the bytes
in the value, and return the swapped value directly.

The write functions swap the bytes in value and write the swapped value to address.

The Kernel Kit – 59

 Miscellaneous Functions System Information

System Information

get_system_info()

long get_system_info(system_info *info)

Returns information about the computer. The information is returned in info, a
system_info structure. The structure is defined as:

typedef struct {
 double boot_time;
 long cpu_count;
 cpu_info cpu_infos[B_MAX_CPU_NUM];
 long max_pages;
 long used_pages;
 long max_sems;
 long used_sems;
 long max_ports;
 long used_ports;
 long max_threads;
 long used_threads;
 long max_teams;
 long used_teams;
 long volume;
 long directory;
 char name[B_FILE_NAME_LENGTH];
} system_info

The structure’s fields are:

Field Meaning

boot_time The time at which the computer was; last booted, measured in
microseconds since January 1st, 1970.

cpu_count The number of CPUs that are screwed into the motherboard.

cpu_infos An array of cpu_info structures, one for each CPU.

max_pages The total number of pages of memory in RAM.

used_pages The number of pages of RAM that are currently being used.

max_sems The total number of semaphores that the system can create.

used_sems The number of semaphores that are currently active.

max_ports The total number of ports that the system can create.

used_ports The number of ports that are currently active.

max_threads The total number of threads that the system can create.

60 – The Kernel Kit

System Information Miscellaneous Functions

used_threads The number of threads that are currently active.

max_teams The total number of teams that the system can create.

used_teams The number of teams that are currently active.

volume The volume ID of the volume that contains the current kernel.

directory The directory ID of the directory that contains the current kernel
(but see the note, below).

name The file name of the current kernel.

The cpu_info structure is defined as:

typedef struct {
 double active_time;
} cpu_info

active_time measures the amount of time, in microseconds, that the CPU has actively
been working since the machine was last booted.

The Kernel Kit – 61

Constants, Defined Types, and
Structures

Constants

Area Allocation Constants

<kernel/OS.h>

Constant

B_ANY_ADDRESS
B_EXACT_ADDRESS
B_BASE_ADDRESS
B_CLONE_ADDRESS

These constants, which are used by the create_area() and clone_area() functions,
describe where an area is to be allocated with respect to a given address.

See also: create_area() and clone_area() in “Areas”

Area Lock Constants

<kernel/OS.h>

Constant

B_NO_LOCK
B_LAZY_LOCK
B_FULL_LOCK

These constants, which are used by the area_create() function, describe the
circumstances under which an area’s memory is swapped in and out of core memory.

See also: area_create() in “Areas”

Be	Incorporated	Confidential

62 – The Kernel Kit

Constants	 Constants,	Defined	Types,	and	Structures

Area Protection Constants

<kernel/OS.h>

Constant

B_READ_AREA
B_WRITE_AREA

These constants, which are used by the area_create() and area_clone() functions,
describe an area’s read and write protection.

See also: area_create() in “Areas”

CPU Count

<kernel/OS.h>

Constant Value

B_MAX_CPU_NUM 8

This constant gives the maximum number of CPUs that a single system can support.

File Name Length

<kernel/OS.h>

Constant Value

B_FILE_NAME_LENGTH 64

This constant gives the maximum length of the name of a file or directory.

Operating System Name Length

<kernel/OS.h>

Constant Value

B_OS_NAME_LENGTH 32

This constant gives the maximum length of the name of a thread, semaphore, port, area,
or other operating system entity. The constant is also used as a name-length limit by
other kits.

Be	Incorporated	Confidential

The Kernel Kit – 63

 Constants,	Defined	Types,	and	Structures Constants

Page Size

<kernel/OS.h>

Constant Value

B_PAGE_SIZE 4096

The PAGE_SIZE constant gives the size, in bytes, of a page of RAM. The page size is
used when you’re creating, cloning, or resizing an area.

See also: create_area() in “Areas”

Port Message Count

<kernel/OS.h>

Constant Value

B_MAX_PORT_COUNT 128
This constant gives the maximum number of messages a port can hold at a time.

See also: create_port() in “Ports”

Thread Priority Constants

<kernel/OS.h>

Constant

B_LOW_PRIORITY
B_NORMAL_PRIORITY
B_DISPLAY_PRIORITY
B_REALTIME_PRIORITY

These constants represent the thread priority levels. The higher a thread’s priority, the
more attention it gets from the CPUs; the constants are listed here from lowest to highest
priority.

See also: the introduction to “Threads”

thread_state Constants

<kernel/OS.h>

Enumerated Constant Meaning

B_THREAD_RUNNING The thread is currently receiving attention from a CPU.
B_THREAD_READY The thread is waiting for its turn to receive attention.
B_THREAD_RECEIVING The thread is sitting in a receive_data() call.
B_THREAD_ASLEEP The thread is sitting in a snooze() call.

Be	Incorporated	Confidential

64 – The Kernel Kit

Defined	Types	and	Structures	 Constants,	Defined	Types,	and	Structures

B_THREAD_SUSPENDED The thread has been suspended or is freshly-spawned.
B_THREAD_WAITING The thread is waiting to acquire a semaphore.

These enumerated constants, of type thread_state, represent the various states that a thread
can be in.

See also: the introduction to “Threads”

Defined Types and Structures

area_id

<kernel/OS.h>

typedef long area_id

Used by the area functions to identify areas.

See also: the introduction to “Areas”

area_info

<kernel/OS.h>

typedef struct {
 area_id area;
 char name[B_OS_NAME_LENGTH];
 void *address;
 long size;
 ulong lock;
 ulong protection;
 team_id team;
 long ram_size;
 long copy_count;
 long in_count;
 long out_count;
} area_info

The area_info structure holds information about a particular area. area_info structures
are retrieved through the get_area_info() function. The structure’s fields are:

Field Meaning

area The area_id that identifies the area.
name The name that was assigned to the area when it was created or cloned.

address A pointer to the area’s starting address.

Be	Incorporated	Confidential

The Kernel Kit – 65

 Constants,	Defined	Types,	and	Structures	 Defined	Types	and	Structures

size The size of the area, in bytes.

lock A constant that represents the area’s locking scheme, one of
B_FULL_LOCK, B_LAZY_LOCK, or B_NO_LOCK.

protection A mask that specifies whether the area’s memory can be read and
written. It’s a combination of B_READ_AREA and B_WRITE_AREA.

team The team_id of the thread that created or cloned this area.

ram_size The amount of the area, in bytes, that’s currently swapped in.

copy_count A count of the number of times any page in the area has been
copied because a process has written to it (in other words, this is a
“copy on write” count).

in_count A count of the number of times any page from the area has been
swapped in.

out_count A count of the number of times any page from the area has been
swapped out.

See also: get_area_info() in “Areas”

cpu_info

<kernel/OS.h>

typedef struct {
 double active_time;
} cpu_info

The cpu_info structure describes facets of a particular CPU. Currently, the structure
contains only one field, active_time, that measures the amount of time, in
microseconds, that the CPU has actively been working since the machine was last
booted. One structure for each CPU is created and maintained by the system. An array
of all such structures can be found in the cpu_infos field of the system_info structure. To
retrieve a system_info structure, you call the get_system_info() function.

See also: system_info

port_id

<kernel/OS.h>

typedef long port_id

Used by the port functions to identify ports.

See also: the introduction to “Ports”

Be	Incorporated	Confidential

66 – The Kernel Kit

Defined	Types	and	Structures	 Constants,	Defined	Types,	and	Structures

sem_id

<kernel/OS.h>

typedef long sem_id

Used by the semaphore functions to identify semaphores.

See also: the introduction to “Semaphores”

system_info

typedef struct {
 double boot_time;
 long cpu_count;
 long cpu_info;
 long cpu_infos[B_MAX_CPU_NUM];
 long max_pages;
 long used_pages;
 long max_sems;
 long used_sems;
 long max_ports;
 long used_ports;
 long max_threads;
 long used_threads;
 long max_teams;
 long used_teams;
 long volume;
 long directory;
 char name [B_FILE_NAME_LENGTH];
} system_info

The system_info structure contains all sorts of useful information about the computer.
It’s returned through a call to get_system_info(). The structure’s fields are:

Field Meaning

boot_time The time at which the computer was last booted, measured in
microseconds since January 1st, 1970.

cpu_count The number of CPUs that are screwed into the motherboard.

cpu_infos An array of cpu_info structures, one for each CPU.

max_pages The total number of pages of memory in RAM.

used_pages The number of pages of RAM that are currently being used.

max_sems The total number of semaphores that the system can create.

used_sems The number of semaphores that are currently active.

max_ports The total number of ports that the system can create.

Be	Incorporated	Confidential

The Kernel Kit – 67

 Constants,	Defined	Types,	and	Structures	 Defined	Types	and	Structures

used_ports The number of ports that are currently active.

max_threads The total number of threads that the system can create.

used_threads The number of threads that are currently active.

max_teams The total number of teams that the system can create.

used_teams The number of teams that are currently active.

volume The volume ID of the volume that contains the current kernel.

directory The directory ID of the directory that contains the current kernel
(but see the note, below).

name The file name of the current kernel.

The directory field is, alas, unusable: Directory ID numbers aren’t visible through the
present (public) means of file system access. But you can save the directory IDs that
you collect now and trade them in for a higher draft pick in the next season.

team_id

<kernel/OS.h>

typedef long team_id

Used by the thread functions (and others) to identify teams.

See also: the introduction to “Threads”

thread_entry

<kernel/OS.h>

typedef long (*thread_entry)(void *)

The thread_entry type is a function protocol for functions that are used as the entry
points for new threads. A pointer to a function that adheres to this protocol must be
passed to as an argument when you call spawn_thread().

See also: the introduction to “Threads”

thread_id

<kernel/OS.h>

typedef long thread_id

Used by the thread functions (and others) to identify threads.

See also: the introduction to “Threads”

Be	Incorporated	Confidential

68 – The Kernel Kit

Defined	Types	and	Structures	 Constants,	Defined	Types,	and	Structures

team_info

<kernel/OS.h>

typedef struct {
 team_id team;
 long object_count;
 long thread_count;
 long area_count;
 thread_id debugger_nub_thread;
 port_id debugger_nub_port;
} team_info

This structure holds information about a team. It’s returned by functions such as
get_team_info(). The fields are:

Field Meaning

team The team_id number of this team.

object_count The number of “objects” or executable files (including
libraries) that are loaded in the team.

thread_count The number of threads that comprise the team.

area_count The number of areas that the team can reference.

debugger_nub_thread A thread that’s used by the debugger to execute
operations on this team.

debugger_nub_port The port through which the debugger communicates with
the team.

See also: get_team_info() in “Threads”

thread_info

<kernel/OS.h>

typedef struct {
 thread_id thread;
 team_id team;
 char name[B_OS_NAME_LENGTH];
 thread_state state;
 long priority;
 sem_id sem;
 double time;
 void *stack_base;
 void *stack_end;
} thread_info

Be	Incorporated	Confidential

The Kernel Kit – 69

 Constants,	Defined	Types,	and	Structures	 Defined	Types	and	Structures

This structure holds information about a thread. It’s returned by functions such as
get_thread_info(). The fields are:

Field Meaning

id The thread_id number of the thread.

team The team_id of the thread’s team.

name The name assigned to the thread.

state A constant that describes what the thread is currently doing.

priority A constant that represents the level of attention the thread gets.

sem If the thread is waiting to acquire a semaphore, this is the sem_id
number of that semaphore. The sem field is only valid if the
thread’s state is B_THREAD_SEM_WAIT.

time The amount of active attention the thread has received from the
CPUs, measured in microseconds.

stack_base A pointer to the first byte of memory in the thread’s execution stack.

stack_end A pointer to the last byte of memory in the thread’s execution stack.

See also: the introduction to “Threads”

thread_state

<kernel/OS.h>

typedef enum {. . .} thread_state

The thread_state type represents values that describe the various states that a thread can
be in.

See also: thread_state Constants

Be	Incorporated	Confidential

70 – The Kernel Kit

Defined	Types	and	Structures	 Constants,	Defined	Types,	and	Structures

Be	Incorporated	Confidential

The Device Kit – 1

8 The Device Kit

Introduction 3

BSerialPort 5
Overview. 5
Constructor and Destructor . 5
Member Functions . 6

Constants and Defined Types 13
Constants. 13
Defined Types . 15

2 – The Device Kit

The Device Kit – 3

8 The Device Kit

This kit contains encapsulated interfaces to the various connectors and devices that can be
attached to a BeBox. Currently, it contains just one class—BSerialPort. A BSerialPort
object can represent any of the four RS-232 serial ports that are visible on the back of the
machine. Other classes for other connectors will be added in future releases.

4 – The Device Kit

The Device Kit – 5

BSerialPort

Derived from: public BObject

Declared in: <device/SerialPort.h>

Overview

A BSerialPort object represents an RS-232 serial port connection to the BeBox. There are
four such ports on the back of the machine.

Through BSerialPort functions, you can read data received at a serial port and write data
over the connection. You can also configure the connection—for example, set the number
of data and stop bits, determine the rate at which data is sent and received, and select the
type of flow control (hardware or software) that should be used.

To read and write data, a BSerialPort object must first open one of the serial ports by
name. For example:

BSerialPort *connection = new BSerialPort;
if (connection->Open("serial2") > 0) {
 . . .
}

The BSerialPort object communicates with the driver for the port it has open. The driver
maintains an input buffer of 1K bytes to collect incoming data and an output buffer half
that size to hold outgoing data. When the object reads and writes data, it reads from and
writes to these buffers.

Constructor and Destructor

BSerialPort()

BSerialPort(void)

Initializes the BSerialPort object to the following default values:

• No flow control (see SetFlowControl())
• A data rate of 19,200 bits per second (see SetDataRate())
• A serial unit with 8 bits of data, 1 stop bit, and no parity (see SetDataBits())
• A timeout of one tenth of a second to read a target of one byte (see Read())

6 – The Device Kit

Member Functions BSerialPort

The new object doesn’t represent any particular serial port. After construction, it’s
necessary to open one of the ports by name.

See also: Open()

~BSerialPort()

virtual ~BSerialPort(void)

Makes sure the port is closed before the object is destroyed.

Member Functions

Clearlnput(), ClearOutput()

void ClearInput(void)

void ClearOutput(void)

These functions empty the serial port driver’s input and output buffers, so that their
contents won’t be read (by the Read() function) and won’t be transmitted over the
connection (after having been written by Write()).

The buffers are cleared automatically when a port is opened.

See also: Read(), Write(), Open()

Close() see Open()

DataBits() see SetDataBits()

DataRate() see SetDataRate()

FlowControl() see SetFlowControl()

IsCTS()

bool IsCTS(void)

Returns TRUE if the Clear to Send (CTS) pin is asserted, and FALSE if not.

The Device Kit – 7

 BSerialPort Member Functions

IsDCD()

bool IsDCD(void)

Returns TRUE if the Data Carrier Detect (DCD) pin is asserted, and FALSE if not.

IsDSR()

bool IsDSR(void)

Returns TRUE if the Data Set Ready (DSR) pin is asserted, and FALSE if not.

IsRI()

bool IsRI(void)

Returns TRUE if the Ring Indicator (RI) pin is asserted, and FALSE if not.

Open(), Close()

long Open(const char *name)

void Close(void)

These functions open the name serial port and close it again. Ports are identified by names
that correspond to their labels on the back panel of the BeBox:

“serial1”
“serial2”
“serial3”
“serial4”

To be able to read and write data, the BSerialPort object must have a port open. It can
open first one port and then another, but it can have no more than one open at a time. If it
already has a port open when Open() is called, that port is closed before an attempt is
made to open the name port. (Thus, both Open() and Close() close the currently open
port.)

Open() can’t open the name port if some other entity already has it open. (If the
BSerialPort itself has name open, Open() first closes it, then opens it again.)

If it’s able to open the port, Open() returns a positive integer. If unable, it returns
B_ERROR.

When a serial port is opened, its input and output buffers are emptied and the Data
Terminal Ready (DTR) pin is asserted.

See also: Read()

8 – The Device Kit

Member Functions BSerialPort

ParityMode() see SetDataBits()

Read(), SetTimeout(), SetNumBytes()

long Read(void *buffer, long maxBytes)

void SetTimeout(long timeout)

void SetNumBytes(long targetBytes)

Read() takes incoming data from the serial port driver and places it in the data buffer
specified. In no case will it read more than maxBytes—a value that should reflect the
capacity of the buffer. Read() fails if the BSerialPort object doesn’t have a port open.

The actual number of bytes that Read() will place in the buffer before returning depends
on the timeout and targetBytes set by the other two functions:

• SetTimeout() sets a time limit on how long Read() will wait for a character to arrive
in the input buffer. The timeout is expressed in tenths of a second and is limited to
255 (25.5 seconds); it’s set to 255 if a value over that amount is specified. The
default setting is 1 (0.1 second).

 There is no time limit if timeout is set to 0.

• SetNumBytes() sets the target number of bytes that Read() will attempt to place in
the buffer before it returns. The target is limited to 255 bytes; it’s set to 255 if a
value over that amount is specified. The default target is 1 byte.

 There is no target number of bytes to read if targetBytes is set to 0.

The way that Read() applies the timeout depends on the value for targetBytes, and the way
it understands targetBytes depends on the timeout. The two values must be interpreted
together:

• If neither timeout nor targetBytes is specified (both are set to 0), Read() reads as
many bytes as it can from the input buffer, up to maxBytes. If the input buffer
contains less than maxBytes, it reads them all and returns. It doesn’t wait for more
data to arrive.

• If only a timeout is specified (targetBytes is 0), Read() returns after reading a single
byte—or, if the timeout expires, without reading anything.

• If only targetBytes is specified (timeout is 0), Read() returns after reading the target
number of bytes, or maxBytes if less. It waits without time limit for the requisite
number of bytes to arrive.

• If both a timeout and targetBytes are specified, the timeout is activated only after the
first byte of data is read. It’s then applied independently to each successive byte; the
clock is reset to zero whenever another byte is read. Read() returns after reading
targetBytes of data, or maxBytes if less. It returns sooner if the timeout expires on
any byte.

The Device Kit – 9

 BSerialPort Member Functions

Like the standard read() system function, Read() returns the number of bytes it succeeded
in placing in the buffer, which may be 0. It returns SYS_ERROR (-1) if there’s an error on
any kind—for example, if the BSerialPort object doesn’t have a port open. It’s not
considered an error if a timeout expires.

See also: Write(), Open()

SetDataBits(), SetStopBits(), SetParityMode(),
DataBits(), StopBits(), ParityMode()

void SetDataBits(data_bits count)

void SetStopBits(stop_bits count)

void SetParityMode(parity_mode mode)

data_bits DataBits(void)

stop_bits StopBits(void)

parity_mode ParityMode(void)

These functions set and return characteristics of the serial unit used to send and receive
data. SetDataBits() sets the number of bits of data in each unit. The count can be:

B_DATA_BITS_7 or
B_DATA_BITS_8

The default is B_DATA_BITS_8.

SetStopBits() sets the number of stop bits in each unit. It can be:

B_STOP_BITS_1 or
B_STOP_BITS_2

The default is B_STOP_BITS_1.

SetParityMode() sets whether the serial unit contains a parity bit and, if so, the type of
parity used. The mode can be:

B_EVEN_PARITY,
B_ODD_PARITY, or
B_NO_PARITY

The default is B_NO_PARITY.

10 – The Device Kit

Member Functions BSerialPort

SetDataRate(), DataRate()

void SetDataRate(data_rate bitsPerSecond)

data_rate DataRate(void)

These functions set and return the rate (in bits per second) at which data is both
transmitted and received. Permitted values are:

B_0_BPS B_200_BPS B_4800_BPS
B_50_BPS B_300_BPS B_9600_BPS
B_75_BPS B_600_BPS B_19200_BPS
B_110_BPS B_1200_BPS B_38400_BPS
B_134_BPS B_1800_BPS B_57600_BPS
B_150_BPS B_2400_BPS B_115200_BPS

The default data rate is B_19200_BPS. If the rate is set to 0 (B_0_BPS), data will be sent and
received at an indeterminate number of bits per second.

SetDTR()

long SetDTR(bool pinAsserted)

Asserts the Data Terminal Ready (DTR) pin if the pinAsserted flag is TRUE, and de-asserts
it if the flag is FALSE. < This function isn’t implemented for the current release. >

See also: SetRTS()

SetFlowControl(), FlowControl()

void SetFlowControl(ulong mask)

ulong FlowControl(void)

These functions set and return the type of flow control the driver should use. There are two
possibilities:

B_SOFTWARE_CONTROL Control is maintained through XON and XOFF
characters inserted into the data stream.

B_HARDWARE_CONTROL Control is maintained through the Clear to Send
(CTS) and Request to Send (RTS) pins.

The mask passed to SetFlowControl() and returned by FlowControl() can be just one of
these constants—or it can be a combination of the two, in which case the driver will use
both types of flow control together. It can also be 0, in which case the driver won’t use any
flow control. No flow control is the default.

The Device Kit – 11

 BSerialPort Member Functions

SetNumBytes() see Read()

SetParityMode() see SetDataBits()

SetRTS()

long SetRTS(bool pinAsserted)

Asserts the Request to Send (RTS) pin if the pinAsserted flag is TRUE, and de-asserts it if
the flag is FALSE. < This function isn’t implemented for the current release. >

See also: SetDTR()

SetStopBits() see SetDataBits()

SetTimeout() see Read()

StopBits() see SetDataBits()

Write()

long Write(const void *data, long numBytes)

Writes up to numBytes of data to the serial port’s output buffer. This function will be
successful in writing the data only if the BSerialPort object has a port open. The output
buffer holds a maximum of 512 bytes.

Like the write() system function, Write() returns the actual number of bytes written, which
will never be more than numBytes, and may be 0. If it fails (for example, if the
BSerialPort object doesn’t have a serial port open) or if it’s interrupted before it can write
anything, it returns B_ERROR (-1).

See also: Read(), Open()

12 – The Device Kit

Member Functions BSerialPort

The Device Kit – 13

Constants and Defined Types

This section lists the constants and types defined for the: Device Kit, which currently
contains only the BSerialPort class. Everything listed here is explained more fully in the
descriptions of BSerialPort functions.

Constants

data_bits Constants

<device/SerialPort.h>

Enumerated constant

B_DATA_BITS_7
B_DATA_BITS_8

These constants name the possible number of data bits in a serial unit.

See also: SetDataBits() in the BSerialPort class

data_rate Constants

<device/SerialPort.h>

Enumerated constant Enumerated constant

B_0_BPS B_1200_BPS
B_50_BPS B_1800_BPS
B_75_BPS B_2400_BPS
B_110_BPS B_4800_BPS
B_134_BPS B_9600_BPS
B_150_BPS B_19200_BPS
B_200_BPS B_38400_BPS
B_300_BPS B_57600_BPS
B_600_BPS B_115200_BPS

These constants give the possible rates—in bits per second (bps)—at which data can be
transmitted and received over a serial connection.

See also: SetDataRate() in the BSerialPort class

14 – The Device Kit

Constants	 Constants	and	Defined	Types

Flow Control Constants

<device/SerialPort.h>

Enumerated constant

B_SOFTWARE_CONTROL
B_HARDWARE_CONTROL

These constants form a mask that records the method(s) of flow control the serial port
driver should use:.

See also: SetFlowControl() in the BSerialPort class

parity_mode Constants

<device/SerialPort.h>

Enumerated constant

B_NO_PARITY
B_ODD_PARITY
B_EVEN_PARITY

These constants list the possibilities for parity when transmitting data over a serial
connection.

See also: SetDataBits() in the BSerialPort class

stop_bits Constants

<device/SerialPort.h>

Enumerated constant

B_STOP_BITS_1
B_STOP_BITS_2

These constants name the possible number of stop bits in a serial unit.

See also: SetDataBits() in the BSerialPort class

The Device Kit – 15

 Constants	and	Defined	Types	 Defined	Types	

Defined Types

data_bits

<device/SerialPort.h>

typedef enum { . . . } data_bits

This type is used to set and return the number of data bits in a serial unit.

See also: “data_bits Constants” above and SetDataBits() in the BSerialPort class

data_rate

<device/SerialPort.h>

typedef enum { . . . } data_rate

This type is used to set and return the rate at which data is sent and received through a
serial connection.

See also: “data_rate Constants” above and SetDataRate() in the BSerialPort class

parity_mode

<device/SerialPort.h>

typedef enum { . . . } parity_mode

This type is used to set and return the type of parity that should be used when sending and
receiving data.

See also: “parity_mode Constants” above and SetDataBits() in the BSerialPort class

stop_bits

<device/SerialPort.h>

typedef enum { . . . } stop_bits

This type is used to set and return the number of stop bits in a serial unit.

See also: “stop_bits Constants” above and SetDataBits() in the BSerialPort class

16 – The Device Kit

Defined	Types		 Constants	and	Defined	Types

The Network Kit – 1

9 The Network Kit

Introduction 3

2 – The Network Kit

The Network Kit – 3

9 The Network Kit

The Network Kit is a collection of global C functions that let you establish a link to and
communicate with other computers through the TCP or UDP protocols. The names and
intents of the functions, with two exceptions, adhere to the precedent set by the BSD
network/socket implementation, although, note, some BSD functions are yet to be
implemented. The two exceptions are:

• The Kit provides a getusername() function to make up for the current lack of
system-wide password information.

• To close a socket, use the Be-specific closesocket() instead of close().

See the header files net/socket.h and net/netdb.h for a complete list of the network API
that’s supported by the Kit. The Kit is, otherwise, currently undocumented.

4 – The Network Kit

The Support Kit – 1

10 The Support Kit

Introduction 3

Class Information 5
The Class-Information Macros . 5
Safe Casting . 6
Participating in the System . 7

If the Base Class Participates 8
If the Base Class Doesn’t Participate 8
inherited . 9

Caveats. 10

BClassInfo 11
Overview. 11
Constructor . 11
Member Functions . 11

BList 13
Overview. 13
Constructor and Destructor . 13
Member Functions . 14
Operators. 18

BLocker 19
Overview. 19
Constructor and Destructor . 20
Member Functions . 20

BObject 21
Overview. 21
Constructor and Destructor . 21

Constants, Defined Types, and Macros 23
Constants. 23
Defined Types . 26
Macros . 27

2 – The Support Kit

The Support Kit – 3

10 The Support Kit

The Support Kit contains classes and utilities that any application can take advantage of—
regardless of what kind of application it is or what it does. Among other things, it
includes:

• Common defined types,
• The error codes used in all the kits,
• The BList class for organizing allocated data (especially objects),
• The root BObject class, and
• A system for getting class information at run time.

Use as much or as little of this kit as you like.

4 – The Support Kit

The Support Kit – 5

Class Information

Declared in: <support/ClassInfo.h>

The class-information system is a set of macros that can supply information at run time
about an object’s class, such as its name and whether it derives from some other class.
There are two parts to the system:

• The macros themselves, and

• The things you need to do to allow classes you design to participate in the system.

The following sections explore these two topics.

Notable by its absence from this list is the BClassInfo class. This class is the mechanism
behind the class-information system—every class that participates in the system is given a
BClassInfo object that supplies information about the class. An important feature of the
system, however, is that you never have to instantiate (or otherwise locate) a BClassInfo
object to take advantage of the information that it provides. So while you should be aware
that the class exists (its declaration is, by necessity, public), you needn’t be concerned with
it. It’s documented at the end of this discussion for completeness only.

The Class-Information Macros

An object of a class that participates in the class-information system (and this includes
almost all the classes supplied by Be) can supply three kinds of information about itself:

• What the name of its class is,
• Whether it’s an instance of a particular class, and
• Whether its class derives from some other class (or perhaps is the other class).

These three capabilities are embodied in the following macros,

const char *class_name(object)
bool is_instance_of(object, class)
bool is_kind_of_object(class)

where object is a pointer to any type of object and class is the name of any class.

The class_name() macro returns the name of the object’s class. is_instance_of() returns
TRUE if object is an instance of class, and FALSE otherwise. is_kind_of() returns TRUE if
object is an instance of a class that inherits from class or an instance of class itself, and
FALSE if not.

6 – The Support Kit

Safe Casting Class Information

For example, given this slice of the inheritance hierarchy from the Interface Kit,

BMenuBView

BControl BButton

and code like this that creates an instance of the BButton class,

BButton *anObject = new BButton(. . .);

these three macros would work as follows:

• The class_name() macro would return the string “BButton”:

const char *s = class_name(anObject);

• The is_instance_of() macro would return TRUE only if the class passed to it is
BButton. In the following example, it would return FALSE, and the message would
not be printed. Even though BButton inherits from BView, the object is an instance
of the BButton class, not BView:

if (is_instance_of(anObject, BView))
 printf("The object is an instance of BView.\n");

• The is_kind_of() macro would return TRUE if class is BButton or any class that
BButton inherits from. In the following example, it would return TRUE and the
message would be printed. A BButton is a kind of BView:

if (is_kind_of(anObject, BView))
 printf("The object is a kind of BView.\n");

Note that class names are not passed as strings.

Safe Casting

An object whose class participates in the class-information system will permit itself to be
cast to that class or to any class that it inherits from, but not to a class to which it doesn’t
rightly belong. The agent for this kind of safe casting is the following macro,

class *cast_as(object, class)

where object is a pointer to any type of object and class is the name of any class.

cast_as() returns a pointer to object cast as a pointer to an object of class, provided that
object is a kind of class—that is, provided that it’s an instance of a class that inherits from
class or is an instance of class itself. If not, object cannot be safely cast as pointer to class,
so cast_as() returns NULL.

The Support Kit – 7

 Class Information Participating in the System

This macro is most useful when you have a pointer to a generic object and you want to
treat it as a pointer to a more specific class, if it’s safe to do so.

Suppose, for example, that you want to know whether the window where a particular view
is located is a specialized kind of window that you’ve designed for your application—
whether it’s a My Window object and not just a generic El Window. If it is, you want to call
some of the specific functions you implemented for the My Window class.

The view will reveal the window where it’s located,

BWindow *window = myView->Window();

but since the returned object is typed as a BWindow, it won’t give you access to any
MyWindow functions, even if it’s really an instance of the MyWindow class.

You could use the is_kind_of() macro to discover whether it would be safe to cast the
window variable to the MyWindow class, then cast it if the answer was positive. However,
the cast_as() macro provides a simpler solution that accomplishes this in one step:

MyWindow *mine;

if (mine = cast_as(window, MyWindow)) {
 /* Go ahead, it’s a MyWindow object. *
 * ‘mine’ is correctly initialized. */
}
else
 /* Oops, no it isn’t; ‘mine’ is NULL. */

Participating in the System

To take part in the class-information system, your classes need to include a pair of lines:

• A declaration line goes in the class declaration (in the header file).

• A definition line goes in the class implementation file.

There are two sets of both of these lines; the set you use depends on the (immediate) base
class from which you’re deriving your class.

8 – The Support Kit

Participating in the System Class Information

If the Base Class Participates

If your class derives from a base class that participates in the class-information system,
use this set:

B_DECLARE_CLASS_INFO(base)
B_DEFINE_CLASS_INFO(class, base)

where base is the name of the base class and class is the name of the new class you’re
defining.

For example, let’s say you’ve created a PaperView class that derives from BView. BView
participates in the class-information system (as do all Be classes, except where noted in
the class description), so PaperView’s declaration would look like this in the PaperView.h
header file:

#include <interface/BView.h>

class PaperView : public BView
{
 B_DECLARE_CLASS_INF()(BView);
 /* Data and function declarations go here. */
}

And the implementation would follow this form in PaperView.cpp:

#include "PaperView.h"

B_DEFINE_CLASS_INF()(PaperView, BView);

PaperView::PaperView(. . .) : BView(. . .)
{
 . . .
}

If the Base Class Doesn’t Participate

If your class doesn’t derive from a participating class, use these lines instead of those
shown above:

B_DECLARE_ROOT_CLASS_INFO()

B_DEFINE_ROOT_CLASS_INFO(class)

The disposition of these lines is the same as their B_DECLARE_CLASS_INFO and
B_DEFINE_CLASS_INFO counterparts—as the example below illustrates. In the example, a

The Support Kit – 9

 Class Information Participating in the System

class TopDog inherits from nobody. Notice that, in this case, the TopDog.h header must
explicitly include ClassInfo.h:

#include <support/ClassInfo.h>

class TopDog
{
 B_DECLARE_ROOT_CLASS_INF()();
 /* Data and function declarations go here. */
}

The implementation file need only include the class header:

#include "TopDog.h"

B_DEFINE_ROOT_CLASS_INF()(TopDog);

TopDog::TopDog(. . .)
{
 . . .
}

The only Be classes that don’t participate in the class-information system are the Interface
Kit’s BRect and BPoint, since they’re simple data containers that have been sheared of all
extra baggage. If your class derives from any other Be class, you should use the first set of
class-information lines.

inherited

Every class that participates in the class-information system, and has a base class that also
participates, gets a private keyword—inherited—typed to its base class. This term comes
with the B_DECLARE_CLASS_INFO declaration; it’s designed to simplify references to base-
class functions, especially when overriding a virtual function in order to add something to
it. For example:

bool MyClass::DoSomething(long foolish)
{
 . . .
 return inherited::DoSomething(foolish);
}

When every derived class has access to this same term, all classes can refer to inherited
functions in the same way.

10 – The Support Kit

Caveats Class Information

Caveats

The class-information system is accurate only for classes that explicitly participate. If, for
example, the PaperView class didn’t include the declaration and definition lines as shown
above, the class-information macros would regard all PaperView objects as BView
objects.

The macros fail entirely when applied to a class that not only doesn’t participate in the
system, but also doesn’t derive (directly or indirectly) from any classes that do. The
failure is reported as a compile-time error. Therefore, it’s strongly suggested that your
class derive from BObject if no other Be class is a fit base.

Finally, the class-information system doesn’t accommodate multiple inheritance.

The Support Kit – 11

BClassInfo

Derived from: none

Declared in: <support/ClassInfo.h>

Overview

A BClassInfo object represents and stores information about a class. Its functions provide
information about the class it represents (not about the BClassInfo class itself). Under
normal circumstances, this information should be obtained through the macros described
in the previous section rather than through BClassInfo functions.

Constructor

BClassInfo()

BClassInfo(const char *name, const BClassInfo *base)

Initializes a BClassInfo object from the name of the class it is to represent and the
BClassInfo object for the base class that the represented class derives from.

BClassInfo objects should be constructed using the declaration and definition lines
described under “Class Information” above.

Member Functions

CanCast()

bool CanCast(const BClassInfo *another) const

Returns TRUE if instances of the represented class can be cast to the class that another
stands for, and FALSE if they can’t.

12 – The Support Kit

Member Functions BClassInfo

DerivesFrom()

bool DerivesFrom(const BClassInfo *another, bool directOnly = FALSE) const

Returns TRUE if the represented class derives from the class that another stands for, and
FALSE if not.

If the directOnly flag is TRUE, this function returns TRUE only if the class that another
stands for is the immediate base class of the represented class.

IsSameAs()

bool IsSameAs(const BClassInfo *another) const

Returns TRUE if the represented class is the class that another other stands for, and FALSE if
the two classes differ.

Name()

const char *Name(void) const

Returns the name of the represented class.

The Support Kit – 13

BList

Derived from: public BObject

Declared in: <support/List.h>

Overview

A BList object is a compact, ordered list of data pointers. BList objects can contain
pointers to any type of data, including—and especially—objects.

Items in a BList are identified by their ordinal position, or index, starting with index 0.
Indices are neither arbitrary nor permanent. If, for example, you insert an item into the
middle of a list, the indices of the items at the tail of the list are incremented (by one).
Similarly, removing an item decrements the indices of the following items.

A BList stores its items as type void *, so it’s necessary to cast an item to the correct type
when you retrieve it. For example, items retrieved from a list of BBitmap objects must be
cast as BBitmap pointers:

BBitmap *theImage = (BBitmap *)myList->ItemAt(anIndex);

Note: There’s nothing to prevent you from adding a NULL pointer to a BList. However,
functions that retrieve items from the list (such as ItemAt()) return NULL when the
requested item can’t be found. Thus, you can’t distinguish between a valid NULL item and
an invalid attempt to access an item that isn’t there.

Constructor and Destructor

BList()

BList(long blockSize = 20)
BList(const BList& anotherList)

Initializes the BList by allocating enough memory to hold blockSize items. As the list
grows and shrinks, additional memory is allocated and freed in blocks of the same size.

The copy constructor creates an independent list of data pointers, but it doesn’t copy the
pointed-to data. For example:

BList *newList = new BList(oldList);

14 – The Support Kit

Member Functions BList

Here, the contents of oldList and newList—the actual data pointers—are separate and
independent. Adding, removing, or reordering items in oldList won’t affect the number or
order of items in newList. But if you modify the data that an item in oldList points to, the
modification will be seen through the analogous item in newList.

The block size of a BList that’s created through the copy constructor is the same as that of
the copied object.

~BList()

virtual ~BList(void)

Frees the list of data pointers, but doesn’t free the data that they point to. To destroy the
data, you need to free each item in an appropriate manner. For example, objects that were
allocated with the new operator should be freed with delete:

void *anItem;
for (long i = 0; anItem = myList->ItemAt(i); i++)
delete anItem;
delete myList;

See also: MakeEmpty()

Member Functions

AddItem()

bool AddItem(void *item, long index)
inline bool AddItem(void *item)

Adds an item to the BList at index—or, if no index is supplied, at the end of the list. If
necessary, additional memory is allocated to accommodate the new item.

Adding an item never removes an item already in the list. If the item is added at an index
that’s already occupied, items currently in the list are bumped down one slot to make
room.

If index is out-of-range (greater than the current item count, or less than zero), the function
fails and returns FALSE. Otherwise it returns TRUE.

The Support Kit – 15

 BList Member Functions

AddList()

bool AddList(BList *list, long index)
bool AddList(BList *list)

Adds the contents of another list to the BList. The items from the other list are inserted at
index—or, if no index is given, appended to the end of the list. If the index is out-of-
range, the function fails and returns FALSE. If successful, it returns TRUE.

See also: AddItem()

CountItems()

inline long CountItems(void) const

Returns the number of items currently in the list.

DoForEach()

void DoForEach(bool (*func)(void *))
void DoForEach(bool (*func)(void *, void *), void *arg2)

Calls the func function once for each item in the BList. Items are visited in order,
beginning with the first one in the list (index 0) and ending with the last. If a call to func
returns TRUE, the iteration is stopped, even if some items have not yet been visited.

func must be a function that takes one or two arguments. The first argument is the
currently-considered item from the list; the second argument, if func requires one, is
passed to DoForEach() as arg2.

FirstItem()

inline void *FirstItem(void) const

Returns the first item in the list, or NULL if the list is empty. This function doesn’t remove
the item from the list.

See also: LastItem(), ItemAt()

HasItem()

inline bool HasItem(void *item) const

Returns TRUE if item is in the list, and FALSE if not.

16 – The Support Kit

Member Functions BList

IndexOf()

long IndexOf(void *item) const

Returns the ordinal position of item in the list, or B_ERROR if item isn’t in the list. If the
item is in the list more than once, the index returned will be the position of its first
occurrence.

IsEmpty()

inline bool IsEmpty(void) const

Returns TRUE if the list is empty (if it contains no items), and FALSE otherwise.

See also: MakoEmpty()

ItemAt()

inline void *ItemAt(long index) const

Returns the item at index, or NULL if the index is out-of-range. This function doesn’t
remove the item from the list.

You can also index directly into the array, if you’re certain that the index is in-range and
you want to avoid the overhead of checking it each time an item is requested. The Items()
function returns a pointer to the list. For example:

myType item = (myType)Items()[index];

See also: FirstItem(), LastItem()

Items()

inline void *Items(void) const

Returns a pointer to the BList’s list. Acquiring the “list pointer” is useful if, for example,
you want to directly manipulate the order of items in the list. (But see the SortItems()
function for a simple way to sort a list).

Although the practice is discouraged, you can also step through the list of items by
incrementing the list pointer. Be aware that the list isn’t null-terminated—you have to
detect the end of the list by some other means. The simplest method is to count items:

void *ptr = myList->Items();

for (long i = myList->ItemCount(); i > 0; i--)
{
 . . .
 *ptr++;
}

The Support Kit – 17

 BList Member Functions

You should never use the list pointer to change the number of items in the list.

See also: DoForEach(), SortItems()

LastItem()

inline void *LastItem(void) const

Returns the last item in the list without removing it. If the list is empty, this function
returns NULL.

See also: RemoveLastItem(), FirstItem()

MakeEmpty()

void MakeEmpty(void)

Empties the BList of all its items, without freeing the data that they point to.

See also: IsEmpty(), RemoveItem()

RemoveItem()

bool RemoveItem(void *item)
void *RemoveItem(long index)

Removes an item from the list. If passed an item, the function looks for the item in the list,
removes it, and returns TRUE. If it can’t find the item, it returns FALSE. If the item is in the
list more than once, this function removes only its first occurrence.

If passed an index, the function removes the item at that index and returns it. If there’s no
item at the index, it returns NULL.

The list is compacted after an item is removed. Because of this, you mustn’t try to empty
a list (or a range within a list) by removing items at monotonically increasing indices. You
should either start with the highest index and move towards the head of the list, or remove
at the same index (the lowest in the range) some number of times. As an example of the
latter, the following code removes the first five items in the list:

for (long i = 0; i <= 4; i++)
 myList->RemoveItem(0);

See also: MakeEmpty()

18 – The Support Kit

Operators BList

SortItems()

void *SortItems(int (*compareFunc)(comt void *, const void *))

Rearranges the items in the list. The items are quick-sorted using the compareFunc
comparison function passed as an argument. This function should take two items as
arguments. It should return a negative number if the first item should be ordered before
the second, a positive number if the second should be ordered before the first, and 0 if the
two items should be ordered equivalently.

See also: Items()

Operators

= (assignment)

BList& operator =(const BList&)

Assigns the contents on one BList object to another:

BList newList = oldList;

After the assignment, the two lists are duplicates of one another. Each object has its own
independent copy of list data; destroying one of the objects won’t affect the other.

However, only the items in the list are copied, not the data they point to. Each set of items
references the same underlying data.

The Support Kit – 19

BLocker

Derived from: public BObject

Declared in: <support/Locker.h>

Overview

The BLocker class offers a simple way to set up a locking mechanism similar to the ones
used in the BLooper and BMessageQueue classes in the Application Kit and the BBitmap
class in the Interface Kit.

Typically, a BLocker instance is declared as a private data member of a class that also
declares public Lock() and Unlock() functions:

class MyObject : public BObject
{
public:
 void Lock();
 void Unlock();
 . . .
private:
 BLocker lock;
 . . .
};

Lock() and Unlock() are then implemented as simple calls to their BLocker counterparts:

void MyObject::Lock()
{
 lock.Lock();
 . . .
}

void MyObject::Unlock()
{
 . . .
 lock.Unlock();
}

Like other locking mechanisms, this one relies on a semaphore. It builds on the
semaphore to permit nested calls to the locking functions. However, it lacks some features
that you’d get if you used the semaphore directly—such as a timeout mechanism and the
ability to discover how many threads are waiting to attain the lock.

See also: “Semaphores” in the chapter on the Kernel Kit

20 – The Support Kit

Constructor and Destructor BLocker

Constructor and Destructor

BLocker()

BLocker(const char *name)

Sets up the locking mechanism and assigns name to the semaphore that will be used to
operate the lock. The name doesn’t appear elsewhere in the API, but it may show up in the
debugger.

-BLocker()

virtual ~BLocker(void)

Gets rid of the semaphore.

Member Functions

CheckLock()

bool CheekLock(void) const

Checks to see whether the calling thread is the thread that currently owns the lock. If it is,
all is well and CheckLock() returns TRUE. If it’s not, CheckLock() returns FALSE and
deposits you in the debugger so you can find out why not.

While developing your application, it’s a good idea to call CheckLock() before each
Unlock() call. After the application has been thoroughly debugged, you can remove the
CheckLock() calls.

Lock(), Unlock()

void Lock(void)

void Unlock(void)

These functions lock and unlock whatever object or data structure the BLocker is serving.
Lock() doesn’t return until it has secured the lock; Unlock() releases the lock (or takes a
step in that direction) and returns immediately.

These calls can be nested. The lock isn’t released until every Lock() call is balanced by a
call to Unlock()

It’s an error to call Unlock() from a thread that doesn’t own the lock. For debugging
purposes, you can call CheckLock() before calling Unlock() to make sure this doesn’t
happen in your code.

The Support Kit – 21

BObject

Derived from: none

Declared in: <support/Object.h>

Overview

BObject is the root class of the inheritance hierarchy. All Be classes (with just a handful
of significant exceptions) are derived from it.

The primary reason for a single, shared base class is to provide common functionality to
all objects. Currently, the BObject class is empty (except for its constructor and
destructor), so there’s no significant functionality to report. Subsequent releases will
probably introduce new functions to the class; in anticipation of this, it’s suggested that the
classes you design derive from BObject (if no other Be class is a fit base).

In addition, when all objects are derived from BObject, the class can provide a generic
type classification (BObject *) that simply means “an object.” This can be a useful
substitute for type void *.

As a further incentive, simply by deriving from BObject your classes will be recognized
by the class-information mechanism. (They may not be recognized correctly, but at least a
class-information query on your objects won’t stop the compiler in its tracks. See “Class
Information” on page 5 for details.)

Constructor and Destructor

BObject()

BObject(void)

Does nothing. Because the BObject class has no data members to initialize, the BObject
constructor is empty.

~BObject()

virtual ~BObject(void)

Does nothing. Because the BObject class doesn’t declare any data members, the BObject
destructor has nothing to free.

22 – The Support Kit

Constructor and Destructor BObject

The Support Kit – 23

Constants,
Defined Types, and Macros

This section lists the general-purpose constants, defined types, and macros that are
grouped in the Support Kit and used throughout the Be application-programming
interface. Included are commonly used constants such as NULL and its synonym NIL, basic
defined types such as bool and ulong, and a couple of simple macros. The error codes for
all kits are also defined here.

Not listed are the class information macros; they’re documented under “Class
Information” on page 5.

Constants

Boolean Constants

<support/SupportDefs.h>

Defined constant Value

FALSE 0
TRUE 1

These constants are used as values for bool variables (the bool type is listed in the next
section).

Empty String

<support/SupportDefs.h>

const char *B_EMPTY_STRING

This constant is defined as "", a string consisting only of the null character.

24 – The Support Kit

Constants	 Constants,	Defined	Types,	and	Macros	

Error Codes—General

<support/Errors.h>

Enumerated constant Meaning

B_NO_MEMORY There’s not enough memory for the operation.
B_IO_ERROR A general input/output error occurred.
B_PERMISSION_DENIED The operation isn’t allowed.
B_FILE_ERROR A general file error occurred.
B_FILE_NOT_FOUND The specified file doesn’t exist.
B_BAD_INDEX The index is out of range.
B_BAD_VALUE An illegal value was passed to the function.
B_MISMATCHED_VALUES Conflicting values were passed to the function.
B_BAD_TYPE An illegal argument type was named or passed.
B_NAME_NOT_FOUND There’s no match for the specified name.
B_NAME_IN_USE The requested (unique) name is already used.
B_TIMED_OUT Time expired before the operation was finished.
B ERROR = -1 This is a convenient catchall for general errors.
B_NO_ERROR = 0 Everything’s OK.

Defined constant Meaning

B_ERRORS_END Marks the end of all Be-defined error codes.

Error codes are returned by various functions to indicate the success or to describe the
failure of a requested operation. The general errors listed above are used throughout the
Be API. Not all of these constants (or those listed in the sections below) are actually
used—some are reserved for future releases—but you should avoid using the same names
in the return codes that you create yourself.

All error constants except for B_NO_ERROR are negative integers; any function that returns
an error code can thus be generally tested for success or failure by the following:

if (funcCall() < B_NO_ERROR)
 /* failure */
else
 /* success */

Be reserves all error-code values that are less than or equal to B_ERRORS_END (all values
from LONG_MIN through B_ERRORS_END). All the constants listed above, except for
B_ERROR and B_NO_ERROR, are within these bounds. If you want to define your own
negative-valued error codes, you should begin with the value (B_ERRORS_END + 1).

The Support Kit – 25

 Constants,	Defined	Types,	and	Macros	 Constants

Error Codes—Application Kit

<support/Errors.h>

Enumerated constant Meaning

B_UNEXPECTED_REPLY A reply is being sent to a local message.
B_DUPLICATE_REPLY A previous reply has already been sent.
B_MESSAGE_TO_SELF A thread is trying to send a message to itself.
B_ALREADY_RUNNING The application can’t be launched again.
B_LAUNCH_FAILED The attempt to launch the application failed.

These constants are defined for the messaging classes of the Application Kit. The
messaging system also makes use of some of the general errors and kernel errors described
above.

See also: the Error() functions in the BMessage and BMessenger classes

Error Codes—Debugger

<support/Errors.h>

Enumerated constant

B_DEBUGGER_ALREADY_INSTALLED

This constant signals that the debugger has already been installed for a particular team and
can’t be installed again.

Error Codes—Kernel Kit

<support/Errors.h>

Enumerated constant Meaning

B_BAD_SEM_ID Semaphore identifier (sem_id) is invalid.
B_NO_MORE_SEMS All semaphores are currently taken.
B_BAD_THREAD_ID Specified thread identifier (thread_id) is invalid.
B_BAD_THREAD_STATE The thread is in the wrong state for the operation.
B_NO_MORE_THREADS All thread identifiers are currently taken.
B_BAD_TEAM_ID Specified team identifier (team_id) is invalid.
B_NO_MORE_TEAMS All team identifiers are currently taken.
B_BAD_PORT_ID Specified port identifier (port_id) is invalid.
B_NO_MORE_PORTS All port identifiers have been taken.

These error codes are returned by functions in the Kernel Kit, and occasionally by
functions defined in higher level kits. See the specific functions for details.

26 – The Support Kit

Defined	Types	 Constants,	Defined	Types,	and	Macros	

Error Codes—Media Kit

<support/Errors.h>

Enumerated constant Meaning

B_STREAM_NOT_FOUND The attempt to locate the stream failed.
B_SERVER_NOT_FOUND The attempt to locate the server failed.
B_RESOURCE_NOT_FOUND The attempt to locate the resource failed.
B_RESOURCE_UNAVAILABLE Permission to access the resource was denied.
B_BAD_SUBSCRIBER The BSubscriber is invalid.
B_SUBSCRIBER_NOT_ENTERED The BSubscriber hasn’t entered the stream.
B_BUFFER_NOT_AVAILABLE The attempt to acquire the buffer failed.

These error codes are defined for the Media Kit. See the classes and functions in that kit
for an explanation of how they’re used.

NULL and NIL

<support/SupportDefs.h>

Defined constant Value

NIL 0
NULL 0

These constants represent “empty” values. They’re synonyms that can be used
interchangeably.

Defined Types

bool

<support/SupportDefs.h>

typedef unsigned char bool

This is the Be version of the basic boolean type. The TRUE and FALSE constants (listed
above) are defined as boolean values.

B_PFI, B_PFL, B_PFV

<support/SupportDefs.h>

typedef int (*B_PFI)()
typedef long (*B_PFL)()
typedef void (*B_PFV)()

These types are pointers to functions that return int, long, and void values respectively.

The Support Kit – 27

 Constants,	Defined	Types,	and	Macros	 Macros

Unsigned Integers

<support/SupportDefs.h>

typedef unsigned char uchar
typedef unsigned int uint
typedef unsigned long ulong
typedef unsigned short ushort

These type names are defined as convenient shorthands for the standard unsigned types.

Volatile Integers

<support/SupportDefs.h>

typedef volatile char vchar
typedef volatile int vint
typedef volatile long vlong
typedef volatile short vshort

These type names are defined as shorthands for declaring volatile data.

Volatile and Unsigned Integers

<support/SupportDefs.h>

typedef volatile unsigned char vuchar
typedef volatile unsigned int vuint
typedef volatile unsigned long vulong
typedef volatile unsigned short vushort

These type names are defined as shorthands for specifying an integral data type to be both
unsigned and volatile.

Macros

min(), max()

<support/SupportDefs.h>

min(a, b)
max(a, b)

These macros compare two integers or floating-point numbers. min() returns the lesser of
the two (or b if they’re equal); max() returns the greater of the two (or a if they’re equal).

28 – The Support Kit

Macros	 Constants,	Defined	Types,	and	Macros	

