
DOMAIN/IX User’s Guide

Order No. 005803
Revision 00

Software Release 9.0

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Apollo Computer Inc. reserves the right to make changes in specifications
and other information contained in this publication without prior notice,
and the reader should, in all cases, consult Apollo Computer Inc. to
determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF
APOLLO COMPUTER INC. HARDWARE PRODUCTS AND THE
LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST
SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS
BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-
TAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR
ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO
LOST PROFITS) ARISING OUT OF OR RELATING TO THIS PUBLI-
CATION OR THE INFORMATION CONTAINED IN IT, EVEN IF
APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW, OR SHOULD
HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE
CONFIDENTIAL INFORMATION AND PROPRIETARY PRODUCTS
OF APOLLO COMPUTER INC. OR ITS LICENSORS.

THIS SOFTWARE AND DOCUMENTATION ARE BASED IN PART ON
THE FOURTH BERKELEY SOFTWARE DISTRIBUTION UNDER
LICENSE FROM THE REGENTS OF THE UNIVERSITY OF CALIFOR-
NIA.

© 1985 Apollo Computer Inc. All rights reserved.
Printed in U.S.A.

First Printing: July 1985

This document was formatted using the troff text formatter distributed
with domain®/ixTM software.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.
AEGIS, DGR, DOMAIN/IX, DPSS, DSEE, D3M, GMR, and GPR are trademarks of
Apollo Computer Inc.

iii

PREFACE
The domain®/ixTM User’s Guide and its companion volume, the
DOMAIN/IX Text Processing Guide consist of those papers normally
included in Volumes 2A, 2B, and 2C of the UNIX† Programmer’s Manual
as supplied by Bell Telephone Labs and the University of California at
Berkeley. The papers in these books have been revised where necessary
to reflect the domain system environment. However, we have tried to
remain aware of the history of unix as a multiuser system, and have
included the more important references to operations conducted at termi-
nals.

Audience
This User’s Guide is intended for users who are familiar with unix
software, aegisTM software, and domain networks. We recommend that
you read one of the following tutorial introductions if you are not already
familiar with unix.

•	Bourne,	Stephen	W.	The UNIX System. Reading: Addison-Wesley,
1982.

•	Kernighan,	Brian	W.	and	Rob	Pike.	The UNIX Programming
Environment, Englewood Cliffe, Prentice-Hall, 1984.

•	Thomas,	Rebecca	and	Jean	Yates.	A User Guide to the UNIX System.
Berkeley: Osborne/McGraw-Hill, 1982.

This document also assumes a basic familiarity with the domain system.
The best introduction to the domain system is Getting Started With
Your DOMAIN System (Order No. 002348). This manual explains how
to use the keyboard and display, read and edit text, and create and exe-
cute programs. It also shows how to request domain system services
using interactive commands.

The Structure of This Document
This manual is divided into four sections and an appendix.

Section 1 provides an introduction to domain/ix and explains how to
install the SR9 domain/ix software.

Section 2 discusses shells. Chapter 1 is an overview of the shells
available to the domain/ix user. Chapter 2 is an introduc-
tion to the Bourne shell. Chapter 3 is an introduction to
the C shell.

† UNIX is a trademark of AT&T Bell Laboratories.

iv

Section 3 deals with the communications programs mail and uucp.

Section 4 deals with the following support tools.

•	awk	—	a	pattern	matching	tool

•	sed	—	a	stream	editor

•	lint	—	a	C	program	checker

•	make	—	a	program	for	maintaining	other	programs

•	lex	—	a	lexical	analyzer

•	yacc	—	a	compiler	compiler

•	sccs	—	a	source	code	control	system

Appendices includes papers on The C Programming Language, Ratfor,
the M4 Macro Processor, the bc and dc programs, and the
sendmail and curses packages.

Related Volumes
The DOMAIN/IX User’s Guide (this book) is the first volume you should
read. It explains how domain/ix works, and contains extensive material
on the Bourne shell, C shell, and the communications utilities mail and
uucp.

The DOMAIN/IX Text Processing Guide (Order No. 005802) describes
the unix text editors (ed, ex, and vi) supported by domain/ix. It also
contains material on the formatters troff and nroff, the macro packages
-ms, -me, and -mm, and the preprocessors eqn and tbl.
The DOMAIN/IX Command Reference for System V (Order No. 005798)
describes all the unix System V shell commands supported by the sys5
version of domain/ix.

The DOMAIN/IX Programmer’s Reference for System V (Order No.
005799) describes all the unix System V system calls and library func-
tions supported by the sys5 version of domain/ix.

The DOMAIN/IX Command Reference for BSD4.2 (Order No. 005800)
describes all the BSD4.2 unix shell commands supported by the bsd4.2
version of domain/ix.

The DOMAIN/IX Programmer’s Reference for BSD4.2 (Order No.
005801) describes all the BSD4.2 unix system calls and library functions
supported by the bsd4.2 version of domain/ix.

The DOMAIN C Language Reference (Order No. 002093) describes C
program development on the DOMAIN system. It lists the features of C,
describes the C library, and gives information about compiling, binding,
and executing C programs.

v

The DOMAIN System Command Reference (Order No. 002547) gives
information about using the DOMAIN system and describes the
DOMAIN commands.

The two-volume DOMAIN System Call Reference (Volume i Order No.
007196, Volume ii Order No. 007194) describes calls to operating system
components that are accessible to user programs.

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following sym-
bolic conventions.

command Command names and command-line options are set in bold
type. These are commands, letters, or symbols that you
must use literally.

output Output returned by programs or commands is shown in
Roman type.

[optional] Square brackets enclose optional items in formats and com-
mand descriptions.

...		Horizontal	ellipses	indicate	that	the	preceding	item	can	be	repeated	
one or more times.

name[x] Single numbers or numbers and letters enclosed in brackets
immediately following the name of a unix command or
library function refer to the section where you can find
reference information on the command or function in the
DOMAIN/IX Command Reference or the DOMAIN/IX
Programmer’s Reference.

↑x A control character, where x is the character.

small caps We use small caps for acronyms and key names; e.g., ascii
and RETURN . Note that in tutorial material, we place a
box around the name of a key.

filename We use italics to represent generic, or meta- names in
example command lines, and also to represent a character
that stands for another character, as in dx where x is a
digit. In text, the names of files written or read by pro-
grams are set in italics.

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In order
to make it easy for you to communicate with us, we provide the User
Change Request (UCR) system for software-related comments, and the
Reader’s Response form for documentation comments. By using these
formal channels, you make it easy for us to respond to your comments.

vi

You can get more information about how to submit a UCR by consulting
the DOMAIN System Command Reference. Refer to the CRUCR
(Create User Change Request) command. You can also get more infor-
mation by typing:

/com/help crucr
in any unix or aegis shell. There is a Reader’s Response form at the
back of this manual. We’d appreciate it if you would take the time to
fill it out when you’re ready to comment on this document.

SECTION 1

GETTING STARTED

Section 1-1

CONTENTS
1. An Overview of DOMAIN/IX 1-1
1.1 INTRODUCTION 1-1
1.2 AN OVERVIEW OF DOMAIN ARCHITECTURE 1-1

1.2.1 The DOMAIN System 1-2
1.2.2 The User Interface 1-2
1.2.3 DOMAIN/IX and AEGIS 1-2

1.3 THE DISPLAY AND THE DISPLAY MANAGER 1-3
1.3.1 Pads and Windows 1-3
1.3.2 Default Windows and Shells 1-4
1.3.3 dm Commands 1-5
1.3.4 Regions 1-6
1.3.5 Moving the Cursor 1-6
1.3.6 Keyboard Mapping 1-7
1.3.7 UNIX Key Definitions 1-7

1.4 DM Environment Variables 1-9
1.5 INSTALLING DOMAIN/IX 1-11
1.6 SUPPORT FOR MULTIPLE UNIX VERSIONS 1-11

1.6.1 Name Space Support 1-13
1.6.2 Environment Switching 1-14
1.6.3 Getting Help 1-15

1.7 OTHER FEATURES OF DOMAIN/IX 1-16
1.7.1 Setting up a UNIX-Style Login Sequence 1-16
1.7.2 The Process Model 1-16
1.7.3 Filename Mapping 1-17
1.7.4 Password and User Identification 1-19
1.7.5 File Protection 1-19
1.7.6 Read, Write, and Execute Rights 1-20
1.7.7 Output from the C Compiler 1-20
1.7.8 Debugging 1-20
1.7.9	 Library	Organization				1-20
1.7.10 The Process Environment Flag 1-20
1.7.11 Ownership of Files 1-21
1.7.12 Networking Software 1-21

1.8 HOW TO FORMAT ONLINE DOCUMENTS 1-21

2. Installing DOMAIN/IX 2-1
2.1 INTRODUCTION 2-1

2.1.1 Terms 2-1
2.1.2 What Happens During Installation 2-1
2.1.3 Types of Installation 2-2

2.2 RUNNING THE ADMINISTRATIVE INSTALL 2-3
2.2.1 The User Install Template 2-4

2.3 THE USER INSTALL 2-6
2.4 FILES, LINKS, AND DIRECTORIES 2-6

2.4.1 SYSTYPE and Symbolic Links 2-7

The DOMAIN/IX Environment 1-1

Chapter 1: An Overview of domain/ix

1.1 INTRODUCTION
domain/ix (pronounced “domain eye ex”) is an implementation of the
unix operating system that runs on domain nodes. It supports the
domain distributed file system, ring network, and bit-mapped, high-
resolution displays. In addition to bringing the benefits of a networked
architecture and a true single-level store to the unix system, domain/ix
offers many features that are seldom found on either time-sharing or
workstation implementations of this software.

There are two versions of domain/ix. The sys5 version is compatible
with unix System V Release 2 from AT&T Bell Laboratories, and the
bsd4.2 version is compatible with 4.2 BSD, from the University of Cali-
fornia at Berkeley. You may install either or both at your site.

In this chapter, we provide

•		an	introduction	to	those	domain system features that are not found
in other unix systems,

•		an	explanation	of	the	way	in	which	domain/ix allows you to use the
bsd4.2 and sys5 unix versions concurrently, and

•		information	about	other	features	of	domain/ix (e.g., character map-
ping, compiler output, and other details primarily of interest to pro-
grammers).

We also provide pointers to additional reference materials on domain
architecture.

Other sections of this User’s Guide, comprised largely of papers written
by the developers of unix System V and 4.2 BSD, deal with the various
unix shells we support, with the more prominent implements in the unix
tool kit (e.g., awk, lex, make, and so on), and with the communications
utilities mail and uucp. A companion volume, the DOMAIN/IX Text
Processing Guide, covers the text editors ed, ex, and vi, the troff and
nroff formatters, and their related preprocessors and macro packages.

1.2 AN OVERVIEW OF DOMAIN ARCHITECTURE
In this section, we explain the fundamental concepts of the domain sys-
tem. Readers who are already familiar with domain systems may skip
this section.

1-2 The DOMAIN/IX Environment

SECTION 1 Getting Started

1.2.1 The DOMAIN System
A domain system is comprised of two or more nodes connected by a
high-speed (12Mbit/sec.) network. The network has a ring topology, and
uses a token-passing protocol to prevent collisions between messages
being sent from one node to another. Each node is a functional worksta-
tion, with its own central processor, memory, and memory management
hardware. Programs and data required by processes running on a node
are demand-paged across the network.

This remote paging ability means, for example, that a process running on
one node can invoke a program that resides on the disk of another node
to manipulate data that reside on a third node. You may even create
remote processes (processes that run on other nodes in the network) that
you can manipulate through a window on your node, thus distributing
the computational workload over multiple processors.

Those nodes that have their own mass storage devices may be operated
as stand-alone computers, and can support additional users through serial
communications ports. (This subject is covered in more detail in
Chapter 2.)

In order to take advantage of this networked architecture, all domain/ix
software includes support for our distributed file system. Data and pro-
grams	on	all	mounted	volumes	in	the	ring	are	accessible	—	given	the	
necessary	permissions	—	to	any	node	in	the	network.		The	resultant	sys-
tem is one in which an arbitrary number of users can be serviced with no
degradation in performance. All users (excluding those who access the
system via a tty device) have the power of a dedicated processor,
memory-management hardware, and a high-resolution bit-mapped
display at their disposal.

Note: For more information on domain architecture, refer to Get-
ting Started With Your DOMAIN System, the DOMAIN Sys-
tem User’s Guide, and Administering Your DOMAIN System.
These volumes are shipped with all domain nodes.

1.2.2 The User Interface
From the user’s point of view, the interface to domain/ix differs from
the unix interface described in many of the papers in this book, princi-
pally because the screen of a domain node can display “windows” into
many processes (shells, programs, and so on). These windows have some
unique features not found on the “dumb” terminals commonly used by
the machines on which unix System V and 4.2 BSD were developed.

1.2.3 DOMAIN/IX and AEGIS
domain/ix is co-resident with the domain system’s aegis operating sys-
tem. Since they use many of the same underlying kernel functions,
domain/ix and aegis are tightly integrated. As a result:

The DOMAIN/IX Environment 1-3

SECTION 1 Getting Started

•	the	unix programs supplied with domain/ix have the same file for-
mat as aegis programs

•	domain/ix unix shells can coexist on the same screen with aegis
shells

•	unix commands can be executed by an aegis shell

•	aegis commands can be executed by a unix shell

There is normally no distinction between processes that run unix pro-
grams and those that run other domain programs. unix programs and
aegis programs can coexist within the same process, even within the
same pipeline. There are only a few cases where naming conflicts (unix
and aegis programs that have the same name) may make it necessary
for you to rename or alias a command.

1.3 THE DISPLAY AND THE DISPLAY MANAGER
In this section, we provide a brief introduction to your domain node’s
display and keyboard, placing an emphasis on those unique domain
features that, properly used, help make your job easier. Readers who are
already experienced users of domain nodes should feel free to skip to the
next section.

Your node’s display is your “window” into the domain system. Unlike
most “dumb” terminals that dedicate their entire display to a single pro-
gram or process, domain nodes enable you to divide the display screen
into multiple environments for running programs, and reading or editing
files. With each new environment you create, the domain system creates
a set of display components through which you can enter input and view
output.

What you see through a window is either a “frame” containing graphics
or a “pad” containing text. Refer to the DOMAIN System Command
Reference for more information about frame mode and graphics. Our pri-
mary concern in this section is with pads.

1.3.1 Pads and Windows
There are two principal types of pads: “edit” pads and “transcript”
pads. An edit pad is a window into the buffer that the dm sets up when
you tell it that you want to edit a file. A read-only edit pad is a special
instance of an edit pad that, either because you have opened the pad in
read-only mode or because you have opened a window into a file for
which you lack “write” permission, doesn’t allow you to modify the con-
tents of the buffer.

All shells run in a window that consists of an “input pad” and a “tran-
script pad.” The input pad echoes the standard input, and the transcript
pad provides a running transcript of the standard output. On the theory
that it is unwise (possibly even illegal) to edit history, the transcript pad
is unalterably read-only. (The only legal writer is the program.) This

1-4 The DOMAIN/IX Environment

SECTION 1 Getting Started

combination of an input pad and a transcript window is at least the
equivalent of a “terminal,” in the sense that that word is used in many
of the papers in this book. In addition, it has features that go far
beyond what most terminals can manage.

As we mentioned, an input pad is actually special instance of an edit
pad. It can’t be made read-only, and it will “grow” as necessary when
you type input faster than the shell (or other program) can use it. Pro-
grams using input pads read input sequentially, one line at a time. As an
input line is read, it is scrolled up into the transcript pad, where it
remains until the shell is closed. Even after text has scrolled out of the
top of the window, the transcript pad never loses any information. Using
the pad scroll keys, you can scroll through the transcript pad to review
or copy text from any part of the transcript.

When you stop a Shell or other program running in a window, the dm
normally closes both the input and transcript pads and displays a

*** Pad Closed ***

message in the window. At this point, you can issue the dm command
wc (window close, normally mapped to ↑N) to remove the window from
the screen.

Note: You can save the information contained in a transcript pad in
either of two ways.
•	You	can	copy	all	or	part	of	the	pad	into	an	edit	pad,	paste	

buffer, or file (see Section 1, Chapter 4 of the
DOMAIN/IX Text Processing Guide for details on how
this is done.)

•	You	can	use	the	dm’s pn (pad name) command to write the
pad to a disk file.

Edit pads do not interact with programs at all; they are simply files that
you can view or edit using the dm editor. You can also open an edit pad
in “read-only” mode if you want to read rather than edit it.

At the top of every window is a “window legend” that displays the
name (or number) of the process running in the window. If the window
opens	onto	a	file	(i.e.,	if	it	is	an	edit	pad	—	read-only	or	otherwise),	the	
window legend displays the full pathname of the file and such additional
information as the edit mode (insert or typeover), rights (read/write or
read-only),	file	line-number	of	the	top	line	in	the	window,	and	horizontal	
offset if greater than 0. The DOMAIN System User’s Guide has more
detailed information on pads, windows, and window legends.

1.3.2 Default Windows and Shells
In addition to the various shells and edit pads that you may open while
logged in to a domain node, there are usually two windows that get
opened by default: one when the node is booted, and another when a

The DOMAIN/IX Environment 1-5

SECTION 1 Getting Started

user logs in.

When a node is booted, it normally loads the dm and opens a dm input
pad, dm alarm window, and dm output pad. On a landscape display,
these windows are each one line high and are placed side by side along
the bottom of the screen. When no one is logged in, the dm input pad
displays the login prompt. Depending on the value of the environment
variable UNIXLOGIN, this may be either the standard unix

login

prompt or the slightly different aegis prompt

Please Log In:

(We explain more about environment variables in a later section.) After
you log in, the dm input pad displays the

Command:

prompt. Pressing the CMD key brings the cursor to the dm input win-
dow.

The dm output pad (which is actually the file /sys/dm/output) is broken
into two windows: the alarm window and the output window. The alarm
window appears to the right of the input window on both landscape and
portrait displays. Whenever the dm writes output to a partially obscured
or hidden window, it alerts you by sounding the node’s alarm beeper and
displaying a visible alarm in the form of two “bell” characters in the dm
alarm window. The bells are cleared when you POP the obscured win-
dow to the top of the window stack.

The dm output window appears at the right of the alarm window on
landscape displays, or at the bottom of portrait displays. The output
window displays dm messages and output from those dm commands (e.g.,
kd and “=”) that generate output.

By default, the dm opens an aegis shell when you log in, then executes
your personal login script of dm commands. You may, of course, arrange
for the dm to open a unix shell instead.

1.3.3 DM Commands
We have already mentioned a few of the many dm commands. Since all
dm commands are covered in detail in the DOMAIN System Command
Reference, we will only touch lightly on the subject here. Those dm
commands that you are most likely to use when editing text or examin-
ing a transcript are covered in somewhat greater depth in Section 1,
Chapter 4 of the DOMAIN/IX Text Processing Guide. All dm com-
mands have several things in common:

•	They	can	be	entered	in	the	dm input window. Press the CMD (com-
mand) key to bring the cursor to the dm’s

1-6 The DOMAIN/IX Environment

SECTION 1 Getting Started

 Command: prompt, then enter the command line.

•	They	can	be	placed	in	a	command	file	for	execution	as	needed	(e.g.,	
when you log in).

•	They	can	be	bound	to	domain keyboard keys using the dm’s kd (key
definition) command.

1.3.4 Regions
Some dm commands deal with the whole screen. Most, however, deal
with an individual window, or even with a region within the pad a win-
dow opens on. Since the concept of a screen that is divided into regions
may be new, we offer an introduction to the topic here.

Whenever you move the cursor to the dm input window (by pressing the
CMD key), the dm first notes the cursor’s location on the screen. That

way, it can derive such information as the current working directory of a
shell, the location of the cursor in an edit pad, or the current location of
a window you intend to move or grow. The same is true when you
press a key that has been defined to invoke a dm command sequence.
For example, when you press the EDIT key, the dm first notes the
current working directory of the shell window that the cursor last occu-
pied. If you type

edit file: foo
the dm looks for a file named foo in the current working directory of that
shell. If the file exists, the dm opens an edit pad onto it. Otherwise, the
dm creates foo and opens a blank edit pad.

Even though you may have many windows open on your screen, the dm
assumes that you can only be actively addressing one at a time. By
keeping track of the cursor, the dm keeps track of your involvement with
processes running in windows on your node. Since it also keeps track of
what all processes (even those not occupied by the cursor) are doing, the
dm	can	also	alert	you	when	something	occurs	in	an	obscured	—	or	par-
tially	obscured	—	window.		By	operating	in	this	manner,	the	dm is able
to provide services to all processes running in windows on your node.

1.3.5 Moving the Cursor
Probably the most fundamental dm command is “move the cursor.”
While there are a number of ways to get the dm to move the cursor, the
arrow keys at the left of the keyboard are, for most people, the most
intuitively obvious. Many keyboards are also equipped with a mouse or a
touchpad, both of which are effective tools for large-scale cursor move-
ments. In addition, the mouse has three programmable function keys.
Read the DOMAIN System User’s Guide for more information on the
mouse and touchpad.

The DOMAIN/IX Environment 1-7

SECTION 1 Getting Started

There are even explicit dm commands that move the cursor, although
they rarely see interactive use. (The arrow keys and the other keys that
move the cursor are simply defined at startup time to execute these com-
mands.) In addition, the special keys CMD and NEXT WNDW move the
cursor to the dm input window and the next unobscured shell input pad
or read/write edit pad respectively.

Note: The dm considers a window to be obscured if any part of it is
covered by another window. If there are no unobscured shell
windows or read/write edit pads on the display, next wndw
has no effect. A read-only edit pad is also not a candidate for
next wndw.

Chapter 2 of the DOMAIN System Command Reference details all of the
dm commands supported at SR9. Remember, shell commands won’t
work in the dm window.

1.3.6 Keyboard Mapping
On domain nodes, nearly all key binding is programmable. The dm nor-
mally binds the keys to a default function map when you log in.
Although you can change these key bindings at any time, it is usually
best	to	begin	with	the	default	bindings,	then	“customize”	your	key	
definitions as needed. For more information on the dm and keyboard
mapping, see Chapter 2 of the DOMAIN System Command Reference.

The domain system supports two types of keyboards: the 880 (high-pro-
file) keyboard and the low-profile keyboard.

Note: The majority of nodes are equipped with the low-profile key-
board.

The directory /sys/dm contains the command files that define both key-
boards:

std_keys keyboard definitions for the 880 keyboard

std_keys2 keyboard definitions for the low-profile keyboard

1.3.7 UNIX Key Definitions
Alternate	versions	of	the	standard	key	definitions	—	modified	to	provide	
necessary	UNIX	functions	—	reside	in	the	following	files	in	/sys/dm.

unix_keys Generic UNIX keyboard definitions for the 880 keyboard

unix_keys2 Generic UNIX keyboard definitions for the low-profile key-
board

att_keys System V UNIX keyboard definitions for the 880 keyboard

att_keys2 System V UNIX keyboard definitions for the low-profile key-
board

bsd_keys BSD 4.2 unix keyboard definitions for the 880 keyboard

1-8 The DOMAIN/IX Environment

SECTION 1 Getting Started

bsd_keys2 BSD 4.2 unix keyboard definitions for the low-profile key-
board

The bsd4.2 and sys5 key definitions files include commands that bind
various keys to certain version-specific (or shell-specific) features. They
will be described in detail in Section 2 of this manual, in the chapters
that deal with the Bourne Shell and the C Shell. Initially, none of these
key definitions files will be automatically invoked, although you may
arrange for them to be, as we shall explain. To put any key definitions
file into effect, execute the dm command

Command: cmdf filename

where filename is one of those listed above. For example, to invoke the
generic unix key definitions on a low-profile keyboard, type:

Command: cmdf /sys/dm/unix_keys2
When the keyboard is remapped by a unix_keys file, the following keys
get new definitions:

•	The	 SHELL key executes the dm command

 cp /bin/start_sh
 which invokes a Bourne Shell and runs your .profile. (See Section 2

of this manual for more on shells and .profile.) Normally, SHELL
invokes an aegis shell (/com/sh).

•	When	shifted,	the	 TAB key inserts a literal ascii tab character.
Normally, TAB merely moves the cursor a predetermined number of
spaces to the right, and ↑ TAB moves the cursor a predetermined
number of spaces to the left.

•	↑I	sends	a	unix interrupt signal. Normally, ↑I has no special func-
tion.

•	The	 READ key and the EDIT key both insert (invisible) quotation
marks around any pathname you supply to their prompts. (The quo-
tation is required in order to pass mapped characters to the domain
system’s naming server.) The prompts themselves are also subtly
different. READ generates

 read file:

 (rather than “Read file:”), and EDIT generates

 edit file:

 (not “Edit file:”).

The DOMAIN/IX Environment 1-9

SECTION 1 Getting Started

1.4 DM Environment Variables
unix users should be familiar with the concept of environment variables.
These process-wide ascii strings assume the general form name = value.
Environment variables are maintained by the kernel’s process manager
and are made available to aegis programs as well as to unix ones.

You	will	typically	want	to	initialize	these	variables	in	one	of	the	com-
mand files that the dm	reads	when	the	node	is	booted	and	—	later	—	
when a user logs in.

Note: Environment variables extant in a process when an aegis
shell is created are automatically inherited by that shell. The
Bourne and C Shells handle environment variables as defined
by unix semantics.

For processes that use multiple program levels, environment variables are
mark-released so that, while a new program level inherits all environment
variables from a previous level, a new level cannot affect the environment
variables of a previous level. When a new process is created, all environ-
ment variables of the creating process are inherited by the new process.
All process creation mechanisms (e.g., pgm_$invoke, fork, vfork) pro-
vide for this inheritance. When a new process is created by the Display
Manager, that process inherits all environment variables from the current
context process. The dm also inherits environment variables when cv
(read file) or ce (edit file) are used, for reasons explained later in the sec-
tion on variant links.

Environment variables defined in the dm startup file are inherited by all
server processes created during dm startup, as well as by the first process
created by a user at login.

Note: After the first user process is created, environment variables
are inherited by the dm from the current context process (and
passed to new processes) as described above.

A program interface for environment variable usage is defined in the files
/sys/ins/ev.ins.?*. C language programs may manipulate environment
variables through these interfaces. Alternatively, C programs may use
the UNIX calls getenv[3] and putenv[3] or access the external environ
variable. All interfaces are compatible with one another; e.g., a variable
defined with putenv[3] may be read using ev_$get_var.
Certain environment variables are well-known. Some are predefined by
the system, others have special significance to system software or other
special attributes. Environment variables that are defined by the system
at login time are referred to as “predefined” variables. The subset of pre-
defined variables that cannot be deleted or changed by /com/sh or any
callers of ev_$... are referred to as “privileged.”

1-10 The DOMAIN/IX Environment

SECTION 1 Getting Started

In the following list, predefined variables are flagged with a † and
privileged variables (which are also predefined) are flagged with a ‡.

USER ‡ the user’s login name

LOGNAME ‡ is synonymous with USER. The synonyms are
provided to support both versions of domain/ix.

PROJECT ‡ is the project (group) ID under which the user
logged in.

ORGANIZATION	‡	 is	the	organization	ID	under	which	the	user	
logged in.

NODEID ‡ is the unique node identifier for the node on
which the process is running, expressed in hexa-
decimal.

NODETYPE ‡ is the type of node on which the process is run-
ning.

HOME ‡ is the user’s home directory path name, esta-
blished at login time.

TERM † is the device name of the “terminal” in use. We
define this variable for the sake of C or unix pro-
grams that have a terminal dependency. Values
for our displays are

apollo_15P 15 inch portrait display

apollo_19L 19 inch landscape display

apollo_color DN460/660 color display

apollo_800_color DN550 color display

TZ	†		 the	timezone	string.		Like	TERM, this variable is
defined for the sake of C or unix programs. The
value format is SSSnDDD, where SSS is the stan-
dard	timezone	name	(e.g.,	EST),	n is the
difference in hours between the standard
timezone	and	UTC,	and	DDD is the daylight
timezone	name.

COMPILESYSTYPE defines the target unix system version.

SYSTYPE is the unix system version in use.

UNIXLOGIN specifies that a unix-style login sequence is to be
used in place of the domain login sequence. This
feature is available in the Display Manager,
Server Process Manager, and /com/login. Valid
values for UNIXLOGIN are true and false.
(There is an extended discussion of UNIXLOGIN
in a later section of this chapter.)

The DOMAIN/IX Environment 1-11

SECTION 1 Getting Started

UNIXNAMES specifies the name mapping scheme to use.
Meaningful values are SR8 and SR9. unix name
mapping changes are described in detail in a later
section of this chapter.

NAMECHARS specifies a set of characters to which special
semantics are attached during name translation.
This variable is meaningful only when using SR9
name mapping. It is described in detail later in
this chapter.

1.5 INSTALLING DOMAIN/IX
There are a number of options available when installing domain/ix.
Chapter 2 of this section covers these options in detail. It’s short, and
we suggest that both node administrators and system administrators read
it carefully before installing domain/ix. Further information about
installation is available in the unix release notes.

domain/ix can be installed with either single-version or multiple-version
unix support. The type of installation affects the availability of features
described in this manual and the other manuals shipped with domain/ix.
Before attempting to access a program or command described in the
domain/ix user documentation, find out which version(s) of unix are
installed at your site.

1.6 SUPPORT FOR MULTIPLE UNIX VERSIONS
The two versions of the unix operating system that domain/ix supports
provide	a	variety	of	similar	—	though	seldom	identical	—	system	services	
through kernel and library functions. It is frequently the case that, while
function x exists in both the sys5 and the bsd4.2 environments, the
semantics of the function and, in some cases, even its arguments may be
subtly different.

As an illustration, consider the kernel function setpgrp[2]. In Bell Sys-
tems 3 and 5, the function definition is

int setpgrp ()

It is defined to “set the process group id of the calling process to the pro-
cess id of the calling process and return the new process group id.” In 4.1
BSD and 4.2 BSD, there is an identically-named function with similar
semantics but a different calling sequence. The Berkeley function

setpgrp (pid, pgrp)
int pid, pgrp ;

“sets the process group of the specified pgrp. Zero is returned if success-
ful; -1 is returned and errno is set on a failure.”

1-12 The DOMAIN/IX Environment

SECTION 1 Getting Started

Nearly every non-trivial C program written to run under unix is written
with the assumption that the run-time environment will be unix software
of a certain lineage (Bell or Berkeley) or even a specific version (Bell Sys-
tem V or 4.2 BSD). The unix version acts as a modifier of the compile-
time environment, and, to a greater extent, of the environment in which
the program executes. Our multiple version support is based on this
assumption. Here’s how it works.

At compile time, you select the version of unix for which your program
is targeted. This version selector is called the SYSTYPE. The value of
SYSTYPE determines, among other things, which version of
/usr/include the compiler goes to when it needs an include file. The
object module produced by the compiler is stamped with the SYSTYPE
that was in effect when the module was compiled. When the program is
executed, the loader checks this stamp and makes sure that the proper
semantics and calling sequences are used when invoking system and
library functions.

domain/ix supports the following SYSTYPEs.

sys5 Bell System 5 release 2

bsd4.2 Berkeley 4.2bsd

sys3 Bell System 3, provided for backward compatibility.

bsd4.1 Berkeley 4.1bsd, provided for backward compatibility

any Declares that the program is independent of a particular
unix version (highly unlikely).

There are several ways to express a systype to the C compiler. You may
include it in the source file itself by using the #systype directive (sup-
ported by the domain C compiler) followed by one of the values listed
above. If you use #systype, it must be the first non-comment statement
in the source. For example;

#systype sys5
main()
{
setpgrp () ;
}

The systype may also be specified on the compiler command line. For
/com/cc (the domain C compiler), this takes the form -systype value.
For /bin/cc (the domain/ix interface to /com/cc), it takes the form
-Tvalue. For example, in the aegis shell, say

$ cc berkprog.c -systype bsd4.2
In the C Shell, it would be

% cc -Tsys5 bellprog.c

The DOMAIN/IX Environment 1-13

SECTION 1 Getting Started

If you specify one systype on the command line and a different one in the
file, the compiler will object. If you don’t explicitly specify a systype in
the source text or on the command line, the value of systype is inherited
from an environment variable called COMPILESYSTYPE.

If the COMPILESYSTYPE environment variable exists, its value, which
must be one of the strings listed above, is used. If COMPILESYSTYPE
doesn’t exist, the systype is inherited from the SYSTYPE environment
variable. For example, if you wanted to compile all programs to run in a
sys5 (Bell System 5) environment, you would set COMPILESYSTYPE (in
a sys5 Bourne Shell) as follows.

COMPILESYSTYPE=sys5
export COMPILESYSTYPE

In a C Shell, the line would be:

% setenv COMPILESYSTYPE sys5
As long as COMPILESYSTYPE was thus set, all C programs would be
compiled to run in the sys5 environment. For backward compatibility, if
neither COMPILESYSTYPE nor SYSTYPE environment variables exist,
the object file is stamped as having a SYSTYPE of sys3 (UNIX System
III).

1.6.1 Name Space Support
The unix file system has traditionally contained a small number of sys-
tem directories with well-known names (/usr, /bin, /etc, /dev, and
/tmp). The structure and content of these directories differ with differing
versions of unix. To support identically named Bell and Berkeley ver-
sions of these directories on the same domain file system, we have intro-
duced “symbolic,” or “variant” links. Unlike regular links, symbolic links
allow a portion of the link text to be replaced by an environment vari-
able.

Symbolic links placed in your node’s root directory during the installa-
tion procedure allow programs to use either the sys5 or bsd4.2 versions of
the /bin, /etc, and /usr directories (/tmp and /dev are, of course, com-
mon to both). Although the links to /bin, /usr, and /etc are normally
created by the installation script, you may at some point need to create
(or re-create) such links yourself using the /com/crl command. For
example, to create a SYSTYPE-dependant link for /bin, use the com-
mand line below.

% /com/crl /bin ’$(systype)/bin’

Note: You must use the aegis command /com/crl here. The unix
command ln won’t work. Note also that the single quotes
around the link text are required. Otherwise the dollar sign
will be interpreted as a shell metacharacter.

1-14 The DOMAIN/IX Environment

SECTION 1 Getting Started

The SYSTYPE environment variable is used to select the unix file sys-
tem variant, and therefore, commands, libraries, spool directories, and so
on. The top-level domain/ix	directory	organization	is	as	follows:

Name Object
Type

Major Subdirec-
tories

/usr
/bin
/etc
/dev
/bsd4.2
/bsd4.1
/sys5
/sys3
/tmp

symbolic link
symbolic link
symbolic link
normal link
directory
directory
directory
directory
link

-
-
-
-
/usr, /bin, /etc
/usr/include
/usr, /bin, /etc
/usr/include

The variant links for sys3 and bsd4.1 are limited to /usr/include. Refer-
ences to other sys3 directories are resolved as they would be for sys5.
References to other bsd4.1 directories are resolved as they would be for
bsd4.2. This ensures that programs compiled to run in the sys3 or bsd4.1
environments will get the proper include files, but it means that when
you invoke a sys3 or bsd4.1 environment for interactive use, you will not
be getting the “old” versions of, for example, commands and macro
packages.

1.6.2 Environment Switching
The object-module stamping scheme, described earlier, allows you to exe-
cute System 5 programs from a 4.2 BSD C Shell and vice versa, without
any knowledge of the unix version for which the program was targeted.
When you invoke a program that is stamped with a systype other than
any, the SYSTYPE environment variable for the process in which the
program is running is set to the value found in the object module. This
ensures that programs of one unix version that depend on certain system
files will continue to work when executed from a process running in
another version. The program /etc/systype displays the version stamp
of the specified object files.

A shell’s SYSTYPE value defines the version (sys5, bsd4.2) of system
directories that are searched when a command name is given; hence, it
defines the version of the command that is executed. To simplify the
execution of a version x command from a version y shell, we provide a
“set-version” command called ver[1]. You can use ver in three ways.

[1] Typing ver with no arguments displays the current value of SYS-
TYPE.

[2] Typing ver value changes SYSTYPE to value, thereby changing the
version of subsequently executed commands.

[3] Finally, ver value command executes the value version of command
but does not change SYSTYPE.

The DOMAIN/IX Environment 1-15

SECTION 1 Getting Started

For example

% ver What version am I using?
bsd4.2
% ver sys5 id Execute the sys5 version of id
uid=212(kate) gid=38(unix)
% ls Execute the bsd4.2 version of ls
prog.c prog.o testfile
% ver sys5 set SYSTYPE to sys5
% ls do an ls
prog.c
prog.o
testfile
%

1.6.3 Getting Help
You can obtain information about available unix commands, system
calls, and functions with the man command. This command allows you
to select and display on-line versions of reference material from the
DOMAIN/IX Command Reference and the DOMAIN/IX Programmer’s
Reference. For example, to display the manual page for the command
who, type

man who
in any unix shell. The man command will then open a read window
containing a formatted version of the manual page(s) on the who com-
mand. See the information on the dm editor in Section 1, Chapter 4 of
the DOMAIN/IX Text Processing Guide for more information on how to
scroll through and search for patterns in these windows. While the
manual page is displayed, you may continue to execute shell commands
(including other man commands). When you’re finished reading the
manual page, type CTRL N to close the window.

Note: The man command, like all domain/ix unix commands, uses
the symbolic links in effect for the SYSTYPE of the shell in
which it is executed. When man is executed in a shell that
has a SYSTYPE of sys5, manual pages will come from
/sys5/usr/catman. When man is executed in a shell that has
a SYSTYPE of bsd4.2, manual pages will come from
/bsd4.2/usr/man.

In addition, the directory /usr/docs contains the source text for the
papers, tutorials, and articles included in the DOMAIN/IX User’s Guide
and the DOMAIN/IX Text Processing Guide. The file
/usr/docs/read_me includes brief instructions for printing these files at
your site.

1-16 The DOMAIN/IX Environment

SECTION 1 Getting Started

1.7 OTHER FEATURES OF DOMAIN/IX
In this section, we have collected miscellaneous facts that you may need
to know, especially if you are developing applications software to run on
your domain system.

1.7.1 Setting up a UNIX-Style Login Sequence
You may arrange for the dm, Server Process Manager, and /com/login
to use a unix-style login sequence by including the following line in a dm
startup file.

put this line in
‘node_data/startup
if you want to use a
UNIX-style login sequence
env UNIXLOGIN true

When UNIXLOGIN is true:

•	the	prompt	is	changed	to	“login:”

•	the	login	name	can	be	typed	without	a	preceding	“l”

•	the	rejection	message	is	changed	to	“login	incorrect”

•	an	acceptance	message	read	from	/etc/motd. is displayed on the out-
put device. If the user is logging in to the dm, only the last line of
this file will be displayed due to space limitations (one line) in the dm
output window. If /etc/motd isn’t found, a standard aegis login
acceptance	message,	minus	the	“project”	and	“organization”	fields,	is	
issued.

Note: If /etc is a variant link (the usual case), SYSTYPE must be
set to bsd4.2 or sys5 or else the dm will not be able to locate
/etc/motd.

1.7.2 The Process Model
Both unix System V and 4.2 BSD use a one-program-per-process execu-
tion model. In this model, invocation of a new program causes a
separate	process	to	be	created	—	using	the	fork[2] system call. The
domain system favors a multiple-programs-per-process model in which
an invoked program runs at a new program level in the invoking process.
The domain/ix C Shell includes support for a shell variable called inpro-
cess which, when set, specifies in-process execution (the standard
domain process model) and when unset specifies the traditional bsd4.2
process model.

Note: The default value of inprocess is unset.

There are advantages and disadvantages to each process model. In the
Chapter 3 of Section 2 of this manual (about the C Shell), we supply

The DOMAIN/IX Environment 1-17

SECTION 1 Getting Started

details about the use of inprocess, including a summary of these advan-
tages and disadvantages.

1.7.3 Filename Mapping
While the domain/ix kernel is inherently case-insensitive, the set of char-
acters that may be used in both aegis and unix pathnames has been
greatly extended. domain/ix component names may contain any ascii
character except slash and null. All ascii printing characters are legal in
aegis (stored) component names except as noted below.

Illegal as first character space, tilde, slash, backslash, dot, tic
(grave accent)

Illegal as any character space, slash, backslash

If you need to retain the ability to access file system objects that are
named under the old rules, set the UNIXNAMES environment variable to
the value “sr8”, as shown below, to use SR8 name mapping.

add this line to your
‘node_data/startup
file to use SR8 name mapping rules
env UNIXNAMES ’sr8’

If UNIXNAMES is not present (or not set to ’sr8’), SR9 name mapping
rules are used.

Note: To ensure compatibility with existing products, all files on
the domain/ix SR9 distribution media are named under the
SR8 rules. This means that every site must initially set
UNIXNAMES to sr8.

When you’re ready to convert SR8 names to the new rules, run the pro-
gram /etc/cvtumap by typing

/etc/cvtumap -9 pathname(s) [-l]
Cvtumap converts components in pathname(s) from the SR8 to SR9
mapping scheme (or vice versa). If the -l switch is included, cvtumap
will list the names of files it has remapped. After running this program
on trees containing any mapped names, you may delete UNIXNAMES or
set it to SR9.

Under either set of naming rules, mapping is transparent to domain/ix
users. You may include any legal character in a component name simply
by typing it. However, uppercase alphabetics and certain other charac-
ters are stored as two-character escape sequences, and component names
are limited to 32 characters, including any escape characters that may be
required. A component name that consisted exclusively of uppercase
alphabetics, to cite an extreme case, would be limited to 16 characters,
since each character would be stored as a two-character escape sequence.

The table below shows how filename mapping works. Any characters not
listed in the first column of the table are passed unchanged to the

1-18 The DOMAIN/IX Environment

SECTION 1 Getting Started

domain naming server. Note that some characters require an escape
only if they are used as the first character of a component name.

Character
in
UNIX
name

Sequence
in
AEGIS
name

Sequence if char-
acter
is first in compo-
nent

<space>
:

A-Z
a-z
‘
~
\
.

:_
::

:a-:z
	a-z	
‘
~
:|
.

::_
::

:a-:z
	a-z
:‘
:~
:|
:.

In	addition	to	the	mapping	rules	summarized	above,	the	control	charac-
ters ↑A - ↑_ (hex 01-1F) are mapped using the representation

:#xx

where xx is the hex value of the control character. For example, a path-
name component Ab↑C would be mapped as

:ab:#03

As we mentioned above, any time a pathname component includes an
uppercase alphabetic, backslash, colon, or initial dot/tilde, that character
adds two characters to the total number of characters in the component.
For some examples, refer to the following table.

UNIX
name

AEGIS
name

Length (charac-
ters)

README
L-devices
passwd
.cshrc

:r:e:a:d:m:e
 :l-devices
passwd
 :.cshrc

12
9
6
7

aegis shells will display uppercase letters and other characters that
require an escape in their escaped form. If you need to create an upper-
case (or other escaped) character in an aegis shell, you will have to
escape it with a colon when you create the name.

By default, the SR9 mapping scheme causes all characters except slash
and null to be mapped and stored in component names. You may use
the NAMECHARS environment variable to specify that any or all of the
following characters should retain special meanings when read by the
naming server. The characters available are

tilde home directory (or “naming directory”)

backslash parent directory

The DOMAIN/IX Environment 1-19

SECTION 1 Getting Started

grave accent “this node” (e.g., ‘node_data)

For example, to retain the ability to access the naming directory with a
leading tilde, the parent directory with a backslash, and to reference
‘node_data, you would set NAMECHARS to the string ~ ‘\ by including
the following line in a dm startup file.

add this line to your
/sys/dm/startup or user_data/startup
file to use preserve the special significance
of tilde, grave accent, and backslash.
env NAMECHARS ’~ \‘’

We recommended that, in cases where references using special characters
are coded into programs, a network-wide standard be established for the
value of NAMECHARS. For programs that are intended to be tran-
sported to other networks or systems, special care must be taken with
respect to this feature.

1.7.4 Password and User Identification
Although the process of login verification and home-directory setting are
always handled by the domain system’s login mechanism, we provide a
means of generating an /etc/passwd file so that those unix programs that
need to access it will find what they expect to find there. In order to be
sure that new users at your site have accounts on both the domain net-
work registry and in /etc/passwd, a system administrator must invoke
this program, called crpasswd[1M], each time a new user account is
added to the network registry. You may use cron[1] to run crpasswd
on a daily basis. It will invoke crpasswd with a user-id of root.

1.7.5 File Protection
The normal protection mechanism in the domain environment is the
access control list (acl). Every object (file, directory, and so on) has an
acl associated with it. At SR9, the acl mechanism has been extended
to include support for all of the unix operating system’s access modes,
including directory search and delete-from-directory.

We provide a default_acl[2] system call that allows programs to specify
either unix access mode or acl as the means of object protection. When
the default is to use acls, files, pipes, and directories created with
creat[2], mknod[2], and open[2] are assigned an acl that corresponds
to the value of the mode specified in the call, modified by the current
umask value.

Note: If an object’s acl specifies more than one “group” owner, its
unix access mode will show group rights for only one of the
groups. In this case, ownership is determined by a uid sort
(the “first” group owner in the access control list is given
ownership) and is therefore non-deterministic.

1.7.6 Read, Write, and Execute Rights

1-20 The DOMAIN/IX Environment

SECTION 1 Getting Started

It is a characteristic of the domain system’s single-level store that file
system objects must be readable if they are to be executable or writable.
When a file is created with creat[2], it will be readable and writeable by
the owner, regardless of any mode specified with the creat. Use
chmod[1] to change these permissions if necessary. However, if you use
chmod to make a file “execute only” or “write only” for owner or any
group, the “read” bits will also be turned on. See the example below.

ls -l foo
-rwxrwxrwx 1 bob doc 9755 May 23 11:04 foo
chmod 111 foo
ls -l foo
-r-xr-xr-x 1 bob doc 9755 May 23 11:04 foo
chmod 555 foo
ls -l foo
-r-xr-xr-x 1 bob doc 9755 May 23 11:05 foo
#

1.7.7 Output from the C Compiler
The domain/ix C compiler uses the domain common code generation
mechanism. It produces a non-standard a.out file.

1.7.8 Debugging
domain/ix does not support the adb and sdb debuggers. Use the
domain Language Level Debugger (DEBUG) in place of these utilities.
See the DOMAIN Language Level Debugger Reference (Order No.
001525) for a description of DEBUG.

1.7.9 Library Organization
The domain/ix and DOMAIN C products are contained in two global
libraries that are automatically loaded at system startup. These
libraries, (/lib/unixlib and /lib/clib) are global. These libraries are
mapped into the node’s address space at run time, and all program glo-
bals are resolved by the loader. Libraries that are not loaded at run time
will require binding.

1.7.10 The Process Environment Flag
The domain system maintains a per-process flag that describes the
environment in which the process is running. This flag is used to identify
processes running in the domain/ix environment and to control how
access rights are applied to any objects that are created. When the flag
is set, system calls use filename mapping and protect objects according to
the access mode value supplied to system calls such as open, creat, and
mknod.

The DOMAIN/IX Environment 1-21

SECTION 1 Getting Started

1.7.11 Ownership of Files
When you create a file using the dm editor (see the DOMAIN/IX Text
Processing Guide), unix programs will see it as owned by “root” until
you explicitly specify another owner of the file using the chown[1] com-
mand. In this case, ownership is assigned to “root” only because the real
owner can’t be determined. You will not have to log in as “root” in
order to change the ownership of these files. Once ownership has been
assigned, it will not be affected by further editing with the dm editor.

Note: It	is	especially	important	to	recognize	this	phenomenon	when	
using the dm editor to create .login, .cshrc and .profile files,
since unix shells only read these files if they are owned by the
person opening the shell.

1.7.12 Networking Software
The bsd4.2 version of domain/ix includes full support for sockets and
other ingredients of Berkeley networking software. With BSD4.2 you can
use utilities such as rsh[1], rlogin[1], and telnet[1] to communicate with
other nodes on the ring. To support such usage, the bsd4.2 version of
domain/ix includes a limited implementation of domain tcp/ip. Unless
you also have the domain com-eth product, you will not be able to use
these utilities to communicate with other hosts (e.g., over an Ethernet).
The tcp/ip implementation provided with DOMAIN/IX TCP supports
communication on the domain ring only.

We ship the DOMAIN TCP/IP Reference Manual (order no. 003247)
with the documentation for the bsd4- 2 version of domain/ix. It includes
information you will need in order to configure domain nodes to use the
limited implementation of tcp/ip with domain/ix. Appendix D of that
manual provides special information for domain/ix users who do not
have the com-eth product.

1.8 HOW TO FORMAT ONLINE DOCUMENTS
The files in the /usr/doc directory are the ones from which the User’s
Guide and Text Processing Guide were made. If you want to troff these
files at your site, remember that:

•	All	files	that	end	in	.mm automatically source in the files
/usr/lib/macros/mmt (-mm macros for troff) and
/usr/lib/macros/mmtx (domain extensions to mmt). Files with the
.mm extension may not nroff especially well, and contain numerous
constructs	optimized	for	the	imagen CX laser printer. The hardcopy
versions of these files were prepared by piping troff output through
the catdvi and dviimp postprocessors from imagen.

•	All	files	that	end	in	.ms or .me were troffed using the -ms or -me
macros, respectively, and are in largely original form.

1-22 The DOMAIN/IX Environment

SECTION 1 Getting Started

Subdirectories under /usr/docs are tg (Text Processing Guide) and ug
(User’s Guide). The “refer” and “sendmail” documentation files are
kept in their own directories; /usr/doc/tg/refer.dir and
/usr/doc/ug/sendmail.dir.

Installation 2-1

SECTION 1 Getting Started

Chapter 2: Installing domain/ix

2.1 INTRODUCTION
There are two versions of domain/ix.

•	domain/ix sys5, based on release 2 of unix System V from AT&T
Bell Laboratories.

•	domain/ix bsd4.2, based on 4.2BSD from the University of California
at Berkeley.

You may install either or both on your node. In this chapter, we provide
detailed information on how to install domain/ix using the installation
script,	and	how	to	customize	your	installation	after	the	script	has	been	
run.

domain/ix software may be distributed on any of three types of media.

•	magtape

•	cartridge	tape

•	8-inch	floppy	disks

Once a system administrator has installed the file system on a node (or
nodes) on the network, users may install domain/ix on their own nodes.

2.1.1 Terms
We use the following terms when describing the installation procedure.

•	The	“Work	node”	is	the	node	on	which	you	enter	the	commands	that	
do software installation. The work node must be running stan-
dard SR9 software.

•	The	“Target	node”	or	target	volume	is	the	disked	node	whose	
software you are installing or updating. The target node must be
running standard SR9 software. The target node and the work node
may be the same node.

•	The	“Source	node”	or	source	volume	is	a	disked	node	on	which	the	
domain/ix file system has already been installed.

2.1.2 What Happens During Installation
Even though the actual installation process is handled by a script, it may
be	useful	to	know	—	in	a	general	way	—	what	happens	during	installa-
tion.

domain/ix makes use of several library files. These files (or links to
them) will be installed in the /lib directory of your node.

2-2 Installation

SECTION 1 Getting Started

/lib/clib These are the C language library functions.

/lib/unixlib These are additional unix functions that may be distri-
buted to unix licensees only.

In addition, installation will place the following directories (or links to
these directories) in the entry directory of your node.

/bin This directory includes the executable (binary) files for most of the
unix commands.

/etc This directory contains system administration files (e.g.,
/etc/passwd, the password file) and other files that may need to be
customized	for	your	installation.

/usr This contains library functions, on-line documentation, and a
variety of other programs that perform system services (e.g.,
uucp, the dictionary used by spell, and macro packages used by
troff).

Note: Both the domain C Language product and domain/ix put
files in the directory /usr/include as part of the installation
process. Where identically-named include files are installed
by both products, they are guaranteed to have identical func-
tionality. This means that you may install either product
(domain C or domain/ix) first without running a risk of cor-
rupting the contents of /usr/include when the other is
installed.

Copies of the /bin and /usr directories may exist on each node. How-
ever, installation normally creates links to such “public” areas as
/usr/spool and /usr/lib/uucp. It also normally creates a link to a central
copy of /etc.

The installation process also creates a link to /tmp as shown below.

$ crl /tmp ‘node_data/tmp
This allows a /tmp directory for every diskless node that is partnered
with your node as well as a /tmp of your own. While this may place
added demands on disk resources, it will ensure that there are no naming
conflicts in the temporary files built in /tmp by, for example, troff.
When all of the required links, libraries, and files have been placed on
your node, you will be prompted to shut down and restart the node.
This allows the new libraries to be mapped into the node’s address space.

2.1.3 Types of Installation
There are two types of installations: administrative and user. The
administrative install procedure installs a complete domain/ix file system
on a node (or nodes) in the network. This ensures that those files and
directories that need specific access rights are set up correctly, and that
spool directories and other “public” areas of the file system will only

Installation 2-3

SECTION 1 Getting Started

exist in one place. Subsequent user installs allow individuals to mount a
subset of the file system on their own nodes. Before any user can run a
user install, the administrative install must be complete.

2.2 RUNNING THE ADMINISTRATIVE INSTALL
To run the administrative install, you must have sys_admin rights. That
is to say, you will need to have read/write and add/delete rights to all
public parts of the file system, as well as rights to add/change acl’s on
all public file system objects. The actual installation is handled by an
interactive aegis shell script that must first be copied from the distribu-
tion media onto a target node.

A system administrator should use the following procedure to install
domain/ix software from the distribution media.

[1] Use the aegis command wd (WORKING_DIRECTORY) to set your
work node’s working directory to the entry directory of the target node.

$ wd //target_node

[2] Use the aegis command rbak (READ_BACKUP) command to get
the install_sysadmin script from the distibution media.

$ rbak -dev d -f 1 install_sysadmin -as install_domain_sysadmin -ms -l

 where d is one of ct for cartridge tape (DN550 only), m for magtape, or
f for floppy disk.

[3] When the installation script has been copied to your disk, use the wd
command to set your work node’s working directory to the /install
directory on the target node.

$ wd //target_node/install

[4] Type

$ install_sysadmin

 to run the administrative installation script. The script is interactive.
It will present you with options and let you select the one(s) appropriate
to the type of installation you’re doing. It will also let you restart a
partially-completed install.

[5] After the installation is complete, the following message will appear.

 domain/ix sr9 installation complete

 ** please shutdown, reset, and restart the target node **

 Before shutting down the target node, examine the transcript pad for
error messages. If any errors occurred during the installation, repeat
the installation procedure.

[6] If no errors occurred, shut down the target node by pressing the CMD
key and typing the dm command

2-4 Installation

SECTION 1 Getting Started

Command: shut

 The dm will exit and the message

SHUTDOWN SUCCESSFUL

 will be displayed. At this point, type

RE

 followed by two carriage returns. This will cause the Mnemonic
Debugger (md) to display its prompt. Restart the node by typing

> EX AEGIS

 at the md prompt.

[7] After you have restarted the target node, log in and run the
/install/fix_cache program.

$ /install/fix_cache

[8] Edit the template in /install/preserve as described in the next section.

2.2.1 The User Install Template
The administrative install sets up templates to which subsequent user
installs refer when creating links to file system objects. These templates
will be on the target node’s disk in the files
/preserve/install/domainix_template_sys5 and
/preserve/install/domainix_template_bsd4.2. A typical template for a
site	at	which	both	versions	have	been	installed	—	on	a	target	node
named	//ice	—	is	shown	below.

•	//ice/preserve/install/domainix_template_bsd4.2:

NETWORK CONFIGURATION: both
BIN: //ice
ETC: //ice
USR/ADM: //ice
USR/BIN: //ice
USR/DICT: //ice
USR/DOC: //ice
USR/INCLUDE: //ice
USR/LIB: //ice
USR/LIB/UUCP: //ice
USR/MAN: //ice
USR/SPOOL: //ice
USR/UCB: //ice
SR8: //ice
#

Installation 2-5

SECTION 1 Getting Started

•	//ice/preserve/install/domainix_template_sys5:

NETWORK CONFIGURATION: both
BIN: //ice
ETC: //ice
USR/BIN: //ice
USR/CATMAN: //ice
USR/DOC: //ice
USR/INCLUDE: //ice
USR/LIB: //ice
USR/LIB/UUCP: //ice
USR/NEWS: //ice
USR/PUB: //ice
USR/SPOOL: //ice
USR/MAIL: //ice
SR8: //ice
#

If you (as an administrator) need to move parts of the file system to other
nodes, you’ll have to edit these templates so that they reflect the changes
you have made. The edited versions below show that the man pages for
both versions have been moved to node //doc, and that /usr/spool has
been moved to node //beanbag.

•	//ice/preserve/install/domainix_template_bsd4.2:

NETWORK CONFIGURATION: both
BIN: //ice
ETC: //ice
USR/ADM: //ice
USR/BIN: //ice
USR/DICT: //ice
USR/DOC: //doc
USR/INCLUDE: //ice
USR/LIB: //ice
USR/LIB/UUCP: //ice
USR/MAN: //doc
USR/SPOOL: //beanbag
USR/UCB: //ice
SR8: //ice
#

•	//ice/preserve/install/domainix_template_sys5:

2-6 Installation

SECTION 1 Getting Started

NETWORK CONFIGURATION: both
BIN: //ice
ETC: //ice
USR/BIN: //ice
USR/CATMAN: //doc
USR/DOC: //doc
USR/INCLUDE: //ice
USR/LIB: //ice
USR/LIB/UUCP: //ice
USR/NEWS: //ice
USR/PUB: //ice
USR/SPOOL: //beanbag
USR/MAIL: //beanbag
SR8: //ice
#

Note: When you copy a system directory of file from one node to
another, remember to use the -sacl option to cpt (or cpf) so
that the object’s acl’s are retained during the copying process.

2.3 THE USER INSTALL
Once the administrative install is complete, the system administrator
should inform the other users at the site that domain/ix is available for
general use. Individual users can install those parts of the file system
that they need on their own nodes by running the install script and
selecting the domain/ix option.

This script is highly interactive. It allows you to select from a menu of
available choices, gives you the option of creating links to (rather than
copies of) various file system objects, and guarantees that individual
nodes will have the necessary links to /usr/spool/uucp and other files
and directories that must be shared.

2.4 FILES, LINKS, AND DIRECTORIES
The following two tables are derived from the installation script. They
summarize	the	size	of	major	file	system	objects	that	are	associated	with	
each version of domain/ix. In addition, they include our recommenda-
tion as to what form the object should take on the average user’s disk.

Installation 2-7

SECTION 1 Getting Started

sys5
Name Size	

(blocks)
Recommended instal-
lation

bin
usr/bin
usr/catman
usr/doc
usr/include
usr/lib
usr/pub

1490
3060
1730
2120
170
2200
3

as local directory
as local directory
as link
as link
as local directory
as local directory
as local directory

bsd4.2
Name Size	

(blocks)
Recommended instal-
lation

bin
usr/adm
usr/bin
usr/dict
usr/doc
usr/include
usr/lib
usr/man
usr/ucb

1220
2
2430
350
2120
170
1700
2800
2150

as local directory
as local directory
as local directory
as link
as link
as local directory
as local directory
as link
as local directory

Installation always makes links to the following file system objects.

•	/usr/spool/uucp

•	/usr/spool/uucppublic

•	/usr/spool/mail

•	/etc

Where	disk	space	must	be	conserved,	it	is	possible	to	link	to	any	(or	—	if	
necessary	—	all)	of	the	major	file	system	objects	associated	with	
domain/ix. There are no specific performance penalties attached to, for
example, having /bin as a link rather than a resident object on your disk.

2.4.1 SYSTYPE and Symbolic Links
A key ingredient in the domain/ix formula for supporting multiple ver-
sions of unix is the variant link or symbolic link. A symbolic link is a
link that resolves differently for different values of the environment vari-
able SYSTYPE. The prototype command line for creating a symbolic
link is

/com/crl name ’/$(systype)/name’

When the domain naming server resolves this link, it substitutes the
current value of systype into the space occupied by $(systype). To take a
specific case, most installations would use symbolic links of the form

2-8 Installation

SECTION 1 Getting Started

$(systype)/bin
$(systype)/etc
$(systype)/usr

in place of “real” /bin, /etc, and usr directories. References to any of
these objects can then be resolved to links (or, if desired, actual direc-
tories) named /bsd4.2, /sys5, or any other legal SYSTYPE, in the entry
directory of the node.

Note: You cannot use the unix command ln[1] to create symbolic
links. You may, however, use /com/crl unix and aegis shells.
The installation process will create the necessary symbolic
links based on the options you choose when running the install
script.

The installation process will create the necessary symbolic links based on
the options you choose when running the install scripts.

Index 1

A
a.out, DOMAIN format 1-20
ACL (access control list) 1-19, 2-3
 to retain during copy 2-6
AEGIS 1-2
alarm, DM window 1-5
AUX names,
 and DOMAIN/IX 1-17

B
backslash,
 as “parent” character 1-18

C
cc, compiler output 1-20
CMD, keyboard key 1-5
cmdf , DM command 1-8
COMPILESYSTYPE,
 environment variable 1-13
control characters,
 in name components 1-18
cp, DM command 1-8
crl, AEGIS command 1-13, 2-7
crpasswd, program 1-19
cursor, to move 1-6
cvtumap,
 name conversion program 1-17

D
Display Manager (DM) 1-3
 window alarm 1-6
 window legend 1-4
DM commands
 cmdf 1-8
 cp 1-8
 to execute 1-5
DM editor
 ownership of files created by 1-21
 pads 1-3
DOMAIN COM-ETH product 1-21
DOMAIN system,
 architecture of 1-2
DOMAIN/IX,

distribution media 2-1

E
EDIT, keyboard key 1-6, 1-8
environment variables
 COMPILESYSTYPE 1-13
 NAMECHARS 1-18
 SYSTYPE 1-13, 2-7
 UNIXLOGIN 1-16
 inherited by dm 1-9
 list of 1-10
 maintained by DM 1-8
 passed to new process 1-9

F
file, to edit 1-6
file system,
 DOMAIN distributed 1-2

I
installation,
 administrative, to run 2-3
 user, to run 2-6
installation, script for 2-1

K
key definitions, standard 1-7
key definitions, UNIX 1-7

L
Library	organization	 1-20
link
 symbolic 1-13
 created during installation 2-2, 2-7
 to create 1-13
 to public parts of file system 2-2

M
man command 1-15
mouse 1-6

Index

2 Index

SECTION 1 Getting Started

N

name mapping
in DOMAIN/IX 1-17
to change 1-17
networking software,
supported by DOMAIN/IX 1-21
NEXT WNDW, keyboard key 1-7

P
pad
 DM edit 1-3
 DM input 1-4, 1-5
DM output 1-5
to close 1-4
password file, to create 1-19
permissions,
required by DOMAIN/IX 1-20
POP, keyboard key 1-5
process environment flag 1-20
prompt, login 1-5

R
READ, keyboard key 1-8
read rights,
and execute/write rights 1-20
root,
 as “owner” of DM editor files 1-21

S
SHELL, keyboard key 1-8
source node 2-1
supplementary documents 1-15
systype, compiler directive 1-12
SYSTYPE,
 object module stamp 1-12
SYSTYPEs, list of legal 1-12

T
TAB, keyboard key 1-8
target node 2-1
TCP/IP 1-21
tilde, as home character 1-18
tmp, link to 2-2
touchpad 1-6
transcript pad, to scroll through 1-4

U
UNIX versions,

supported by DOMAIN/IX 1-12

V
ver, command 1-14
version of DOMAIN/IX,
 list of 1-12
 to set/change 1-14

W
window, to pop 1-5
work node 2-1

SECTION 2

SHELLS

Section 2-1

CONTENTS

1. An Overview of Shell Types 1-1
1.1 INTRODUCTION 1-1
1.2 UNIX SHELLS 1-1

1.2.1 Opening a Default UNIX Shell 1-1
1.2.2 Opening Additional UNIX Shells 1-3
1.2.3 Using a Terminal 1-4

1.3 DIFFERENCES BETWEEN UNIX AND AEGIS
 SHELLS 1-5

1.3.1 Command Search Rules 1-6
1.3.2 Shell Program Execution 1-7
1.3.3 Wildcards 1-7

1.4 Differences in Valid Pathnames 1-8
1.5 INPROCESS Vs. FORKED EXECUTION 1-8

1.5.1 The inprocess Variable 1-8
1.5.2 Changes of Working Directory 1-8

2. An Introduction to the Bourne Shell 2-1
2.1 INTRODUCTION 2-1

2.1.1 Special Key Definitions 2-1
2.1.2 Simple Commands 2-2
2.1.3 Background Commands 2-2
2.1.4 Input/Output Redirection 2-2
2.1.5 Pipelines and Filters 2-3
2.1.6 Generating Filenames 2-4
2.1.7 Quotation 2-5
2.1.8 Prompting 2-6
2.1.9 Starting the Bourne Shell 2-6

2.2 SHELL PROCEDURES 2-7
2.2.1 Control Flow Using for 2-8
2.2.2 Control Flow Using case 2-9
2.2.3 Here Documents 2-10
2.2.4 Shell Variables 2-12
2.2.5 The test Command 2-14
2.2.6 Control Flow Using while 2-15
2.2.7 Control Flow Using if 2-16
2.2.8 Command Grouping 2-17
2.2.9 Debugging Shell Procedures 2-18
2.2.10 The man Command 2-18

2.3 KEYWORD PARAMETERS 2-19
2.3.1 Parameter Transmission 2-20
2.3.2 Parameter Substitution (bsd4.2) 2-20
2.3.3 Parameter Substitution (sys5) 2-21
2.3.4 Command Substitution 2-22
2.3.5 Evaluation and Quoting 2-23
2.3.6 Error Handling 2-25
2.3.7 Fault Handling 2-26

2

SECTION 2 Shells

2.3.8 Command Execution 2-28
2.4 A SUMMARY OF BOURNE SHELL GRAMMAR 2-30
2.5 SUMMARY OF BOURNE SHELL METACHARACTERS
 AND RESERVED WORDS 2-31

2.5.1 Syntactic 2-31
2.5.2 Patterns 2-31
2.5.3 Substitution 2-31
2.5.4 Quoting 2-31
2.5.5 Reserved Words 2-32

3. Using the C Shell 3-1
3.1 INTRODUCTION 3-1
3.2 FIRST STEPS 3-1

3.2.1 Special Key Definitions 3-1
3.2.2 Starting the Shell 3-2
3.2.3 The Basic Notion of Commands 3-3
3.2.4 Flag Arguments 3-4
3.2.5 Output to Files 3-4
3.2.6 Metacharacters in The C Shell 3-5
3.2.7 Input From Files; Pipelines 3-5
3.2.8 Filenames 3-6
3.2.9 Quotation 3-10
3.2.10 Terminating Commands 3-10

3.3 STARTING, STOPPING, AND MODIFYING THE C
 SHELL 3-12

3.3.1 Opening a C Shell When You Log In 3-12
3.3.2 Login and Logout Scripts 3-12
3.3.3 Shell Variables 3-14
3.3.4 History 3-15
3.3.5 Aliases 3-18
3.3.6 More Redirection; >> and >& 3-19
3.3.7 Jobs; Background, Foreground, or Suspended 3-19
3.3.8 Working Directories 3-24
3.3.9 Useful Built-in Commands 3-27

3.4 SHELL CONTROL STRUCTURES AND SHELL
 SCRIPTS 3-28

3.4.1 Invocation and the argv Variable 3-28
3.4.2 Variable Substitution 3-29

3.5 EXPRESSIONS 3-31
3.5.1 A Sample Shell Script 3-32
3.5.2 Other Control Structures 3-34
3.5.3 Supplying Input to Commands 3-35
3.5.4 Catching Interrupts 3-36
3.5.5 Additional Options 3-36

3.6 OTHER SHELL FEATURES 3-37
3.6.1 Loops at the Terminal; Variables as Vectors 3-37
3.6.2 Braces { ... } in Argument Expansion 3-38
3.6.3 Command Substitution 3-38

 3

SECTION 2 Shells

3.6.4 Other Details Not Covered Here 3-39
3.7 A SUMMARY OF C-SHELL METACHARACTERS 3-39

3.7.1 Syntactic Metacharacters 3-39
3.7.2 Filename Metacharacters 3-39
3.7.3 Quotation Metacharacters 3-40
3.7.4 Input/Output Metacharacters 3-40
3.7.5 Expansion/substitution Metacharacters 3-40
3.7.6 Other Metacharacters 3-40

Shells Overview 1-1

Chapter 1: An Overview of Shell Types

1.1 INTRODUCTION
The domain/ix user has three types of shells available: two unix Shells
and a third shell, called the aegis Shell, that is the standard shell used
by the domain system’s aegis operating system. (domain/ix users who
have both the sys5 and bsd4.2 versions installed will actually have two
versions of the Bourne Shell available.) These shells all offer such features
as I/O redirection, pipes, shell procedures (scripts), and metacharacters
(wildcards). And while most of these similar features have the same
underlying	function,	the	details	of	implementation	differ	—	markedly,	in	
some cases.

In this chapter, we will point out the subtle differences between these
shells, our aim being to alert you to those things that, while similar on
the surface, work a little differently in each shell. We will also provide a
very brief discussion of the aegis Shell and tell you where to look for
additional information. Chapters 2 and 3 of this section are detailed
explanations of the features of the Bourne and C Shells, respectively.
The aegis Shell is covered in detail in the DOMAIN System User’s
Guide.

Note: Before reading any further in this section, please read Section
1 of this manual. It contains important information about
installing and using domain/ix. Unless you read and under-
stand this information, you may not be able to take full
advantage of the features of all our unix Shells.

1.2 UNIX SHELLS
This section explains how to start a unix Shell on a domain node or on a
terminal connected to a domain node.

1.2.1 Opening a Default UNIX Shell
Most domain/ix users will want to have a unix Shell created automati-
cally whenever they log in. You may arrange to have the dm (Display
Manager) open a unix shell:

•	whenever	any	user	logs	in	to	the	node

•	whenever	you	log	in	to	a	node

If you want every user of a node to get a unix shell when they log in,
add a start_sh or start_csh command line to one of the following files.

1-2 Shells Overview

SECTION 2 Shells

•	For	a	node	that	has	its	own	disk,	the	file	is
/sys/node_data/startup_login.type (where type is the type of display
the node has.)

•	For	a	diskless	node	the	file	(on	the	partner	node)	is
/sys/node_data.xxxx_startup, where xxxx is the node ID of your node.

Individual users who want to get a unix shell when they log in should
edit their own user_data/startup_login.type.

The file below is for a node that has a 19-inch landscape display (e.g., a
DN 320). It will be executed whenever anyone logs in to this node. We
have added lines to it that create a process running /bin/start_sh and
one that runs /bin/start_csh. The pound signs (#) indicate comment
lines. In addition, actual command lines in the file have been set in bold
face to make them stand out in this example. (In practice, the dm has no
such capability.)

Note: In this file, we make the important assumption that the
environment variable SYSTYPE has already been set (in the
dm command file ‘node_data/startup.type. We provide
instructions for doing this in Section 1, Chapter 2 of this
manual.

Shells Overview 1-3

SECTION 2 Shells

STARTUP_LOGIN.19L
executed for every user logging in to
this node.
#
assumes that the file ‘node_data/startup
includes the line
env SYSTYPE ’sys5’
#
Open an Aegis Shell in a rectangular window
at the the left of the screen (commented out)
#(0,500)dr;(799,955)cp /com/sh

Open a Bourne Shell in the upper left-hand
corner of the screen. (SYSTYPE is sys5)
(0,0)dr;(430,300)cp /bin/start_sh
#
Now open a bsd4.2 C Shell. (SYSTYPE in this
shell will be bsd4.2)
(500,0)dr; (1023,500)cp /bsd4.2/bin/start_csh
#
Execute the user’s personal startup file
(it may contain other key definitions
or may start other processes)
#
cmdf user_data/startup_dm.19l
#

Note that the second cp command explicitly referenced /bsd4.2/bin,
since the Display Manager would override another env command with
the SYSTYPE value it inherited from the C Shell process.

The default sys5 Bourne Shell prompt is a pound sign (hash mark) fol-
lowed by a space.

#

The default bsd4.2 Bourne Shell prompt is the character sequence

B$
followed by a space. The default C Shell prompt is a percent sign fol-
lowed by a space.

%
Any of these prompts can be changed from within the shell.

1.2.2 Opening Additional UNIX Shells
In addition to the shells created at login, you may need to create (and
remove) other shells while you are logged in. There are several ways to
do this. If you have invoked one of the key definitions files discussed in

1-4 Shells Overview

SECTION 2 Shells

Section 1, you may simply press the (shifted) SHELL key. The
unix_keys and sys5_keys key definitions files redefine this key to invoke a
Bourne Shell. The bsd4.2_keys file redefines this key to invoke a C Shell.

If necessary, you can change the definition of the SHELL key. The unix_
keys file normally includes the line

kd l5s cp /bin/start_sh ke

which opens a login Bourne Shell (/bin/start_sh). If you would prefer to
have SHELL open a C Shell instead, change this line to

kd l5s cp /bsd4.2/bin/start_csh ke

which specifies that /bsd4.2/bin be used, and that the /start_csh pro-
gram be invoked.

As an alternative to using the SHELL key, you can simply tell the dm
to create a process and run a shell in it. To create a process that runs a
Bourne Shell, press the CMD key and enter the dm command

Command: cp /bin/start_sh
To create a process that runs a C Shell, press the CMD key and enter
the dm command

Command: cp /bin/start_csh
When you do this, the display manager creates the specified shell process
in a window with a transcript pad and input pad. As we described in the
previous section, the SYSTYPE inherited from the most recent cursor
position will determine the /bin that is used. You may also specify
/sys5/bin or /bsd4.2/bin to force creation of a shell with a given systype.

1.2.3 Using a Terminal
If you need to access a domain node via a tty device (an ascii terminal),
use the following procedure to create a unix Shell accessible via either a
hard-wired or phone line connection to a domain node’s sio (Serial Input
Output) line.

From a shell running on the node to which the device is connected, type

start_sh /dev/sion

where n is the number of the SIO (Serial Input/Output) line to which the
terminal is connected.

You may achieve the same effect by going to the dm input window and
typing

Command: cpo /bin/start_sh /dev/sion

The resulting shell process is called sh.n for Bourne Shells, or csh.n for C
Shells; n is the unix process ID. Running a unix Shell on an sio line
affects the following sio line characteristics:

Shells Overview 1-5

SECTION 2 Shells

Option Meaning
-QUIT
-INT
-NOSUSP
-DCD ENABLE

Quits enabled; default char ↑]
Interrupts enabled; default char ↑C
Process suspension not enabled
Loss of data carrier detect will cause hangup fault

The last close of the sio line will cause the node’s serial i/o hardware to
drop the dtr (Data Terminal Ready) signal. This causes most modems
to hang up the phone. For more information about sio line characteris-
tics, refer to the TCTL command in the DOMAIN System Command
Reference.

When the start_sh and start_csh programs are used to start a unix
shell on an sio line, they will bind various functions (signals) to control
characters as noted below.

In the C Shell, the following definitions will be in effect.

erase
kill
interrupt
suspend
eof
quit

↑H (backspace)
↑U
↑C
↑Z
↑D
↑\

In the Bourne Shell, the definitions are:

erase
kill
interrupt
eof
quit

↑H (backspace)
↑U
DEL
↑D
↑\

Note: No suspend character is enabled for the Bourne Shell.

When you log in via the siologin process, the shell you get is determined
by a line in the file ~ user_data/startup_sh. Put the pathname to the
shell you want to use in this file. For example,

dm file ~ user_data/startup_sh
this example runs a sys5 Bourne Shell
/sys5/bin/start_sh

1.3 DIFFERENCES BETWEEN UNIX AND AEGIS SHELLS
There are several differences between the aegis and unix Shells that the
domain/ix user should keep in mind. There are differences in the follow-
ing areas:

•	command	search	rules

1-6 Shells Overview

SECTION 2 Shells

•	shell	program	execution

•	wildcards

•	pathname	mapping

•	command	names	and	functions

A program is considered to be running in the aegis environment if it has
been invoked in an aegis Shell and in a unix environment if it is
invoked in a unix Shell, Keep this in mind during the discussions of
metacharacters and command search rules that follow.

Note: Almost all aegis commands reside in the /com directory.

1.3.1 Command Search Rules
Please read the material on SYSTYPE and multiple version support in
Section 1, Chapter 1 of this manual. Command search rules are modified
by the SYSTYPE environment variable.

Each	shell	—	aegis as well as unix	—	has	a	built-in	command	search	
path. The exact path depends on the shell. Any unix Shell will start by
looking in:

•	the	current	directory,	then

•	/bin, then

•	/usr/bin and

•	(C	Shell	only)	/usr/ucb.

You can change the default search rules in any of our unix Shells by set-
ting the shell variable called PATH. This topic is covered in detail in the
chapters about the individual shells.

In the aegis Shell, the default command search proceeds in this order.

1. Working directory.

2. Personal command directory, ~ com

3. aegis command directory, /com

aegis	Shells	do	not	recognize	the	PATH	variable,	but	you	can	change	
aegis Shell command search rules with the shell command csr
(COMMAND_SEARCH_RULES). To add the directory /sys5/bin to
the aegis Shell’s command search path, execute the following aegis shell
built-in command.

$ csr -a /sys5/bin

Note: Since csr is built in to the aegis shell, you cannot execute it
from a unix shell.

Shells Overview 1-7

SECTION 2 Shells

domain/ix users may want to change the aegis environment search rules
so that the aegis Shell searches the /bin directory after it has searched
the /com directory.

1.3.2 Shell Program Execution
A shell program (shell script), is a text file that contains a series of aegis
or unix commands. You can specify which shell (Bourne, C, or aegis) is
to interpret and execute a shell program by starting the first line of each
shell script with the character sequence #! followed by the pathname of
the desired shell, as shown below.

#!/com/sh Specifies an aegis Shell script.

#!/bin/sh Specifies a Bourne Shell script. In this case, the Bourne
Shell used is the one found in /SYSTYPE/bin. If you need
to be more specific, you may say:

 #!/bsd4.2/bin/sh to specify a bsd4.2 Bourne Shell.

 #!/sys5/bin/sh to specify a sys5 Bourne Shell.

#!/bin/csh Specifies a C Shell script.

The following example shows how this line is used in a Bourne Shell
script.

#! /bin/sh
#
for i do
 case . . .
 . . .
 . . .
 . . .
 . . .
 esac
done

Any amount of white space may appear between the exclamation point
and the shell pathname.

The C Shell invokes /bin/sh (the Bourne Shell) to interpret shell scripts
when there is no explicit #! shell designation. In other shells, a script
with	no	shell	specification	line	will	be	interpreted	—	with	unpredictable	
results	—	by	the	shell	in	which	it	was	invoked.

1.3.3 Wildcards
Every shell has its own metacharacters (wildcards). Chapters 2 and 3 of
this section detail the wildcard-handling mechanisms of the Bourne and
C Shells. The DOMAIN System Command Reference has complete infor-
mation on aegis Shell wildcards. We will not elaborate on the
differences	here,	except	to	state	that	the	differences	are	important	—	
even among the various unix Shells.

1-8 Shells Overview

SECTION 2 Shells

While all unix Shells perform some type of wildcard expansion, the aegis
Shell passes wildcards to commands unmodified. aegis commands call a
handler to perform wildcard expansion, whereas unix commands expect a
command line that has already been expanded by the shell.

As a result of this, the following precepts should govern your use of wild-
cards when executing a unix command in an aegis Shell, or vice-versa.

•	If	you’re	executing	an	aegis command in a unix Shell, protect the
aegis wildcard characters with the shell’s quote mechanism. This
differs from shell to shell. See Chapters 2 and 3 of this section for
more.

•	If	you’re	executing	a	unix command in an aegis Shell, do not use any
wildcards.

1.4 Differences in Valid Pathnames
As we mentioned in Section 1, Chapter 1, there are some differences
between the characters that are legal in an aegis pathname and those
that are legal in a unix pathname. However, we perform filename map-
ping at the system call level (open[2], creat[2], chdir[2] and so on) so
that you can specify pathnames which contain a greater variety of char-
acters than those allowed in the aegis environment.

All domain/ix unix commands as well as the aegis commands cc, pas,
and ftn (the C, Pascal, and fortran compilers respectively) perform
filename mapping when invoked in a unix Shell.

1.5 INPROCESS Vs. FORKED EXECUTION
Normally, aegis and Bourne Shells run a command in their own process
rather than by forking a child process. The shells will run a command in
a separate process only if the command is part of a pipeline or if it is
explicitly directed to run in the background. In order to support job
control in the C Shell, we have added a shell variable that determines the
process model used by that shell.

1.5.1 The inprocess Variable
A C Shell variable called inprocess controls whether or not the C Shell
runs a command as a forked child or as part of the shell process itself.
The default value of inprocess is unset, which means that the C Shell
will always fork a new process to run a new command. For more on
inprocess, see Chapter 3 of this section.

1.5.2 Changes of Working Directory
Changes in the current working directory made with the aegis wd com-
mand are not effective across program invocations. If a program uses wd
to change the current working directory, the shell returns to the original
working directory after it executes the command.

The Bourne Shell 2-1

SECTION 2 Shells

Chapter 2: An Introduction to the Bourne Shell

2.1 INTRODUCTION
The unix Shell (often referred to as the Bourne Shell, in honor of its
inventor, S. R. Bourne) is a language that provides a programmable inter-
face to domain/ix. Its features include control-flow primitives,
parameter passing, variables and string substitution. Constructs such as

•	case
•	if-then-else, and

•	for
are supported, as is two-way communication between the Shell and com-
mands. String-valued parameters, typically file names or flags, may be
passed to a command. Commands set a return code that may be used to
determine control-flow. The standard output from a command may be
used as Shell input.

The Shell can modify the environment in which commands run. Input
and output can be redirected to files, and processes that communicate
through “pipes” can be invoked. Commands are found by searching
directories in the file system in a user-defined sequence. Commands can
be read either from the keyboard, or from a file, which allows command
procedures to be stored for later use.

The shell is both a command language and a programming language that
provides an interface to the unix operating system. The first sections of
this chapter cover most of the everyday requirements of shell users.
Later sections describe those features of the shell primarily intended for
use within shell procedures. These include the control-flow primitives
and string-valued variables provided by the shell. A knowledge of a pro-
gramming language would be a help when reading this section. The last
section describes the more advanced features of the shell.

2.1.1 Special Key Definitions
Read the material in Section 1 of this manual about key binding and key
definitions files. It explains how the keys on domain node keyboards are
bound to the functions they execute.

In this chapter, we assume that you have invoked one of the sys5 key
definitions files. These files bind various keys to functions that the
Bourne Shell provides. To invoke these definitions, press the CMD key
and enter the following dm command.

Command: cmdf /sys/dm/file

2-2 The Bourne Shell

SECTION 2 Shells

where file is either

•		sys5_keys if you have an 880 (high-profile) keyboard,

•		sys5_keys2 if you have a low-profile keyboard.

Special key definitions (in addition to those provided in unix_keys)
included in this file are:

part of /sys/dm/sys5_keys
^d is mapped to eef
kd ^d eef ke
^\ is mapped to quit
kd ’^\’ dq ke

The sys5_keys2 has the above definitions along with one other:

del is mapped to interrupt
kd del dq -i ke

2.1.2 Simple Commands
Simple commands consist of one or more words separated by blanks.
The first word is the name of the command to be executed; any remain-
ing words are passed as arguments to the command. For example,

who
is a command that prints the names of everybody currently logged in to
a node in the network. The command

ls -l
prints a list of files in the current directory. The argument -l tells ls to
print	status	information,	size,	and	the	creation	date	for	each	file.

2.1.3 Background Commands
When the Bourne Shell executes a command, it normally runs it from
within the Shell process, waits for it to finish, then prompts for more
input. You may also have the Shell run command and accept additional
input before the command finishes. For example,

cc pgm.c&
calls the C compiler to compile the file pgm.c. The trailing & is an
operator that instructs the shell not to wait for the command to finish.
To help you keep track of such a process, the shell reports its process
number following its creation. A list of currently active processes may be
obtained using the ps[1] command.

2.1.4 Input/Output Redirection
Most	commands	produce	output	on	the	standard	output	—	normally	the	
screen.

The Bourne Shell 2-3

SECTION 2 Shells

Note: People using domain nodes should note that in this chapter,
the term “terminal” is used interchangeably with “node,” (or,
usually, “the node’s keyboard”). The term “screen” refers to
the transcript pad of the window in which the Bourne Shell is
running.

This output may be redirected to a file by writing, for example,

ls -l >file

The notation >file is interpreted by the shell and is not passed as an
argument to ls. If file does not exist, the shell creates it; otherwise, the
original contents of file are replaced with the output from ls. Output
may also be appended to a file using the notation

ls -l >>file

Here too, file is created if it does not already exist.

The standard input of a command may be taken from a file instead of
the terminal by writing, for example,

wc <file

The command wc reads its standard input (in this case, redirected from
file) and prints the number of characters, words, and lines found. If only
the number of lines is required, then

wc -l <file

could be used.

2.1.5 Pipelines and Filters
The standard output of one command may be connected to the standard
input of another by writing the “pipe” operator, a vertical line.

ls -l | wc
Two commands connected in this way constitute a “pipeline” and the over-
all effect is the same as

ls -l >file; wc <file

except that no file is used. Instead, the two processes are connected by a
pipe	and	are	run	in	parallel.		Pipes	are	unidirectional,	and	synchroniza-
tion is achieved by halting wc when there is nothing to read and halting
ls when the pipe is full.

Many unix commands are referred to as “filters.” A filter is a command
that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep, selects from its input those lines
that contain some specified string. For example,

ls | grep old
prints those lines, if any, of the output from ls that contain the string

2-4 The Bourne Shell

SECTION 2 Shells

old. Another useful filter is sort. For example,

who | sort
will print an alphabetically sorted list of logged-in users.

A pipeline may consist of more than two commands, for example,

ls | grep old | wc -l
prints the number of file names in the current directory containing the
string old.

2.1.6 Generating Filenames
Many commands accept filenames as arguments. For example,

ls -l main.c
prints information relating to the file main.c .

The shell provides a mechanism for generating a list of file names that
match a pattern. For example,

ls -l *.c
generates, as arguments to ls, all filenames in the current directory that
end in .c. When used in this context, the asterisk is a metacharacter
“pattern” that will match any string including the null string. In gen-
eral, patterns are specified as follows.

* Matches any string of characters including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters.

A pair of characters separated by a minus will match any character lexi-
cally between the pair.

For example,

[a-z]* matches all names in the current directory
beginning	with	one	of	the	letters	a	through	z.

/usr/fred/test/? matches all one-character names in the direc-
tory /usr/fred/test. If no file name is found
that matches the pattern, then the pattern is
passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names accord-
ing to some pattern. It may also be used to find files. For example,

echo /usr/fred/*/*.bin
finds and prints the names of all files of the form filename.bin in sub-
directories of /usr/fred. (The echo command simply prints its argu-
ments, separated by blanks.) Using this last feature can be expensive,
requiring, in this case, a scan of all sub-directories of /usr/fred.

The Bourne Shell 2-5

SECTION 2 Shells

There is one exception to the general rules given for patterns. The
period (.) at the start of a filename must be explicitly matched.

echo *
will therefore echo all filenames in the current directory not beginning
with “.”.

echo .*
will echo all those file names that begin with ‘.’ . This avoids inadver-
tent matching of the names “.” and “..” which mean “the current direc-
tory” and “the parent directory,” respectively. (Notice that ls
suppresses listing of information for the files “.” and “..”.)

Note: As we have mentioned, aegis commands perform their own
wildcard expansion, using rules different from those used by
the Bourne Shell. Unquoted wildcards used in the Bourne
Shell will be expanded according to the Bourne Shell’s rules,
then passed to whatever command is being executed. If you
are executing an aegis command from a Bourne Shell, you
may need to protect certain shell metacharacters with quotes
so that they are passed unmodified to the aegis commands.

2.1.7 Quotation
As we have mentioned, characters that have a special meaning to the
Shell are called metacharacters. Some of the more common Bourne Shell
metacharacters are listed below.

< Redirects input

> Redirects output

* Matches any set of characters

? Matches any single character

& Designates a background command.

| Designates a pipe.

There is a complete list of Bourne Shell metacharacters at the end of this
chapter. Any character preceded by a \ is said to be “quoted” and loses
any special meaning it may otherwise have had. Since the \ is elided,
echo, used as shown, would return the following strings

echo \?
?
echo \\
\

To allow long strings to be continued over more than one line, the shell
ignores the sequence \newline. The \ is convenient for quoting single
characters. When more than one character needs quoting, we
recommend the easier method of enclosing the string between single

2-6 The Bourne Shell

SECTION 2 Shells

quotes. For example,

echo xx´****´xx
xx****xx

The quoted string may not contain the single quote character (’) but may
contain newlines, which are preserved. We recommend this simple quot-
ing for casual use. A third quoting mechanism, which uses double quotes
to prevent interpretation of some but not all metacharacters, will be dis-
cussed in a later section.

2.1.8 Prompting
The shell issues a prompt when it is ready for more input. The default
sys5 Bourne Shell prompt is the sequence # (# followed by a space).
The default bsd4.2 Bourne Shell prompt is the sequence B$ (B$ followed
by a space). Either prompt may be changed by saying, for example,

PS1=yesdear
that sets the prompt to be the string yesdear.

If a newline is typed and further input is needed, then the shell will issue
the secondary prompt “> ”. If this happens unexpectedly, type an
interrupt to return the main shell prompt. You may change this prompt
as well. The line

PS2=nodear
would have the expected effect.

2.1.9 Starting the Bourne Shell
When you log in to a domain node, the dm (Display Manager) looks in
several places for information about what windows to open and what
processes to start (see Getting Started With Your DOMAIN System and
the DOMAIN System User’s Guide for more detailed information). It will
normally open an aegis Shell, then look for the file

your_home_directory/user_data)/startup_dm.display_type

where display_type matches the type of display in use (e.g. “19L” or
“color”). If you include a command line like

(0,200)dr; (540,600)cp /sys5/bin/start_sh -n bourne_shell
in your startup_dm file, the dm will automatically open a sys5 Bourne
Shell when you log in. Since we included the -n option, the process will
be named “bourne_shell.”

Note: In the example line above, we specified

/sys5/bin

 as the /bin to use. See the information on multiple version sup-
port (Section 1, Chapter 1) for more on this.

The Bourne Shell 2-7

SECTION 2 Shells

You may also define a key or function key to open a Bourne Shell. The
following dm	command	defines	the	shifted	L5	key	—	L5	is	labelled	
SHELL 	—	so	that	when	you	press	 SHIFT SHELL a Bourne Shell will

be opened.

kd l5s cp /bin/start_sh ke
In this case, since no /bin is specified, the start_sh command is ob-
tained from /$(SYSTYPE)/bin.

When you log in, the Shell sets the working directory to your home
directory and begins reading commands from the file named .profile in
this directory. Any file called .profile in your home directory is assumed
to contain commands and is read by the shell first, before reading com-
mands from the terminal or any other file. Every Bourne Shell you start
will read from this file.

Note: If you use the dm editor to create your .profile, you must also
use the unix command chown[1] to make yourself the owner
of your .profile. Otherwise, it will not be read.

2.2 SHELL PROCEDURES
The shell may be used to read and execute commands contained in a file.
For example,

sh file [argument(s)]

calls the shell to read commands from file. Such a file is called a shell
procedure or shell script. Arguments may be supplied with the call and
are referred to in file using the positional parameters $1, $2, ... $9. For
example, if the file wg contains

who | grep $1

then

sh wg fred

is equivalent to

who | grep fred
Files have three independent attributes, read, write, and execute. The
unix command chmod[1] may be used to make a file executable. For
example,

chmod +x wg
will ensure that the file wg has execute status. Following this, the com-
mand

wg fred
is equivalent to

2-8 The Bourne Shell

SECTION 2 Shells

sh wg fred
This allows shell procedures and programs to be used interchangeably.

As well as providing names for the positional parameters, the number of
positional parameters in the call is available as $#. The name of the file
being executed is available as $0.

A special shell parameter $* is used to substitute for all positional
parameters except $0. A typical use of this is to provide some default
arguments, as in,

nroff -T450 -cm $*
which simply prepends some arguments to those already given.

2.2.1 Control Flow Using for
Shell procedures are frequently used to loop through the arguments ($1,
$2, ...) executing commands once for each argument. As an example of
such a procedure, consider the following program that searches a file of
corporate phone numbers which contains lines of the form

tony 5890
bob 3303
sherry 4368
 ...
 ...
richard 5335

If this file is called /usr/lib/telnos, then the text of the shell procedure,
which we’ll call tel, is

#! /bin/sh
for i
do grep $i /usr/lib/telnos; done

The command line

tel sherry
prints those lines in /usr/lib/telnos that contain the string sherry.

tel sherry richard
prints those lines containing sherry followed by those for richard.

The for	loop	notation	is	recognized	by	the	shell	and	has	the	general	form
for name in w1 w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated
or terminated by a newline or semicolon. Furthermore, the shell only
recognizes	reserved	words	like	do	and	done	when	they	follow	a	newline	
or semicolon. The shell variable name is set to the words w1 w2 ... in

The Bourne Shell 2-9

SECTION 2 Shells

turn each time the command-list following do is executed. If in w1 w2 ...
is omitted, then the loop is executed once for each positional parameter;
that is, in $* is assumed.

Another example of the use of the for loop is the create command whose
text is

#! /bin/sh
for i do >$i; done

The command

create alpha beta
ensures that two empty files alpha and beta exist and are empty. The
notation >file may be used on its own to create or clear the contents of
a file. Notice also that a semicolon (or newline) is required before done.

2.2.2 Control Flow Using case
The Bourne Shell’s case statement provides a multiway branching
mechanism. For example,

#! /bin/sh
case $# in
 1) cat >>$1 ;;
 2) cat >>$2 <$1 ;;
 *) echo ´usage: append [from] to´ ;;
esac

is an append command. When called with one argument as

append file

$# is the string 1 and the standard input is copied onto the end of file
using the cat command.

append file1 file2

appends the contents of file1 to file2. If the number of arguments sup-
plied to append is other than 1 or 2, then a message is printed indicat-
ing proper usage.

The general form of the case command is

case word in
pattern) command-list;;
...
esac

The shell attempts to match word with each pattern in the order in
which the patterns appear. If a match is found, the associated
command-list is executed and execution of the case is complete. Since *
is the pattern that matches any string, it can be used for the default
case.

2-10 The Bourne Shell

SECTION 2 Shells

Note: No check is made to ensure that only one pattern matches
the case argument. The first match found defines the set of
commands to be executed.

In the example below, the commands following the second * will never be
executed.

#! /bin/sh
case $# in
 *) ... ;;
 *) ... ;;
esac

Another example of the use of the case construction is to distinguish
between different forms of an argument. The following example is a frag-
ment of a cc command.

#! /bin/sh
for i
do case $i in
 -[ocs]) ... ;;
 -*) echo ´unknown flag $i´ ;;
 *.c) /lib/c0 $i ... ;;
 *) echo ´unexpected argument $i´ ;;
 esac
done

To allow the same commands to be associated with more than one pat-
tern, the case command provides for alternative patterns separated by a
| . For example,

case $i in
 -x|-y) ...
esac

is equivalent to

case $i in
 -[xy]) ...
esac

The usual quoting conventions apply, so that

case $i in
 \?) ...

will match the character ?.

2.2.3 Here Documents
The shell procedure tel, illustrated in the previous section, uses the file
/usr/lib/telnos to supply the data for grep. An alternative is to
include this data within the shell procedure as a “here document.”

The Bourne Shell 2-11

SECTION 2 Shells

#! /bin/sh
for i
do grep $i <<!
 ...
 richard 5335
 sherry 4368
 ...
!
done

In this example, the shell takes the lines between <<! and ! as the stan-
dard input for grep. The character ! is arbitrary. The here document is
terminated by a line that consists of the character (or string) following
<< .

Parameters are substituted in the document before it is made available
to grep as illustrated by the following procedure called edg.

#! /bin/sh
ed $3 <<%
g/$1/s//$2/g
w
%

The call

edg string1 string2 file

is then equivalent to the ed commands

ed file <<%
g/string1/s/ /string2/g
w
%

and changes all occurrences of string1 in file to string2. Substitution can
be prevented using \ to quote the special character $ as in

ed $3 <<+
1,\$s/$1/$2/g
w
+

(This version of edg is equivalent to the first except that ed will print a
? if there are no occurrences of the string $1.) Substitution within a here
document may be prevented entirely by quoting the terminating string,
for example,

grep $i <<\#
#

The document is presented without modification to grep. If parameter
substitution is not required in a here document, this latter form is more
efficient.

2-12 The Bourne Shell

SECTION 2 Shells

2.2.4 Shell Variables
The shell provides string-valued variables. Variable names begin with a
letter and consist of letters, digits, and underscores.

Note: You may examine all variables that are currently set by typ-
ing the set command.

Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variables user, box, and acct. A variable may
be set to the null string. The following line sets the variable null to the
null string.

null=

The value of a variable is substituted by preceding its name with $; for
example,

echo $user
will echo fred.

Variables may be used interactively to provide abbreviations for fre-
quently used strings. For example,

b=/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory
/usr/fred/bin. A more general notation is available for parameter (or
variable) substitution, as in,

echo ${user}

which is equivalent to

echo $user
and is used when the parameter name is followed by a letter or digit.
For example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa
would cause the value of the variable tmpa to be substituted.

Except for $?, which is set after every command, the Bourne Shell sets
the variables below when it is invoked.

$? The exit status (decimal string return code) of the most-recently-
executed	command.		Most	commands	return	a	zero	if	they	execute

The Bourne Shell 2-13

SECTION 2 Shells

	 successfully	and	a	non-zero	status	otherwise.		Testing	the	value	of	
return codes is dealt with later under if and while commands.

$# The number of positional parameters (in decimal). This is used,
for example, in the append command to check the number of
parameters.

$$ The process number of this shell (in decimal). Since process
numbers are unique among all existing processes, this string is fre-
quently used to generate unique temporary file names. For exam-
ple,

ps a >/tmp/ps$$
rm /tmp/ps$$

$! The decimal process number of the last process run in the back-
ground.

$- The current shell flags, such as -x and -v.

Some variables have a special meaning to the shell and should be avoided
for other uses.

Note: Those shell variables unique to the sys5 Bourne Shell are
flagged with the indicator [sys5]. The bsd4.2 version of the
Bourne	Shell	does	not	recognize	these	variables.

$MAIL When used interactively, the shell looks at the
file specified by this variable before it issues a
prompt. If the specified file has been modified
since it was last examined, the shell prints the
message you have mail before prompting for the
next command. This variable is typically set in
the file
.profile in your home directory. For example,

 $MAIL=/usr/mail/fred

$MAILCHECK [sys5]

 Specifies how often (in seconds) the shell will
check to see if you have mail. The default value
is 600 seconds. If $MAILCHECK is set to 0, the
shell will check before each prompt.

$MAILPATH [sys5]

 A colon-separated list of file names. If this
parameter is set, the shell informs the user of the
arrival of mail in any of the specified files. Each
file name can be followed by % and a message
that will be printed when the modification time
changes. The default message is you have mail.

2-14 The Bourne Shell

SECTION 2 Shells

$CDPATH [sys5] Specifies the search path for the cd command.

$HOME The default argument for the cd command. The
current directory is used to resolve file name
references that do not begin with a /, and is
changed using the cd command. For example,

 # cd /usr/fred/bin
 makes the current directory /usr/fred/bin. The

command cd with no argument is equivalent to

 # cd $HOME
 This variable is also typically set in the user’s

.profile.

$PATH A list of directories that contain commands.
Each time a command is executed by the shell, a
list of directories is searched for an executable
file. If $PATH is not set, the current directory,
/$(SYSTYPE)/bin, and /$(SYSTYPE)/usr/bin
are searched by default. Otherwise $PATH con-
sists of directory names separated by colons (:).
For example,

 # PATH=:/usr/fred/bin:/bin:/usr/bin
 specifies that the current directory (the null

string before the first :), /usr/fred/bin, /bin
and /usr/bin are to be searched in that order.
In this way, individual users can have their own
“private” commands that are accessible indepen-
dently of the current directory. If the command
name contains a /, then this directory search is
not used; a single attempt is made to execute the
command.

$PS1 The primary shell prompt string, by default, ‘# ’.

$PS2 The shell prompt when further input is needed,
by default, “> ”.

$IFS The set of characters used by blank interpreta-
tion.

2.2.5 The test Command
The test command has a number of uses in shell programs. For exam-
ple,

test -f file
returns	zero	exit	status	if	file	exists	and	non-zero	exit	status	otherwise.	
In general, test evaluates a predicate and returns the result as its exit
status. Some of the more frequently used test arguments are given here.

The Bourne Shell 2-15

SECTION 2 Shells

(See test[1] for a complete specification.)

test s true if s is non-null

test -f file true if file exists

test -r file true if file is readable

test -w file true if file is writable

test -d file true if file is a directory

2.2.6 Control Flow Using while
The actions of the for loop and the case branch are determined by data
available to the shell. A while or until loop and an if-then-else branch
are also provided. The actions of while, until, and if-then-else are
determined by the exit status returned by commands. A while loop has
the general form

while command-list
do command-list
done

The value tested by the while command is the exit status of the last
simple command following while. Each time round the loop command-
list	is	executed;	if	a	zero	exit	status	is	returned,	then	command-list is exe-
cuted; otherwise, the loop terminates. For example,

#! /bin/sh
while test $1
do ...
 shift
done

is equivalent to

#! /bin/sh
for i
do ...
done

Shift is a shell command that renames the positional parameters $2, $3,
... as $1, $2, ... and loses $1.

You can also use the while/until loop to make the shell wait until some
external event occurs, then run some commands. In an until loop, the
termination condition is reversed. For example,

#! /bin/sh
until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5
minutes before trying again. (Presumably another process will eventually

2-16 The Bourne Shell

SECTION 2 Shells

create the file.)

2.2.7 Control Flow Using if
The Bourne Shell also provides a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the test command to
test for the existence of a file as in

if test -f file
then process file
else do something else
fi

A multiple test if command of the form

if ...
then ...
else if ...
then ...
else if ...
fi
fi
fi

may be written using an extension of the if notation as,

if ...
then ...
elif ...
then ...
elif ...
fi

The following example is the touch command which changes the “last
modified” time for a list of files. The command may be used in conjunc-
tion with make[1] to force recompilation of a list of files.

The Bourne Shell 2-17

SECTION 2 Shells

#! /bin/sh
flag=
for i
do case $i in
 -c) flag=N ;;
 *) if test -f $i
 then ln $i junk$$; rm junk$$
 elif test $flag
 then echo file \´$i\´ does not exist
 else >$i
 fi
esac
 done

The -c flag is used in this command to force subsequent files to be
created if they do not already exist. Otherwise, if the file does not exist,
an error message is printed. The shell variable flag is set to some non-
null string if the -c argument is encountered. The commands

ln ...; rm ...

make a link to the file and then remove it thus causing the last modified
date to be updated.

The sequence

if command1
then command2
fi

may be written

command1 && command2

Conversely,

command1 || command2

executes command2 only if command1 fails. In each case the value
returned is that of the last simple command executed.

2.2.8 Command Grouping
Commands may be grouped in two ways,

{ command-list; }

and

(command-list)
In the first example, command-list is simply executed. The second form
executes command-list as a separate process. For example,

(cd x; rm junk)
executes rm junk in the directory x without changing the current

2-18 The Bourne Shell

SECTION 2 Shells

directory of the invoking shell.

The commands

cd x; rm junk
have the same effect but leave the invoking shell in the directory x.

2.2.9 Debugging Shell Procedures
The shell provides two tracing mechanisms to help when debugging shell
procedures. The first is invoked within the procedure as

set -v
(v for verbose) and causes lines of the procedure to be printed as they are
read. It is useful to help isolate syntax errors. It may be invoked
without modifying the procedure by saying

sh -v proc
where proc is the name of the shell procedure. This flag may be used in
conjunction with the -n flag which prevents execution of subsequent
commands.

Note: Saying set -n at a terminal will render the terminal useless
until an end-of-file is typed.

The command

set -x
will produce an execution trace. Following parameter substitution, each
command is printed as it is executed. Both flags may be turned off by
saying

set -
and the current setting of the shell flags is available as $-.
2.2.10 The man Command
The man command is used to print sections of the DOMAIN/IX Com-
mand Reference and DOMAIN/IX Programmer’s Reference manuals.
When you type

man sh
the Command Reference page for sh[1] is displayed in a dm read window.
Since no section is specified, section 1 is used. Typing

man 2 fork
displays the fork[2] manual page (from Chapter 2 of the DOMAIN/IX
Programmer’s Reference). When the man command was originally writ-
ten, it was a shell procedure like the one below.

The Bourne Shell 2-19

SECTION 2 Shells

#! /bin/sh
cd /usr/man
: ´colon is the comment command´
: ´default is nroff ($N), section 1 ($s)´
N=n s=1
for i
do case $i in
 [1-9]*) s=$i ;;
 -t) N=t ;;
 -n) N=n ;;
 -*) echo unknown flag \´$i\´ ;;
 *) if test -f man$s/$i.$s
 then ${N}roff man0/${N}aa man$s/$i.$s
 else : ´look through all manual sections´
 found=no
 for j in 1 2 3 4 5 6 7 8 9
 do if test -f man$j/$i.$j
 then man $j $i
 found=yes
 fi
 done
 case $found in
 no) echo ´$i: manual page not found´
 esac
 fi
 esac
done

Note: When the shell script above is executed on a domain/ix sys-
tem, /usr/man normally resolves to /$(SYSTYPE)/usr/man,
allowing man to select the manual page for the appropriate
systype.

2.3 KEYWORD PARAMETERS

Note: The sys5 and bsd4.2 Bourne Shells differ somewhat in their
method of handling parameter substitution. These differences
will be noted as they apply.

Shell variables may be given values by assignment or when a shell pro-
cedure is invoked. An argument to a shell procedure of the form
name=value that precedes the command name causes value to be
assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

2-20 The Bourne Shell

SECTION 2 Shells

will execute command with user set to fred. The -k flag causes argu-
ments of the form name=value to be interpreted in this way anywhere in
the argument list. Such names are sometimes called keyword parame-
ters. If any arguments remain, they are available as positional parame-
ters $1, $2,
The set command may also be used to set positional parameters from
within a procedure. For example,

set - *
will set $1 to the first file name in the current directory, $2 to the next,
and so on. Note that the first argument, -, ensures correct treatment
when the first file name begins with a - .

2.3.1 Parameter Transmission
When a shell procedure is invoked, both positional and keyword parame-
ters may be supplied with the call. Keyword parameters are also made
available implicitly to a shell procedure by specifying in advance that
such parameters are to be exported. For example,

export user box
marks the variables user and box for export. When a shell procedure is
invoked, copies are made of all exportable variables for use within the
invoked procedure. Modification of such variables within the procedure
does not affect the values in the invoking shell. It is generally true of a
shell procedure that it may not modify the state of its caller without an
explicit request on the part of the caller. (Shared file descriptors are an
exception to this rule.)

Names whose values are intended to remain constant may be declared
readonly. The form of this command is the same as that of the export
command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

2.3.2 Parameter Substitution (bsd4.2)
In the bsd4.2 version of /bin/sh, the null string replaces any shell param-
eter that is not set. For example, if the variable d is not set

echo $d
or

echo ${d}
will echo nothing. A default string may be given as in

echo ${d-.}
which will echo the value of the variable d if it is set and “.” otherwise.
The default string is evaluated using the usual quoting conventions so

The Bourne Shell 2-21

SECTION 2 Shells

that

echo${d-´*´}

will echo * if the variable d is not set. Similarly

echo ${d-$1}
will echo the value of d if it is set and the value (if any) of $1 otherwise.
A variable may be assigned a default value using the notation

echo ${d=.}
which substitutes the same string as

echo ${d-.}
and if d were not previously set then it will be set to the string “.”. (The
notation ${...=...} is not available for positional parameters.)

If there is no sensible default, then the notation

echo ${d?message}
will echo the value of the variable d if it has one; otherwise, message is
printed by the shell and execution of the shell procedure is abandoned.
If message is absent, then a standard message is printed. A shell pro-
cedure that requires some parameters to be set might start as follows.

#! /bin/sh
: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once
its arguments have been evaluated. If any of the variables user, acct, or
bin are not set then the shell will abandon execution of the procedure.

2.3.3 Parameter Substitution (sys5)
In the sys5 version of /bin/sh, there are two types of parameters: posi-
tional and keyword. If parameter is a digit, it is a positional parameter.
Use the set command to assign a value to a positional parameter. Key-
word parameters (also known as variables) may be assigned values as fol-
lows.

name = value [name = value] ...

No pattern-matching is performed on value. There cannot be a function
and a variable with the same name.

${parameter} The value, if any, of the parameter is substituted.
The braces are required only when parameter is fol-
lowed by a letter, digit, or underscore that is not to
be interpreted as part of its name. If parameter is *
or @, all the positional parameters, starting with $1,
are substituted (separated by spaces). Parameter $0
is	set	from	argument	zero	when	the	shell	is	invoked.

2-22 The Bourne Shell

SECTION 2 Shells

${parameter:-word} If parameter is set and is non-null, substitute its
value; otherwise, substitute word.

${parameter:=word} If parameter is not set or is null, set it to word; the
value of the parameter is substituted. Positional
parameters may not be assigned in this way.

${parameter:?word} If parameter is set and is non-null, substitute its
value; otherwise, print word and exit from the shell.
If word is omitted, the message “parameter null or
not set” is printed.

${parameter:+word} If parameter is set and is non-null, substitute word;
otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substi-
tuted string, so that, in the following example, pwd is executed only if d
is not set or is null:

echo ${d:-`pwd`}
If you omit the colon from the above expressions, the shell only checks
whether or not parameter is set.

The sys5 Bourne Shell automatically sets the following parameters.

The number of positional parameters in decimal.

—	 Flags	supplied	to	the	shell	on	invocation	or	by	the	set command.

? The decimal value returned by the last synchronously executed
command.

$ The process number of this shell.

! The process number of the last command invoked in background.

2.3.4 Command Substitution
The standard output from a command can be substituted in a way simi-
lar to that allowed for parameters. The command pwd prints on its
standard output the name of the current directory. For example, if the
current directory is usr/fred/bin, then the command

d=`pwd`
is equivalent to

d=/usr/fred/bin
The shell takes the entire string between opening single quotes (grave
accents, `...`) as the command to be executed and replaces it with the
output from the command. The command is written using the usual
quoting conventions except that a ` must be escaped using a \. For
example,

ls `echo “$1” `

The Bourne Shell 2-23

SECTION 2 Shells

is equivalent to

ls $1
Command substitution occurs in all contexts where parameter substitu-
tion occurs (including here documents), and the treatment of the result-
ing text is the same in both cases. This mechanism allows string process-
ing commands to be used within shell procedures. An example of such a
command is basename which removes a specified suffix from a string.
For example,

basename main.c .c
will print the string main. Its use is illustrated by the following fragment
from a cc command.

case $A in
 ...
 *.c) B=`basename $A .c`
 ...
esac

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

for i in `ls -t`; do ... The variable i is set to the names of
files in time order, most recent first.

set `date`; echo $6 $2 $3, $4 will print the date, for example

 1984 Dec 14, 23:59:59

2.3.5 Evaluation and Quoting
The shell is a macro processor that provides parameter substitution, com-
mand substitution and filename generation for the arguments to com-
mands. This section discusses the order in which these evaluations occur
and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in “A
Summary of Bourne Shell Grammar” in the next section. Before a com-
mand is executed, the following substitutions occur.

•	parameter	substitution,	e.g.	$user
•	command	substitution,	e.g.	`pwd` Only one evaluation occurs, so

that if, for example, the value of the variable X is the string $y, then

 # echo $X
 will echo $y.

•	Blank	interpretation.		Following	the	above	substitutions,	the	resulting	
characters are broken into non-blank words. For this purpose,
“blanks” are the characters of the string $IFS. By default, this string
consists of blank, tab and newline. The null string is not regarded as

2-24 The Bourne Shell

SECTION 2 Shells

 a word unless it is quoted. For example,

 # echo ´´
 will pass on the null string as the first argument to echo, whereas

 # echo $null
 will call echo with no arguments if the variable null is not set or set to

the null string.

•	Filename	generation.		Each	word	is	then	scanned	for	the	file	pattern	
characters *, ? and [...] and an alphabetical list of file names is gen-
erated to replace the word. Each such file name is a separate argu-
ment.

The evaluations just described also occur in the list of words associated
with a for loop. Only substitution occurs in the word used for a case
branch.

As well as the quoting mechanisms described earlier using \ and ´...´, a
third quoting mechanism is provided using double quotes. Within double
quotes, parameter and command substitutions occur but filename genera-
tion and the interpretation of blanks does not. The following characters
have a special meaning within double quotes and may be quoted using \.

$ parameter substitution
` command substitution
” ends the quoted string
\ quotes the special characters $ ` ” \

For example,

echo ”$x”
will pass the value of the variable x as a single argument to echo. Simi-
larly,

echo ”$*”
will pass the positional parameters as a single argument and is equivalent
to

echo ”$1 $2 ...”
The notation $@ is the same as $* except when it is quoted.

echo ”$@”
will pass the positional parameters, unevaluated, to echo and is equivalent
to

echo ”$1” ”$2” ...

The following table gives, for each quoting mechanism, the shell metacha-
racters that are evaluated. In the table below:

The Bourne Shell 2-25

SECTION 2 Shells

•	t	indicates	a	sequence	used	as	a	terminator,

•	y	indicates	a	sequence	in	which	the	metacharacter	is	interpreted,

•	n	indicates	a	sequence	in	which	the	metacharacter	is	not	interpreted.

Quote Metacharacter

´
`
”

\
n
y
y

$
n
n
y

*
n
n
n

`
n
t
y

”
n
n
t

´
t
n
n

Among other things, the table above shows that the sequence \$ is not
interpreted (is passed as a literal $), the sequence \ can be used to ter-
minate a string, and the sequence ”$ will preserve the meta-meaning of $.
In cases where more than one evaluation of a string is required, the
built-in command eval may be used. For example, if the variable X has
the value $y, and if y has the value pqr, then

eval echo $X
will echo the string pqr.

In general, the eval command evaluates its arguments (as do all com-
mands) and treats the result as input to the shell. The input is read and
the resulting command(s) executed. For example,

wg=´eval who|grep´
$wg fred

is equivalent to

who|grep fred
In this example, eval is required since there is no interpretation of meta-
characters, such as | , following substitution.

2.3.6 Error Handling
The treatment of errors detected by the shell depends on the type of
error and on whether the shell is being used interactively. An interactive
shell is one whose input and output are connected to a terminal (as
determined by gtty[2]. A shell invoked with the -i flag is also interactive.

Execution of a command may fail for any of the following reasons.

•	Input/output	redirection	may	fail,	for	example,	if	a	file	does	not	exist	
or cannot be created.

•	The	command	itself	does	not	exist	or	cannot	be	executed.

•	The	command	terminates	abnormally.

•	The	command	terminates	normally	but	returns	a	non-zero	exit	status.

2-26 The Bourne Shell

SECTION 2 Shells

In all of these cases, the shell will go on to execute the next command.
Except for the last case, an error message will be printed by the shell.
All remaining errors cause the shell to exit from a command procedure.
An interactive shell will return to read another command from the termi-
nal. Such errors include the following.

•	Syntax	errors,		e.g.,	if ... then ... done
•	A	signal	such	as	interrupt.		The	shell	waits	for	the	current	command,	

if any, to finish execution and then either exits or returns to the ter-
minal.

•	Failure	of	any	of	the	built-in	commands	such	as	cd.

The shell flag -e causes the shell to terminate if any error is detected.

The following list covers many of the unix signals used by domain/ix.
For a complete list, see signal[2].

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill[1])

The signals in this list of potential interest to shell programs are 1,2, 3,
14, and 15.

2.3.7 Fault Handling
Shell procedures normally terminate when an interrupt is received from
the terminal. The trap command is used if some cleaning up is required,
such as removing temporary files. For example,

trap ´rm /tmp/ps$$; exit´ 2

sets a trap for signal 2 (terminal interrupt). If this signal is received, it
will execute the commands

rm /tmp/ps$$; exit

Exit is another built-in command that terminates execution of a shell
procedure. The exit command is required; otherwise, after the trap has
been taken, the shell will resume executing the procedure at the place
where it was interrupted.

The Bourne Shell 2-27

SECTION 2 Shells

unix signals can be handled in one of three ways. They can be ignored,
in which case the signal is never sent to the process. They can be
caught, in which case the process must decide what action to take when
the signal is received. Lastly, they can be left to cause termination of
the process without it having to take any further action. If a signal is
being ignored on entry to the shell procedure, for example, by invoking it
in the background, then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch com-
mand. The cleanup action is to remove the file junk$$.

#! /bin/sh
flag=
trap ´rm -f junk$$; exit´ 1 2 3 15
for i
do case $i in
 -c) flag=N ;;
 *) if test -f $i
 then ln $i junk$$; rm junk$$
 elif test $flag
 then echo file \´ $i\´ does not exist
 else >$i
 fi
 esac
done

The trap command appears before the creation of the temporary file;
otherwise, it would be possible for the process to die without removing
the file.

Since there is no signal 0, it is used by the shell to indicate the com-
mands to be executed on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null
string as the argument to trap. The following fragment is taken from
the nohup command.

trap ´ ´ 1 2 3 15

which causes hangup, interrupt, quit, and kill to be ignored both by the
procedure and by invoked commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list
of the current values of traps may be obtained by writing

trap

The shell procedure called scan (below) is an example of the use of trap
where there is no exit in the trap command, scan takes each directory
in the current directory, prompts with its name, and then executes

2-28 The Bourne Shell

SECTION 2 Shells

commands typed at the terminal until an end of file or an interrupt is
received. Interrupts are ignored while executing the requested com-
mands, but cause termination when scan is waiting for input.

#! /bin/sh
d=`pwd`
for i in *
do if test -d $d/$i
 then cd $d/$i
 while echo “$i:”
 trap exit 2
 read x
 do trap : 2; eval $x; done
 fi
done

Read x is a built-in command that reads one line from the standard
input and places the result in the variable x.		It	returns	a	non-zero	exit	
status if either an end-of-file is read or an interrupt is received.

2.3.8 Command Execution
To run a command (other than a built-in), the shell first creates a new
program level in the shell process. The execution environment for the
command includes input, output, and the states of signals, and is esta-
blished before the command is executed. The built-in command exec
creates a new program level in the shell process. For example, a simple
version of the nohup command looks like

trap ´ ´ 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by sub-
sequently created commands and exec runs the specified command as a
new program level in the shell process.

Most forms of input/output redirection have already been described. In
the following examples, word is only subject to parameter and command
substitution. No filename generation or blank interpretation takes place
so that, for example,

echo ... >*.c

will write its output into a file whose name is *.c. Input output
specifications are evaluated left to right as they appear in the command.

> file The standard output (file descriptor 1) is sent to the file file
which is created if it does not already exist.

>> file The standard output is sent to file file. If the file exists, then
output is appended (by seeking to the end); otherwise, the file
is created.

The Bourne Shell 2-29

SECTION 2 Shells

< file The standard input (file descriptor 0) is taken from the file file.

<< file The standard input is taken from the lines of shell input that
follow up to but not including a line consisting only of file. If
file is quoted, then no interpretation of the document occurs.
If file is not quoted, then parameter and command substitution
occur and \ is used to quote the characters \ $ ` and the first
character of word. In the latter case, \newline is ignored (c.f.
quoted strings).

>& digit The file descriptor digit is duplicated using the system call
dup[2], and the result is used as the standard output.

<& digit The standard input is duplicated from file descriptor digit.

<&- The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file
descriptor created is that specified by the digit instead of the default 0 or
1. For example,

command ... 2>file

runs command with message output (file descriptor 2) redirected to file.

command ... 2>&1

runs command with its standard output and message output merged.
(File descriptor 2 is created by duplicating file descriptor 1 but the effect
is usually to merge the two streams.)

The environment for a command run in the background such as

list *.c | lpr &
is modified in two ways. First, the default standard input for such a
command is the empty file /dev/null. This prevents two processes (the
shell and the command), which are running in parallel, from trying to
read the same input. Chaos would ensue if this were not the case. For
example,

ed file &
would allow both the editor and the shell to read from the same input at
the same time.

The other modification to the environment of a background command is
to turn off the QUIT and INTERRUPT signals so that they are ignored
by the command. This allows these signals to be used at the terminal
without causing background commands to terminate. For this reason,
the unix convention for a signal is that if it is set to 1 (ignored), then it
is never changed even for a short time. Note that the shell command

2-30 The Bourne Shell

SECTION 2 Shells

trap has no effect for an ignored signal.

2.4 A SUMMARY OF BOURNE SHELL GRAMMAR
item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi
pipeline: command
pipeline | command

andor: pipeline
andor && pipeline
andor || pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
< file
>> word
<< word

file: word
& digit
&
case-part: pattern) command-list ;;
pattern: word
pattern | word

else-part: elif command-list then command-list else-part
else command-list

The Bourne Shell 2-31

SECTION 2 Shells

empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits, or underscores starting with a let-
ter

digit: 0 1 2 3 4 5 6 7 8 9

2.5 SUMMARY OF BOURNE SHELL METACHARACTERS
AND RESERVED WORDS

2.5.1 Syntactic
| pipe symbol

&& ‘andf’ symbol

|| ‘orf’ symbol

; command separator

;; case delimiter

& background commands

() command grouping

< input redirection

<< input from a here document

> output creation

>> output append

2.5.2 Patterns
* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

2.5.3 Substitution
${...} substitute shell variable

`...` substitute command output

2.5.4 Quoting
\ quote the next character

2-32 The Bourne Shell

SECTION 2 Shells

´...´ quote the enclosed characters except for `

“...” quote the enclosed characters except for $ ` \ “

2.5.5 Reserved Words
•	if
•	then
•	else
•	elif
•	fi
•	case
•	in
•	esac
•	for
•	while
•	until
•	do
•	done
•	{ }

The C Shell 3-1

SECTION 2 Shells

Chapter 3: Using the C Shell

3.1 INTRODUCTION
The primary purpose of any shell is to translate command lines typed at
a	terminal	into	useful	work	—	something	the	shell	usually	accomplishes	
by invoking another program. The C Shell (/bsd4.2/bin/csh) is one of
several shells available to domain/ix/bsd4.2 users.

Note: This chapter is an introduction to the more commonly-used
features of the C Shell. The csh documentation in the
DOMAIN/IX Command Reference for BSD4.2 provides a full
description of all features of this shell.

Before you read any further in this chapter, please read the material on
multiple version support in Section 1, Chapter 1. It explains how
domain/ix allows you to invoke shells in either the sys5 or the bsd4.2
environment. Although the process is nearly transparent to the user
(requiring only that you set the SYSTYPE environment variable), it has
implications for software developers and, to a lesser extent, for people
(and shells) running programs.

3.2 FIRST STEPS
This chapter includes several examples. We recommend that you try
them all. The best way to learn about the C Shell is to work with it for
a while.

3.2.1 Special Key Definitions
Read the material in Section 1 of this manual about key binding and key
definitions files. It explains how the keys on domain node keyboards are
bound to the functions they execute.

In this chapter, we assume that you have invoked one of the bsd4.2 key
definitions files. These files bind various keys to functions that the C
Shell provides. To invoke these definitions, press the CMD key and
enter the following dm command.

Command: cmdf /sys/dm/file

where file is either

•	bsd4.2_keys if you have an 880 (high-profile) keyboard,

•	bsd4.2_keys2 if you have a low-profile keyboard.

3-2 The C Shell

SECTION 2 Shells

Special key definitions (in addition to those provided in unix_keys)
included in this file are:

part of /sys/dm/bsd4.2_keys
#		^z	is	changed	from	unix_keys	eef	to	suspend	
kd	^z	dq	-c	120028	ke	(for	job	control	in	the	csh)
^d is mapped to eef
kd ^d eef ke
^\ is mapped to quit
kd ’^\’ dq ke
#		^j	is	mapped	to	unsuspend	(useful	when	you	^z	a	non-csh	and	want	to	wake	it	
up)
ke ^j dq -c 12002b ke

In addition to the lines above, the bsd4.2_keys2 file includes the line:

^c is changed from cut to interrupt
kd ^c dq -i ke

3.2.2 Starting the Shell
To start a C Shell on a domain node, log in and type the dm (Display
Manager) command

Command: cp /bin/start_csh
In the case of the line above, /bin resolves to /$(SYSTYPE)/bin, as
described in Section 1, Chapter 1.

Note: If SYSTYPE is not bsd4.2 or bsd4.1, process creation will fail,
since there is no C Shell in sys5 or sys3.

The dm will open a window and run the C Shell in it. When giving the
start_csh command, you may supply the coordinates at which you want
the dm to locate the upper left and lower right corners of the window.
You may even give the process a name, as in the line below.

Command: (0,200)dr; (540,600)cp /bin/start_csh -n c_shell
This command line opens up a small window near the left side of the
screen and displays the name “c_shell” in the window legend.

Note: In this chapter, there are several examples of user interaction
with the C Shell. In these examples, we will use bold text to
denote what the user types, and standard roman text to denote
prompts and messages returned to the screen. For example, the
following display

 % pwd
 % //ice/kate

 means we typed pwd, followed by an (implied) RETURN
The Shell then printed the current working directory,
//ice/kate.

The C Shell 3-3

SECTION 2 Shells

3.2.3 The Basic Notion of Commands
A shell acts primarily as a medium through which you invoke other pro-
grams. While the Shell has a set of built-in functions that it performs
directly, most commands to the shell cause execution of programs that
reside elsewhere (are not part of the shell).

A command consists of a word or words that the shell interprets as a
command name followed by optional arguments. Thus, the command

% mail kate
consists of a command name, mail, followed by an argument, kate. The
shell looks in a number of directories for a file with the name mail.
When it finds something called mail, the shell assumes it is an execut-
able file and attempts to have the system execute it.

The rest of the words on the command line are assumed to be arguments
and are passed to the command when it is executed. In this case, we
specified the argument kate which mail interprets as the name of a user
to whom mail is to be sent. In normal usage, we might invoke mail as
follows.

% mail kate
Is there a meeting today? And is
it at 1:00?

bob
*** EOF ***
EOT
%

Here we typed a message to send to kate and ended this message with a
↑D, which sent an end-of-file (EOF) to the Mail program.

Note: In this chapter (and throughout this document), the notation
↑x should be read “control-x.” It means “press the key
named x while holding the CTRL (Control) key down.”

Mail, in turn, echoed “EOT,” (End of Transmission), transmitted the
message to kate, and exited. The shell, noticing that Mail was finished,
prompted for input by displaying the characters

%
(a percent symbol followed by a space) to indicate that it was ready for
further orders.

This is the essential pattern of all interactions with domain/ix via the C
Shell. A complete command is typed at the terminal; the shell executes
the command, and when this execution completes, the shell prompts for a
new command. If you run, for example, the vi editor for an hour, the
shell will patiently wait for you to finish editing, then prompt you for

3-4 The C Shell

SECTION 2 Shells

further orders.

3.2.4 Flag Arguments
While many arguments to commands specify objects like file names or
user names, some arguments invoke optional capabilities of the com-
mand. By convention, such arguments begin with the character “-”
(hyphen). Thus, the command

ls
produces a list of the files in the current working directory. The ls com-
mand has many options, including -s,	the	size	option.		If	you	include	-s
on a ls command line,

ls -s
it causes ls	to	list	the	size	of	each	file	in	blocks	of	(normally)	1024	char-
acters. The manual section for each command in the DOMAIN/IX Com-
mand Reference gives the available options for each command.

3.2.5 Output to Files
Commands that normally read input or write output on the screen can
optionally be told to get their input from a file or to send their output to
a file.

Suppose you wish to save the current date in a file called now. The com-
mand

date
prints the current date on the transcript pad of the shell into which date
was typed. This is because the screen (the transcript pad) is the default
standard output, and date always prints the date on the standard out-
put.

The shell lets you redirect the standard output of a command through a
notation using the metacharacter > and the name of the file where out-
put is to be placed. Thus, the command

date > now
runs the date command and redirects the standard output to a file called
now rather than to the default standard output (the screen). The current
date and time are written on the file now. No output appears on the
screen. It is important to know that date was unaware that its output
was going to a file rather than to the screen. The shell performed this
redirection before the command began executing.

We must also point out the file now need not have existed before the
date command above was executed; the shell would have created the file
(in the current working directory) if it did not exist.

Note: If you redirect standard output into a file that exists, that file
will be overwritten unless the shell variable noclobber has

The C Shell 3-5

SECTION 2 Shells

 been set. See the discussion of noclobber in the next sec-
tion.

3.2.6 Metacharacters in The C Shell
The C Shell makes use of a number of characters (like the recently dis-
cussed “>”) which perform special functions. In general, most charac-
ters that are neither letters nor digits have special meaning to the shell.
Since these special characters also have their normal uses, the shell pro-
vides a means of quotation that allows you to strip these metacharacters
of special meaning.

Metacharacters normally have effect only when the shell is reading input.
You need not worry about placing shell metacharacters in a letter you
are sending via mail, or when supplying text or data to some other pro-
gram. Note that the shell is only reading input when it is displaying its
prompt.

Note: As we have mentioned, aegis commands perform their own
wildcard expansion, using rules different from those used by
the C Shell. Unquoted wildcards used in the C Shell will be
expanded according to the C Shell’s rules, then passed to
whatever command is being executed. If you are executing an
aegis command from a C Shell, you may need to protect cer-
tain shell metacharacters with quotes so that they are passed
unmodified to the aegis commands.

3.2.7 Input From Files; Pipelines
We have already discussed how to redirect the standard output of a com-
mand to a file. It is also possible to redirect the standard input of a com-
mand so that it is taken from a file, rather than from the keyboard (the
default standard input). This is not often necessary since most com-
mands will read from a file whose name is given as an argument. You
can give the command

% sort < data
to run the sort command with standard input, where the command nor-
mally reads its input, from the file data. It would be easier (and equally
legal) for you to type

% sort data
letting the sort command open the file data and sort it.

Note: If you merely typed

 % sort
 then the sort program would sort lines from its standard

input, the keyboard. Since you did not redirect the standard
input, sort would sort lines as you typed them on the

3-6 The C Shell

SECTION 2 Shells

 terminal, until you typed a ↑D to indicate an end-of-file.

Another useful feature of the C Shell is its ability to connect the stan-
dard output of one command to the standard input of another using a
mechanism known as a pipeline. For instance, the command

ls -s
normally produces a list of the files in the current directory and lists the
size	of	each	file	in	blocks	of	1024	characters.		If	you	are	interested	in	
learning which of your files is largest, you may wish to have this sorted
by	size	rather	than	by	name.		Although	ls has no such option, you can
pipe the output of ls into the sort command and use some of sort’s
options	to	get	a	list	of	files	sorted	in	order	of	size.

The -n option of sort specifies a numeric sort rather than an alphabetic
sort. Thus,

ls -s | sort -n
tells the C Shell to run the ls command with the -s option, then pipe the
resulting output to the sort command run with the -n (numeric sort)
option. The output of this combination of commands is a list of files
sorted	by	size,	with	the	smallest	file	first.		You	could	then	use	the	-r
reverse sort option and the head command in combination with the pre-
vious command doing

ls -s | sort -n -r | head -5
This	sequence	takes	a	list	of	files	sorted	alphabetically,	each	with	the	size	
in blocks, and pipes this list to the standard input of sort. Sort, in
turn, sorts the list numerically in reverse order (largest first). The sorted
list is piped into the command head which, in this case, displays the first
5	lines	of	the	list,	giving	you	names	and	sizes	of	the	5	largest	files	in	the	
current directory.

Commands separated by “pipe” (|) characters are connected together by
the shell. The standard output of the command to the left of the pipe is
connected to the standard input of the command to the right of the pipe.
The leftmost command in a pipeline will normally take its standard
input from the keyboard. The rightmost will place its standard output
on the screen.

3.2.8 Filenames
Many commands need the names of files as arguments. In both
domain/ix and aegis, pathnames consist of a number of components
separated from each other by the slash (/). Each component except the
last names a directory in which the next component resides, in effect
specifying the path of directories to follow to reach the file. Thus, the
pathname

/etc/systype

The C Shell 3-7

SECTION 2 Shells

specifies a file in the directory etc, which is a subdirectory of the node’s
entry directory, better known as “slash” (/). Within this directory the
file named is systype, a program that returns the value of the SYSTYPE
environment variable. A pathname that begins with a slash is said to be
an absolute pathname since it is specified from the absolute top of the
node’s directory hierarchy.

Note: A node’s directory hierarchy begins one level below the net-
work root, or “//?” directory, so a truly “absolute” pathname
must always begin with two slashes followed by the name of
the node’s entry directory as in

 //ice/tmp

When the Shell sees a pathname that does not begin with a slash, it
assumes that it should start looking in the current working directory.
When you log in, the working directory is set to your home directory.
From there, you can move to (and work in) other directories by using the
cd (change directory) command. Pathnames not beginning with a slash
are said to be relative to the working directory since they are found by
starting in the working directory and descending to lower levels of direc-
tories for each component of the pathname. If the pathname contains no
slashes at all, the shell assumes that the pathname is the name of a file
contained in the current working directory. Absolute pathnames, by con-
trast, have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and
periods. While all printing characters except ‘/’ (slash) may appear in
unix filenames, it is inconvenient to have most non-alphabetic characters
in filenames, since many of them have special meaning to the shell. The
character “.” (period, or dot), while not a C Shell metacharacter, is often
used to separate the extension of a file name from the base of the name.
Thus

prog.c prog.o prog.errs prog.output

are four related files. Their names share a common base portion (that
part of the name which is left when a trailing “.” and following charac-
ters which are not “.” are stripped off). The file prog.c might be the
source for a C program, the file prog.o the corresponding object file, the
file prog.errs the errors resulting from a compilation of the program and
the file prog.output the output of the program itself.

If you wished to refer to all four of these files in a command, you could
use the notation

prog.*

The shell expands prog.*, before the command to which it is an argu-
ment is executed, into a list of names which begin with ‘prog.’. The
character “*” here matches any sequence (including the empty sequence)

3-8 The C Shell

SECTION 2 Shells

of characters in a filename. The names which match are alphabetically
sorted and placed in the argument list of the command. Thus, the com-
mand

% echo prog.*
will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than
we listed them above. The echo command receives four words as argu-
ments, even though only one argument was supplied to the Shell. The
Shell generated the four words by filename expansion of the one input
word.

There are other characters that the C Shell will expand. The character
“?” matches any single character in a filename. Thus,

echo ? ?? ???
will echo a line of filenames; first those with one-character names, then
those with two-character names, and finally those with three-character
names.		The	filenames	of	each	length	will	be	sorted	independently	—	
that is, the output to the screen will be a list of one-character filenames,
followed by a list of two-character filenames, followed by a list of three-
character filenames.

The Shell will also matches any single character from a sequence of char-
acters delimited by brackets. Thus,

prog.[co]

will match both prog.c and prog.o. You can also place two characters
around a “-” in this notation to denote a range. Thus, if you wanted to
troff five chapters of a book that existed in the files chap.1, chap.2 and
so on, you could type the command line

% troff chap.[1-5]
which would pass the names

chap.1 chap.2 chap.3 chap.4 chap.5

to troff for processing. The above notation is equivalent to

chap.[12345]

Note: If a list of argument words to a command (an argument list)
contains filename expansion syntax, and if this filename
expansion syntax fails to match any existing file names, then
the shell considers this to be an error and prints the diagnos-
tic message

 No match.

The C Shell 3-9

SECTION 2 Shells

 and does not execute the command.

Files that begin with the character “.” are treated specially. Neither “*”
or “?” or the “[”“]” mechanism will match it. This prevents accidental
matching of the filenames “.” and “..” in the working directory which
have special meaning to the system, as well as other files such as .cshrc
which are not normally visible in a directory listing. We will discuss
.cshrc in a later section.

Another filename expansion mechanism gives access to the pathname of
the home directory of other users. Normally, this notation consists of the
character ~ (the tilde) followed by another user’s login name. For
instance, the word ~kate would map to the absolute pathname of user
kate’s home directory, for example,

% cd ~kate
% pwd
% //ice/kate

A special case of this notation consists of a “~” alone. The tilde is the
default home directory character. The shell expands this notation into
the pathname of your home directory. For example, the command

% ls -a ~
lists all the files in your home directory. Likewise, the command

% cp thatfile ~

will be expanded to

cp thatfile //your_home_directory/thatfile

You may change this character by setting the shell variable homedirchar
to some other character. For example, to change the home directory
character to “#”, say

% set homedirchar = #
To revert to the default, unset homedirchar.

Note: If you have used the dm environment variable NAMECHARS
(see Section 1, Chapter 1) to assign domain naming server
meta-meanings to the tilde, the naming server will expand the
tilde (~) into the pathname of your home directory, followed
by a slash. It does not, however, expand the input “~name”
into user name’s home directory. To pass the tilde to the
naming server (rather than the C Shell), escape it.

The shell also has a mechanism that uses the left and right brace charac-
ters { and } for abbreviating a set of words that have common parts but
cannot be abbreviated by the above mechanisms because they are not
files (or are files that, while they will be created by the program that is
being invoked, do not exist yet). This mechanism will be described in a

3-10 The C Shell

SECTION 2 Shells

later section.

3.2.9 Quotation
We have already described a number of the metacharacters used by the
shell. These metacharacters pose a problem in that we cannot use them
directly as parts of words. Thus, the command

% echo *
will not echo the character ‘*’. It will either echo a sorted list of all
filenames in the current working directory, or print the message “No
match” if there are no files in the working directory.

The recommended mechanism for placing a character that is neither a
number, a digit, “/”, “.” nor “-” in an argument word to a command is
to enclose it in single quotes “´”, i.e.,

% echo ´*´
One special character, ! (the exclamation point), is used by the history
mechanism of the shell and cannot be escaped by the normal means of
placing it within “’” characters. The ! character and the quote character
“´” itself can be preceded by a single “\” (backslash) to escape their spe-
cial meaning. Thus,

% echo \´\!
prints

´!

These two mechanisms let you include any printing character in an argu-
ment to a shell command. They can be combined, as in

echo \´´*´
which prints

´*

since the first “\” escaped the first “´” and the “*” was enclosed
between “´” characters.

Note: If you have used the dm environment variable NAMECHARS
(see Section 1, Chapter 1) to assign domain naming server
meta-meanings to any of the characters tilde, grave accent,
and	backslash	and	you	use	one	of	those	characters	—	escaped	
—	in	a	pathname	component,	the	character	will	be	inter-
preted not as a literal, but according to the naming server’s
rules.

3.2.10 Terminating Commands
When you are executing a command and the shell is waiting for it to
complete, there are several ways you can force it to stop. For instance if

The C Shell 3-11

SECTION 2 Shells

you type the command

% cat /etc/passwd
the system will print a list of all users of the system. This is likely to
continue for several minutes unless you stop it. You can send an
INTERRUPT signal to the cat command by typing ↑I.

Note: The dm command files unix_keys and bsd_keys define ↑I as
the unix interrupt key. You must execute one of these com-
mand files in order for this definition to be in effect.

Since cat does not take any precautions to avoid or otherwise handle this
signal, the INTERRUPT will cause cat to terminate. The shell notices
that cat has terminated and prompts you again. If you hit INTER-
RUPT again, the shell will just repeat its prompt since it is designed to
effectively ignore INTERRUPT signals.

Many programs will terminate when they get an end-of-file from their
standard input. Thus, the mail program in our earlier example ter-
minated when it received a ↑D (which bsd4.2_keys defines as generating
an end-of-file) from the standard input. The C Shell normally terminates
when it receives an end-of-file. When this happens, the message

% *** EOF ***
logout
*** Pad Closed ***

will be left on the transcript pad and the window will be closed. Since
this means that typing ↑D one too many times can accidentally log you
out of a window, the shell has a mechanism for preventing this. This
ignoreeof option will be discussed in the next section.

If a command has its standard input redirected to come from a file, then
it will normally terminate when it reaches the end of this file. If you exe-
cute

% mail kate < prepared.text
the mail command will terminate when it sees the EOF at the end of the
file prepared.text, from which it is getting input. Another way to accom-
plish the same thing would be to type

% cat prepared.text | mail kate
since the cat command would then have written the text through the
pipe to the standard input of the mail command. When the cat com-
mand completed, it would have terminated, closing down the pipeline
and the mail command would have received an end-of-file from cat and
terminated. These commands could also have been stopped by typing ↑I.

If you write or run programs that are not fully debugged, then it may be
necessary to stop them somewhat ungracefully. This can be done by typ-
ing ↑Q, which sends a QUIT signal. The shell will display the message

3-12 The C Shell

SECTION 2 Shells

Quit

and the number (if any) of the job that quit.

Commands running in the background will ignore INTERRUPT and
QUIT signals. To stop them you must use the kill command. Kill and
background commands are covered in a later section.

3.3 STARTING, STOPPING, AND MODIFYING THE C
SHELL

This section includes information on starting the C Shell and arranging
for it to set certain variables to convenient values every time you log in.

3.3.1 Opening a C Shell When You Log In
When you log in to a domain node, the dm looks in several places for
information about what windows to open and what processes to start (see
Getting Started With Your DOMAIN System and the DOMAIN System
Command Reference for more detailed information). It will normally
open an aegis shell, then look for the file

your_home_directory/user_data/startup_dm.display_type

where display_type matches the type of display in use (e.g., “19l,” or
“color”). If you include a command line like

(0,200)dr; (540,600)cp /bsd4.2/bin/start_csh -n c_shell

in your startup_dm file, the dm will automatically open a C Shell when
you log in.

Note: In the example line above, we specified

 /bsd4.2/bin

 as the /bin to use. See the information on multiple version
support (Section 1, Chapter 1) for more on this.

You may also define a key or function key to open a C Shell. The follow-
ing dm	command	defines	the	shifted	L5	key	—	L5	is	labelled	 SHELL 	—
so that when you press SHIFT SHELL a C Shell will be opened.

kd l5s cp /bin/start_csh ke

In this case, since no /bin is specified, the start_csh command is
obtained from /$(SYSTYPE)/bin.

3.3.2 Login and Logout Scripts
When you log in, the C Shell sets the working directory to your home
directory and begins reading commands from a file .cshrc in this direc-
tory. Every C Shell started with the command /bin/csh reads from this
file. In addition, you may create a file called .login in your home direc-
tory that the C Shell will read (after it reads /bin/start_csh command.

The C Shell 3-13

SECTION 2 Shells

Neither of these files is required. If either doesn’t exist, the shell will use
its own defaults.

Note: If you use the dm editor to create your .cshrc, or .login, you
must also use the unix command chown[1] to make yourself
the owner of these files. Otherwise, they will not be read.

As an example of a .cshrc file, consider the listing below.

set history=10
set prompt=’% ’
set path = (. %/com /usr/ucb /bin /usr/bin /com)
set noclobber
set ignoreeof
set inprocess
set homedirchar=’%’
alias cd ’cd \!* ;ls’
alias lo logout

This file begins with a series of set commands that the Shell interprets
directly. These particular set commands establish the following condi-
tions in the C Shell.

•	the	shell	maintains	a	“history	list”	of	the	last	10	commands.

•	the	prompt	is	a	percent	sign	followed	by	a	space

•	when	a	command	is	typed,	the	shell	will	look	for	it	in	the	following	
places, in the order listed

1. the current directory (.)

2. the directory home_directory/com

3. the /usr/ucb directory

4. the /bin directory

5. the /usr/bin directory

6. the /com directory

•	the	variable	noclobber is set, forcing the shell to notify you whenever
you redirect output into a file that already exists.

•	the	variable	ignoreeof is set. The shell will not terminate (e.g., close
the window or, if you are using a terminal, log you off) when it
receives an end-of-file from standard input.

•	the	variable	inprocess is set, forcing in-process (rather than forked)
execution of commands. (The default value of inprocess is unset.)

•	the	variable	homedirchar is set to make the home directory character
a % rather than the default ~ .

3-14 The C Shell

SECTION 2 Shells

The next two commands are alias commands that, in effect, rename
command sequences. In this case, the command cd is aliased to change
to the specified directory, then list its contents. And, since the variable
ignoreeof is set, the string “lo” is defined as having the alias logout,
providing a way to close up the shell window with a minimum of typing.

Note: You may override noclobber if it is set by using the syntax

 >!
 For example, if you really wanted to overwrite the contents of

a file named now with the current date, you could do so even
if noclobber had been set. The command line

 date >! now

 would do it. The “>!” is a special metasyntax indicating
that clobbering the file is allowed. Note that the space
between the “!” and the word “now” is critical here, as
“!now” would be an invocation of the history mechanism, and
have a totally different effect.

3.3.3 Shell Variables
The shell maintains a number of variables. In the .cshrc file shown
above, the variable history had a value of 10. In fact, each shell vari-
able	has	as	its	value	an	array	of	zero	or	more	strings.		The	set command
assigns values to variables. Set has several forms, the most useful of
which was given above and is

set name=value

Shell variables provide you with a way to store values that can then be
made	available	—	via	the	substitution	mechanism,	to	commands.		The	
shell variables most commonly referenced are, however, those to which
the shell itself refers. By changing the values of these variables, you can
directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable
contains a sequence of directory names where the shell searches for com-
mands. If you execute the set command with no arguments, the shell
will display the values of all variables currently set.

Note: The shell examines each directory in the specified path and
determines what commands are contained there. Except for
the current directory “.”, which the shell treats specially, this
means that if commands are added to a directory in your
search path after you have started the shell, they will not
necessarily be found by the shell. If you wish to use a com-
mand which has been added in this way, you should give the
command

The C Shell 3-15

SECTION 2 Shells

 % rehash
 to the shell, which will cause it to recompute its internal table

of command locations, so that it will find the newly added
command. Since the shell has to look in the current directory
“.” on each command, placing it at the end of the path
specification usually works equivalently and reduces overhead.

Other useful built in variables are the variable home which shows your
home directory, and the variable cwd which contains your current work-
ing directory. Note that variable ignoreeof is one of several variables
that	have	no	value	other	than	off	or	on	—	more	correctly	unset or set.
Thus, to set this variable you simply

set ignoreeof
and to unset it,

unset ignoreeof
The variable noclobber is another one of these “boolean” variables. It
can only assume two states.

3.3.4 History
The shell can maintain a history list into which it places the words of
previous commands. The C Shell’s history mechanism makes it possible
to reuse commands or words from commands in forming new commands.
This mechanism can be used to repeat previous commands or to correct
minor typing mistakes in commands.

The following example is a session involving typical usage of the C
Shell’s history mechanism.

3-16 The C Shell

SECTION 2 Shells

% cat bug.c
main()
{
printf(”hello);
}
% cc !$
cc bug.c
”bug.c”, line 4: newline in string or char constant
”bug.c”, line 5: syntax error
% ed !$
ed bug.c
29
4s/);/”&/p
printf(”hello”);
w
30
q
% !c
cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/lo/lo\\n/p
printf(”hello\n”);
w
32
q
% !c -o bug
cc	bug.c	-o	bug	%	size	a.out	bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b
% ls -l !*
ls -l a.out bug
-rwxr-xr-x 1 kate 3932 Dec 19 09:41 a.out
-rwxr-xr-x 1 kate 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% ^spp^ssp
num bug.c | ssp
1 main()
3 {
4 printf(”hello\n”);
5 }
% !! | prf

The C Shell 3-17

SECTION 2 Shells

num bug.c | ssp | prf
%

In this example there is a very simple C program which has a bug (or
two) in it. To begin with, the file bug.c is catted onto the screen. An
attempt is made to run the C compiler on it, referring to the file again as
“!$”, which is an invocation of the history mechanism that means “use
the last argument to the previous command.” The ! is the metacharacter
that invokes the history mechanism and the $ stands for the last (most
recent) argument read by the shell. The shell echoes the command, as it
would have been typed without use of the history mechanism, and then
executes it. Since the compilation yielded error diagnostics, the editor
had to be invoked in order to fix the bug, then the file had to be com-
piled again, this time referring to the cc command simply as !c. The
notation !x tells the Shell to repeat the most recently submitted com-
mand that begins with character x. If it’s necessary to be more specific,
(for example, if other commands starting with “c” had been used
recently), the history mechanism could have been invoked by typing !cc.
If further caution was needed, the form !cc:p just prints the last com-
mand that started with “cc,” without appending the return that would
execute it.

After this recompilation, a run of the resulting a.out file revealed that
there was still a bug, so the editor was invoked again, then the C com-
piler. This time, the -o bug switch was added to the cc command line,
telling the compiler to place the resultant binary in the file bug rather
than a.out. In general, the history mechanisms may be used anywhere in
the formation of new commands, and other characters may be placed
before and after the substituted commands.

We then ran the size command to see how large the object files were,
and then an ls -l command with the same argument list, denoting the
argument list \!*. Finally, we ran the program bug to see that its out-
put was indeed correct.

To make a numbered listing of the program we ran the num command
on the file bug.c. In order to remove blank lines in the output of num
we ran the output through the filter ssp, but misspelled it as spp. To
correct this we used a shell substitute, placing the old text and new text
between A characters. This is similar to the substitute command in the
editor. Then we repeated the same command with !!, but sent its output
to the line printer.

Note: On domain nodes, the AGAIN key is often defined to copy
all text between the cursor position and the next EOL into
the “next input window.” In fact, the dm’s cut-and-paste
facilities may prove more effective than the history mechan-
ism in certain situations. See the DOMAIN System Command
Reference, as well as Section 1, Chapter 4 of the
DOMAIN/IX Text Processing Guide manual for more

3-18 The C Shell

SECTION 2 Shells

 information on the dm editor’s cut-and-paste facility.

There are other ways to repeat a command from the history list. The
history command prints out a number of previous commands accom-
panied by the numbers with which they can be referenced. There is also
a way to refer to a previous command by searching for a string that
appeared in it. A complete description of all these mechanisms is given
in the C Shell manual pages in the DOMAIN/IX Command Reference.

3.3.5 Aliases
The shell has an alias mechanism that is very useful for transforming
input commands. This mechanism can be used to simplify the com-
mands you type, to supply default arguments to commands, or to do
transformations on commands and their arguments. The alias mechan-
ism is similar to a macro facility. Some of the features obtained by alias-
ing can also be obtained using shell command files, but these take place
in another instance of the shell and cannot directly affect the current
shell’s environment or involve commands, such as cd, which must be
done in the current shell. As an example, suppose you wish the com-
mand ls	to	always	show	sizes	of	files,	that	is	to	always	do	-s. The fol-
lowing alias would do the trick.

% alias ls ls -s
You could even create a “new” command called ‘dir’ that does an ‘ls -s’.

% alias dir ls -s
Thus, the alias mechanism can be used to provide short names for com-
mands, to provide default arguments, and to define new short commands
in terms of other commands. It is also possible to define aliases that con-
tain multiple commands or pipelines, showing where the arguments to
the original command are to be substituted using the facilities of the his-
tory mechanism. For example, the alias for cd in the .cshrc file above:

% alias cd ’cd \!* ;ls’
causes the shell to automatically do an ls after every cd. It was neces-
sary to enclose the entire alias definition in “´” characters to prevent
most substitutions from occurring and to prevent the character ‘;’ from
being	recognized	as	a	metacharacter.		The	‘!’	here	is	escaped	with	a	‘\’	to	
prevent it from being interpreted when the alias command is typed in.
The ‘\!*’ here substitutes the entire argument list to the pre-aliasing cd
command, without giving an error message if no arguments are supplied.
The ‘;’ is used here to indicate that one command is to be done first, fol-
lowed by the next. Similarly the definition

% alias whois ´grep \!^ /etc/passwd´
defines a command which looks up its first argument in the password file.

The C Shell 3-19

SECTION 2 Shells

Note: The C Shell reads the .cshrc file each time it is invoked. If
you place a large number of commands there, shells will tend
to start slowly. We recommend that you limit the number of
aliases you place in this file. Ten aliases will cause no per-
ceived delay. Fifty aliases will cause a noticeable delay in
starting up shells, and make the system seem sluggish when
you execute commands from within the editor and other pro-
grams.

3.3.6 More Redirection; >> and >&
There are a few more useful C Shell notations that need to be intro-
duced. In addition to the standard output, commands also have a diag-
nostic output (or “error output”) that is normally directed to the screen
even when the standard output is redirected to a file or a pipe. If you
need to redirect the diagnostic output to the same place as you redirect
standard output, (e.g., if you want to redirect the output of a long-
running command into a file and need to have a record of any error diag-
nostics produced while the command was running) use the notation

command >& file

The >& here tells the shell to route both the diagnostic output and the
standard output into file. Similarly you can give the command

command |& prf
to route both standard and diagnostic output through the pipe to the
/com/prf print spooler.

Note: The notation

 command >&! file
 can be used when noclobber is set and file already exists.

Finally, it is possible to use the form

command >> file

to place output at the end of an existing file.

Note: If noclobber is set, an error will result if file does not exist;
otherwise the shell will create file if it doesn’t exist. A form

 command >>! file
 can be used if it’s necessary to override noclobber’s error mes-

sage.

3.3.7 Jobs; Background, Foreground, or Suspended
Whenever one or more commands are connected via pipes or as a
sequence of commands separated by semicolons, a single job is created by

3-20 The C Shell

SECTION 2 Shells

the shell consisting of all commands so connected. A single command
without pipes or semicolons is, of course, the simplest job. Usually, every
line typed to the shell creates a job.

If you type the metacharacter & at the end of a command line, then the
job generated by that command line is started as a background job.
This means that the shell does not wait for it to complete but immedi-
ately prompts and is ready for another command. The job runs “in the
background” at the same time that normal jobs, called foreground jobs,
continue to be read and executed by the shell one at a time. Thus,

du > usage &
would run the du program, which reports on the disk usage of your
working directory (as well as any directories below it), put the output
into the file usage and return immediately with a prompt for the next
command without waiting for du to finish. The du program would con-
tinue executing in the background until it finished, and the shell would
continue accepting input from you. When a background job terminates,
the shell types a message before the next prompt, telling you that the job
has completed. In the following example, the du job finishes sometime
during the execution of the mail command. Its completion is reported
just before the prompt after the mail job is finished.

% du > usage &
[1] 503
% mail kate
How can I tell when a background job is finished?

bob
*** EOF ***
EOT
[1] - Done du > usage
%

If the job did not terminate normally the “Done” message might say
something else like “Killed”. If you want the terminations of back-
ground jobs to be reported at the time they occur (possibly interrupting
the output of other foreground jobs), you can set the notify variable. In
the previous example, this would mean that the “Done” message might
have appeared in the middle of the message to Kate. Background jobs
are unaffected by any signals from the keyboard like the STOP, INTER-
RUPT, or QUIT signals mentioned earlier.

Note: On domain systems, you can invoke a C Shell with or
without the ability to suspend/restart a process, or move it
into or out of the foreground. The C Shell’s ability to handle
this kind of job control is determined by the state of the shell
variable inprocess, which may be set or unset. (You may
also invoke a C Shell with inprocess unset by including the
-j switch on the csh or start_csh command line.) You will

The C Shell 3-21

SECTION 2 Shells

 not be able to use the fg, bg, and stop commands unless
inprocess is unset. When the inprocess is set (the default
condition),	the	following	limitations	—	all	of	which	concern	
aegis commands, apply.

•	The	/com/tb command will always return the message
“no traceback available.”

•	Libraries	loaded	with	the	inlib command will not be avail-
able to programs running in an environment where inpro-
cess is unset.

•	The	/com/las command will only list the address space
occupied by itself.

•	The	/com/lopstr command shows only those streams
that the C-Shell has open.

•	The	/com/wd command will not work.

Whether or not inprocess is set, information about all running jobs is
recorded in a table maintained by the C Shell. In this table, the shell
stores the command names, arguments, and the process numbers of all
commands in the job. It also notes the working directory in which the
job was started. Each job in the table is either running in the fore-
ground with the shell waiting for it to terminate, running in the back-
ground, or suspended. Only one job can be running in the foreground.
Simultaneously, several jobs can be either running in the background or
suspended. As each job is started, it is a “job number.” This number is
used in conjunction with the commands below to suspend or kill the job.
The job number assigned to a job remains the same until the job ter-
minates, at which time the job number is available for reuse.

When a job is started in the background, the shell displays the job’s
number, as well as the process numbers of all its (top level) commands.
This job, for example,

% ls -s | sort -n > usage &
[2] 65 66
%

runs the ls program with the -s options, pipes this output into the sort
program with the -n option which puts its output into the file “usage”.
Since there was an & at the end of the line, these two programs were
started together as a background job. After starting the job, the shell
prints the job number ([2] in this case) in brackets followed by the job’s
process numbers, then prompts for a new command.

To suspend a foreground job, you need to send a STOP signal to the
shell process. If you invoke the bsd4.2_keys key definitions, suspend will
be mapped to ↑Z. This sends a STOP signal to the job that’s currently
running in the foreground. To suspend a background job, use the stop
command described below. When jobs are suspended, they merely stop

3-22 The C Shell

SECTION 2 Shells

any further progress until started again, either in the foreground or the
background. The shell notices when a job becomes stopped and reports
this fact, much like it reports the termination of background jobs. For
foreground jobs, this looks like

% du > usage
↑Z Stopped
%

The shell displays the “Stopped” message when it notices that a job (in
this case, the du program) has stopped. When a background job is
stopped with the stop command, the shell prints a slightly different mes-
sage.

% sort usage &
[1]23
% stop %1
[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to tem-
porarily change what you are doing (execute other commands) and then
return to the suspended job. Also, foreground jobs can be suspended,
then continued as background jobs using the bg command, allowing you
to continue other work and stop waiting for the foreground job to finish.
In this sequence,

% du > usage
↑Z
Stopped
% bg
[1] du > usage &
%

we start du in the foreground, stop it before it finishes, then continue it
in the background.

All job control commands can take an argument that identifies a particu-
lar job. All job name arguments must begin with the character %, since
some of the job control commands also accept process numbers.

Note: To obtain the numbers of all running or suspended processes,
use the ps (process statistics) command.

The default job (when no argument is given) is called the “current job”
and is identified by a “+” in the output of the jobs command. When
only one job is stopped or running in the background, it is always the
current job. No argument is needed in this case. If you stop a job run-
ning in the foreground, it becomes the current job and the existing
current	job	becomes	the	previous	job	—	identified	by	a	- in the output of
jobs. When the current job terminates, the previous job becomes the

The C Shell 3-23

SECTION 2 Shells

current job. When given, the argument to jobs is one of the following.

%- the previous job

%n where n is the job number

%pref where pref is some unique prefix of the command name and
arguments of one of the jobs

%?string where string is a string found in only one of the command
lines that set up a job.

The jobs command lists the table of jobs, giving the job number, com-
mands, and status (“Stopped” or “Running”) of each background or
suspended job. With the -l option, the process numbers are also given.

% du > usage &
[1] 33
% ls -s | sort -n > myfile &
[2] 34
% mail ers
↑Z
Stopped
% jobs
[1] - Running du > usage
[2] Running ls -s | sort -n > myfile
[3] + Stopped mail ers
% fg %ls
ls -s | sort -n > myfile
% more myfile

The fg moves a job into the foreground. If the job is suspended, it will
be restarted. If the job is already running in the background, it will con-
tinue to run but will become the foreground job and, as a consequence,
will be able to accept signals or input from the terminal. In the above
example, we used fg to change the ls job from the background to the
foreground since we wanted to wait for it to finish before looking at its
output file. The bg command runs a suspended job in the background.
It is usually used after stopping the currently running foreground job
with the STOP signal. The combination of the STOP signal and the bg
command changes a foreground job into a background job. The stop
command suspends a background job.

The kill command terminates a background or suspended job immedi-
ately. In addition to jobs, kill may be given process numbers (printed by
ps) as arguments. Thus, in the example above, the running du command
could have been terminated by the command

% kill %1
[1] Terminated du > usage

3-24 The C Shell

SECTION 2 Shells

The notify command (not the variable mentioned earlier) indicates that
the termination of a specific job should be reported at the time it
finishes, instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal,
it is automatically stopped. When such a job is then run in the fore-
ground, input can be given to the job. If desired, the job can be run in
the background again until it requests input again. This is illustrated in
the following sequence where the “s” command in the text editor might
take a long time.

% ed bigfile
120000
1,$s/thisword/thatword/
↑Z
Stopped
% bg
[1] ed bigfile &
%
some foreground commands
[1] Stopped (tty input) ed bigfile
% fg
ed bigfile
w
120000
q
%

So after the “s” command was issued, the ed job was stopped with ↑Z,
and then put in the background using bg. Some time later when the “s”
command was finished, ed tried to read another command and was
stopped because jobs in the background cannot read from the terminal.
The fg command returned the ed job to the foreground where it could
once again accept commands from the terminal.

Note: The jobs command only prints jobs started in the currently
executing shell. It knows nothing about background jobs
started in other shells. Use ps to find out about background
jobs not started in the current shell.

3.3.8 Working Directories
The shell is always in a particular working directory. The “change direc-
tory” command, cd, changes the working directory of the shell. It’s use-
ful to make a directory for each project you wish to work on, then place
all files related to that project in that directory. The “make directory”
command, mkdir, creates a new directory. The pwd (“print working
directory”) command reports the absolute pathname of the working
directory of the shell, that is, the directory in which you are located.
Thus, in the example below;

The C Shell 3-25

SECTION 2 Shells

% pwd
//ice/kate
% mkdir newdocs
% cd newdocs
% pwd
//ice/kate/newdocs
%

we have created and moved to the directory newdocs.

No matter where you have moved to in a directory hierarchy, you can
return to your “home” directory by doing just

cd
with no arguments. The name .. (“dot dot”) always means the directory
above the current one. Thus,

cd ..
changes the shell’s working directory to the parent of (the directory
immediately above) the current directory. The name .. can be used in
any pathname, thus,

cd ../programs
means change to the directory programs contained in the directory above
the current one. If you have several directories for different projects
under your home directory, this shorthand notation makes it easier to
switch between them.

The shell always remembers the pathname of its current working direc-
tory in the variable cwd. The shell can also be requested to remember
the previous directory when you change to a new working directory. If
the “push directory” command, pushd, is used in place of the cd com-
mand, the shell saves the name of the current working directory on a
directory stack before changing to the new one. You can see this list at
any time by typing the “directories” command dirs.

% pushd newpaper/references
%/newpaper/references ~
% pushd /usr/lib/tmac
/usr/lib/tmac ~ /newpaper/references ~
% dirs
/usr/lib/tmac ~ /newpaper/references &
% popd
%/newpaper/references ~
% popd
%
%

The	list	is	printed	in	a	horizontal	line,	reading	left	to	right,	with	a	tilde	
as shorthand for your home directory. The directory stack is printed
whenever there is more than one entry on it and it has changed. It is

3-26 The C Shell

SECTION 2 Shells

also printed by a dirs command. Dirs is usually faster and more infor-
mative than pwd since it shows the current working directory, as well as
any other directories remembered in the stack.

The pushd command with no argument alternates the current directory
with the first directory in the list. The “pop directory” command,
popd, used without an argument, returns you to the directory you were
in prior to the current one, discarding the previous current directory
from the stack (forgetting it). Typing popd several times in a series
takes you backward through the directories you had been in (changed to)
by pushd command. There are other options to pushd and popd to
manipulate the contents of the directory stack and to change to direc-
tories not at the top of the stack; see the csh manual pages in the
DOMAIN/IX Command Reference for BSD4.2 for details.

Since the shell remembers the working directory in which each job was
started, it warns you when it thinks you might be restarting a foreground
job that has a different working directory than the current working direc-
tory of the shell. Thus, if you start a background job, then change the
shell’s working directory, then bring a background job into the fore-
ground, the shell warns you that the working directory of the currently
running foreground job is different from that of the shell.

% dirs -l
//ice/kate
% cd my project
% dirs
%/myproject
% ed prog.c
1143
↑Z
Stopped
% cd ..
% ls
myproject
textfile
% fg
ed prog.c working dir is: ~ /myproject

This way the shell warns you when there is an implied change of working
directory, even though no cd command was issued. In the above exam-
ple the ed job was still in /ice/kate/myproject even though the shell had
changed to /ice/kate/. A similar warning is given when such a fore-
ground job terminates or is suspended (using the STOP signal) since the
return to the shell implies a change of working directory.

The C Shell 3-27

SECTION 2 Shells

% fg
ed prog.c working dir is: ~ /myproject
q
working dir is now: ~
%

These messages are sometimes confusing if you use programs that change
their own working directories, since the shell assumes that a job stays in
the same directory where it started. The -l option of jobs will type the
working directory of suspended or background jobs when it is different
from the current working directory of the shell.

3.3.9 Useful Built-in Commands
This section describes a few of the useful built-in shell commands and
explains how they are used.

The alias command described above is used to assign new aliases and to
show the existing aliases. With no arguments, it prints a list of the
current aliases. If given a single argument, such as

% alias ls
alias will show the current alias for that argument (e.g., ls).
The echo command prints its arguments. It is often used in shell scripts
or as an interactive command to see what filename expansions will pro-
duce.

The history command shows the contents of the history list. The
numbers given with the history events can be used to reference previous
events which are difficult to reference using the contextual mechanisms
introduced above. There is also a shell variable called prompt which
tells the C Shell to use a specific character or string as the prompt.
Thus, if you

% set prompt=´\! %´
the shell will prepend the number of the current command in the history
list to the % sign. Note that the ! character had to be escaped here even
within “´” characters.

The logout command can be used to terminate a login shell which has
ignoreeof set.
The rehash command causes the shell to recompute a table of command
locations. You’ll need to do a rehash if you add a command to a direc-
tory in the current shell’s search path. If a command isn’t in the search
path when the hash table is computed, the shell probably won’t know
that it exists.

The repeat command can be used to repeat a command several times.
Thus, to make 5 copies of the file one in the file five you could do

3-28 The C Shell

SECTION 2 Shells

% repeat 5 cat one >> five
The setenv command can be used to set variables in the C Shell
environment. Thus,

setenv TERM vt100
will set the value of the environment variable TERM to “vt100”. There is
a program called printenv that will print out the environment. It might
then show:

% printenv
USER=kate
LOGNAME=kate
PROJECT=none
ORGANIZATION=doc
NODEID=1054
PATH=:~ com:/usr/ucb:/bin:/com:/usr/bin
TERM=apollo_19L
NODETYPE=DN300
TZ=EST5EDT
HOME=//ice/kate

The source command can be used to force the current shell to read com-
mands from a file. Thus,

source .cshrc
can be used after making a change to the .cshrc file if you wish the
change to take effect immediately. The unalias command cancels
aliases. Unset removes shell variables, and unsetenv removes environ-
ment variables.

3.4 SHELL CONTROL STRUCTURES AND SHELL
SCRIPTS

It is possible to place commands in files and to cause shells to be invoked
to read and execute commands from these files, which are called “shell
scripts.” In this section, we detail those features of the shell useful to the
writers of such scripts.

3.4.1 Invocation and the argv Variable
To run a C Shell script, you may type

% csh scriptname args

where scriptname is the name of the file containing a group of csh com-
mands and args denotes a sequence of optional arguments. The shell
places these arguments in the variable argv and then begins to read
commands from the script. These arguments placed in argv are made
available as if they were ordinary shell variables.

If you make the file scriptname executable by doing

The C Shell 3-29

SECTION 2 Shells

chmod 755 scriptname

and place the line

#!/bin/csh

as the first line of the file scriptname, a C Shell will automatically be
invoked to execute scriptname when you type

scriptname

In general, you should always start a shell script with a line of the
form

#!shell
where shell is the name of the shell that is to execute the script. Legal
shells are:

/bin/csh the C Shell

/bin/sh the Bourne shell

/com/sh the aegis shell

If the file does not begin with a #, the shell in which you invoked the
script will try to execute it, with unpredictable results.

3.4.2 Variable Substitution
After each input line is broken into words and history substitutions are
made, the input line is parsed into distinct commands. Before each com-
mand is executed, the shell does variable substitution on these words.
Variable substitution is keyed by the $ character, and is a procedure by
which the shell replaces the names of variables by their values. Thus,

echo $argv

when placed in a command script would cause the current value of the
variable argv to be echoed to the output of the shell script. It is an
error for argv to be unset at this point.

The C Shell provides a number of notations for accessing components
and attributes of variables. The notation

$?name

expands to “1” if name is set and to “0” otherwise. It is the fundamen-
tal mechanism used for checking whether particular variables have been
assigned values. All other forms of reference to undefined variables cause
errors.

The notation

$#name

expands to the number of elements in the variable name. The sequence
below should make this more clear.

3-30 The C Shell

SECTION 2 Shells

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
0
% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable that has several
values. Thus,

$argv[1]

gives the first component of argv or in the example above “a”. Similarly

$argv[$#argv]

would give “c”, and

$argv[1-2]

would give “a b”. Other notations useful in shell scripts are

%n

where n is an integer as a shorthand for

$argv[n]

the nth parameter and

$*

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process
number is unique in the system, it can be used in generation of unique
temporary file names. The form

$<

is replaced by the next line of input read from the shell’s standard input
(not the script it is reading). This is useful for writing shell scripts that
are interactive, reading commands from the terminal, or even writing a
shell script that acts as a filter, reading lines from its input file. Thus,
the sequence

The C Shell 3-31

SECTION 2 Shells

#!/bin/csh
#
echo ‘yes or no?\c’
set a=($<)

would write out the prompt “yes or no?” without a newline and then
read the answer into the variable “a”. In this case “$#a” would be “0”
if either a blank line or end-of-file (↑D) was typed.

For compatibility with the way older shells handled parameters, the form
“$argv[n]” will yield an error if n is not in the range “1-$#argv” while
“$n” will never yield an out-of-range subscript error.

It is never an error to give a subrange of the form “n-”; if there are less
than n components of the given variable then no words are substituted.
A range of the form “m-n” returns an empty vector without giving an
error when m exceeds the number of elements of the given variable,
provided the subscript n is within range.

3.5 EXPRESSIONS
It’s important to be able to evaluate expressions in the shell based on the
values of variables. All the arithmetic operations of C are available in
the shell with the same precedence that they have in C. In particular,
the operations == and != compare strings and the operators && and
|| implement the boolean and/or operations. The special operators =~
and !~ are similar to == and != except that the string on the right
side can have pattern matching characters (like *, ? or []), and the test is
whether the string on the left matches the pattern on the right.

The shell also allows file inquiries of the form

-? filename

where ? is replace by a number of single characters. For instance, the
expression primitive

-e filename

tells whether the file filename exists. Other primitives test for read,
write, and execute access to the file, whether it is a directory, or has
non-zero	length.

It is possible to test whether a command terminates normally, by a prim-
itive of the form { command } which returns true (i.e., “1”) if the com-
mand succeeds (exits normally with exit status 0), or “0” if the command
terminates	abnormally	or	with	exit	status	non-zero.		If	you	need	more	
detailed information about the execution status of a command, execute
it, then examine variable $status.

Note: Since $status is set by every command, you will have to save
a particular command’s $status if you can’t examine it

3-32 The C Shell

SECTION 2 Shells

 immediately after the command is executed.

3.5.1 A Sample Shell Script
The following shell script, called copyc, makes use of the C Shell’s
expression mechanism and some of its control structures.

!/bin/csh
Copyc copies those C programs in the specified list
to the directory ~ backup if they differ from the files
already in ~ backup
#
set noglob
foreach i ($argv)

if ($i !~ *.c) continue # not a .c file so do nothing

if (! -r ~ backup/$i:t) then
echo $i:t not in backup... not cp\’ed
continue
endif

cmp -s $i ~ backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i ~ backup/$i:t
endif
end

This script makes use of the foreach command, which causes the shell
to execute the commands between the foreach and the matching end
for each of the values given between (and) with the named variable, in
this case i set to successive values in the list. Within this loop, you may
use the command break to stop executing the loop and continue to
prematurely terminate one iteration and begin the next. After the
foreach loop the iteration variable (i in this case) has the value it was
assigned at the last iteration.

We set the variable noglob here to prevent filename expansion of the
members of argv. This is generally a good idea if the arguments to a
shell script are filenames that have already been expanded or if the argu-
ments may contain filename expansion metacharacters. It is also possi-
ble, though tedious, to quote each use of a $ variable expansion.

The other control construct used here is a statement of the form

The C Shell 3-33

SECTION 2 Shells

if (expression) then
command
...
endif

Note: The placement of the keywords here is not flexible. The fol-
lowing two formats are not acceptable to the C Shell.

 #this won’t work
 if (expression)
 then
 command
 ...
 endif

 #nor will this
 if (expression) then command endif

The shell does have another form of the if statement.

if (expression) command

For the sake of appearance, this can be written with an escaped newline.

if (expression) \
command

The command must not involve |, & or ; and must not be another con-
trol command. In the second form, the final “\” must immediately pre-
cede the end-of-line.

The more general if statements above also admit a sequence of else—if
pairs followed by a single else and an endif, as shown here.

if (expression) then
commands
else if (expression) then
commands
else
commands
endif

Another important mechanism used in shell scripts is the : modifier. We
can use the modifier :r here to extract a root of a filename or :e to
extract the extension. Thus, if the variable i has the value
/mnt/foo.bar then

3-34 The C Shell

SECTION 2 Shells

% echo $i $i:r $i:e
/mnt/foo.bar /mnt/foo bar
%

shows how the :r modifier strips off the trailing .bar and the :e
modifier leaves only the bar. Other modifiers will take off the last com-
ponent of a pathname leaving the head :h or all but the last component
of a pathname leaving the tail :t. These modifiers are fully described in
the DOMAIN/IX Command Reference for BSD4.2. It is also possible to
use the command substitution mechanism, described in the next major
section, to perform modifications on strings.

Note: The C Shell allows only one : modifier on a $ substitution.
Thus,

 % echo $i $i:h:t
 /a/b/c /a/b:t
 %

 does not do what one would otherwise expect.

Finally, we note that the character # lexically introduces a shell com-
ment in shell scripts (but not from the terminal). All subsequent charac-
ters on the input line after a # are discarded by the shell. This charac-
ter can be quoted using “’” or “\” to place it in an argument word.

3.5.2 Other Control Structures
The shell also has control structures while and switch similar to those
of C. These take the forms

while (expression)
commands
end

and

The C Shell 3-35

SECTION 2 Shells

switch (word)

case str1:
commands
breaksw

...

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details, see the material on the C Shell in the DOMAIN/IX Com-
mand Reference for BSD4.2. C programmers should note that the C
Shell uses breaksw to exit from a switch while break exits a while or
foreach loop. A common mistake in C Shell scripts is the use of break
rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in
C, i.e.,

loop:
commands
goto loop

3.5.3 Supplying Input to Commands
By default, commands run from shell scripts receive the standard input
of the shell that is running the script. This allows shell scripts to partici-
pate in pipelines, but mandates extra notation for commands which are
to take in-line data.

Thus, we need a metanotation for supplying in-line data to commands in
shell scripts. As an example, consider this script which runs the editor to
delete leading blanks from the lines in each argument file

3-36 The C Shell

SECTION 2 Shells

#!/bin/csh
deblank, a script to remove leading blanks
foreach i ($argv)
ed - $i << ´EOF´
1,$s/^[]*//
w
q
´EOF´
end
%

The notation “<< ´EOF´” means that the standard input for the ed
command is to come from the text in the shell script file up to the next
line consisting of exactly “´EOF´”. The fact that the “EOF” is
enclosed in “´” characters (quoted) causes the shell to forego variable
substitution on the intervening lines. In general, if any part of the word
following the “<<” that the shell uses to terminate the text to be given
to the command is quoted, then variable substitutions will not be per-
formed. In this case since we used the form “1,$” in our editor script, we
needed to ensure that this $ did not trigger a substitution. We could
also have ensured this by preceding the “$” here with a “\”, i.e.,

1,\$s/^[]*//

but quoting the “EOF” terminator is a more reliable way of achieving
the same result.

3.5.4 Catching Interrupts
If your shell script creates temporary files, you may wish to catch interr-
uptions of the shell script so that you can clean up these files. To do
this, use the construct

onintr label

where label is a label in the program. If an interrupt is received, the shell
will do a “goto label.” You can then remove the temporary files and do
an exit command (built in to the shell) to exit from the shell script. If
you	wish	to	exit	with	a	non-zero	status,	do

exit(1)

to exit with status “1”.

3.5.5 Additional Options
There are other features of the shell useful to writers of shell procedures.
The verbose and echo options and the related -v and -x command line
options can be used to help trace the actions of the shell. The -n option
causes the shell to read commands but not execute them, something
which may be of use when debugging.

There is also another quotation mechanism using ” (the double quote)
which allows only some of the expansion mechanisms we have so far

The C Shell 3-37

SECTION 2 Shells

discussed to occur on the quoted string and serves to make this string
into a single word as ‘´’ does.

3.6 OTHER SHELL FEATURES
The C Shell features discussed in this section are less commonly used and
will be touched lightly here. Further details on these features can be
obtained from the C Shell section of the DOMAIN/IX Command Refer-
ence for BSD4.2.

3.6.1 Loops at the Terminal; Variables as Vectors
It is occasionally useful to use the foreach control structure at the ter-
minal to aid in performing a number of similar commands. For instance,
if you needed to count the number of files in several directories (dir1,
dir2, and dir3) that had the characters “.TS” or “.EQ” at the beginning
of a line, you could use several command lines.

% grep -c ‘^\.TS|.EQ’ dir1
3
% grep -c ‘^\.TS|.EQ’ dir2
5
% grep -c ‘^\.TS|.EQ’ dir3
6

or you could use foreach to do this more easily.

% foreach i (´dir1´ ´dir2´ ´dir3´)
? grep -c ’^\.TS|.EQ’ $i
? end
3
5
6
%

Note here that the shell prompts for input with “? ” when reading the
body of the loop.

Variables that contain lists of filenames or other words are also useful in
loops. You can, for example, do

% set a=(`ls`)
% echo $a
csh.n csh.rm
% ls
csh.n
csh.rm
% echo $#a
2
%

The set command here gave the variable a a list of all the filenames in
the current directory as value. You can then iterate over these names to

3-38 The C Shell

SECTION 2 Shells

perform any chosen function.

The output of a command within

`

characters is converted by the shell to a list of words. You can also place
the “`” quoted string within

”

characters to take each (non-empty) line as a component of the variable;
preventing the lines from being split into words at blanks and tabs. A
modifier “:x” exists which can be used later to expand each component of
the variable into another variable splitting it into separate words at
embedded blanks and tabs.

3.6.2 Braces { ... } in Argument Expansion
Another form of filename expansion involves the brace characters

{}

These characters specify that the delimited strings, separated by “,” are
to be consecutively substituted into the containing characters and the
results expanded left to right. Thus,

A{str1,str2,...strn}B

expands to

Astr1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be
applied recursively (i.e., nested). The results of each expanded string are
sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are
used. This means that this mechanism can be used to generate argu-
ments which are not filenames, but which have common parts.

A typical use of this would be

% mkdir ~/{hdrs,retrofit,csh}
to make subdirectories hdrs, retrofit, and csh in your home directory.
This mechanism is most useful when the common prefix is longer than in
this example, i.e.,

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

3.6.3 Command Substitution
A command enclosed in ` characters is replaced, just before filenames are
expanded, by the output from that command. Thus, you may

% set pwd=`pwd`
to save the current directory in the variable pwd or to do

The C Shell 3-39

SECTION 2 Shells

% ex `grep -l TRACE *.c`
to run the editor ex supplying as arguments those files whose names end
in “.c” which have the string “TRACE” in them.

Note: Command expansion also occurs in input redirected with
“<<” and within “”” quotations. Refer to the C Shell
pages in the DOMAIN/IX Command Reference for BSD4.2
for full details.

3.6.4 Other Details Not Covered Here
In particular circumstances, it may be necessary to know the exact
nature and order of different substitutions performed by the shell. The
exact meaning of certain combinations of quotations is also occasionally
important. These are detailed in the DOMAIN/IX Command Reference
for BSD4.2.

The shell has a number of command line option flags mostly of use in
writing unix programs, and debugging shell scripts.

3.7 A SUMMARY OF C-SHELL METACHARACTERS
This	section	lists	the	metacharacters	recognized	by	the	C	Shell.		A	
number of these characters also have special meaning in expressions. See
the information on csh in the DOMAIN/IX Command Reference for
BSD4.2 for a complete list.

Note: If you have used the dm environment variable NAMECHARS
(see Section 1, Chapter 1) to assign domain naming server
meta-meanings to any of the characters tilde, grave accent,
and	backslash	and	you	use	one	of	those	characters	—	escaped	
—	in	a	pathname	component,	the	character	will	be	inter-
preted not as a literal, but according to the naming server’s
rules.

3.7.1 Syntactic Metacharacters
; separates commands to be executed sequentially

| separates commands in a pipeline

() brackets expressions and variable values

& follows commands to be executed in background

3.7.2 Filename Metacharacters
/ separates components of a file’s pathname

. separates root parts of a filename from extensions

? expansion character matching any single character

3-40 The C Shell

SECTION 2 Shells

* expansion character matching any sequence of characters

[] expansion sequence matching any single character from a set

~ used at the beginning of a filename to indicate home directories

{ } used to specify groups of arguments with common parts

3.7.3 Quotation Metacharacters
\ prevents meta-meaning of following single character

´ prevents meta-meaning of a group of characters

” like ´, but allows variable and command expansion

3.7.4 Input/Output Metacharacters
< indicates redirected input

> indicates redirected output

3.7.5 Expansion/substitution Metacharacters
$ indicates variable substitution

! indicates history substitution

: precedes substitution modifiers

used in special forms of history substitution

` indicates command substitution

3.7.6 Other Metacharacters
begins shell comment

- prefixes option (flag) arguments to commands

% prefixes job name specifications

Index 1

*
&, shell metacharacter 2-2
*, C Shell metacharacter 3-7
., file 3-9
., in filename 3-7
.., directory 3-25
.., file 3-9
.cshrc, C Shell command file 3-12
.login, C Shell command file 3-12
;, as command separator 3-18
;, to separate commands 2-17
>, prompt 2-6
{, C Shell metacharacter 3-38
|, pipe character 3-6

A
AEGIS command, wd 1-8
AGAIN, keyboard key 3-17
argv 3-28
arithmetic operators, in C Shell 3-31

B
background execution 2-2
backslash,
 as quotation character 2-5
block	size	 3-4
Bourne, S. R. 2-1
Bourne Shell
 background execution in 2-2
 command execution in 2-28
 command grouping in 2-17
 command substitution 2-22
 error handling 2-25
 fault handling 2-26
 filename generation in 2-4
 here docs 2-10
 I/O redirection in 2-2
 parameter substitution 2-20
 parameter transmission 2-20
 pipe operator 2-3
 prompts 2-6
 quotation mechanisms 2-5
 to debug scripts 2-18
 to start 2-6

 variables 2-11
Bourne Shell commands (built_in)
 test 2-14
 : 2-21
 case 2-9
 do 2-8
 done 2-8
 eval 2-25
 exit 2-26
 export 2-20
 for 2-8
 if 2-16
 set 2-20
 set -v 2-18
 set -x 2-18
 shift 2-15
 trap 2-26
 while 2-15
Bourne Shell variables, list of 2-12

C
C Shell,
 alias mechanism 3-18
 built-in commands 3-27
 command substitution in 3-38
 history mechanism 3-15
 input redirection 3-5
 interrupt handling in 3-36
 job control 3-19
 keyboard definitions for 3-1
 output redirection 3-4
 quotation mechanisms 3-10
 scripts 3-28
 shell variables 3-14
 to open 3-12
 to start 3-2
 variable substitution 3-29
C Shell commands,
 bg 3-24
 fg 3-24
 popd 3-25
 pushd 3-25
 alias 3-27
 echo 3-27
 foreach 3-32, 3-37

Index

2 Index

SECTION 2 Shells

 history 3-27
 if 3-33
 setenv 3-28
 switch 3-34
 while 3-34
C Shell variables
 argv 3-28
 homedirchar 3-9
 inprocess 1-8, 3-13, 3-20
 noclobber 3-4, 3-14, 3-19
 noglob 3-32
 notify 3-20
 path 3-14
 prompt 3-27
case, Bourne Shell command 2-9
csr, AEGIS shell command 1-5

D
DM, startup file 2-6
dot,
 Bourne Shell metacharacter 2-5

E
end-of-file 3-3, 3-11

F
file,
 to append to 2-3
 to create 2-9
file descriptor 2 2-29
filenames, mapped by kernel 1-8
for, Bourne Shell command 2-8

H
history list 3-18

I
if, Bourne Shell command 2-16
inprocess, C Shell variable 1-8
interrupt, from keyboard 3-11
interrupts 3-36

J
job, to suspend 3-22
job control, C Shell 3-22
job number 3-21
jobs, C Shell table of 3-21

K
keyboard definitions,
 for Bourne Shell 2-1

M
message output, to redirect 2-28
metacharacter, * 2-4
metacharacters 1-8
metacharacters, C Shell 3-5
metacharacters, to quote 3-10

P
PATH, in AEGIS Shells 1-6
path, in UNIX shells 1-5
pathname, relative vs. absolute 3-7
period, in filename 3-7
profile 2-7

R
regular expressions,
 in Bourne Shell 2-4
semicolon,
 to separate commands 2-17

S
SHELL, keyboard key 2-7
Shell, to open 1-1, 1-3
shell commands
 chmod 2-7, 3-28
 echo 2-4, 2-20, 3-8
 ed 3-24
 grep 2-3, 2-8
 head 3-6
 jobs 3-23
 kill 3-12
 ls 2-2, 3-4
 mail 3-3
 man 2-18
 mkdir 3-24
 notify 3-24
 printenv 3-28
 ps 2-2
 pwd 2-22
 rehash 3-14, 3-27
 running in background 3-12, 3-20
 sort 2-4, 3-5
 start_sh 2-6
 to quit 3-11
 touch 2-16, 2-27

Index 3

SECTION 2 Shells

 wc 2-3
 who 2-2
shell scripts 1-7
signals 2-26
standard input, to redirect 2-3, 3-5
standard input, to redirect 3-5
standard output, to redirect 2-3, 3-4
substitution,
 command, in Bourne Shell 2-23
substitution, in here doc 2-11

T
terminal, to use 1-4
test, Bourne Shell command 2-14
tilde,
 as home directory character 3-9

W
wd, AEGIS command 1-8
while, Bourne Shell command 2-15
who 2-2
wildcards 3-38
 and AEGIS commands 2-5, 3-5
working directory,
 of background job 3-26

SECTION 3

COMMUNICATIONS

Section 3-1

CONTENTS

1. UNIX-TO-UNIX COPY (uucp) 1-1
1.1 INTRODUCTION 1-1
1.2 DIFFERENCES BETWEEN sys5 AND bsd4.2 UUCP 1-2
1.3	 UUCP	—	UNIX-TO-UNIX	FILE	COPY				1-2

1.3.1 Copying on the Local System 1-4
1.3.2 Receiving Files from Other Systems 1-4
1.3.3 Sending Files to a Remote System 1-4
1.3.4 Transfers from one Remote System to Another 1-5

1.4 UUX - UNIX TO UNIX EXECUTION 1-5
1.4.1 User Line 1-6
1.4.2 Required File Line 1-6
1.4.3 Standard Input Line 1-6
1.4.4 Standard Output Line 1-6
1.4.5 Command Line 1-6

1.5	 UUCICO	—	COPY	IN,	COPY	OUT				1-7
1.5.1 Uucico and uucico.real 1-8
1.5.2 Scanning For Work 1-8
1.5.3 Calling the Remote System 1-9
1.5.4 Line Protocol Selection 1-10
1.5.5 Work Processing 1-10
1.5.6 Conversation Termination 1-11

1.6 UUXQT - UUCP COMMAND EXECUTION 1-11
1.7 UULOG - UUCP LOG INQUIRY 1-11
1.8 UUCLEAN - UUCP SPOOL DIRECTORY CLEANUP 1-11
1.9 SECURITY 1-12
1.10 INSTALLING UUCP ON DOMAIN SYSTEMS 1-13

1.10.1 The Installation Script 1-13
1.10.2 Selecting a Name for the Local System 1-13
1.10.3 Making Subdirectories 1-13

1.11 REQUIRED FILES 1-13
1.11.1 L-devices 1-14
1.11.2 L-dialcodes 1-14
1.11.3 uname 1-15
1.11.4 USERFILE 1-15
1.11.5 L.sys 1-16

1.12 ADMINISTRATION 1-17
1.12.1 TM - Temporary Data Files 1-17
1.12.2 STST - System Status Files 1-18
1.12.3 LCK - Lock Files 1-18
1.12.4 Shell Scripts 1-18

2. Mail 2-1
2.1 INTRODUCTION 2-1

Section 3-2

2.1.1 Sending Mail 2-1
2.1.2 Receiving Mail 2-2

2.2 MAINTAINING FOLDERS 2-8
2.3 TILDE ESCAPES 2-9
2.4 NETWORK ACCESS 2-12

2.4.1 ARPANET 2-12
2.4.2 Special Recipients 2-13
2.4.3 Message lists 2-14

2.5 SUMMARY OF COMMANDS 2-15
2.6 CUSTOM OPTIONS 2-21
2.7 COMMAND LINE OPTIONS 2-24
2.8 FORMAT OF MESSAGES 2-25
2.9 SUMMARY OF COMMANDS, OPTIONS, AND
 ESCAPES 2-25

uucp 1-1

SECTION 3 Communications

Chapter 1: UNIX-TO-UNIX COPY (uucp)

1.1 INTRODUCTION
Uucp is the name of the central program in a group of programs that,
together, permit communication between unix systems using either dial-
up or hardwired connections. The first version of the system was
designed and implemented at Bell Labs. Today, it is commonly used for
file transfers and remote command execution. This chapter explains how
uucp works and includes information about installing uucp on your
domain system.

Uucp is a batch-type operation. Files are created in a spool directory
for processing by the uucp daemons. There are three types of files used
for the execution of work.

Data files contain data for transfer to remote systems.

Work files contain directions for file transfers between systems.

Execution files contain directions for executing unix commands that
involve the resources of one or more systems.

The uucp system consists of four primary and programs and several
secondary programs. The primary programs are:

uucp This program creates work files and gathers data files in
the
uucp spool directory.

uux This program creates work files and execute files. It also
gathers data files for the remote execution of unix com-
mands.

uucico This program executes the work files for data transmis-
sion.

uuxqt This program executes unix commands from command
files.

Note: On domain systems, uucico runs on all nodes that have
domain/ix software. Another program, called uucico.real,
runs only on the node(s) from which the actual connection (to
another system) is made.

Secondary uucp programs common to both sys5 and bsd4.2 are:

uulog This program updates the log file with new entries and
reports on the status of uucp requests.

1-2 uucp

SECTION 3 Communications

uuclean This program removes old files from the spool directory.

The bsd4.2 version of uucp includes these additional programs.

uusend sends a file to a given location on a remote system.

uusnap displays a tabular synopsis of the current uucp activity at
your site.

The sys5 version of uucp includes these additional programs.

uuto sends selected files to another uucp site.

uupick allows you to accept or reject files sent to you with uuto
uusub allows you to define and monitor activity on a uucp sub-

network.

uuname lists the names of other uucp sites known to your site.

uustat lets you examine or change the status of submitted (or run-
ning) uucp jobs.

In the remainder of this chapter, we describe the operation of each pro-
gram, the installation of the system, the security aspects of the system,
the files required for execution, and the administration of the system.

1.2 DIFFERENCES BETWEEN sys5 AND bsd4.2 UUCP
While the uucp programs provided with the sys5 and bsd4.2 versions of
domain/ix perform essentially the same functions, there are differences
between them which need to be pointed out. In the rest this chapter, we
will flag those features that are unique to the sys5 version of uucp with
a †. Features that are unique to the bsd4.2 version of uucp will be
flagged with a ‡. Unflagged items are common to both.

There is an additional difference in implementation of which you should
be aware. The bsd4.2 version of uucp creates a number of subdirectories
in the directory /usr/spool/uucp; one for each type of uucp file. “D.” files
are stored in /usr/spool/uucp/D., “C.” files are stored in
/usr/spool/uucp/C., and so on. The sys5 version of uucp does not make
these subdirectories.

1.3 UUCP—UNIX-TO-UNIX FILE COPY
The uucp command looks to the user much like the unix command cp.
The syntax is

uucp [option(s)] source ...destination

where source and destination may contain the prefix system-name! that
indicates the system on which the file(s) can be found (or the one to
which the files will be copied).

uucp 1-3

SECTION 3 Communications

Note: C shell users should be sure to escape (through quotation or
use of \) any shell metacharacters in uucp command lines.
See Section 2, Chapter 3 for details.

Uucp interprets the following options.

-d Make directories when necessary for copying the file.

-c Don’t copy source files to the spool directory, but use the
specified source when the actual transfer takes place.

-gletter Put letter in as the grade in the name of the work file.
(This can be used to change the order of work for a partic-
ular machine.)

-m Send mail on completion of the work.

-nuser † Notify user on the remote system that a job was sent.

-C † Copy the source file to the spool directory.

-f † Do not make intermediate directories for the file copy.

-esys † Execute uucp on system sys.

-j † Control writing of the uucp job number to standard out-
put.

The following options are used primarily for debugging:

-r Queue the job but do not start the uucico program.

-sdir Use directory dir for the spool directory.

-xnum Num is the level of debugging output desired.

The destination may be a directory name, in which case the file name is
taken from the last part of the source’s name. The source name may
contain shell metacharacters. If a source argument has a system-name!
prefix for a remote system, the filename expansion will be done on the
remote system.

The command

uucp *.c usg!/usr/dan
will set up the transfer of all files whose names end with a “.c” to the
“/usr/dan” directory on the “usg” machine.

The source and/or destination names may also contain a ~user prefix.
This translates to the login directory on the specified system.

Note: (bsd4.2 only) The “home” character, normally tilde (~), can
be redefined in the C Shell. In this chapter, we assume that
it has not be so redefined.

For names with partial pathnames, the current directory is prepended to

1-4 uucp

SECTION 3 Communications

the file name. File names with ../ are not permitted.

The command

uucp usg!~dan/*.h ~dan
will set up a transfer of files whose names end with “.h” in dan’s login
directory on system “usg” to dan’s local login directory.

For each source file, the program will check the source and destination
file-names and the system-part of each to classify the work into one of
five types.

[1] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a remote systems.

[4] Send files from remote systems to another remote system.

[5] Receive files from remote systems when the source contains shell me-
tacharacters.

After the work has been set up in the spool directory, uucp calls upon
uucico to contact the other machine and execute the work (unless the -r
option was specified).

1.3.1 Copying on the Local System
If the source and destination are both on the local system, uucp simply
calls cp and copies the file from source to destination. The -d and the
-m options are not honored in this case.

1.3.2 Receiving Files from Other Systems
If the source is on a remote system, a “work file” is created for each file
requested and put in the spool directory with the following fields, each
separated by a blank. (All work files and execute files use a blank as the
field separator.)

•	R

•	The	full	path-name	of	the	source	or	a	~user/path-name. The ~user
part will be expanded on the remote system.

•	The	full	path-name	of	the	destination	file.		If	the	~user notation is
used, it will be immediately expanded to be the login directory for the
user.

•	The	user’s	login	name.

•	A	“-”	followed	by	an	option	list.		(Only	the	-m	and	-d	options	will	ap-
pear in this list.)

1.3.3 Sending Files to a Remote System
If the destination file is on a remote system, a work file is created for each
source file, then the source file is copied into a “data file” in the

uucp 1-5

SECTION 3 Communications

spool directory. (A -c option on the uucp command will prevent the
data file from being made. In this case, the file will be transmitted from
the indicated source.) The fields of each entry are given below.

1. S

2. The full-path name of the source file.

3. The full-path name of the destination or ~user/file-name.

4. The user’s login name.

5. A “-” followed by an option list.

6. The name of the data file in the spool directory.

7. The file mode bits of the source file in octal print format (e.g.
0666).

1.3.4 Transfers from one Remote System to Another
If both source and destination files are on remote systems, uucp gen-
erates files that are subsequently executed by the uucico program run-
ning on a remote machine.

1.4 UUX - UNIX TO UNIX EXECUTION
The uux command is used to set up the execution of a unix command
where the execution machine and/or some of the files are remote. The
syntax of uux is

uux [option(s)] command string

where command string is made up of one or more arguments. All shell
metacharacters must be protected either by quoting the entire
command-string or quoting the character as a separate argument.
Within the command-string, the command and file names may contain a
system-name! prefix. Arguments that do not contain a “!” will not be
treated as files (i.e., they will not be copied to the execution machine.)
The - is used to indicate that the standard input for command-string
should be inherited from the standard input of the uux command. The
options, mostly useful for debugging, are:

-r Don’t start uucico or uuxqt after queuing the job;

-xnum Num is the level of debugging output desired.

The command

pr abc | uux - usg!lpr
will set up the output of “pr abc” as standard input to an lpr command
to be executed on system “usg”.

Uux generates an “execute file” that contains the names of the files
required for execution (including standard input), the user’s login name,
the destination of the standard output, and the command to be executed.

1-6 uucp

SECTION 3 Communications

This file is either put in the spool directory for local execution or sent to
the remote system by uucp.

For required files that are not on the execution machine, uux will gen-
erate receive command files. These command-files will be put on the exe-
cution machine and executed by the uucico program. (This will work
only if the local system has permission to put files in the remote spool
directory as controlled by the remote USERFILE.) The execute file will
be processed by the uuxqt program on the execution machine. It is
made up of several lines, each of which contains an identification charac-
ter and one or more arguments. The order of the lines in the file is not
relevant and some of the lines may not be present. Each line is described
below.

1.4.1 User Line
This line has the form

U user system

where the user and system are the requester’s login name and system.

1.4.2 Required File Line This line has the form
F file-name real-name

where the file-name is the generated name of a file for the execute
machine and real-name is the last part of the actual file name (contains
no path information). Zero or more of these lines may be present in the
execute file. The uuxqt program will check for the existence of all
required files before the command is executed.

1.4.3 Standard Input Line
This line has the form

I file-name

The standard input is either specified by a “<” in the command-string
or inherited from the standard input of the uux command if the “-”
option is used. If a standard input is not specified, “/dev/null” is used.

1.4.4 Standard Output Line
This line has the form

O file-name system-name

The standard output is specified by a “>” within the command-string.
If a standard output is not specified, “/dev/null” is used. (Note that the
use of “>>” is not implemented.)

1.4.5 Command Line
This line has the form

uucp 1-7

SECTION 3 Communications

C command [argument(s)]

The arguments are those specified in the command-string. The standard
input and standard output will not appear on this line. All required files
will be moved to the execution directory (a subdirectory of the spool
directory) and the unix command will be executed using the Shell
specified in the uucp.h header file. In addition, the “PATH” field from
the L.cmds file is prepended to the command line as specified in uuxqt.
After execution, the standard output is copied or set up to be sent to the
proper place.

1.5 UUCICO—COPY IN, COPY OUT
The uucico program performs the following major functions:

•	Scan	the	spool	directory	for	work.

•	Place	a	call	to	a	remote	system.

•	Negotiate	a	line	protocol	to	be	used.

•	Execute	all	requests	from	both	systems.

•	Log	work	requests	and	work	completions.	

Uucico may be started in several ways;

a. by a system daemon (cron[1]),

b. by one of the uucp, uux, uuxqt or uucico programs;

c.	 directly	—	usually	only	for	testing	—	by	the	user;

d. by a remote system.

When started by method a, b or c, the program is considered to be in
MASTER mode. In this mode, a connection will be made to a remote
system. If started by a remote system (method d), the program is con-
sidered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If the -ssys option
is not specified, the program will scan the spool directory for systems to
call. If a system name is specified, that system will be called, and work
will only be done for that system.

Uucico	recognizes	the	following	options.

-r1 Start the program in MASTER mode. This is used when
uucico is started by a program or cron shell.

-ssys Do work only for system sys. If -s is specified, a call to the
specified system will be made even if there is no work for
system sys in the spool directory. This is useful for polling
systems which do not have the hardware to initiate a con-
nection.

1-8 uucp

SECTION 3 Communications

-ddir Use directory dir for the spool directory (primarily for
debugging.)

-xnum Num is the level of debugging output desired.

1.5.1 Uucico and uucico.real
In a distributed system, it’s important to distinguish between those nodes
that are able to make a connection to a remote host and those that are
 not. Typically, one node in a domain system will be designated the
“uucp server.” Requests for uucp services entered at other nodes in the
network will be handled by this server node, since attempts to handle
them by other nodes would invariably fail due to lack of the appropriate
connect hardware.

As has been noted, domain systems supply two versions of uucico:
uucico, which, when called, simply exits, leaving your work in the queue,
and uucico.real, which, as its name implies, is the “real” uucico pro-
gram. Normally, uucico.real is invoked locally by cron, or when a
remote host initiates a uucp connection with the domain system in slave
mode. Work queued by you will be processed when uucico.real is
invoked by either method. The only way for a user to directly invoke
uucico.real is to run it on the node on which it is installed.

The directory /usr/spool/uucppublic/user_data should include a file
named startup_sh that contains the following lines.

/usr/lib/uucp/uucico.real
/com/tctl -line 1 -speed 1200 -bpc 8 -error noframing -noinsync -nosync
logout

This performs a function equivalent to specifying uucico.real in the
“shell” field in the /etc/passwd file for the “uucp” logins.

In the following subsections, which detail the operation of uucico, we are
actually referring to uucico.real.
1.5.2 Scanning For Work
The names of the work related files in the spool directory have the for-
mat

type.system-name grade number

where type is one of the following uppercase letters.

C copy command file,

D data file,

X execute file

System-name is the remote system. Grade is a character. Number is a
four digit, padded sequence number.

uucp 1-9

SECTION 3 Communications

Note: In the sys5 version of uucp, these files are kept in
/usr/spool/uucp. In the bsd4.2 version, these files are kept in
subdirectories /usr/spool/uucp/C., /usr/spool/uucp/D., and
so on.

The file

C.res45n0031

would be a work file for a file transfer between the local machine and the
“res45” machine.

The scan for work is done by looking through the spool directory for
work files (prefixed with the sequence C.). A list is made of all systems
to be called. Uucico.real will then call each system and process all
work files.

1.5.3 Calling the Remote System
The call is made using information from several files which reside in the
uucp program directory. At the start of the call process, a lock is set to
forbid multiple conversations between the same two systems.

The system name is found in the L.sys file. The information contained
for each system is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day);

[3] device or device type to be used for call;

[4] line speed;

[5] phone number if field [3] is ACU or the device name (same as field [3])
if not ACU;

[6] login information (multiple fields);

The time field is checked against the present time to see if the call should
be made.

The phone number may contain abbreviations (e.g., mh, py, boston)
which get translated into dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to
find an available device for the call. The program will try all devices
which satisfy [3] and [4] until the call is made, or no more devices can be
tried. If a device is successfully opened, a lock file is created so that
another copy of uucico will not try to use it. If the call is complete, the
login information (field [6] of L.sys) is used to login.

The conversation between the two uucico programs begins with a
handshake	started	by	the	called	—	or	SLAVE	—	system.		The	SLAVE	
sends a message to let the MASTER know it is ready to receive the sys-
tem identification and conversation sequence number. The response from

1-10 uucp

SECTION 3 Communications

the MASTER is verified by the SLAVE and if acceptable, protocol selec-
tion begins. The SLAVE can also reply with a “call-back required” mes-
sage in which case, the current conversation is terminated.

1.5.4 Line Protocol Selection
The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line proto-
col.

The calling program checks the proto-list for a letter corresponding to an
available line protocol and returns a use-protocol message. The use-
protocol message is

Ucode

where code is either a one character protocol letter or N which means
there is no common protocol.

1.5.5 Work Processing
The initial roles (MASTER or SLAVE) for the work processing determine
the mode in which each program starts. (The MASTER has been
specified by the -r1 option of uucico.) The MASTER program does a
work search similar to the one used when scanning for work.

There are five messages used during the work processing, each specified
by the first character of the message. They are;

S send a file

R receive a file

C copy complete

X execute a uucp command

H hangup

The MASTER will send R, S or X messages until all work from the
spool directory is complete, at which point an H message will be sent.
The SLAVE will reply with SY, SN, RY, RN, HY, HN, XY, XN,
corresponding to Yes or No for each request.

The send and receive replies are based on permission to access the
requested file/directory using the USERFILE and read/write permissions
of the file/directory. After each file is copied into the spool directory of
the receiving system, a copy-complete message is sent by the receiver of
the file. The message CY will be sent if the file has successfully been
moved from the temporary spool file to the actual destination. Other-
wise, a CN message is sent. (In the case of CN, the transferred file will
be in the spool directory with a name beginning with “TM”.) The
requests and results are logged on both systems.

uucp 1-11

SECTION 3 Communications

The hangup response is determined by the SLAVE program by a work
scan of the spool directory. If work for the remote system exists in the
SLAVE’S spool directory, an HN message is sent and the programs switch
roles. If no work exists, an HY response is sent.

1.5.6 Conversation Termination
When a HY message is received by the MASTER, it is echoed back to
the SLAVE and the protocols are turned off. Each program sends a final
“00” message to the other. The original SLAVE program will clean up
and terminate. The MASTER will proceed to call other systems and
process work as long as possible or terminate if a -s option was specified.

1.6 UUXQT - UUCP COMMAND EXECUTION
The uuxqt program is used to execute execute files generated by uux.
The uuxqt program may be started by either the uucico or uux pro-
grams. The program scans the spool directory for execute files (prefix
“X.”). Each one is checked to see if all the required files are available
and if so, the command line or send line is executed.

The execute files is described in the “Uux” section above.

The execution is accomplished by invoking a sh -c of the command line
after appropriate standard input and standard output have been opened.
If a standard output is specified, the program will create a send com-
mand or copy the output file as appropriate.

1.7 UULOG - UUCP LOG INQUIRY
For each program invocation, the uucp programs make entries in a mas-
ter log file. The uulog program outputs specified log entries. The out-
put request is specified by the use of the following options:

-ssys Print entries where sys is the remote system name;

-uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null sys
or user means all system names or users respectively.

1.8 UUCLEAN - UUCP SPOOL DIRECTORY CLEANUP
This program is typically run once a day by cron. Its function is to
examine the spool directory and remove files that are more than 3 days
old. These are usually files for work which can not be completed.

The following options are available.

-ddir Scan directory dir.

-m Send mail to the owner of each file being removed. (Note
that most files put into the spool directory will be owned

1-12 uucp

SECTION 3 Communications

 by the owner of the uucp programs since the setuid bit will
be set on these programs. The mail will therefore most
often go to the owner of the uucp programs.)

-nhours Change the aging time from 72 hours to hours hours.

-ppre Examine files with prefix pre for deletion. (Up to 10 file
prefixes may be specified.)

-wfile † Write warning about, but do not delete, files older than
specified with -n above. Warnings are written on file if it
is specified. Otherwise, they are sent to standard output.

-ssys † Only files destined for system sys are examined. Up to 10
-s arguments can be specified.

-xnum This is the level of debugging output desired.

1.9 SECURITY
The uucp system, left unrestricted, will let any outside user execute any
commands and copy in/out any file which is readable/writable by the
uucp login user. It is up to the individual sites to be aware of this and
apply the protections that they feel are necessary.

There are several security features available aside from the normal file
mode protections. These must be set up by the installer of the uucp
system.

•	The	login	for	uucp does not get a standard shell. Instead, the
uucico program is started. Therefore, the only work that can be
done is through uucico.

•	A	path	check	is	done	on	file	names	that	are	to	be	sent	or	received.	
The USERFILE supplies the information for these checks. The
USERFILE can also be set up to require call-back for certain login-
ids. (See the “Files required for execution” section for the file
description.)

•	The	file	/usr/lib/uucp/L.cmds is a list of commands that uucp con-
siders legal for remote execution. The installer may modify this file
as necessary. If the L.cmds file is missing, uuxqt uses a default list
of legal commands. For the bsd4.2 version, this list consists of
rmail, rnews, and uusend. For the sys5 version, this list consists
solely of rmail. uuxqt program.

•	The	L.sys file should be owned by uucp and have mode 0400 to pro-
tect the phone numbers and login information for remote sites. (Pro-
grams uucp, uucico, uux, uuxqt should be also owned by uucp and
have the setuid bit set.)

uucp 1-13

SECTION 3 Communications

1.10 INSTALLING UUCP ON DOMAIN SYSTEMS
In this section, we explain how to install uucp on a domain system.
The information in this section is primarily of interest to system adminis-
tration personnel.

1.10.1 The Installation Script
We supply two scripts for installing domain/ix	at	your	site.		One	—	the	
“administrative install,” called install_sysadmin	—	has	a	subsection	
which handles installation of uucp. Before you run this script, you
should determine which version (sys5 or bsd4.2) of uucp you want to
install. After the installation is complete, you will be asked to run shell
scripts that add certain accounts to /etc/passwd and set the access
modes (and ACL’s) on various filesystem objects, including uucp files.

The inst_registry script creates an account for a user named “uucp” with
password “uucp_password” and home directory /usr/spool/uucppublic.
The acl_ script sets required access modes for all files and programs used
by the version of uucp you have decided to install. Once you have run
these scripts, all you will need to do is choose a name for your installa-
tion.

1.10.2 Selecting a Name for the Local System
Uucp requires you to choose a name by which your domain system
(uucp site) will be known to other uucp sites. Names can be any number
of lowercase letters, although uucp	will	recognize	the	first	seven	(six	†)	
characters and ignore the rest.

When the name has been selected, record it in the file /etc/net/uname,
then verify that the name can be accessed by running the command

% uuname -l
which displays the selected name.

Note: You will need to log in as either “root” or “uucp” in order to
edit /etc/net/uname.

1.10.3 Making Subdirectories
The bsd4.2 version of uucp expects to find subdirectories of the form
D.name and D.nameX in /usr/lib/uucp. We provide a shell script,
/usr/lib/uucp/mksubdirs.sh in the bsd4.2 version of /usr. Run this script
after you have put the site name in /etc/net/uname.

1.11 REQUIRED FILES
This section details the files that uucp needs to access in the course of
its normal operations. These files are

•	/usr/lib/uucp/L.sys

1-14 uucp

SECTION 3 Communications

•	/usr/lib/uucp/L.dialcodes

•	/usr/lib/uucp/L.devices

•	/usr/lib/uucp/L.cmds

•	/usr/lib/uucp/USERFILE

•	/etc/net/uname

Note: The field separator for all files is a space unless otherwise
specified.

We have provided example versions of these files in the appropriate places
in the domain/ix distribution filesystem. Examine these files as you read
the following descriptions.

1.11.1 L-devices
This file contains entries for the call-unit devices and hardwired connec-
tions to be used by uucp. The special device files are assumed to be in
the /dev directory. The format for each entry is

caller line call-unit speed dialer

where;

caller is the type of device that will be making the connection. For
bsd4.2 uucp, typical specifications for caller are ACU (for
Automatic Call Unit) or DIR (for a Direct Connection). The
sys5	version	recognizes	only	ACUVADIC	(the	Vadic	modem)	
and DIR (Direct Connection).

line is the device for the line (e.g. sio1).

call-unit is an unused field in domain systems.

speed is the line speed (baud rate).

dialer ‡ is the type of ACU used (e.g., hayes, vadic, or ventel for
bsd4.2).

The bsd4.2 version of uucp supports the following modems.

•	Hayes

•	Vadic

•	Ventel

The sys5 version supports only the Vadic modem.

There are example L-devices files in the /usr/lib/uucp directory for each
version of domain/ix.

1.11.2 L-dialcodes
This file contains entries with location abbreviations used in the L.sys file
(e.g. py, mh, boston). The entry format is

uucp 1-15

SECTION 3 Communications

abb dialseq

where;

abb is the abbreviation,

dial-seq is the dial sequence to call that location.

There are example L-dialcodes files in the /usr/lib/uucp directory for
each version of domain/ix.

1.11.3 uname
This is the file (/etc/net/uname) where the system name resides. While
the login name used by a remote host should not be the same as the
login name of a local user, several remote computers may employ the
same login name. Each uucp site is given a unique system name that is
transmitted at the start of each call. This name identifies the calling
machine to the called machine.

1.11.4 USERFILE
This file contains user accessibility information. It specifies which files
can be accessed by a normal user of the local machine, which files can be
accessed from a remote computer, which login name is used by a particu-
lar remote computer, and whether a remote computer should be called
back in order to confirm its identity. Each line in USERFILE has the
following format

login,sys [c] pathname ...

where;

login is the login name for a user or the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

pathname is a pathname prefix that is acceptable for user.

The constraints are implemented as follows.

[1] When the program is obeying a command stored on the local machine
(MASTER mode), the pathnames allowed are those given for the first
line in the USERFILE that has a login name that matches the login
name of the user who entered the command. If no such line is found,
the first line with a null login name is used.

[2] When the program is responding to a command from a remote
machine (SLAVE mode), the pathnames allowed are those given for the
first line in the file that has the system name that matches the system
name of the remote machine. If no such line is found, the first one with
a null system name is used.

[3] When a remote computer logs in, the login name that it uses must
appear in the USERFILE. There may be several lines with the same

1-16 uucp

SECTION 3 Communications

 login name but one of them must either have the name of the remote
system or must contain a null system name.

[4] If the line matched in ([3]) contains a “c”, the remote machine is
called back before any transactions take place.

The line

u,m	/usr/xyz

allows machine m to login with name u and request the transfer of files
whose	names	start	with	“/usr/xyz”.

The line

dan, /usr/dan

allows the ordinary user dan to issue commands for files whose name
starts with “/usr/dan”.

The lines

u,m	/usr/xyz	/usr/spool	
u, /usr/spool

allows any remote machine to login with name u, but if its system name
is not m, it can only ask to transfer files whose names start with
“/usr/spool”.

The lines

root, /
, /usr

allow any user to transfer files beginning with “/usr” but the user with
login root can transfer any file.

1.11.5 L.sys
Each entry in this file represents a system that your uucp site can call.
The fields are described below.

sysname The name of the remote system.

time A string which indicates the days-of-week and times-of-day
when the system should be called (e.g.,
MoTuTh0800-1730). Times may be stated using the key-
words Su Mo Tu We Th Fr Sa for the seven days of the
week, Wk for “any week-day,” and Any for “any day.” The
time should be a range of times (e.g., 0800-1230). If no
time is specified, uucp assumes that it may call at any time
of day.

device This is either ACU (Automatic Call Unit) or DIR (DIRect
connection). For the hardwired case, the last part of the
special file name is used (e.g., sio1).

uucp 1-17

SECTION 3 Communications

speed This is the line speed for the call (e.g., 300).

phone The phone number is made up of an optional alphabetic
abbreviation and a numeric part. The abbreviation is one
which appears in the L-dialcodes file (e.g., mh5900, bos-
ton995-9980). For the hardwired devices, this field con-
tains the same string as used for the device field.

login The login information is given as a series of fields and
subfields in the format

 expect send expect send ...

 where expect is the string expected to be read and send is
the string to be sent when the expect string is received.
The expect field may be made up of subfields of the form

 expect[–send–expect]...

 where the send is sent if the prior expect is not successfully
read and the expect following the send is the next expected
string.

 Two special names can be sent during the login sequence.
The string EOT will send an ascii eot character and the
string BREAK will try to send an ascii break character.
(Uucp simulates the break character by using line-speed
changes and null characters. This may not work on all
devices and/or systems.) A typical entry in the L.sys file
would be

 sys Any ACU 300 mh7654 login uucp ssword: word

 The expect algorithm looks at the last part of the string as
illustrated in the password field.

There are example L.sys files in the /usr/lib/uucp directory for each ver-
sion of domain/ix.

1.12 ADMINISTRATION
This section explains the responsibilities of the uucp system administra-
tor. Some administration can be accomplished by shell scripts that can
be initiated by crontab entries. Others will require manual interven-
tion. Some sample shell scripts are included in the /usr/lib/uucp direc-
tory for each version of domain/ix.

1.12.1 TM – Temporary Data Files
These files are created in the spool directory while files are being copied
from a remote machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number

1-18 uucp

SECTION 3 Communications

starting	at	zero	for	each	invocation	of	uucico and incremented for each
file received.

After the entire remote file is received, the TM file is moved/copied to
the requested destination. If processing is abnormally terminated or the
move/copy fails, the file will remain in the spool directory.

The leftover files should be periodically removed; uuclean is useful in
this regard. The following command line is from a bsd4.2 uucp cleanup
script.

% uuclean -pTM -d/usr/spool/uucp/TM
It removes all TM files that are more than three days old.

1.12.2 STST – System Status Files
These files are created in the spool directory by the uucico program.
They contain information about failures in the areas of login, dialup or
sequence check and will contain a TALKING status when two machines
are conversing. The form of the file name is

STST.sys
where sys is the remote system name.

For ordinary failures (dialup, login), the file will prevent repeated tries
for about one hour. For sequence check failures, the file must be
removed before any future attempts to converse with that remote sys-
tem.

If the file is left due to an aborted run, it may contain a TALKING
status. In this case, the file must be removed before a conversation is
attempted.

1.12.3 LCK – Lock Files
Lock files are created for each device in use (e.g., automatic calling unit)
and each system conversing. This prevents duplicate conversations and
multiple attempts to use the same devices. The form of the lock file
name is

LCK..str
where str is either a device or system name. The files may be left in the
spool directory if runs abort. They will be ignored (reused) after a time
of about 24 hours. When runs abort and calls are desired before the time
limit, the lock files should be removed.

1.12.4 Shell Scripts
The uucp program will spool work and attempt to start the uucico pro-
gram, but the starting of uucico will sometimes fail (no devices avail-
able, login failures etc.). Therefore, the uucico program should be
periodically started. The command to start uucico can be put in a shell
script and started by a crontab entry on an hourly basis. Here’s an

uucp 1-19

SECTION 3 Communications

example file for the bsd4.2 environment.

: bsd4.2 Hourly uucp script

cd /usr/lib/uucp
: poll of sites you want to connect to hourly
uucico.real -r1 -ssys1
uucico.real -r1 -ssys2

: attempt to ship remaining files
uucico.real -r1

Note that the “-r1” option is required to start the uucico program in
MASTER mode.

You can write another shell script that runs daily and removes TM, ST
and LCK files as well as C. or D. files for work that could not be
accomplished (e.g. bad phone number, login change, etc.). The following
example is a typical sys5 cleanup script.

:sys5 cleanup script
cd /usr/lib/uucp uuclean -pTM -pC. -pD.
uuclean -pST -pLCK -nl2

Here’s another example. This one is available in the file
/bsd4.2/usr/lib/uucp/uu.daily.

: bsd4.2 daily uucp script
: assumes you have subdirectories.
cd /usr/lib/uucp
uuclean -pLTMP. -n24
uuclean -d/usr/spool/uucp/TM. -pTM. -n240
uuclean -d/usr/spool/uucp/X. -pX. -n240
uuclean -d/usr/spool/uucp/C. -pC. -n240
uuclean -d/usr/spool/uucp/D. -pD. -n240
uuclean -d/usr/spool/uucp/D.‘uuname -l‘ -pD. -n240
uuclean -d/usr/spool/uucp/D.‘uuname -l‘X -pD. -n240

SPOOL=/usr/spool/uucp
mv $SPOOL/LOGFILE $SPOOL/LOGFILE.old

This script is designed for use in the bsd4.2 environment, since it looks in
the subdirectories D.‘uuname‘ and D.‘uuname‘X. Note that we use the
“-n24” option to clean up LTMP files more than 24 hours old, and the
“-n240” option on everything else. The absence of the “-n” option will
use a three-day time limit.

A daily or weekly shell should also be created to remove or save old
LOGFILEs.

mail 2-1

SECTION 3 Communications

Chapter 2: Mail

2.1 INTRODUCTION
Mail provides domain/ix users with a simple way to communicate with
other users of their domain system, or with users at other sites to which
their domain system can connect (for example, via ARPANET or
USENET). The Mail program divides incoming mail into its constituent
messages and allows you to deal with these messages in any order. In
addition, Mail provides a set of editing commands for preparing mes-
sages, building mailing lists, and sending mail.

This chapter describes how to use the Mail program to send and receive
messages. Before reading this chapter, you should take the time to
become familiar with a unix shell, any of the available text editors, and
some of the common unix commands.

Note: The Mail program we describe in this chapter is the one
included with the bsd4.2 version of domain/ix. It resides in
/bsd4.2/usr/ucb/Mail. The sys5 version has its own mail pro-
gram, /bin/mail. It is described in the DOMAIN/IX
Programmer’s Reference for System V.

The bsd4.2 mail system accepts incoming messages for you from other
people and collects them in a file, called your system mailbox. When you
log in, the system notifies you if there are any messages waiting in your
system mailbox. If you are a C Shell user, you will be notified when new
mail arrives if you inform the shell of the location of your mailbox. Your
system mailbox is located in the directory /usr/spool/mail in a file with
your login name. If your login name is sam, then you can make csh
notify you of new mail by including the following line in your .cshrc file:

set mail==/usr/spool/mail/sam
When you read your mail using Mail, it reads your system mailbox and
separates that file into the individual messages that have been sent to
you. You can then read, reply to, delete, or save these messages. Each
message includes the name of the sender and the date on which it was
sent.

2.1.1 Sending Mail
To send a message to a user whose login name is root, use the shell com-
mand:

% Mail root
then type your message. When you reach the end of the message, type

2-2 mail

SECTION 3 Communications

return followed by an EOF (End Of File), usually mapped to ↑Z. The
dm (Display Manager) will echo

*** EOF ***

and send an End-of-File to Mail. This will cause Mail to echo

EOT

and return you to the shell.

Note: In this document, we assume that, if you are using a domain
node, the sequence CTRL Z 	(or	—	as	we	usually	show	it	—
↑Z) is mapped to the dm command eef (insert End-Of-File).
As noted above, when you type the key mapped to eef, the
dm echoes the string “*** EOF ***” and sends an End-Of-
File to the shell which, in this case, passes it along to Mail.

The next time the person to whom the message was addressed logs in,
the message:

You have mail.

will appear in the shell transcript pad.

If, while you are composing the message you decide that you do not wish
to send it after all, you can kill the letter with an Interrupt signal (usu-
ally ↑I). Typing a single ↑I causes Mail to display the message

(Interrupt -- one more to kill letter)

Typing a second ↑I causes Mail to save your partial letter on the file
dead.letter in your home directory and abort the letter. Once you have
sent mail to someone, there is no easy way to cancel the message.

The message your recipient reads will consist of the message you typed
preceded by a line telling who sent the message (your login name) and
the date and time it was sent.

If you want to send the same message to several other people, you can
list their login names on the mail command line. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don’t forget!!
↑Z
*** EOF ***
EOT
%

will send the reminder to users sam, bob, and john.

2.1.2 Receiving Mail
If, when you log in, you see the message,

mail 2-3

SECTION 3 Communications

You have mail.

You can read the mail by typing simply:

% Mail

Mail will respond by displaying its version number and date and then
listing the messages you have waiting. Then, it will display a prompt
and await your command. The messages are assigned numbers starting
with 1. You must refer to a specific message using its number. Mail
keeps track of which messages are new (have been sent since you last
read your mail) and read (have been read by you). New messages have
an N next to them in the header listing and old, but unread messages
have a U next to them. Mail keeps track of new/old and read/unread
messages by putting a header field called Status into your messages.

To look at a specific message, use the type command, which may be ab-
breviated to simply t. For example, if you had the following messages:

N 1 root Wed Sep 21 09:21 “Tuition fees”
N 2 sam Tue Sep 20 22:55

you could examine the first message by giving the command:

type 1
which might cause Mail to respond with, for example,

Message 1:
From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
Status: R

Tuition fees are due next Wednesday. Don’t forget!!

Many Mail commands that operate on messages take a message number
as an argument like the type command. For these commands, there is a
notion of a current message. When you enter the Mail program, the
current message is initially the first one. Thus, you can often omit the
message number and use, for example,

t
to type the current message. As a further shorthand, you can type a
message by simply giving its message number. Hence,

1
would type the first message.

Frequently, it is useful to read the messages in your mailbox in order,
one after another. You can read the next message in Mail by simply
typing return. As a special case, you can type a newline as your first
command to Mail to type the first message.

2-4 mail

SECTION 3 Communications

If, after typing a message, you wish to immediately send a reply, you can
do so with the reply command. Reply, like type, takes a message
number as an argument. Mail then begins a message addressed to the
user who sent you the “current message.” You may then type your letter
in reply, followed by a ↑Z at the beginning of a line, as before. Mail will
echo “EOT”, then type the ampersand prompt to indicate its readiness
to accept another command. In our example, if, after typing the first
message, you wished to reply to it, you might give the command:

reply
Mail responds by typing:

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message
collection mode described at the beginning of this section. Mail will
gather up your message until you terminate the message by typing ↑Z.
Note that it copies the subject header from the original message. This is
useful in that correspondence about a particular matter will tend to
retain	the	same	subject	heading,	making	it	easy	to	recognize.		If	there	are	
other header fields in the message, the information found will also be
used. For example, if the letter had a To: header listing several reci-
pients, Mail would arrange to send your reply to the same people as
well. Similarly, if the original message contained a Cc: (carbon copies
to) field, Mail would send your reply to all those users, too. Mail will
normally not send the message to you, even if your name appears in the
To: or Cc: field, unless you ask to be included explicitly. We will cover
this subject in more detail in a later section.

After typing in your letter, the dialog with Mail might look like this.

reply
To: root
Subject: Tuition fees

Thanks for the reminder
*** EOF ***
EOT
&

The reply command is especially useful for sustaining extended conver-
sations over the message system, with other listening users receiving
copies of the conversation. The reply command can be abbreviated to r.
Sometimes, you will receive a message that has been sent to several peo-
ple and wish to reply only to the person who sent it. Reply with a capi-
tal R does the trick.

If you wish, while reading your mail, to send a message to someone, but
not as a reply to one of your messages, you can send the message directly
with the mail command, which takes as arguments the names of the

mail 2-5

SECTION 3 Communications

recipients you wish to send mail to. For example, to send a message to
frank, you would do:

mail frank
This is to confirm our meeting next Friday at 4.
↑Z
*** EOF ***
EOT
&

The mail command can be abbreviated to m.

Normally, each message you receive is saved in the file mbox in your
login directory at the time you leave Mail. To avoid saving a message in
mbox you can delete it using the delete command. In our example,

delete 1
will prevent Mail from saving message 1 (from root) in mbox. In addi-
tion to not saving deleted messages, Mail will not let you type them,
either. The effect is to make the message disappear altogether, along
with its number. The delete command can be abbreviated to simply d.

Many features of Mail can be tailored to your liking with the set com-
mand. The set command has two forms, depending on whether you are
setting a binary option or a valued option. Binary options are either on
or off. For example, the ask option informs Mail that each time you
send a message, you want it to prompt you for a subject header, to be
included in the message. To set the ask option, type

set ask
Another useful Mail option is hold. Unless told otherwise, Mail moves
the messages from your system mailbox to the file mbox in your home
directory when you leave Mail. If you want Mail to keep your letters in
the system mailbox instead, you can set the hold option.

Valued options set numeric or string values which Mail uses to adapt to
your tastes. For example, the SHELL option tells Mail which shell you
like to use, and is specified by

set SHELL=/bin/csh
for example. Note that no spaces are allowed in SHELL=/bin/csh. A
complete list of the Mail options appears at the end of this chapter.

Another important valued option for terminal users is crt. If you use a
fast video terminal, you will find that when you print long messages,
they scroll by too quickly for you to read them. With the crt option,
you can make Mail print any message larger than a given number of
lines by sending it through the well-known file perusal filter called more.
For example,

set crt=24

2-6 mail

SECTION 3 Communications

will pipe any message longer than 24 lines through more.

Note: If you are using Mail on a domain node, the crt option will
not be necessary, since you will be able to scroll back through
the message transcript at your leisure.

Mail also provides aliases, names that stand for one or more real user
names. Mail sent to an alias is actually sent to the list of real users
associated with the alias. For example, an alias can be defined for the
members of a project, so that you can send mail to the whole project by
sending mail to just a single name. The alias command in Mail defines
an alias. Suppose that the users in a project are named Sam, Sally,
Steve, and Susan. To define an alias called project for them, you would
use the Mail command:

alias project sam sally steve susan
The alias command can also be used to provide a convenient name for
someone whose user name is inconvenient. For example, if a user named
Cindy	Walukiewicz	had	the	login	name	walukiewicz_c, you might want
to use:

alias walukiewicz_c cindy
so that you could avoid typing (and probably misspelling) the longer
name	walukiewicz_c.

You may create a special file of aliases and options that will be placed in
effect automatically every time you invoke Mail. Whenever Mail is
invoked, it first reads a system-wide file /usr/lib/Mail.rc, then a user
specific file, .mailrc, which is found in your home directory. The
system-wide file is maintained by the system administrator and contains
set commands that are applicable to all users of the system. You may
create a .mailrc file set options and define individual aliases. A typical
.mailrc file looks like this:

set ask nosave SHELL=/bin/csh
As you can see, it is possible to set many options in the same set com-
mand. The nosave option is described in section 5.

Mail aliasing is implemented at the system-wide level by the mail
delivery system sendmail (documented in the appendices to this manual.)
These aliases are stored in the file /usr/lib/aliases and are accessible to
all users of the system. The lines in /usr/lib/aliases have the form:

alias: name1, name2, name3

where alias is the mailing list name and the namei are the members of
the list. Long lists can be continued onto the next line by starting the
next line with a space or tab. Remember that you must execute the shell
command newaliases after editing /usr/lib/aliases since the delivery sys-
tem uses an indexed file created by newaliases.

mail 2-7

SECTION 3 Communications

Specifying the -f flag on the command line causes Mail to read messages
from a file other than your system mailbox. For example, if you have a
collection of messages in the file letters, you can use Mail to read them
with:

% Mail -f letters
You can use all the Mail commands described in this document to exam-
ine, modify, or delete messages from the file letters, which will be rewrit-
ten when you leave Mail with the quit command described below.

Since mail that you read is saved in the file mbox in your home directory
by default, you can read mbox in your home directory by using simply

% Mail -f
Normally, messages that you examine using the type command are saved
in the file mbox in your home directory if you leave Mail with the quit
command described below. If you wish to retain a message in your sys-
tem mailbox, you can use the preserve command to tell Mail to leave it
there. The preserve command accepts a list of message numbers, just
like type and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally
retained in your system mailbox. If you wish to have such a message
saved in mbox without reading it, use the mbox command. For exam-
ple,

mbox 2
in our example would cause the second message (from sam) to be saved
in mbox when the quit command is executed. Mbox is also the way to
direct messages to your mbox file if you have set the hold option
described above. Mbox can be abbreviated to mb.

You can leave Mail with the quit command, which saves the messages
you have read (typed), but not deleted in the file mbox in your login
directory. Deleted messages are discarded irretrievably, and messages
left untouched are preserved in your system mailbox so that you will see
them the next time you type:

% Mail
The quit command can be abbreviated to simply q.

If you wish to leave Mail without altering either your system mailbox or
mbox, you can type the x command (short for exit), which will immedi-
ately return you to the shell without changing anything.

To execute a shell command without leaving Mail, you can type the
command preceded by an exclamation point, just as in the vi text editor.
For example,

!date
will display the current date without leaving Mail.

2-8 mail

SECTION 3 Communications

Finally, the help command is available to print out a brief summary of
the Mail commands, using only the single character command abbrevia-
tions.

2.2 MAINTAINING FOLDERS
Mail includes a simple facility for maintaining groups of messages
together in folders.

To use the folder facility, you must tell Mail where you wish to keep
your folders. Each folder of messages will be a single file. For conveni-
ence, all of your folders are kept in a single directory of your choosing.
To tell Mail where your folder directory is, put a line of the form

set folder=letters
in your .mailrc file. If, as in the example above, your folder directory
does not begin with a “/”, Mail will look for the folder directory starting
from your home directory. Thus, if your home directory is /usr/joe the
above example told Mail to find your folder directory in
/usr/joe/letters.
Anywhere a file name is expected, you can use a folder name, preceded
with “+”. For example, to put a message into a folder with the save
command, you can use:

save +letters
to save the current message in the letters folder. If the letters folder does
not yet exist, it will be created. Note that messages which are saved
with the save command are automatically removed from your system
mailbox.

In order to put a copy of a message in a folder without causing that mes-
sage to be removed from your system mailbox, use the copy command,
which is identical in all other respects to the save command. For exam-
ple,

copy +letters
copies the current message into the letters folder and leaves a copy in
your system mailbox.

The folder command can be used to direct Mail to the contents of a
different folder. For example,

folder +letters
directs Mail to read the contents of the letters folder. All of the com-
mands that you can use on your system mailbox are also applicable to
folders, including type, delete, and reply. To inquire which folder you
are currently editing, use simply

folder

mail 2-9

SECTION 3 Communications

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the -f option de-
scribed above. For example,

% Mail -f +classwork
will cause Mail to read your classwork folder without looking at your
system mailbox.

2.3 TILDE ESCAPES
While typing in a message, it is often useful to be able to invoke a text
editor on the partially-composed message, print the message, execute a
shell command, or do some other function. Mail provides these capabili-
ties through tilde escapes, which consist of a tilde (~) at the beginning
of a line, followed by a single character which indicates the function to
be performed. For example, to print the text of the message so far, use:

~p
which will print a line of dashes, the recipients of your message, and the
text of the message so far. Since Mail requires two consecutive ↑I’s to
kill a letter, you can use a single ↑I to abort the output of ~p or any
other ~ escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke a
unix text editor on the message using the escape

~e
which causes the message to be copied into a temporary file, then starts
the editor. After modifying the message to your satisfaction, write it out
and quit the editor. Mail will respond by typing

(continue)

after which you may continue typing text which will be appended to
your message, or type ↑Z to end the message. A standard text editor is
provided by Mail. You can override this default by setting the valued
option EDITOR to something else. For example, you might prefer:

set EDITOR=/bin/ex
To use the screen editor on your current message, you can use the
escape,

~v
~v works like ~e, except that vi is invoked instead. A default screen
editor is defined by Mail. If it does not suit you, you can set the valued
option VISUAL to the pathname of a different editor.

It is often useful to be able to include the contents of some file in your
message; the escape

2-10 mail

SECTION 3 Communications

~r filename
is provided for this purpose, and causes filename to be appended to your
current message. Mail complains if the file doesn’t exist or can’t be read.
If the read is successful, the number of lines and characters appended to
your message is printed, after which you may continue appending text.
The filename may contain shell metacharacters like * and ? which are
expanded according to the conventions of your shell.

As a special case of ~r, the escape

~d
reads in the file dead.letter in your home directory. This is often useful
since Mail copies the text of your message there when you kill a message
with ↑I.

To save the current text of your message on a file, you may use the

~w filename
escape. Mail will print out the number of lines and characters written to
the file, after which you may continue appending text to your message.
Shell metacharacters may be used in the filename, as in ~r and are
expanded according to the conventions of your shell.

If you are sending mail from within Mail’s command mode, you can read
a message sent to you into the message you are constructing with the
escape:

~m 4
which will read message 4 into the current message. The text of the mes-
sage is shifted right by one tab stop. You can name any non-deleted
message, or list of messages. Messages can also be forwarded without
shifting by a tab stop with ~f. This is the usual way to forward a mes-
sage.

If, in the process of composing a message, you decide to add additional
people to the list of message recipients, you can do so with the escape

~t name1 name2 ...
You may name as few or many additional recipients as you wish. Note
that the users originally on the recipient list will still receive the message;
you cannot remove someone from the recipient list with ~t.

If you wish, you can associate a subject with your message by using the
escape

~s Arbitrary string of text
which replaces any previous subject with Arbitrary string of text. The
subject, if given, is sent near the top of the message prefixed with Sub-
ject: You can see what the message will look like by using ~p.

mail 2-11

SECTION 3 Communications

If you need to list certain people as recipients of “carbon” copies of a
message rather than of the message itself, use the escape

c name1 name2 ...
adds the named people to the Cc: list. Again, you can execute ~p to see
what the message will look like.

The recipients of the message together constitute the To: field, the sub-
ject the Subject: field, and the carbon copies the Cc: field. If you wish
to edit these in ways impossible with the ~t, ~s, and ~c escapes, you
can use the escape

~h
which prints To: followed by the current list of recipients and leaves the
cursor at the end of the line. If you type in ordinary characters, they are
appended to the end of the current list of recipients. You can also use
your erase character to erase back into the list of recipients, or your kill
character to erase them altogether. Thus, for example, if your erase and
kill characters are the # and @ symbols,

~h
To: root ers####eve

would change the initial recipients root ers to root eve. When you
type a newline, Mail advances to the Subject: field, where the same
rules apply. Another newline brings you to the Cc: field, which may be
edited in the same fashion. Another newline leaves you appending text
to the end of your message. You can use ~p to print the current text of
the header fields and the body of the message.

To effect a temporary escape to the shell, the escape

~!command
is used, which executes command and returns you to mailing mode
without altering the text of your message. If you wish, instead, to filter
the body of your message through a shell command, then you can use

~|command
which pipes your message through the command and uses the output as
the new text of your message. If the command produces no output, Mail
assumes that something is amiss and retains the old version of your mes-
sage. A frequently-used filter is the command /bin/fmt, designed to
format outgoing mail.

To effect a temporary escape to Mail command mode instead, you can
use the

~:Mail command

escape. This is especially useful for retyping the message you are reply-
ing to, using, for example:

2-12 mail

SECTION 3 Communications

~:t
It is also useful for setting options and modifying aliases.

If you wish to send a message that contains a line beginning with a tilde,
you must escape the tilde with another tilde. Thus, for example,

~~This line begins with a tilde.
sends the line

~This line begins with a tilde.

Finally, the escape

~?
prints out a brief summary of the available tilde escapes.

Mail allows you to change the escape character with the escape option.
For example, the line

set escape=]
sets the escape character to a right bracket instead of a tilde. Doing this
causes everything said above about the tilde to apply to the right bracket.
Changing the escape character removes the special meaning of ~.

2.4 NETWORK ACCESS
This section describes how to send mail to people on other networks.
Consult your system administrator for information about off-net com-
munications facilities available at your site.

2.4.1 ARPANET
If your site includes a node that is directly (or even indirectly) connected
to the ARPANET network, you can send messages to people on the
Arpanet using a name of the form

name@host

where name is the login name of the person you’re trying to reach and
host is the name of the machine on the ARPANET where name has a
login account.

If your intended recipient logs in on a machine connected to yours via
uucp (see Chapter 1 of this section), sending mail is a bit more compli-
cated. You must know the list of machines through which your message
must travel to arrive at its intended destination. So, if recipient logs in
on a machine that is directly connected to yours, you can send mail to
recipient using the syntax:

host!name

where, again, host is the name of the machine and name is recipient’s

mail 2-13

SECTION 3 Communications

login name. If your message must go through an intermediate machine
first, you must use the syntax:

intermediate!host!name

and so on. It is a feature of UUCP that the map of all the systems in
the network is not known anywhere (except where people decide to write
it down for convenience). Ask your system administrator about the
machines connected to your site.

2.4.2 Special Recipients
As described previously, you can send mail to either user names or alias
names. It is also possible to send messages directly to files or to pro-
grams, using special conventions. If a recipient name has a “/” in it or
begins with a “+”, it is assumed to be the path name of a file into which
to send the message. If the file already exists, the message is appended
to the end of the file. If you want to name a file in your current direc-
tory (i.e., one for which a “/” would not usually be needed) you can pre-
cede the name with “./” So, to send mail to the file memo in the
current directory, you can give the command:

% Mail ./memo
If the name begins with a “+,” it is expanded into the full path name of
the folder name in your folder directory. This ability to send mail to
files can be used for a variety of purposes, such as maintaining a journal
and keeping a record of mail sent to a certain group of users. The
second example can be done automatically by including the full path-
name of the record file in the alias command for the group. Using our
previous alias example, you might give the command:

alias project sam sally steve susan /usr/project/mail_record

Then, all mail sent to “project” would be saved on the file
/usr/project/mail_record as well as being sent to the members of the
project. This file can be examined using Mail -f.
It is sometimes useful to send mail directly to a program. For example
one might write a project billboard program and want to access it using
Mail. To send messages to the billboard program, one can send mail to
the special name “|billboard” for example. Mail treats recipient names
that begin with a “|” as a program to send the mail to. An alias can be
set up to reference a “|” prefaced name if desired.

Note: The shell treats “|” specially, so it must be quoted on the
command line. Also, the “| program” must be presented as a
single argument to mail. The safest course is to surround the
entire name with double quotes. This also applies to usage in
the alias command. For example, if we wanted to alias
“rmsgs” to “rmsgs -s” we would need to say:

2-14 mail

SECTION 3 Communications

 alias rmsgs ”| rmsgs -s”

2.4.3 Message lists
Several Mail commands accept a list of messages as an argument. Along
with type and delete, described, there is the from command, which
prints the message headers associated with the message list passed to it.
The from command is particularly useful in conjunction with some of
the message list features described below.

A message list consists of a list of message numbers, ranges, and names,
separated by spaces or tabs. Message numbers may be either decimal
numbers, which directly specify messages, or one of the following special
characters.

^ the first message that is not deleted

. the current message

$ the last message that is not deleted

Note: The message list is being supplied as an argument to the
“undelete” command, which operates on deleted messages
only, ^ operates on the first deleted message, and so on.

A range of messages consists of two message numbers (of the form
described in the previous paragraph) separated by a dash. Thus, to print
the first four messages, use

type 1-4
and to print all the messages from the current message to the last mes-
sage, use

type .-$
A name is a username. The user names given in the message list are col-
lected and each message selected by other means is checked to make sure
it was sent by one of the named users. If the message consists entirely of
user names, then every relevant (not deleted, deleted) message sent by
one those users is selected. Thus, to print every message sent to you by
root, do

type root
As a shorthand notation, you can specify simply * to get every relevant
message. Thus,

type *
prints all undeleted messages,

delete *
deletes all undeleted messages, and

mail 2-15

SECTION 3 Communications

undelete *
undeletes all deleted messages.

You can search for the presence of a word in subject lines with /. For
example, to print the headers of all messages that contain the word
PASCAL, do:

from /pascal
Note that subject searching ignores upper/lowercase differences.

2.5 SUMMARY OF COMMANDS
! Used to preface a command to be executed by the shell.

- The command goes to the previous message and prints it.
The command may be given a decimal number n as an
argument, in which case the nth previous message is gone
to and printed.

Print Like print, but also prints out ignored header fields. See
also print and ignore.

Reply Note the capital R in the name. Frame a reply to a one or
more messages. The reply (or replies if you are using this
on multiple messages) will be sent ONLY to the person who
sent you the message (respectively, the set of people who
sent the messages you are replying to). You can add people
using the ~t and ~c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original mes-
sage with Re: unless it already began that way. If the ori-
ginal message included a reply-to header field, the reply
will go only to the recipient named by reply-to. You type
in your message using the same conventions available to
you through the mail command. The Reply command is
especially useful for replying to messages that were sent to
enormous distribution groups when you really just want to
send a message to the originator. Use it often.

Type Identical to the Print command.

alias Defines a name to stand for a set of other names. This is
used when you want to send messages to a certain group of
people and want to avoid retyping their names. For exam-
ple,

 alias project john sue willie kathryn
 creates an alias project which expands to the four people

John, Sue, Willie, and Kathryn.

alternates If you have accounts on several machines, you may find it
convenient to use the /usr/lib/aliases on all the machines

2-16 mail

SECTION 3 Communications

 except one to direct your mail to a single account. The
alternates command is used to inform Mail that each of
these other addresses is really you. Alternates takes a list
of user names and remembers that they are all actually
you. When you reply to messages that were sent to one of
these alternate names, Mail will not bother to send a copy
of the message to this other address (which would simply
be directed back to you by the alias mechanism). If alter-
nates is given no argument, it lists the current set of alter-
nate names. Alternates is usually used in the .mailrc file.

chdir The chdir command allows you to change your current
directory. Chdir takes a single argument, which is taken
to be the pathname of the new working directory. If no
argument is given, chdir changes to your home directory.

copy The copy command does the same thing that save does,
except that it does not mark relevant messages for deletion
when you quit.

delete Deletes a list of messages. Deleted messages can be
reclaimed with the undelete command.

dt The dt command deletes the current message and prints
the next message.

edit To edit individual messages using the text editor, the edit
command is provided. The edit command takes a list of
messages as described under the type command and
processes each by writing it into the file Messagex where x
is the message number being edited, then invoking the text
editor on it. Edit the message and execute the editors
“write and quit” command to make Mail read the message
back and remove Messagex. Edit may be abbreviated to e.

else Marks the end of the then-part of an if statement and the
beginning of the part to take effect if the condition of the if
statement is false.

endif Marks the end of an if statement.

exit Leaves Mail without updating the system mailbox or the
file you were reading. Thus, if you accidentally delete mes-
sages you should have saved, you can use exit to recover.

file The same as folder.
folders Lists the names of the folders in your folder directory.

folder The folder command switches to a new mail file or folder.
With no arguments, it tells you which file you are currently
reading. If you give it an argument, it will write out
changes (such as deletions) you have made in the current
file and read the new file. Some special conventions are

mail 2-17

SECTION 3 Communications

	 recognized	for	the	name:

Name Meaning

#
%
%name
&
+folder

Previous file read
Your system mailbox
Name’s system mailbox
Your ~/mbox file
A file in your folder directory

from The from command takes a list of messages and prints out
the header lines for each one; hence

 from joe

 is the easy way to display all the message headers from joe.

headers Lists the headers of all messages that you have. These
headers tell you who each message is from, when they were
sent, how many lines and characters each message is, and
the Subject: header field of each message, if present. In
addition, Mail tags the message header of each message
that has been the object of the preserve command with a
P. Messages that have been saved or written are flagged
with a *. Finally, deleted messages are not printed at all.
If you wish to reprint the current list of message headers,
you can do so with the headers command.

Note: If you are using a terminal, headers only lists
the first few message headers. The number of
headers listed depends on the speed of your ter-
minal. This can be overridden by specifying the
number of headers you want with the window
option.

 Mail maintains a notion of the current window into your
messages for the purposes of printing headers. Use the z
command to move forward and back a window. You can
move Mail’s notion of the current window directly to a
particular message by using, for example,

 headers 40
 to move Mail’s attention to the messages around message

40. The headers command can be abbreviated to h.

help Prints a brief help message.

hold Arranges to hold a list of messages in the system mailbox,
instead of moving them to the file mbox in your home
directory. If you set the binary option hold, this will hap-
pen by default.

2-18 mail

SECTION 3 Communications

if Commands in your .mailrc file can be executed condition-
ally depending on whether you are sending or receiving
mail with the if command. For example, you can do:

 if receive
 commands...

 endif

 An else form is also available:

 if send
 commands...

 else
 commands...

 endif

 Note that the only allowed conditions are receive and
send.

ignore Adds the list of header fields named to the ignore list.
Header fields in the ignore list are not printed on your ter-
minal when you print a message. This allows you to
suppress printing of certain machine-generated header
fields, such as Via which are not usually of interest. The
Type and Print commands can be used to print a message
in its entirety, including ignored fields. If ignore is exe-
cuted with no arguments, it lists the current set of ignored
fields.

list Lists the valid Mail commands.

mail Sends mail to one or more people. If you have the ask
option set, Mail will prompt you for a subject to your mes-
sage. Then you can type in your message, using tilde
escapes as described in section 4 to edit, print, or modify
your message. To signal your satisfaction with the message
and send it, type ↑Z at the beginning of a line, or a . alone
on a line if you set the option dot. To abort the message,
type two interrupt characters (↑I by default) in a row or
use the ~q escape.

mbox Indicates that a list of messages be sent to mbox in your
home directory when you quit. This is the default action
for messages if you do not have the hold option set.

next The next command goes to the next message and types it.
If given a message list, next goes to the first such message
and types it. Thus,

 next root
 goes to the next message sent by root and types it. The

next command can be abbreviated to simply a newline,
which means that one can go to and type a message by

mail 2-19

SECTION 3 Communications

 simply giving its message number or one of the magic char-
acters ↑ . or $. Thus,

 .
 prints the current message and

 4
 prints message 4, as described previously.

preserve Same as hold. Causes a list of messages to be held in your
system mailbox when you quit.

quit Leave Mail and update the file, folder, or system mailbox
you were reading. Messages that you have examined are
marked as read and messages that existed when you
started are marked as old. If you were editing your system
mailbox and if you have set the binary option hold, all mes-
sages which have not been deleted, saved, or mboxed will
be retained in your system mailbox. If you were editing
your system mailbox and you did not have hold set, all
messages which have not been deleted, saved, or preserved
will be moved to the file mbox in your home directory.

reply Frame a reply to a single message. The reply will be sent
to the person who sent you the message to which you are
replying, plus all the people who received the original mes-
sage, except you. You can add people using the ~t and
~c tilde escapes. The subject in your reply is formed by
prefacing the subject in the original message with Re:
unless it was already prefaced with Re:. If the original
message included a reply-to header field, the reply will go
only to the recipient named by reply-to. You type in your
message using the same conventions available to you
through the mail command.

save It is often useful to be able to save messages on related
topics in a file. The save command gives you ability to do
this. The save command takes as argument a list of mes-
sage numbers, followed by the name of the file on which to
save the messages. The messages are appended to the
named file, thus allowing one to keep several messages in
the file, stored in the order they were put there. The save
command can be abbreviated to s. An example of the save
command relative to our running example is:

 s 1 2 tuitionmail
 Saved messages are not automatically saved in mbox at

quit time, nor are they selected by the next command
described above, unless explicitly specified.

2-20 mail

SECTION 3 Communications

set	 Sets	an	option	or	gives	an	option	a	value;	used	to	customize
Mail. Options can be binary, in which case they are on or
off, or valued. To set a binary option option on, do

 set option

 To give the valued option option the value value, do

 set option=value

 Several options can be specified in a single set command.

shell The shell command allows you to escape to the shell.
Shell invokes an interactive shell and allows you to type
commands to it. When you leave the shell, you will return
to Mail. The shell used is a default assumed by Mail; you
can override this default by setting the valued option
SHELL, e.g.,

 set SHELL=/bin/csh

source The source command reads Mail commands from a file. It
is useful when you are trying to fix your .mailrc file and
you need to re-read it.

top The top command takes a message list and prints the first
five lines of each addressed message. It may be abbreviated
to to. If you wish, you can change the number of lines
that top prints out by setting the valued option toplines.
On a CRT terminal,

 set toplines=10

 might be preferred.

type Print a list of messages on your terminal. If you have set
the option crt to a number and the total number of lines in
the messages you are printing exceed that specified by crt,
the messages will be piped through more.

undelete The undelete command causes a message that had been
deleted previously to regain its initial status. Only mes-
sages that have been deleted may be undeleted. This com-
mand may be abbreviated to u.

unset Reverses the action of setting a binary or valued option.

visual It is often useful to be able to invoke one of two editors,
based on the type of terminal one is using. To invoke a
display oriented editor, you can use the visual command.
The operation of the visual command is otherwise identical
to that of the edit command. Both the edit and visual
commands assume some default text editors. These default
editors can be overridden by the valued options EDITOR
and VISUAL for the standard and screen editors. You

mail 2-21

SECTION 3 Communications

 might want to do:

 set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

write The save command always writes the entire message,
including the headers, into the file. If you want to write
just the message itself, you can use the write command.
The write command has the same syntax as the save com-
mand, and can be abbreviated to simply w. Thus, we
could write the second message by doing:

 w 2 file.c
 As suggested by this example, the write command is useful

for such tasks as sending and receiving source program text
over the message system.

z Mail presents message headers in windowfuls as described
under the headers command. You can move Mail’s atten-
tion forward to the next window by giving the

 z+
 command. You can move to the previous window with:

 z-

2.6 CUSTOM OPTIONS
Throughout this manual, we have seen examples of both binary and
valued options. This section describes each of the options in alphabetical
order, including some we have not yet discussed.

EDITOR The valued option EDITOR defines the pathname of the
text editor to be used in the edit command and ~e. If not
defined, a standard editor is used.

SHELL The valued option SHELL gives the path name of your
shell. This shell is used for the ! command and ~! escape.
In addition, this shell expands file names with shell meta-
characters like * and ? in them.

VISUAL The valued option VISUAL defines the pathname of your
screen editor for use in the visual command and ~v
escape. A standard screen editor is used if you do not de-
fine one.

append The append option is binary and causes messages saved in
mbox to be appended to the end rather than prepended.
Normally, Mail will put messages in mbox in the same
order that the system puts messages in your system mail-
box. By setting append, you are requesting that new mes-
sages be put at the end of mbox regardless of the order in
which they were received.

2-22 mail

SECTION 3 Communications

ask Ask is a binary option which causes Mail to prompt you
for the subject of each message you send. If you respond
by typing return, no subject field will be sent.

askcc Askcc is a binary option which causes you to be prompted
for additional carbon copy recipients at the end of each
message. Type return to use the current list.

autoprint Autoprint is a binary option which causes the delete
command to behave like dp (after deleting a message, the
next one will be typed).

debug The binary option debug causes debugging information to
be displayed. Use of this option is the same as using the -d
command line flag.

dot Dot is a binary option which, if set, causes Mail to inter-
pret a period alone on a line as the terminator of a message
you are sending.

escape To allow you to change the escape character used when
sending mail, you can set the valued option escape. Only
the first character of the escape option is used, and it must
be doubled if it is to appear as the first character of a line
of your message. If you change your escape character, then
~ loses all its special meaning, and need no longer be dou-
bled at the beginning of a line.

folder The name of the directory to use for storing folders of mes-
sages. If this name begins with a “/”, Mail considers it to
be an absolute pathname; otherwise, the folder directory is
found relative to your home directory.

hold The binary option hold causes messages that have been
read but not otherwise dealt with to be held in the system
mailbox. This prevents such messages from being automat-
ically swept into your mbox.

ignore The binary option ignore causes ↑I characters from your
terminal to be ignored and echoed as @’s while you are
sending mail, ↑I characters retain their original meaning in
Mail command mode. Setting the ignore option is
equivalent to supplying the -i flag on the command line as
described in section 6.

ignoreeof An option related to dot is ignoreeof which makes Mail
refuse to accept a ↑Z as the end of a message. Ignoreeof
also applies to Mail command mode.

keep The keep option causes Mail to truncate your system
mailbox instead of deleting it when it is empty. This is
useful if you elect to protect your mailbox, which you
would do with the shell command:

mail 2-23

SECTION 3 Communications

 % chmod 600 /usr/spool/mail/your_login_name

keepsave When you save a message, Mail usually discards it when
you quit. To retain all saved messages, set the keepsave
option.

metoo When sending mail to an alias, Mail makes sure that if you
are included in the alias, that mail will not be sent to you.
This is useful if a single alias is being used by all members
of the group. If however, you wish to receive a copy of all
the messages you send to the alias, you can set the binary
option metoo.

noheader The binary option noheader suppresses the printing of the
version and headers when Mail is first invoked. Setting
this option is the same as using -N on the command line.

nosave Normally, when you abort a message with two ↑I signals,
Mail copies the partial letter to the file dead.letter in
your home directory. Setting the binary option nosave
prevents this.

quiet The binary option quiet suppresses the printing of the ver-
sion when Mail is first invoked, as well as printing the for
example Message 4: from the type command.

record The valued option record can be set to the name of a file
in which outgoing mail will be saved. Each new message
you send is appended to the end of the file.

screen When Mail initially prints the message headers, it deter-
mines the number to print by looking at the speed of your
terminal interface. The faster the baud rate, the more it
prints. The valued option screen overrides this calculation
and specifies how many message headers you want printed.
This number is also used for scrolling with the z command.

sendmail To alternate delivery system, set the sendmail option to
the full pathname of the program to use.

toplines The valued option toplines defines the number of lines
that the top command will print out instead of the default
five lines.

verbose The binary option “verbose” causes Mail to invoke send-
mail with the -v flag, which causes it to go into verbose
mode and announce expansion of aliases, etc. Setting the
“verbose” option is equivalent to invoking Mail with the
-v flag.

2-24 mail

SECTION 3 Communications

2.7 COMMAND LINE OPTIONS
This section describes command line options for Mail.
-N Suppresses the initial printing of headers.

-d Turns on debugging information.

-f file Shows the messages in file instead of your system
mailbox. If file is omitted, Mail reads mbox in your
home directory.

-i Ignores tty interrupt signals. Useful when connect-
ing on noisy phone lines, which may generate spuri-
ous interrupt characters. It’s usually more effective
to change your interrupt character to ↑C using the
stty shell command.

-n Inhibits reading of /usr/lib/Mail.rc. Not generally
useful, since /usr/lib/Mail.rc is usually empty.

-s string Used for sending mail. String is used as the subject
of the message being composed. If string contains
blanks, you must surround it with quote marks.

-u name Read name’s mail instead of your own. Essentially,
-u user is a shorthand way of doing -f
/usr/spool/user.

-v Use the -v flag when invoking sendmail. This
feature may also be enabled by setting the
option “verbose”.

Note: The	following	command	line	flags	are	also	recognized,	but	are
intended for use by programs (not users) invoking Mail,

-T file Arranges to print on file the contents of the article-id fields of all
messages that were either read or deleted. -T is for the readnews
program and should not be used for reading your mail.

-h number Passes on hop count information. Mail will take the number,
increment it, and pass it with -h to the mail delivery system. -h
only has effect when sending mail and is used for network mail
forwarding.

-r name Used for network mail forwarding: interpret name as the sender
of the message. The name and -r are simply sent along to the
mail delivery system. Also, Mail will wait for the message to be
sent and return the exit status. Also restricts formatting of mes-
sage.

 Note that -h and -r, which are for network mail forwarding, are
not used in practice since mail forwarding is handled separately.

mail 2-25

SECTION 3 Communications

2.8 FORMAT OF MESSAGES
This section describes the format of messages. Messages begin with a
from line, which consists of the word From followed by a user name, fol-
lowed by anything, followed by a date in the format returned by the
ctime[3] library routine described in section 3 of the DOMAIN/IX
Programmer’s Reference for BSD4.2. A possible ctime format date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time
zone	indication,	which	should	be	three	capital	letters,	such	as	PDT.

Following the from	line	are	zero	or	more	header field lines. Each header
field line is of the form:

name: information

Name	can	be	anything,	but	only	certain	header	fields	are	recognized	as	
having	any	meaning.		The	recognized	header	fields	are:	article-id, bcc, cc,
from, reply-to, sender, subject, and to. Other header fields are also
significant to other systems; see, for example, the arpanet message stan-
dard for more on this topic. A header field can be continued onto follow-
ing lines by making the first character on the following line a space or
tab character.

If any headers are present, they must be followed by a blank line. The
part that follows is called the body of the message, and must be ascii
text, not containing null characters. Each line in the message body must
be terminated with an ascii newline character and no line may be longer
than 512 characters. If binary data must be passed through the mail sys-
tem, we suggest that this data be encoded in a system which encodes six
bits into a printable character. For example, you could use the upper-
case and lowercase letters, the digits, and the characters comma and
period to make up the 64 characters. Then, you can send a 16-bit binary
number as three characters. These characters should be packed into
lines, preferably lines about 70 characters long. Long lines are transmit-
ted more efficiently.

The message delivery system always adds a blank line to the end of each
message. This blank line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the
end of a message each time it is forwarded through a machine.

It should be noted that some network transport protocols enforce limits
to the lengths of messages.

2.9 SUMMARY OF COMMANDS, OPTIONS, AND ESCAPES
This section gives a quick summary of the Mail commands, binary and
valued options, and tilde escapes.

2-26 mail

SECTION 3 Communications

The following table describes the commands:

Com-
mand

Description

!
-
Print
Reply
Type
alias
alternates
chdir
copy
delete
dt
endif
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
list
local
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
z

Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as file
List the folders in your folder directory
List headers of a list of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Set/examine list of ignored header fields
List valid Mail commands
List other names for the local host
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don’t include headers
Scroll to next/previous screenful of headers

The following table describes the options and indicates whether an option
is binary or valued.

mail 2-27

SECTION 3 Communications

Option Type Description
EDITOR
SHELL
VISUAL
append
ask
askcc
autoprint
crt
debug
dot
escape
folder
hold
ignore
ignoreeof
keep
keepsave
metoo
noheader
nosave
quiet
record
screen
sendmail
toplines
verbose

valued
valued
valued
binary
binary
binary
binary
valued
binary
binary
valued
valued
binary
binary
binary
binary
binary
binary
binary
binary
binary
valued
valued
valued
valued
binary

Pathname of editor for ~e and edit
Pathname of shell for shell, ~! and !
Pathname of screen editor for ~v, visual
Always append messages to end of mbox
Prompt user for Subject: field when sending
Prompt user for additional Cc’s at end of message
Print next message after delete
Minimum number of lines before using more
Print out debugging information
Accept . alone on line to terminate message input
Escape character to be used instead of ~
Directory to store folders in
Hold messages in system mailbox by default
Ignore ↑I while sending mail
Don’t terminate letters/command input with ↑Z
Don’t unlink system mailbox when empty
Don’t delete saved messages by default
Include sending user in aliases
Suppress initial printing of version and headers
Don’t save partial letter in dead.letter
Suppress printing of Mail version and message numbers
File to save all outgoing mail in
Size	of	window	of	message	headers	for	z, etc.
Choose alternate mail delivery system
Number of lines to print in top
Invoke sendmail with the -v flag

The	following	table	summarizes	the	tilde	escapes	available	while	sending	
mail.

Es-
cape

Argu-
ments

Description

~!
~c
~d
~e
~f
~h
~m
~p
~q
~r
~s
~t
~v
~w
~|
~~

command
name ...

messages

messages

filename
string
name ...

filename
command
string

Execute shell command
Add names to Cc: field
Read dead.letter into message
Invoke text editor on partial message
Read named messages
Edit the header fields
Read named messages, right shift by tab
Print message entered so far
Abort entry of letter; like ↑I
Read file into message
Set Subject: field to string
Add names to To: field
Invoke screen editor on message
Write message on file
Pipe message through command
Quote a ~ in front of string

The following table shows the command line flags that Mail accepts:

2-28 mail

SECTION 3 Communications

Flag Description
-N
-T file
-d
-I file
-h number
-i
-n
-r name
-s string
-u name
-V

Suppress the initial printing of headers
Article-id’s of read/deleted messages to file
Turn on debugging
Show messages in file or ~/mbox
Pass on hop count for mail forwarding
Ignore tty interrupt signals
Inhibit reading of /usr/lib/Mail.rc
Pass on name for mail forwarding
Use string as subject in outgoing mail
Read name’s mail instead of your own
Invoke sendmail with the -v flag

Note: The -T, -d, -h, and -r flags are for use by programs that
call mail, not by people.

Index 1

Index

A
ACU, and uucp 1-9
alias, in Mail 2-6
ARPANET 2-12

B
break, sent by uucp 1-17
cron 1-8, 1-11, 1-17
cshrc 2-1
dead.letter file 2-10
files,
 used by uucp 1-1
 uucp example 1-15
folders, mail 2-8
installation script, for uucp 1-13
Mail
 and uucp 2-12
 message format 2-24
 message header 2-4
 message lists 2-14
 options 2-21
 options 2-23
 options 2-5
 special recipients 2-13
 to delete messages 2-5
 to edit messages 2-9
 to files, programs 2-13
 to kill letter 2-9
 to quit 2-7
 to read 2-3
 to read 2-3
 to receive 2-2
 to reply 2-4
 to send 2-1
mailrc file 2-6
master mode
 of uucico 1-7
 of uucp 1-10, 1-15
mbox file 2-5
message number, mail 2-3
metacharacters, in uux command string 1-5
modem (ACU) 1-9
modems, supported by uucp 1-14
sendmail 2-6, 2-23
slave mode, of uucp 1-9
spool directory, uucp 1-2

tilde, escape 2-9
uucp
 and Mail 2-12
 debugging 1-3
 debugging 1-5
 example files 1-15
 example script 1-18
 execute file 1-5
 file cleanup 1-18
 spool directories 1-8
 spool subdirectories 1-2

SECTION 4

SUPPORT TOOLS

Section 4-1

CONTENTS

1.	 Awk	—	A	Pattern	Scanning	and	Processing	Language				1-1
1.1 INTRODUCTION 1-1
1.2 OVERVIEW 1-1

1.2.1 Usage 1-2
1.2.2 Program Structure 1-2
1.2.3 Records and Fields 1-3
1.2.4 Printing 1-3

1.3 PATTERNS 1-5
1.3.1 The BEGIN and END Patterns 1-5
1.3.2 Regular Expressions 1-5
1.3.3 Relational Expressions 1-6
1.3.4 Combinations of Patterns 1-7
1.3.5 Pattern Ranges 1-7

1.4 ACTIONS 1-7
1.4.1 Built-in Functions 1-7
1.4.2 Variables, Expressions, and Assignments 1-8
1.4.3 Field Variables 1-9
1.4.4 String Concatenation 1-9
1.4.5 Arrays 1-10
1.4.6 Flow-of-Control Statements 1-11

1.5 DESIGN 1-12

2.		Sed	—	the	Stream	Editor				2-1
2.1 INTRODUCTION 2-1
2.2 NORMAL OPERATION 2-1

2.2.1 Command-Line Flags 2-2
2.2.2 Order of Application of Editing Commands 2-2

2.3 THE PATTERN SPACE 2-2
2.3.1 Example 1 2-2

2.4	 ADDRESSES	—	SELECTING	LINES	FOR	EDITING				2-3
2.4.1 Line-Number Addresses 2-3
2.4.2 Context Addresses 2-3
2.4.3 Number of Addresses 2-4

2.5 FUNCTIONS 2-5
2.5.1 Whole-Line-Oriented Functions 2-5
2.5.2 Example 2 2-6
2.5.3 The Substitute Function 2-7
2.5.4 Example 3 2-8
2.5.5 Input/output Functions 2-8
2.5.6 Example 4 2-9
2.5.7 Multiple Input-Line Functions 2-10
2.5.8 Hold and Get Functions 2-10
2.5.9 Example 5 2-11
2.5.10 Flow-of-Control Functions 2-11
2.5.11 Miscellaneous Functions 2-12

Section 4-2

3.		Lint	—	a	C	Program	Checker				3-1
3.1 INTRODUCTION 3-1

3.1.1 Usage 3-1
3.1.2 Unused Variables and Functions 3-2
3.1.3 Set/Used Information 3-3
3.1.4 Flow of Control 3-3
3.1.5 Function Values 3-4
3.1.6 Type Checking 3-4
3.1.7 Type Casts 3-5
3.1.8 Nonportable Character Use 3-5
3.1.9 Assignments of longs to ints 3-6
3.1.10 Unorthodox Constructions 3-6
3.1.11 Antiquated Syntax 3-7
3.1.12 Pointer Alignment 3-8
3.1.13 Multiple Uses and Side Effects 3-8

3.2 IMPLEMENTATION DETAILS 3-8
3.2.1 Portability 3-9
3.2.2 Suppressing Unwanted Output 3-11
3.2.3 Library Declaration Files 3-12

3.3 SUMMARY OF LINT OPTIONS 3-12

4.		Make	—	A	Program	for	Maintaining	Programs				4-1
4.1 INTRODUCTION 4-1
4.2 BASIC FEATURES 4-2
4.3 DESCRIPTION FILES AND SUBSTITUTIONS 4-4
4.4 USAGE 4-6

4.4.1 Implicit Rules 4-7
4.4.2 An Example 4-8

4.5 SUGGESTIONS AND WARNINGS 4-10
4.6 SUMMARY OF SUFFIXES AND RULES 4-11

5.		Lex	—	A	Lexical	Analyzer	Generator				5-1
5.1 INTRODUCTION 5-1
5.2 LEX SOURCE 5-3
5.3 LEX REGULAR EXPRESSIONS 5-4

5.3.1 Operators 5-4
5.3.2 Character Classes 5-6
5.3.3 Arbitrary Character Match 5-6
5.3.4 Optional Expressions 5-7
5.3.5 Repeated Expressions 5-7
5.3.6 Alternation and Grouping 5-7
5.3.7 Context Sensitivity 5-7
5.3.8 Repetitions and Definitions 5-8

5.4 LEX ACTIONS 5-8
5.4.1 An Example 5-10

5.5 AMBIGUOUS SOURCE RULES 5-12
5.6 LEX SOURCE DEFINITIONS 5-14
5.7 USAGE 5-15
5.8 LEX AND YACC 5-16

Section 4-3

5.9 MORE EXAMPLES 5-16
5.10 LEFT CONTEXT SENSITIVITY 5-19
5.11 CHARACTER SET 5-21
5.12 SUMMARY OF SOURCE FORMAT 5-22
5.13 CAVEATS 5-23

6. Yacc (Yet Another Compiler Compiler) 6-1
6.1 INTRODUCTION 6-1
6.2 BASIC SPECIFICATIONS 6-3
6.3 ACTIONS 6-5
6.4 LEXICAL ANALYSIS 6-7
6.5 HOW THE PARSER WORKS 6-9
6.6 AMBIGUITY AND CONFLICTS 6-13
6.7 PRECEDENCE 6-17
6.8 ERROR HANDLING 6-20
6.9 THE YACC ENVIRONMENT 6-22
6.10 HINTS FOR PREPARING SPECIFICATIONS 6-23

6.10.1 Input Style 6-23
6.10.2 Left Recursion 6-24
6.10.3 Lexical Tie-Ins 6-25
6.10.4 Reserved Words 6-25

6.11 YACC INPUT SYNTAX 6-26
6.12 EXAMPLES 6-28

6.12.1 A Simple Example 6-28
6.12.2 An Advanced Example 6-30

6.13 OLD FEATURES SUPPORTED BUT NOT
 ENCOURAGED 6-36

7. The Source Code Control System 7-1
7.1 INTRODUCTION 7-1
7.2 TERMINOLOGY 7-1
7.3 CREATING SCCS FILES 7-2

7.4 Getting Files for Compilation 7-3
7.5 Changing Files (Creating Deltas) 7-3
7.5.1 Getting a Copy to Edit 7-3
7.5.2 Merging the Changes Into the s-file 7-4
7.5.3 When to Make Deltas 7-4
7.5.4 The sact Command 7-4
7.5.5 ID Keywords 7-5
7.5.6 The what Command 7-5
7.5.7 Where to Put ID Keywords 7-5
7.5.8 Keeping sid’s Consistent Across Files 7-6
7.5.9 Creating a New Release 7-6

7.6 RESTORING OLD VERSIONS 7-6
7.6.1 Reverting to Old Versions 7-6
7.6.2 Selectively Deleting Old Deltas 7-7

7.7 AUDITING CHANGES 7-7
7.7.1 The prs Command 7-7
7.7.2 Finding Why Lines Were Inserted 7-8

Section 4-4

7.7.3 Finding What Changes You Have Made 7-8
7.7.4 Unget 7-8

7.8 USING SCCS ON A PROJECT 7-9
7.9 ERROR RECOVERY 7-9

7.9.1 Recovering a Damaged Edit File 7-9
7.9.2 Restoring the s-file 7-9

7.10 USING TEE admin[1] COMMAND 7-10
7.11 MAINTAINING DIFFERENT VERSIONS
 (BRANCHES) 7-10

7.11.1 Creating a Branch 7-10
7.11.2 Getting from a Branch 7-11
7.11.3 Merging a Branch Back into the Main Trunk 7-11

7.12 USING SCCS WITH MAKE 7-11
7.12.1 To Maintain Single Programs 7-12
7.12.2 To Maintain a Library 7-12
7.12.3 To Maintain a Large Program 7-13

7.13 SUMMARY OF COMMANDS AND KEYWORDS 7-14
7.13.1 Commands 7-14
7.13.2 ID Keywords 7-15

awk 1-1

SECTION 4 Support Tools

Chapter 1: Awk—A Pattern Scanning and Processing Language

1.1 INTRODUCTION
Awk is a programming language that enables you to prepare programs
that search a file or set of files for patterns, then perform actions on lines
or parts of lines that contain instances of those patterns. Awk makes
certain data selection and transformation operations easy to express; for
example, the following very simple awk program

length > 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 == 0

prints all lines with an even number of fields; and the program

{ $1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary Boolean combinations of regular
expressions and of relational operators on strings, numbers, fields, vari-
ables, and array elements. Actions may include the same pattern-
matching constructions as in patterns, as well as arithmetic and string
expressions and assignments, if-else, while, and for statements, and multi-
ple output streams.

This chapter explains how to write awk programs. It also includes a dis-
cussion of the design and implementation of awk, intended to furnish
insight into the way unix software development tools can be combined to
produce programs for specific tasks.

1.2 OVERVIEW
Awk is a programming language designed to make many common infor-
mation retrieval and text manipulation tasks easy to state and to per-
form.

When invoked, awk scans a set of input lines (usually from a specified
file) in order, searching for instances of patterns specified in the program.
For any pattern, an action can be specified; this action will be performed
on each line that matches the pattern.

Readers familiar with the unix program grep[1]	will	recognize	the	
approach, although in awk the patterns may be more general than in
grep, and while grep allows only one action (print the line), awk

1-2 awk

SECTION 4 Support Tools

provides the programmer with a variety of actions that may be taken on
all or part of a line in which the matching pattern occurs. For example,
the awk program

{print $3, $2}

prints the third and second fields of an input line in that order. The pro-
gram

$2 ~ /A|B|C/

prints all input lines with an A, B, or C in the second field. The program

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from the previous first
field.

1.2.1 Usage
The command line

awk ’program’ [input_file(s)]

executes the awk commands in the program string on the named
input_file(s).

Note: When you include the awk program in the command line, it
must be delimited by single quotes, as shown above, so that
the shell knows that the entire program is the first argument
to awk.

As is the case with other unix programs, awk reads the standard input
if no file is specified, or if the “file” specified is “-”, as shown below.

awk ’program’ -
If program is more than a few statements long, you may want to place it
in a file and execute it by including the -f option on the awk command
line, as shown below.

awk -f program_file input_file(s)

1.2.2 Program Structure
An awk program is a sequence of statements of the form:

pattern { action }
pattern { action }
...

Each line of input is matched against each of the patterns in turn. For
each pattern that matches, the associated action is executed. When all
specified patterns have been tested against the contents of the first input
line, the next line is fetched and the matching process starts again.

awk 1-3

SECTION 4 Support Tools

Either the pattern or the action may be left out of an awk program line,
but not both. If there is no action for a pattern, awk simply copies all
matching input line(s) to the output. (Thus a line which matches several
patterns can be printed several times.) If there is no pattern for an
action, then the action is performed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both optional, actions must be enclosed in
braces to distinguish them from patterns.

1.2.3 Records and Fields
Awk divides each input file into records terminated by a record separa-
tor. The default record separator is the newline, so by default awk
processes its input a line at a time. The number of the current record is
available in a variable named NR.

Each input record is considered to be divided into fields. Fields are nor-
mally separated by white space (blanks or tabs), although the input field
separator may be changed to any other character by resetting the FS
variable as described below. Fields are referred to as $1, $2, and so
forth, where $1 is the first field, $2 is the second field, and $0 is the
entire input record. Fields may be assigned to a numeric or string value.
The number of fields in the current record is available in a variable
named NF.

The variables FS and RS refer to the input field and record separators.
These may be changed to another (single) character at any time. The
optional command-line argument -F c may also be used to set FS to a
character represented here by c.

If the record separator is empty, an empty input line is taken as the
record separator. Blanks, tabs, and newlines are then treated as field
separators.

The variable FILENAME contains the name of the current input file.

1.2.4 Printing
If an action has no pattern, the action is executed for all input lines
(records). The simplest action is to use the awk command print to
print some or all of a record. The simple awk program below

{ print }

prints	each	input	record.		It	merely	copies	the	input	to	the	output	—	
something to which cat is far better suited. A more useful awk program
might print a field or possibly selected fields from each record. For
instance, the program

{ print $2, $1 }

prints the first two fields of each input record (since no pattern has been
specified) in reverse order. Items separated by a comma in the print
statement will be separated by the current output field separator when

1-4 awk

SECTION 4 Support Tools

printed. Items not separated by commas will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined numeric variables NF, (Number of Fields) and NR,
(Number of Records) have a number of uses. For example, the program

{ print NR, NF, $0 }

prints each record preceded by its record number and the number of
fields it contains.

Output may be diverted to multiple files; the program

{ print $1 >”foo1”; print $2 >”foo2” }

writes the first field on the file foo1 and the second field on file foo2. The
>> notation familiar to unix users can be used to append awk output
to a file. The program

{ print $1 >>”foo” }

appends the first field of every input record to the file foo.

Note: When printing or appending output to a file, awk creates the
specified output file if it does not already exist.

The filename can be derived from a variable or a field as well as a con-
stant; for example,

{ print $1 >$2 }

uses the contents of field 2 of the current input record as the output file
name.

Note: You may not specify more than 10 output files in an awk
program.

Awk output can also be piped into another process; for instance,

{ print | ”mail bob” }

mails the current input record to mail user bob.

The variables OFS and ORS may be used to change the current output
field separator and output record separator. The output record separator
is appended to the output of the print statement.

Awk also provides the printf statement for output formatting:

printf format expr, expr, ...

formats the expressions in the list according to the specification in for-
mat and prints them. For example,

awk 1-5

SECTION 4 Support Tools

printf ”%8.2f %10ld\n”, $1, $2

prints $1 as a floating point number 8-digits wide, with two after the
decimal point, and $2 as a 10-digit long decimal number followed by a
newline. Output separators are not produced automatically; you must
add them yourself, as in this example. The awk version of printf is
identical to that used in the C programming language.

1.3 PATTERNS
A pattern to the left of an action acts as a selector that determines
whether the action is to be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic relational expressions,
string-valued expressions, and arbitrary Boolean combinations of all
three.

1.3.1 The BEGIN and END Patterns
The special pattern BEGIN matches the beginning of the input, before
the first record is read. The special pattern END matches the end of the
input, after the last record has been processed. BEGIN and END pro-
vide	a	way	to	gain	control	before	and	after	processing,	for	initialization	
and wrapup.

As an example, the field separator can be set to a colon by

BEGIN { FS = ”:” }

... body of program ...

The line below will finish an awk program by displaying a count of input
lines.

END { print NR }

Note: If BEGIN is present, it must be the first pattern; If END is
used, it must be the last pattern.

1.3.2 Regular Expressions
The simplest regular expression is a literal string of characters delimited
by slashes, for example

/smith/

This is actually a complete awk program which will print all lines which
contain any occurrence of the name “smith”. Lines that contain “smith”
as part of a larger word (e.g., blacksmithing) will also be printed.

Awk regular expressions include the regular expression forms found in
the unix text editor ed[1] as well as those used by grep[1] (without
back-referencing). In addition, awk allows parentheses for grouping, the
vertical line

1-6 awk

SECTION 4 Support Tools

|
to separate alternatives,

+

for “one or more”, and

?
for	“zero	or	one.”	All	of	these	usages	should	be	familiar	to	lex[1] users.
Character classes may be abbreviated:

[a-zA-Z0-9]

matches the set of all letters and digits. As an example, the brief awk
program below

/[Aa]ho|[Ww]einberger|[Kk]ernighan/

will print all lines which contain any of the names “Aho,” “Weinberger”
or	“Kernighan,”	whether	or	not	the	first	letter	of	the	name	is	capitalized.

Regular expressions (with the extensions listed above) must be enclosed
in slashes, just as in ed[1] and sed[1]. Within a regular expression,
blanks and the regular expression metacharacters are significant. To
escape a regular expression character and restore its “real” meaning, pre-
cede it with a backslash. The pattern

/\/.*\//

matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a regular expres-
sion (or does not match it) with the operators ~ and !~. The program

$1 ~ /[jJ]ohn/

prints all lines where the first field matches “john” or “John.” Note that
this will also match “Johnson”, “St. Johnsbury”, and so on. To restrict
it to exactly [jJ]ohn, use

$1 ~ /^[jJ]ohn$/

The caret ^ refers to the beginning of a line or field; the dollar sign $
refers to the end.

1.3.3 Relational Expressions
An awk pattern can be a relational expression involving the usual rela-
tional operators <, <=, ==, !=, >=, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at least 100 greater than the
first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.

awk 1-7

SECTION 4 Support Tools

In relational tests, if neither operand is numeric, a string comparison is
made; otherwise, a numeric comparison is made. Thus,

$1 >= ”s”

selects lines that begin with an s, t, u, etc. In the absence of any other
information, fields are treated as strings, so the program

$1 > $2

will perform a string comparison.

1.3.4 Combinations of Patterns
A pattern can be any Boolean combination of patterns, using the opera-
tors || (or), && (and), and ! (not). For example,

$1 >= ”s” && $1 < ”t” && $1 != ”smith”

selects lines where the first field begins with “s”, but is not “smith”.
&& and || guarantee that their operands are evaluated from left to right;
evaluation stops as soon as the truth or falsehood is determined.

1.3.5 Pattern Ranges
The “pattern” that selects an action may also consist of two patterns
separated by a comma, as in

pat1, pat2 { ... }

In this case, the action is performed for each line starting at an
occurrence of pat1 and ending at the first subsequent occurrence of pat2
(inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

1.4 ACTIONS
An awk action is a sequence of one or more action statements ter-
minated by newlines or semicolons. These action statements can be used
to do a variety of bookkeeping and string manipulating tasks, many of
which will be described in this section.

1.4.1 Built-in Functions
Awk provides a “length” function to compute the length of a string of
characters. The program below prints each record preceded by its
length:

{ print length, $0 }

length by itself is a “pseudo-variable” which yields the length of the

1-8 awk

SECTION 4 Support Tools

current record; length(argument) is a function which yields the length
of its argument, as in the equivalent

{ print length($0), $0 }

The argument may be any expression.

Awk also provides the arithmetic functions sqrt, log, exp, and int, for
square root, base e, logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in functions, without argument or
parentheses, stands for the value of the function on the whole record.
The program

length < 10 || length > 20

prints lines whose length is less than 10 or greater than 20.

The function substr(s, m, n) produces the substring of s that begins at
position m (origin 1) and is at most n characters long. If n is omitted,
the substring goes to the end of s. The function index(s1, s2) returns
the position where the string s2 occurs in s1,	or	zero	if	it	does	not.
The function sprintf(f, e1, e2, ...) produces the value of the expressions
e1, e2, etc., in the printf format specified by f. Thus,

x = sprintf(”%8.2f %10ld”, $1, $2)

sets x to the string produced by formatting the values of $1 and $2.

1.4.2 Variables, Expressions, and Assignments
Awk variables take on numeric (floating point) or string values accord-
ing to context. For example, in

x = 1

x is clearly a number, while in

x = ”smith”

it is clearly a string. Strings are converted to numbers and vice versa
whenever context demands it. For instance,

x = ”3” + ”4”

assigns the value 7 to x. Strings which cannot be interpreted as numbers
in	a	numerical	context	will	generally	have	numeric	value	zero,	but	it	is	
unwise to count on this behavior.

By	default,	variables	(other	than	built-ins)	are	initialized	to	the	null	
string,	which	has	numerical	value	zero;	this	eliminates	the	need	for	most	
BEGIN sections. For example, the sums of the first two fields can be
computed by

awk 1-9

SECTION 4 Support Tools

 { s1 += $1; s2 += $2 }
END { print s1, s2 }

Arithmetic is done internally in floating point. The arithmetic operators
are +, -, *, /, and % (mod). The C increment ++ and decrement --
operators are also available, as are the assignment operators +=, -=,
*=, /=, and %=. These operators may all be used in expressions.

1.4.3 Field Variables
Fields in awk	share	essentially	all	of	the	properties	of	variables	—	they	
may be used in arithmetic or string operations, and may be assigned to a
numeric or string value. Awk allows you, for example, to replace the
first field with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
 $3 = ”too big”
 print
}

which replaces the third field by the string “too big” when the field
exceeds	an	arbitrary	size	(in	this	case,	1000	characters),	then	prints	the	
record.

Field references may be numerical expressions, as in

{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string depends on context; in ambi-
guous cases like

if ($1 == $2) ...

fields are treated as strings.

Each input line is split into fields automatically as necessary. It is also
possible to split any variable or string into fields:

n = split(s, array, sep)

splits the string s into array(1), ..., array(n). Awk returns a value
indicating the number of elements found. If the sep argument is pro-
vided, it is used as the field separator; otherwise FS is used as the
separator.

1.4.4 String Concatenation
Strings may be concatenated. For example

1-10 awk

SECTION 4 Support Tools

length($1 $2 $3)

returns the length of the first three fields. Or in a print statement,

print $1 ” is ” $2

prints the two fields separated by “ is ”. Variables and numeric expres-
sions may also appear in concatenations.

1.4.5 Arrays
Array elements are not declared; they are created as necessary. Sub-
scripts may have any non-null value, including non-numeric strings. As
an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th element of the array x. In
fact, it is possible in principle (though perhaps slow) to process the entire
input in a random order with the awk program

 { x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in the array x.

Array elements may be named by non-numeric values, which gives awk
a capability rather like the associative memory of Snobol tables. Sup-
pose the input contains fields with values like apple, orange, etc. Then
the program

/apple/ { x[”apple”]++ }
/orange/ { x[”orange”]++ }
END { print x[”apple”], x[”orange”] }

increments counts for the named array elements, and prints them at the
end of the input.

Any expression can be used as a subscript in an array reference. Thus

x[$1] = $2

uses the first field of a record (as a string) to index the array x.

Suppose	each	line	of	input	contains	two	fields,	a	name	and	a	non-zero	
value. Names may be repeated; the task is to print a list of each unique
name followed by the sum of all the values for that name. This can be
done with the program

 { amount[$1] += $2 }
END { for (name in amount)
 print name, amount[name] }

To sort the output, replace the last line by

print name, amount[name] | ”sort”

awk 1-11

SECTION 4 Support Tools

1.4.6 Flow-of-Control Statements
Awk provides these flow-of-control statements: if-else, while, for, and
statement grouping with braces, as in C. We showed the if statement
earlier without describing it. The condition in parentheses is evaluated;
if it is true, the statement following the if is done. The else part is
optional.

The while statement is exactly like that of C. For example, to print all
input fields one per line,

i = 1
while (i <= NF) {
 print $i
 ++i
}

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
 print $i

does the same job as the while statement above.

There is an alternate form of the for statement which is suited for
accessing the elements of an associative array:

for (i in array)
 statement

does statement with i set in turn to each element of array. The ele-
ments are accessed in an apparently random order. Chaos will ensue if i
is altered, or if any new elements are accessed during the loop.

The expression in the condition part of an if, while, or for can include
relational operators like <, <=, >, >=, == (“is equal to”), and !=
(“not equal to”); regular expression matches with the match operators ~
and !~; the logical operators ||, &&, and !; and of course parentheses for
grouping.

The break statement causes an immediate exit from an enclosing while
or for; the continue statement causes the next iteration to begin.

The statement next causes awk to skip immediately to the next record
and begin scanning the patterns from the top. The statement exit
causes the program to behave as if the end of the input had occurred.

Comments may be placed in awk programs: they begin with the charac-
ter # and end with the end of the line, as in

print x, y # this is a comment

1-12 awk

SECTION 4 Support Tools

1.5 DESIGN
unix provides several programs that operate by passing input through a
selection mechanism. Grep[1], one of the simplest, merely prints all lines
which match a single specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full generality; and fgrep searches
for a set of keywords with a particularly fast algorithm. The stream edi-
tor sed[1] applies most of the editing facilities of the editor ed[1] to a
stream of input. None of these programs provide numeric capabilities,
logical relations, or variables.

Lex[3] provides general regular expression recognition capabilities, and,
by serving as a C program generator, is essentially open-ended in its
capabilities. The use of lex, however, requires a knowledge of C pro-
gramming, and a lex program must be compiled and loaded before use,
which discourages its use for one-shot applications.

Awk provides general regular expression capabilities and an implicit
input/output loop. But it also provides convenient numeric processing,
variables, more general selection, and control flow in the actions. It does
not require compilation, nor does it presuppose extensive knowledge of C.
Finally, awk provides a convenient way to access fields within lines; it is
unique in this respect.

Awk also tries to integrate strings and numbers completely, by treating
all quantities as both string and numeric, deciding which representation
is appropriate as late as possible. In most cases, you can simply ignore
the differences.

Most of the effort in developing awk went into deciding what it should
or should not do (for instance, it doesn’t do string substitution) and what
the syntax should be (no explicit operator for concatenation), rather than
on writing or debugging the code. The authors of the program (A. V.
Aho, P. J. Weinberger, and B. W. Kernighan) tried to make the syntax
powerful, easy to use, and well adapted to scanning files. For example,
the	absence	of	declarations	and	implicit	initializations,	while	probably	a	
bad idea for a general-purpose programming language, is desirable in a
language that is meant to be used for tiny programs that may even be
composed on the command line.

In practice, awk usage seems to fall into two broad categories. One is
what	might	be	called	“report	generation”	—processing	an	input	to	extract	
counts, sums, sub-totals, etc. This also includes the writing of trivial
data validation programs, such as verifying that a field contains only
numeric information or that certain delimiters are properly balanced.
The combination of textual and numeric processing is invaluable here.

A second area of use is as a data transformer, converting data from the
form produced by one program into that expected by another. The sim-
plest examples merely select fields, perhaps with rearrangements.

awk 1-13

SECTION 4 Support Tools

The actual implementation of awk uses several of the unix language
development tools discussed in this section of the User’s Guide. The
grammar is specified with yacc, the lexical analysis is done by lex. The
regular	expression	recognizers	are	deterministic,	finite	automata	con-
structed directly from the expressions. An awk program is translated
into a parse tree which is then directly executed by a simple interpreter.

sed 2-1

SECTION 4 Support Tools

Chapter 2: Sed—the Stream Editor

2.1 INTRODUCTION
Sed is a non-interactive context editor designed to be especially useful in
three cases:

1. To edit files too large for comfortable interactive editing;

2.	 To	edit	a	file	of	any	size	where	the	sequence	of	editing	commands	is	
too complicated to be comfortably typed in interactive mode, and

3. To perform multiple “global” editing functions efficiently in one
pass through the input.

This chapter is a manual for sed users.

Since only a few lines of the input reside in real memory at one time, and
no	temporary	files	are	used,	the	effective	size	of	a	file	that	can	be	edited	
is limited only by the requirement that the input and output fit simul-
taneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as
a command file. This often saves considerable typing, and provides a
way to make special-purpose filters based on sed.

The principal loss of functionality in sed, as compared with an interac-
tive editor, are lack of relative addressing (because of the line-at-a-time
operation), and lack of immediate verification that a command has done
what was intended.

Sed is a lineal descendant of the unix editor, ed. Because of the
differences between interactive and non-interactive operation, consider-
able changes have been made between ed and sed; even confirmed users
of ed will need to read this document before proceeding to use sed. The
most striking family resemblance between the two editors is in the class
of	patterns	(“regular	expressions”)	they	recognize.		The	code	for	match-
ing patterns is copied almost verbatim from the code for ed, so the two
programs behave identically in this respect.

2.2 NORMAL OPERATION
Sed by default copies the standard input to the standard output,
perhaps performing one or more editing commands on each line before
writing it to the output. This behavior may be modified by flags on the
command line.

The general format of an editing command is:

2-2 sed

SECTION 4 Support Tools

[address1,address2][function][arguments]
One or both addresses may be omitted; the format of addresses is given
in the next section. Any number of blanks or tabs may separate the
addresses from the function. The function must be present. The argu-
ments may be required or optional, depending on the function. Func-
tions and arguments are discussed in a later section.

Tab characters and spaces at the beginning of lines are ignored.

2.2.1 Command-Line Flags
Sed	recognizes	three	command	line	flags.

-n tells sed not to copy all lines, but only those specified by p
functions or p flags after s functions.

-e tells sed to take the next argument as an editing command,

-f name tells sed to get its commands from file name. Name must
be a file that contains editing commands, one to a line.

2.2.2 Order of Application of Editing Commands
Before any editing is done or any input file opened, all the editing com-
mands given to sed are compiled into a form which will be moderately
efficient during the execution phase (when the commands are actually
applied to lines of the input file). The commands are compiled in the
order in which they are encountered; this is generally the order in which
they will be attempted at execution time. The commands are applied
one at a time; the input to each command is the output of all preceding
commands.

The default linear order of application of editing commands can be
changed by the flow-of-control commands t and b. Even when the order
of application is changed by these commands, it is still true that the
input line to any command is the output of any previously applied com-
mand.

2.3 THE PATTERN SPACE
The range of pattern matches is called the pattern space. Ordinarily, the
pattern space is one line of the input text, but more than one line can be
read into the pattern space by using the N command.

2.3.1 Example 1

Note: Examples are scattered throughout the text. Except where
otherwise noted, the examples all assume the following input
text.

sed 2-3

SECTION 4 Support Tools

 In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

The command

2q
will quit after copying the first two lines of the input. The output will
be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2.4 ADDRESSES — SELECTING LINES FOR EDITING
Lines in the input file(s) to which editing commands are to be applied
can be selected by addresses. Addresses may be either line numbers or
context addresses.

The application of a group of commands can be controlled by one
address (or address-pair) by grouping the commands in braces as shown
below.

{commands}

2.4.1 Line-Number Addresses
A line number is a decimal integer. As each line is read from the input,
a line-number counter is incremented; a line-number address matches
(selects) the input line that causes the internal counter to equal the
address line-number. The counter runs cumulatively through multiple
input files. It is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input
file.

2.4.2 Context Addresses
A context address is a pattern (“regular expression”) enclosed in slashes
(“/”).		The	regular	expressions	recognized	by	sed are constructed as fol-
lows:

[1] An ordinary character (not one of those discussed below) is a regular
expression, and matches that character.

[2] A circumflex “^” at the beginning of a regular expression matches the
null character at the beginning of a line.

[3] A dollar-sign “$” at the end of a regular expression matches the null
character at the end of a line.

2-4 sed

SECTION 4 Support Tools

[4] The characters “\n” match an imbedded newline character, but not
the newline at the end of the pattern space.

[5] A period “.” matches any character except the terminal newline of
the pattern space.

[6] A regular expression followed by an asterisk “*” matches any number
(including 0) of adjacent occurrences of the regular expression it follows.

[7] A string of characters in square brackets “[]” matches any character
in the string, and no others. If, however, the first character of the
string is circumflex “^l”, the regular expression matches any character
except the characters in the string and the terminal newline of the pat-
tern space.

[8] A concatenation of regular expressions is a regular expression which
matches the concatenation of strings matched by the components of the
regular expression.

[9] A regular expression between the sequences “\(” and “\)” is identical
in effect to the unadorned regular expression, but has side-effects which
are described under the s command below and specification [10] immedi-
ately below.

[10] The expression “\d” means the same string of characters matched
by an expression enclosed in “\(” and “\)” earlier in the same pattern.
Here d is a single digit; the string specified is that beginning with the
dth. occurrence of “\(” counting from the left. For example, the expres-
sion “^\(.*\)\1” matches a line beginning with two repeated occurrences
of the same string.

[11] The null regular expression standing alone (e.g., “//”) is equivalent
to the last regular expression compiled.

To use one of the special characters (^ $. * [] \ /) as a literal (to match
an occurrence of itself in the input), precede the special character by a
backslash “\”.

For a context address to “match” the input requires that the whole pat-
tern within the address match some portion of the pattern space.

2.4.3 Number of Addresses
The commands in the next section can have 0, 1, or 2 addresses. Under
each command, we list the maximum number of allowable addresses. It
is an error for a command to have more addresses than the maximum
number allowed.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that
address.

If a command has two addresses, it is applied to the first line which
matches the first address, and to all subsequent lines until (and

sed 2-5

SECTION 4 Support Tools

including) the first subsequent line which matches the second address.
An attempt is made on subsequent lines to again match the first address,
and the process is repeated. Two addresses must be separated by a
comma.

Some examples are offered below.

/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/^an/ matches no lines
/./ matches all lines
/\./ matches line 5
/r*an/ matches lines 1,8, 4 (number = zero)
/\(an\).*\1/ matches line 1

2.5 FUNCTIONS
All functions are named by a single character. In the following summary,
the maximum number of allowable addresses is given enclosed in
parentheses, then the single character function name, possible arguments
enclosed in angles (< >), an expanded English translation of the single-
character name, and finally a description of what each function does.

Note: The angles around the arguments are not part of the argu-
ment, and should not be typed in actual editing commands.

2.5.1 Whole-Line-Oriented Functions
(2)d delete lines This function deletes from the file (does not

write to the output) all those lines matched by its
address(es). As a side effect, no further commands are
attempted on the deleted line. As soon as the d function is
executed, a new line is read from the input, and the list of
editing commands is re-started from the beginning on the
new line.

(2)n next line The n function reads the next line from the
input, replacing the current line. The current line is writ-
ten to the output if it should be. The list of editing com-
mands is continued.

(1)atext append text Causes text to be written to the output after
the line matched by its address. The a command is
inherently multi-line. It must appear at the end of a line,
and text may contain any number of lines. To preserve the
one-command-to-a-line convention, interior newlines in text
must be hidden by a backslash character (“\”) immediately
preceding the newline. The text argument is terminated by
the first unhidden newline. Once an a function is success-
fully executed, text will be written to the output regardless
of what later commands do to the line which triggered it.

2-6 sed

SECTION 4 Support Tools

 The triggering line may be deleted entirely; text will still be
written to the output. The text is not scanned for address
matches, and no editing commands are attempted on it. It
does not cause any change in the line-number counter.

(1)itext insert text The i function behaves like a, except that text
is written to the output before, rather than after, the
matched line.

(2)ctext change text The c function deletes the lines selected by its
address(es), and replaces them with text. Like a and e,
lines in c must be followed by a newline hidden by a
backslash; and interior new lines in text must be hidden by
backslashes. The c command may have two addresses, and
therefore select a range of lines. If it does, all the lines in
the range are deleted, but only one copy of text is written
to the output, not one copy per line deleted. As with a and
i, text is not scanned for address matches, and no editing
commands are attempted on it. It does not change the
line-number counter. After a line has been deleted by a c
function, no further commands are attempted on the line.
If text is appended after a line by a or r functions, and the
line is subsequently changed, the text inserted by the c
function will be placed before the text of the a or r func-
tions.

Note: Within the text put in the output by these functions, leading
blanks and tabs will disappear, as always in sed commands.
To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will
not appear in the output.

2.5.2 Example 2
The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this case, the same effect would be produced by either of the two fol-
lowing command lists:

sed 2-7

SECTION 4 Support Tools

n n
i\ c\
XXXX XXXX
d

2.5.3 The Substitute Function
The substitute function s changes parts of lines selected by a context
search within the line. In prototype, it looks like this.

(2)spattern replacement flags

The s function replaces the part of a line matched by pattern with the
text of replacement. The pattern argument contains a pattern, exactly
like the patterns in addresses. The only difference between pattern and a
context address is that the context address must be delimited by slash
(“/”) characters; pattern may be delimited by any character other than
space or newline. By default, only the first string matched by pattern is
replaced. See the g flag below.

The replacement argument begins immediately after the second delimit-
ing character of pattern, and must be followed immediately by another
instance of the delimiting character. (Thus, there are exactly three
instances of the delimiting character.)

The replacement is not a pattern, and the characters which are special in
patterns do not have special meaning in replacement. Instead, other
characters are special:

•	 & is replaced by the string matched by pattern

d (where d is a single digit) is replaced by the dth substring matched by
parts of pattern enclosed in “\(” and “\)”. If nested substrings occur
in pattern, the dth is determined by counting opening delimiters
(“\(”).

 As in patterns, special characters may be made literal by preceding
them with backslash (“\”).

The flags argument may contain the following flags:

g substitute replacement for all (non-overlapping) instances of
pattern in the line. After a successful substitution, the scan
for the next instance of pattern begins just after the end of
the inserted characters; characters put into the line from
replacement are not rescanned.

p print the line if a successful replacement was done. The p
flag causes the line to be written to the output if and only
if a substitution was actually made by the s function.
Notice that if several s functions, each followed by a p flag,
successfully substitute in the same input line, multiple
copies of the line will be written to the output, one for each
successful substitution.

2-8 sed

SECTION 4 Support Tools

wfilename write the line to filename if a successful replacement was
done. The w flag causes lines which are actually substi-
tuted by the s function to be written to a file named by
filename. If filename exists before sed is run, it is overwrit-
ten; if not, it is created. A single space must separate w
and filename. The possibilities of multiple, somewhat
different copies of one input line being written are the same
as for p. A maximum of 10 different filenames may be
mentioned after w flags and functions.

2.5.4 Example 3
The following command,

s/to/by/w changes

when applied to our standard input, produces, on the standard output:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file “changes”:

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (in nocopy mode):

In XANadu did Kubla Khan

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubla KhAN

2.5.5 Input/output Functions
(2)p print The print function writes the addressed lines to the

standard output file. They are written at the time the p

sed 2-9

SECTION 4 Support Tools

 function is encountered, regardless of what succeeding edit-
ing commands may do to the lines.

(2)w filename

 write on filename The write function writes the addressed
lines to filename. If the file previously existed, it is
overwritten; if not, it is created. The lines are written
exactly as they exist when the write function is encountered
for each line, regardless of what subsequent editing com-
mands may do to them.

 Exactly one space must separate w from filename. A max-
imum of ten different files may be mentioned in write func-
tions and w flags after s functions, combined.

(1)r filename read the contents of filename The read function reads the
contents of filename and appends them after the line
matched by the address. The file is read and appended
regardless of what subsequent editing commands do to the
line which matched its address. If e and a functions are
executed on the same line, the text from the a functions
and the r functions is written to the output in the order
that the functions are executed.

 Exactly one space must separate r from filename. If a file
mentioned by r cannot be opened, it is considered a null
file, not an error, and no diagnostic is given.

Note: Since there is a limit to the number of files that can be
opened simultaneously, care should be taken that no more
than ten files be mentioned in w functions or flags; that
number is reduced by one if any r functions are present.
(Only one read file is open at one time.)

2.5.6 Example 4
Assume that the file note1 has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was	the	grandson	and	most	eminent	successor	of	Genghiz	
(Chingiz)	Khan,	and	founder	of	the	Mongol	dynasty	in	China.

Then the following command:

/Kubla/r note1

produces:

2-10 sed

SECTION 4 Support Tools

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was	the	grandson	and	most	eminent	successor	of	Genghiz
(Chingiz)	Khan,	and	founder	of	the	Mongol	dynasty	in	China.
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

2.5.7 Multiple Input-Line Functions
Three functions, all spelled with capital letters, deal specially with pat-
tern spaces containing imbedded newlines; they are intended principally
to provide pattern matches across lines in the input.

(2)N Next line The next input line is appended to the current
line in the pattern space; the two input lines are separated
by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D Delete first part of the pattern space. Delete up to and
including the first newline character in the current pattern
space. If the pattern space becomes empty (the only new-
line was the terminal newline), read another line from the
input. In any case, begin the list of editing commands
again from its beginning.

(2)P Print first part of the pattern space. Print up to and
including the first newline in the pattern space.

The P, I, and D functions are equivalent to their lowercase counterparts
if there are no imbedded newlines in the pattern space.

2.5.8 Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h hold pattern space. The h function copies the contents of the pat-
tern space into a hold area (destroying the previous contents of
the hold area).

(2)H Hold and append to pattern space. The H function appends the
contents of the pattern space to the contents of the hold area; the
former and new contents are separated by a newline.

(2)g get contents of hold area The g function copies the contents of
the hold area into the pattern space (destroying the previous con-
tents of the pattern space).

(2)G Get (and append) contents of hold area The G function appends
the contents of the hold area to the contents of the pattern space;
the former and new contents are separated by a newline.

(2)x exchange The exchange command interchanges the contents of
the pattern space and the hold area.

sed 2-11

SECTION 4 Support Tools

2.5.9 Example 5
The commands

1h
1s/ did.*//
1x
G
s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

2.5.10 Flow-of-Control Functions
These functions do no editing on the input lines, but control the applica-
tion of functions to the lines selected by the address part.

(2)! Don’t. The ! command causes the next command (written
on the same line), to be applied to all and only those input
lines not selected by the address part.

(2){group} The grouping command “{” causes the next set of com-
mands to be applied (or not applied) as a block to the input
lines selected by the addresses of the grouping command.
The first of the commands under control of the grouping
may appear on the same line as the “{” or on the next line.
The group of commands is terminated by a matching “}”
standing on a line by itself. Groups can be nested.

(0):label The label function marks a place in the list of editing com-
mands which may be referred to by b and t functions. The
label may be any sequence of eight or fewer characters; if
two different colon functions have identical labels, a com-
pile time diagnostic will be generated, and no execution
attempted.

(2)blabel Branch to label. The branch function causes the sequence
of editing commands being applied to the current input line
to be restarted immediately after the place where a colon
function with the same label was encountered. If no colon
function with the same label can be found after all the edit-
ing commands have been compiled, a compile time diagnos-
tic is produced, and no execution is attempted. A b func-
tion with no label is taken to be a branch to the end of the
list of editing commands; whatever should be done with the
current input line is done, and another input line is read;
the list of editing commands is restarted from the beginning

2-12 sed

SECTION 4 Support Tools

 on the new line.

(2)tlabel Test substitutions. The t function tests whether any suc-
cessful substitutions have been made on the current input
line; if so, it branches to label; if not, it does nothing. The
flag which indicates that a successful substitution has been
executed is reset by reading a new input line, or executing a
t function.

2.5.11 Miscellaneous Functions
(1)= The = function writes to the standard output the line

number of the line matched by its address.

(1)q The q (quit) function causes the current line to be written
to the output (if it should be), any appended or read text
to be written, and execution to be terminated.

lint 3-1

SECTION 4 Support Tools

Chapter 3: Lint — a C Program Checker

3.1 INTRODUCTION
Lint is a command which examines C source code, detecting a number of
bugs and obscurities. It enforces the type rules of C more strictly than
the C compilers. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines
and/or operating systems. Another option detects certain constructions
which though technically “legal,” are nonetheless wasteful, error-prone,
or otherwise best avoided.

Lint accepts multiple input files and library specifications, and checks
them for consistency.

The separation of function between lint and the C compilers has both
historical and practical rationale. The compilers turn C programs into
executable files rapidly and efficiently. This is possible, in part, because
the compilers do not do sophisticated type checking, especially between
separately-compiled programs. Lint takes a more global, leisurely view
of the program, looking much more carefully at the compatibilities.

This chapter discusses the use of lint, gives an overview of the imple-
mentation, and gives some hints on the writing of machine independent
C code. It is based on a 1978 Bell Labs memorandum by S. C. Johnson.

3.1.1 Usage
Suppose there are two C source files, file1.c and file2.c, which are ordi-
narily compiled and loaded together. Then the command

lint file1.c file2.c
produces messages describing inconsistencies and inefficiencies in the pro-
grams. The command

lint -p file1.c file2.c
will produce, in addition to the above messages, additional messages that
relate to the “portability” (to other operating systems and machines) of
the programs. Replacing the -p by -h will produce messages about con-
structions that, though legal, are examples of poor (in lint’s opinion)
programming style. You may use both flags

lint -hp file1.c file2.c
to get both types of messages.

Many of the facts that lint needs to establish may, in reality, be impossi-
ble to discover. For example, it may not be possible to know whether a

3-2 lint

SECTION 4 Support Tools

given function in a program ever gets called without also knowing the
input data. Deciding whether exit is ever called is equivalent to solving
the famous “halting problem,” known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is
never mentioned, it can never be called. If a function is mentioned, lint
assumes it can be called.

Lint tries to give only relevant information. Messages of the form “xxx
might be a bug” are easy to generate, but are acceptable only in propor-
tion to the fraction of real bugs they uncover. If this fraction of real
bugs is too small, lint loses credibility, and its “error” messages merely
clutter up the output, obscuring other, possibly more important mes-
sages.

3.1.2 Unused Variables and Functions
As sets of programs evolve, previously used variables and arguments to
functions may become unused; it is not uncommon for external variables,
or even entire functions, to become unnecessary, and yet not be removed
from the source. These “errors of commission” rarely cause working pro-
grams to fail, but they are a source of inefficiency, and make programs
harder to understand and change. Moreover, information about such
unused variables and functions can occasionally help you to discover
bugs; if a function does a necessary job and is never called, something is
probably wrong.

Lint complains about variables and functions that are defined but not
otherwise mentioned. An exception is variables that are declared
through explicit extern statements but are never referenced; thus, the
statement

extern float sin();

will evoke no comment if sin is never used. Note that this agrees with
the semantics of the domain C compiler. In some cases, these unused
external declarations might be of some interest; they can be discovered
by adding the -x flag to the lint invocation.

Certain styles of programming require many functions to be written with
similar interfaces; frequently, some of the arguments may be unused in
many of the calls. The -v option is available to suppress the printing of
complaints about unused arguments. When -v is in effect, no messages
are produced about unused arguments except for those arguments which
are unused and also declared as register arguments; this can be con-
sidered an active (and preventable) waste of the register resources of the
machine.

There is one case where information about unused, or undefined, vari-
ables is more distracting than helpful. This is when lint is applied to
some, but not all, files in a collection that is normally loaded together.
In this case, many of the functions and variables defined may not be
used, and, conversely, many functions and variables defined elsewhere

lint 3-3

SECTION 4 Support Tools

may be used. The -u flag may be used to suppress the spurious mes-
sages which might otherwise appear.

3.1.3 Set/Used Information
Lint attempts to detect cases where a variable is used before it is set.
This is not easy to do. Many algorithms take a good deal of time and
space, and still produce “error” messages about perfectly valid programs.
Lint detects local variables (automatic and register storage classes)
whose first use appears physically earlier in the input file than the first
assignment to the variable. It assumes that taking the address of a vari-
able constitutes a “use,” since the actual use may occur at any later
time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes
the algorithm very simple and quick to implement, since the true flow-of-
control need not be discovered. This genre of complaint has its roots in
stylistic, rather than actual, error. Because static and external variables
are	initialized	to	zero,	no	meaningful	information	can	be	discovered	about	
their	uses.		The	algorithm	deals	correctly,	however,	with	initialized	auto-
matic variables, and variables that are used in the expression which first
sets them.

The set/used information also permits recognition of those local variables
which are set and never used; these form a frequent source of
inefficiencies, and may also be symptomatic of bugs.

3.1.4 Flow of Control
Lint attempts to detect unreachable portions of the programs which it
processes. It will complain about unlabeled statements immediately fol-
lowing goto, break, continue, or return statements. It attempts to
detect loops that can never be left at the bottom, detecting the special
cases while(1) and for(;;) as infinite loops. Lint also complains about
loops that cannot be entered at the top. As is often true when lint
makes false accusations, this condition may not be a bug, but it is an
affront to good programming style.

Lint has an important area of blindness in the flow of control algorithm,
it has no way of detecting functions which are called and never return.
Thus, a call to exit may cause unreachable code which lint does not
detect; the most serious effects of this are in the determination of
returned function values (see the next section).

A break statement that cannot be reached causes no message. Pro-
grams generated by yacc, and especially lex, may have literally hundreds
of unreachable break statements. The -O flag in the C compiler will
often eliminate the resulting object code inefficiency. Thus, these
unreached statements are of little importance, there is typically nothing
the user can do about them, and the resulting messages would clutter up
lint’s output. If you want to see these messages, invoke lint with the -b
option.

3-4 lint

SECTION 4 Support Tools

3.1.5 Function Values
Sometimes functions return values that are never used; sometimes pro-
grams incorrectly use function “values” that have never been returned.
Lint addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return;

statements is cause for alarm; lint will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return
is implied by flow of control reaching the end of the function. This can
be seen with a simple example:

f(a) {
 if (a) return (3);
 g();
 }

Notice that, if a tests false, f will call g and then return with no defined
return value; this will trigger a complaint from lint. If g, like exit, never
returns, the message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this
feature; it also accounts for a substantial fraction of the “noise” messages
produced by lint.
On a global scale, lint detects cases where a function returns a value, but
this value is sometimes, or always, unused. When the value is always
unused, it may constitute an inefficiency in the function definition.
When the value is sometimes unused, it may represent bad style (e.g.,
not testing for error conditions).

The dual problem, using a function value when the function does not
return one, is also detected. This is a serious problem. This bug has
actually been observed in “working” programs where, by chance, the
desired function value was computed in the function return register.

3.1.6 Type Checking
Lint enforces the type checking rules of C more strictly than the com-
pilers do. The additional checking goes on in four major areas: across
certain binary operators and implied assignments, at the structure selec-
tion operators, between the definition and uses of functions, and in the
use of enumerations.

There are a number of operators which have an implied balancing
between types of the operands. The assignment, conditional (? :), and

lint 3-5

SECTION 4 Support Tools

relational operators have this property; the argument of a return state-
ment,	and	expressions	used	in	initialization	also	suffer	similar	conver-
sions. In these operations, char, short, int, long, unsigned, float, and
double types may be freely intermixed. The types of pointers must
agree exactly, except that arrays of x’s can, of course, be intermixed with
pointers to x’s.

The type checking rules also require that, in structure references, the left
operand of the —> be a pointer to structure, the left operand of the . be
a structure, and the right operand of these operators be a member of the
structure implied by the left operand. Similar checking is done for refer-
ences to unions.

Strict rules apply to function argument and return value matching. The
types float and double may be freely matched, as may the types char,
short, int, and unsigned. Also, pointers can be matched with the asso-
ciated arrays. Aside from this, all actual arguments must agree in type
with their declared counterparts.

With enumerations, checks are made that enumeration variables or
members are not mixed with other types, or other enumerations, and
that the only operations applied are =,	initialization,	==, !=, and
function arguments and return values.

3.1.7 Type Casts
The type cast feature in C was introduced largely as an aid to producing
more portable programs. Consider the assignment

p = 1;

where p is a character pointer. Lint will have reason to complain. Now,
consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character
pointer. The programmer obviously had a strong motivation for doing
this, and has clearly signaled his intentions. It seems harsh for lint to
continue to complain about this. On the other hand, if this code is to be
truly portable, such constructs should be examined carefully. The -c
flag controls the printing of comments about casts. When -c is in effect,
casts are treated as though they were assignments subject to complaint;
otherwise, all legal casts are passed without comment, no matter how
strange the type mixing seems to be.

3.1.8 Nonportable Character Use
On most C implementations, characters take on only positive values.
Lint will flag certain comparisons and assignments as being illegal or
nonportable. For example, the fragment

3-6 lint

SECTION 4 Support Tools

char c;
 ...
if((c = getchar()) < 0)

works where the version of C allows a character to have a negative value,
but will fail on machines where characters always take on positive values.
The real solution is to declare c an integer, since getchar is actually
returning integer values. In any case, lint will say “nonportable charac-
ter comparison”.

A similar issue arises with bitfields; when assignments of constant values
are made to bitfields, the field may be too small to hold the value. This
is especially true because on some machines bitfields are considered as
signed quantities. While it may seem unintuitive to consider that a two-
bit field declared as type int cannot hold the value 3, the problem disap-
pears if the bitfield is declared to have type unsigned.

3.1.9 Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which loses accu-
racy in some implementations. This may happen in programs which
have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to ints, losing accu-
racy. Since there are a number of legitimate reasons for assigning longs
to ints, the detection of these assignments is enabled by the -a flag.

3.1.10 Unorthodox Constructions
Lint flags several perfectly legal, but somewhat unorthodox, construc-
tions in the hope of promoting better code quality and clearer style, and
even of pointing out bugs. The -h flag enables these checks. For exam-
ple, in the statement

*p++;

the * does nothing; this provokes the message “null effect” from lint. In
the following program fragment,

unsigned x ;
if(x < 0) ...

the test will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if(x != 0)

which may not be the intended action. Lint will accuse you of making a
“degenerate unsigned comparison” in these cases. If the code says

if(1 != 0)

lint will report “constant in conditional context”, since the comparison

lint 3-7

SECTION 4 Support Tools

of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence.
Bugs which arise from misunderstandings about the precedence of opera-
tors can be accentuated by spacing and formatting, making such bugs
extremely hard to find. For example, the statements

if(x&077 == 0) ...

or

x<<2 + 40

probably do not do what was intended. The best solution is to
parenthesize	such	expressions,	and	lint	encourages	this	by	an	appropriate	
message.

Finally, when the -h flag is in force lint complains about variables which
are redeclared in inner blocks in a way that conflicts with their use in
outer blocks. This is legal, but is considered by many (including the
author) to be bad style, usually unnecessary, and frequently a bug.

3.1.11 Antiquated Syntax
There are several forms of older syntax which lint attempts to
discourage. These fall into two classes, assignment operators and initiali-
zation.

The older forms of assignment operators (e.g., =+, =-, . . .) could
cause ambiguous expressions, such as

a =-1 ;

which could be taken as either

a =- 1 ;

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises as
the result of a macro substitution. The newer, and preferred operators
(+=, -=, etc.) have no such ambiguities. To spur the abandonment of
the older forms, lint complains about these old fashioned operators.

A	similar	issue	arises	with	initialization.		Older	versions	of	C	allowed

int x 1 ;

to	initialize	x to 1. This also caused syntactic difficulties: for example,

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int x (y) { . . .

and the compiler must read some distance past x in order to be sure

3-8 lint

SECTION 4 Support Tools

what the declaration really is. Again, the problem is even more perplex-
ing	when	the	initializer	involves	a	macro.		The	current	syntax	places	an	
equals	sign	between	the	variable	and	the	initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

3.1.12 Pointer Alignment
Certain pointer assignments may be reasonable on some machines, and
illegal on others, due entirely to alignment restrictions. On machines
where double precision values may begin on any integer boundary, it is
reasonable to assign integer pointers to double pointers. On other
machines, double precision values must begin on even word boundaries;
thus, not all such assignments make sense. Lint tries to detect cases
where pointers are assigned to other pointers, and such alignment prob-
lems might arise. The message “possible pointer alignment problem”
results from this situation whenever either the -p or -h flags are in
effect.

3.1.13 Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subex-
pressions may be highly machine dependent. For example, on machines
in which the stack runs backwards, function arguments will probably be
best evaluated from right-to-left; on machines with a stack running for-
ward, left-to-right seems most attractive. Function calls embedded as
arguments of other functions may or may not be treated similarly to
ordinary arguments. Similar issues arise with other operators which have
side effects, such as the assignment operators and the increment and
decrement operators.

In order that the efficiency of C on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of compli-
cated expressions up to the local compiler, and, in fact, the various C
compilers have considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any variable is
changed by a side effect, and also used elsewhere in the same expression,
the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable
is affected. For example, the statement

a[i] = b[i++] ;

will draw the complaint:

warning: i evaluation order undefined

3.2 IMPLEMENTATION DETAILS
Lint consists of two programs and a driver. The first program is a ver-
sion of the Portable C Compiler. This compiler does lexical and syntax

lint 3-9

SECTION 4 Support Tools

analysis on the input text, constructs and maintains symbol tables, and
builds trees for expressions. Instead of writing an intermediate file which
is passed to a code generator, as the other compilers do, lint produces an
intermediate file which consists of lines of ascii text. Each line contains
an external variable name, an encoding of the context in which it was
seen (use, definition, declaration, etc.), a type specifier, and a source file
name and line number. The information about variables local to a func-
tion or file is collected by accessing the symbol table, and examining the
expression trees.

Comments about local problems are produced as detected. The informa-
tion about external names is collected onto an intermediate file. After all
the source files and library descriptions have been collected, the inter-
mediate file is sorted to bring together all information collected about a
given external name. The second, rather small, program then reads the
lines from the intermediate file and compares all of the definitions,
declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the
options available to both passes of lint.
3.2.1 Portability
This section describes some of the differences between C implementa-
tions, and discusses the lint features which encourage portability.

Uninitialized	external	variables	are	treated	differently	in	different	imple-
mentations of C. Suppose two files contain a declaration without initiali-
zation,	such	as

int a ;

outside of any function. The loader will resolve these declarations and
cause only a single word of storage to be set aside for a. Under some
implementations, this is not feasible, so each such declaration causes a
word of storage to be set aside and called a. When loading or library
editing takes place, this causes fatal conflicts which prevent the proper
operation of the program. If lint is invoked with the -p flag, it will
detect such multiple definitions.

A related difficulty comes from the amount of information retained about
external names during the loading process. Names known externally to
unix software have seven significant characters, with the
upper/lowercase distinction preserved. On other systems, the number of
characters used and the preservation of case distinction may not be han-
dled the same way. This leads to situations where programs that run
fine under unix encounter loader problems on other systems. Lint -p
causes all external symbols to be mapped to one case and truncated to
six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling. unix

3-10 lint

SECTION 4 Support Tools

uses eight-bit ascii. Other systems may use other character lengths or
even other encoding schemes (e.g., ebcdic). Moreover, character strings
go from high to low bit positions (“left to right”) on some systems, and
low to high (“right to left”) on the others. This means that code
attempting to construct strings out of character constants, or attempting
to use characters as indices into arrays, must be looked at with great
suspicion. Lint is of little help here, except to flag multi-character char-
acter constants.

Other problems are likely to arise in shifting or masking words. C now
supports a bit-field facility, which can be used to write much of this code
in a reasonably portable way. Frequently, portability of such code can
be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing

x &= 0177700 ;

to clear the low order six bits of x. If the bit field feature cannot be
used, the same effect can be obtained by writing

x &= ~ 077 ;

which will work on many machines.

The right shift operator is arithmetic shift on the PDP-11, and logical
shift on most other machines. To obtain a logical shift on all machines,
the left operand can be typed unsigned. Characters are considered
signed integers on the PDP-11, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in
the PDP-11 hardware which has infiltrated itself into the C language. If
there were a good way to discover the programs which would be affected,
C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem
bigger than it in fact is. The issues involved here are rarely subtle or
mysterious, at least to the implementor of the program, although they
can involve some work to straighten out. The most serious bar to the
portability of unix system utilities has been the inability to mimic essen-
tial unix system functions on the other systems. The inability to seek to
a random character position in a text file, or to establish a pipe between
processes, has involved far more rewriting and debugging than any of the
differences in C compilers. On the other hand, lint has been very helpful
in moving the unix operating system and associated utility programs to
other machines.

lint 3-11

SECTION 4 Support Tools

3.2.2 Suppressing Unwanted Output
There are occasions when you want lint to refrain from citing various
constructs that, while technically “wrong,” are, in fact, there for a good
reason. There may be valid reasons for “illegal” type casts, functions
with a variable number of arguments, etc. Moreover, as specified above,
the flow of control information produced by lint often has blind spots,
causing occasional spurious messages about perfectly reasonable pro-
grams. Thus, some way of throttling lint’s output is often desirable.

The form which this mechanism should take is not at all clear. New key-
words	would	require	current	and	old	compilers	to	recognize	these	key-
words, if only to ignore them. This has both philosophical and practical
problems. New preprocessor syntax suffers from similar problems.

What	was	finally	done	was	to	cause	a	number	of	words	to	be	recognized	
by lint when they were embedded in comments. This required minimal
preprocessor changes; the preprocessor just had to agree to pass com-
ments through to its output, instead of deleting them as had been previ-
ously done. Thus, lint directives are invisible to the compilers, and the
effect on systems with the older preprocessors is merely that the lint
directives don’t work.

The first directive is concerned with flow of control information; if a par-
ticular place in the program cannot be reached, but this is not apparent
to lint, this can be asserted by the directive

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to turn
off strict type checking for the next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next
expression. The -v flag can be turned on for one function by the directive

/* ARGSUSED */

Complaints about variable number of arguments in calls to a function
can be turned off by the directive

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check
the first several arguments, and leave the later arguments unchecked.
This can be done by following the VARARGS keyword immediately with
a digit giving the number of arguments which should be checked; thus,

/* VARARGS2 */

will cause the first two arguments to be checked, the others unchecked.
Finally, the directive

3-12 lint

SECTION 4 Support Tools

/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file. We
cover this topic in detail in the next section.

3.2.3 Library Declaration Files
Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This is
done by accessing library description files whose names are constructed
from the library directives. These files all begin with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical
parts of these definitions are the declaration of the function return type,
whether the dummy function returns a value, and the number and types
of arguments to the function. The VARARGS and ARGSUSED direc-
tives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files.
The only difference is that functions which are defined on a library file,
but are not used on a source file, draw no complaints. Lint does not
simulate a full library search algorithm, and complains if the source files
contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard
library file, which contains descriptions of the programs which are nor-
mally loaded when a C program is run. When the -p flag is in effect,
another file is checked containing descriptions of the standard I/O library
routines which are expected to be portable across various machines. The
-n flag can be used to suppress all library checking.

3.3 SUMMARY OF LINT OPTIONS
The command currently has the form

lint [-options] files... library-descriptors...

The following options are available.

h Perform heuristic checks

p Perform portability checks

v Don’t report unused arguments

u Don’t report unused or undefined externals

b Report unreachable break statements

lint 3-13

SECTION 4 Support Tools

x Report unused external declarations

a Report assignments of long to int or shorter

c Complain about questionable casts

n No library checking is done

s Same as h

make 4-1

SECTION 4 Support Tools

Chapter 4: Make—A Program for Maintaining Programs

4.1 INTRODUCTION
It is common practice to divide large programs into smaller, more
manageable pieces. The pieces may require quite different treatments:
some may need to be run through a macro processor, some may need to
be processed by a sophisticated program generator (e.g.,Yacc[1] or
Lex[2]). The outputs of these generators may then have to be compiled
with special options and with certain definitions and declarations. The
code resulting from these transformations may then need to be loaded
together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts
and installing validated modules. Unfortunately, it is very easy for a
programmer to forget which files depend on which others, which files
have been modified recently, and the exact sequence of operations needed
to make or exercise a new version of the program. After a long editing
session, one may easily lose track of which files have been changed and
which object modules are still valid, since a change to a declaration can
render	obsolete	a	dozen	other	files.		Forgetting	to	compile	a	routine	that	
has been changed or that uses changed declarations will result in a pro-
gram that will not work, and a bug that can be very hard to track down.
On the other hand, recompiling everything in sight just to be safe is very
wasteful.

Make	is	a	program	that	mechanizes	many	of	the	activities	of	program	
development and maintenance. If the information on inter-file dependen-
cies and command sequences is stored in a file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the
number that have been edited since the last “make”. In most cases, the
description file is easy to write and changes infrequently. It is usually
easier to type the make command than to issue even one of the needed
operations, so the typical cycle of program development operations
becomes

think	—	edit	—	make	—	test	.	.	.

Make	is	most	useful	for	medium-sized	programming	projects;	it	does	not	
solve the problems of maintaining multiple source versions or of describ-
ing huge programs. This chapter is a guide for users of make. It is
based on the original Technical Report on make by S. I. Feldman of Bell
Labs,

4-2 make

SECTION 4 Support Tools

4.2 BASIC FEATURES
The basic operation of make is to update a target file by ensuring that
all of the files on which it depends exist and are up to date, then creating
the target if it has not been modified since its dependents were. Make
does a depth-first search of the graph of dependences. The operation of
the command depends on the ability to find the date and time that a file
was last modified.

To illustrate, let us consider a simple example: A program named prog
is made by compiling and loading three C language files x.c, y.c, and z.c
with the lS library. By convention, the output of the C compilations will
be found in files named x.o, y.o, and z.o. Assume that the files x.c and
y.c share some declarations in a file named defs, but that z.c does not.
That is, x.c and y.c have the line

#include ”defs”

The following text describes the relationships and operations:

prog	:	x.o	y.o	z.o
	 cc	x.o	y.o	z.o	-lS	-o	prog

x.o y.o : defs

If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes
had been made to any of the four source files x.c, y.c, z.c, or defs.

Make operates using three sources of information: a user-supplied
description file (as above), file names and “last-modified” times from the
file system, and built-in rules to bridge some of the gaps. In our exam-
ple, the first line says that prog depends on three “.o” files. Once these
object files are current, the second line describes how to load them to
create prog. The third line says that x.o and y.o depend on the file defs.
From the file system, make discovers that there are three “.c” files
corresponding to the needed “.o” files, and uses built-in information on
how to generate an object from a source file (i.e., issue a “cc -c” com-
mand).

The following (somewhat lengthy) description file is equivalent to the one
above, but takes no advantage of make’s innate knowledge:

make 4-3

SECTION 4 Support Tools

prog	:	x.o	y.o	z.o
	 cc	x.o	y.o	z.o	-lS	-o	prog
x.o : x.c defs
 cc -c x.c
y.o : y.c defs
 cc -c y.c
z.o	:	z.c
	 cc	-c	z.c

If none of the source or object files had changed since the last time prog
was made, all of the files would be current, and the command

make

would simply announce this fact and stop. If, however, the defs file had
been edited, x.c and y.c (but not z.c) would be recompiled, and then prog
would be created from the new “.o” files. If only the file y.c had
changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target
mentioned in the description is created; otherwise, the specified targets
are made. The command

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, its time of last
modification is used in further decisions; otherwise, the current time is
used. It is often quite useful to include rules with mnemonic names and
commands that do not actually produce a file with that name. These
entries can take advantage of make’s ability to generate files and substi-
tute macros. Thus, an entry “save” might be included to copy a certain
set of files, or an entry “cleanup” might be used to throw away unneeded
intermediate	files.		In	other	cases,	one	may	maintain	a	zero-length	file	
purely to keep track of the time at which certain actions were performed.
This technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency
lines and command strings. Macros are defined by command arguments
or description file lines with embedded equal signs. A macro is invoked
by preceding the macro name with a dollar sign; macro names longer
than	one	character	must	be	parenthesized.		The	name	of	the	macro	is	
either the single character after the dollar sign or a name inside
parentheses. The following are valid macro invocations:

4-4 make

SECTION 4 Support Tools

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical.

Note: To get a dollar sign, escape it with another dollar sign. The
sequence $$ is escaped to $.

All of these macros are assigned values during input, as shown below.
Four special macros change values during the execution of the command:

•	$*

•	$@

•	$?

•	$<

They will be discussed later. The following fragment shows the use:

OBJECTS	=	x.o	y.o	z.o	
LIBES = -lS
prog: $(OBJECTS)
 cc $(OBJECTS) $(LIBES) -o prog

The command

make

loads the three object files with the lS library. The command

make ”LIBES= -ll -lS”

loads them with both the Lex (“-ll”) and the Standard (“-lS”) libraries,
since macro definitions on the command line override definitions in the
description. (The shell requires that you quote arguments that include
embedded blanks.)

The following sections detail the form of description files and the com-
mand line, and discuss options and built-in rules in more detail.

4.3 DESCRIPTION FILES AND SUBSTITUTIONS
A description file contains three types of information:

•	macro	definitions

•	dependency	information

•	executable	commands

There is also a comment convention: all characters after a sharp (#) are
ignored, as is the sharp itself. Blank lines and lines beginning with a

make 4-5

SECTION 4 Support Tools

sharp are totally ignored. If a non-comment line is too long, it can be
continued using a backslash. If the last character of a line is a backslash,
the backslash, newline, and following blanks and tabs are replaced by a
single blank.

A macro definition is a line containing an equal sign not preceded by a
colon or a tab. The name (string of letters and digits) to the left of the
equal sign (trailing blanks and tabs are stripped) is assigned the string of
characters following the equal sign (leading blanks and tabs are stripped.)
The following are valid macro definitions:

2	=	xyz
abc = -ll -ly -lS
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as value. Macro definitions may also
appear on the make command line (see below).

Other lines give information about target files. The general form of an
entry is:

target1 [target2...] :[:] [dependent1...] [; commands] [#...]
[(tab) commands] [#...]

Items inside brackets may be omitted. Targets and dependents are
strings of letters, digits, periods, and slashes. (Shell metacharacters “*”
and “?” are expanded.) A command is any string of characters not
including a sharp (except in quotes) or newline. Commands may appear
either

•	after	a	semicolon	on	a	dependency	line	or

•	on	lines	beginning	with	a	tab	immediately	following	a	dependency	
line.

A dependency line may have either a single or a double colon. A target
name may appear on more than one dependency line, but all of those
lines must be of the same (single or double colon) type.

For the usual single-colon case, at most one of these dependency lines
may have a command sequence associated with it. If the target is out of
date with any of the dependents on any of the lines, and a command
sequence is specified (even a null one following a semicolon or tab), it is
executed; otherwise, a default creation rule may be invoked.

In the double-colon case, a command sequence may be associated with
each dependency line; if the target is out of date with any of the files on
a particular line, the associated commands are executed. A built-in rule
may also be executed. This detailed form is of particular value in updat-
ing archive-type files.

if a target must be created, the sequence of commands is executed. Nor-
mally, each command line is printed and then passed to a separate

4-6 make

SECTION 4 Support Tools

invocation of the shell after substituting for macros. (The printing is
suppressed in silent mode or if the command line begins with an @ sign).
Make normally stops if any command signals an error by returning a
non-zero	error	code.		(Errors	are	ignored	if	the	“-i”	flag	has	been	
specified on the make command line, if the fake target name
“.IGNORE” appears in the description file, or if the command string in
the description file begins with a hyphen. Some unix commands return
meaningless status). Because each command line is passed to a separate
invocation of the shell, care must be taken with certain commands (e.g.,
cd and shell control commands) that have meaning only within a single
shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set.

•	$@	is	set	to	the	name	of	the	file	to	be	“made”

•	$?	is	set	to	the	string	of	names	that	were	found	to	be	younger	than	
the target.

If the command was generated by an implicit rule (see below), $< is the
name of the related file that caused the action, and $* is the prefix
shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name “.DEFAULT” are
used. If there is no such name, make prints a message and stops.

4.4 USAGE
The make command takes four kinds of arguments: macro definitions,
flags, description file names, and target file names. The prototypical
make command line is:

make [flags] [macro definitions] [targets]

The following summary of the operation of the command explains how
these arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal
signs)	are	analyzed	and	the	assignments	are	made.		Command-line	mac-
ros override corresponding definitions found in the description files.

Next, the flag arguments are examined. The permissible flags are

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name “.IGNORE” appears in the
description file.

-s Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name “.SILENT” appears
in the description file.

-r Do not use the built-in rules.

make 4-7

SECTION 4 Support Tools

-n No execute mode. Print commands, but do not execute them.
Even lines beginning with an “@” sign are printed.

-t Touch the target files (causing them to be up-to-date) rather than
issue the usual commands.

-q	 Question.		The	make	command	returns	a	zero	or	non-zero	status	
code depending on whether the target file is or is not up-to-date.

-p Print out the complete set of macro definitions and target descrip-
tions.

-d Debug mode. Print out detailed information on files and times
examined.

-f Description file name. The next argument is assumed to be the
name of a description file. A file name of “-” denotes the stan-
dard input. If there are no “-f ” arguments, the file named
makefile or Makefile in the current directory is read.

Note: The contents of the description files override the built-in rules
if they are present.

Finally, the remaining arguments are assumed to be the names of targets
to be made; they are done in left to right order. If there are no such
arguments, the first name in the description files that does not begin with
a period is “made”.

4.4.1 Implicit Rules
Make uses a table of suffixes and a set of transformation rules to supply
default dependency information and implied commands. The default
suffix list is:

.o Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source grammar

.l Lex source grammar

The	following	diagram	summarizes	the	default	transformation	paths.		If	
there are two paths connecting a pair of suffixes, the longer one is used
only if the intermediate file exists or is named in the description.

4-8 make

SECTION 4 Support Tools

If the file x.o were needed and there were an x.c in the description or
directory, it would be compiled. If there were also an x.l, that grammar
would be run through Lex before compiling the result. However, if there
were no x.c but there were an x.l, then make would discard the inter-
mediate C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the
default, or the flag arguments with which they are invoked by knowing
the macro names used. The compiler names are the macros AS, CC, RC,
EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the “newcc” command to be used instead of the usual C com-
piler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and
LFLAGS may be set to cause these commands to be issued with optional
flags. Thus,

make ”CFLAGS=-O”

causes	the	optimizing	C	compiler	to	be	used.

4.4.2 An Example
As an example of the use of make, we present the description file used
to maintain the make command itself. The code for make is spread
over a number of C source files and a Yacc grammar. The description
file contains:

make 4-9

SECTION 4 Support Tools

Description file for the Make command

P = und -3 | opr -r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -lS
LINT = lint -p
CFLAGS = -O

make: $(OBJECTS)
 cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
	 size	make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
 -rm *.o gram.c
 -du

install:
	 @size	make	/usr/bin/make
 cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
 pr $? | $P
 touch print

test:
	 make	-dp	|	grep	-v	TIME	>1zap	
	 /usr/bin/make	-dp	|	grep	-v	TIME	>2zap	
	 diff	1zap	2zap	
	 rm	1zap	2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
 $(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
 ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following
output results from typing the simple command

make
in a directory containing only the source and description file:

4-10 make

SECTION 4 Support Tools

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -lS -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name
in the description file, make found them using its suffix rules and issued
the	needed	commands.		The	string	of	digits	results	from	the	“size	make”	
command; the printing of the command line itself was suppressed by an
@ sign. The @ sign on the size command in the description file
suppressed	the	printing	of	the	command,	so	only	the	sizes	are	written.

The last few entries in the description file are useful maintenance
sequences. The “print” entry prints only the files that have been
changed	since	the	last	“make	print”	command.		A	zero-length	file	print is
maintained to keep track of the time of the printing; the $? macro in the
command line then picks up only the names of the files changed since
print was touched. The printed output can be sent to a different printer
or to a file by changing the definition of the P macro:

make print ”P = opr -sp”
 or
make	print	”P=	cat	>zap”

4.5 SUGGESTIONS AND WARNINGS
The most common difficulties arise from make’s specific understanding
of what constitutes a dependency. If file x.c has a “#include ”defs””
line, then the object file x.o depends on defs; the source file x.c does not.
(If defs is changed, it is not necessary to do anything to the file x.c, while
it is necessary to recreate x.o.)

To discover what make would do, the “-n” option is very useful. The
command

make -n

orders make to print out the commands it would issue without actually
taking the time to execute them. If a change to a file is absolutely cer-
tain to be benign (e.g., adding a new definition to an include file), the -t
(touch) option can save a lot of time, instead of issuing a large number of
superfluous recompilations, make updates the modification times on the
affected file. Thus, the command

make 4-11

SECTION 4 Support Tools

make -ts

(“touch silently”) causes the relevant files to appear up-to-date. Care is
necessary, since this mode of operation subverts the intention of make
and destroys all memory of the previous relationships.

The debugging flag -d causes make to print out a very detailed descrip-
tion of what it is doing, including the file times. The output is verbose,
and recommended only as a last resort.

4.6 SUMMARY OF SUFFIXES AND RULES
The make program itself does not know what file name suffixes are
interesting or how to transform a file with one suffix into a file with
another suffix. This information is stored in an internal table that has
the form of a description file. If the -r flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name “.SUF-
FIXES”; make looks for a file with any of the suffixes on the list. If
such a file exists, and if there is a transformation rule for that combina-
tion, make acts as described earlier. The transformation rule names are
the concatenation of the two suffixes. The name of the rule to transform
a “.r” file to a “.o” file is thus “.r.o”. If the rule is present and no expli-
cit command sequence has been given in the user’s description files, the
command sequence for the rule “.r.o” is used. If a command is generated
by using one of these suffixing rules, the macro $* is given the value of
the stem (everything but the suffix) of the name of the file to be made,
and the macro $ < is the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to
right, and the first name that is formed that has both a file and a rule
associated with it is used. If new names are to be appended, the user can
just add an entry for “.SUFFIXES” in his own description file; the
dependents will be added to the usual list. A “.SUFFIXES” line without
any dependents deletes the current list. (It is necessary to clear the
current list if the order of names is to be changed.)

The following is an excerpt from the default rules file:

4-12 make

SECTION 4 Support Tools

YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
 $(CC) $(CFLAGS) -c $<
 $(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<
 $(AS) -o $@ $<
 $(YACC) $(YFLAGS) $<
 $(CC) $(CFLAGS) -c y.tab.c
 rm y.tab.c
 mv y.tab.o $@
 $(YACC) $(YFLAGS) $<
 mv y.tab.c $@

lex 5-1

SECTION 4 Support Tools

Chapter 5: Lex — A Lexical Analyzer Generator

5.1 INTRODUCTION
Lex is a program generator designed for lexical processing of character
input streams. It accepts a high-level, problem-oriented specification for
character string matching, and produces a program in a general purpose
language	which	recognizes	regular	expressions.		The	regular	expressions	
are specified by the programmer in the source specifications given to lex.
The code written by lex	recognizes	these	expressions	in	an	input	stream	
and partitions the input stream into strings matching the expressions.
At the boundaries between strings, program sections provided by the user
are executed. The lex source file associates the regular expressions and
the program fragments. As each expression appears in the input to the
program written by lex, the corresponding fragment is executed.

The user supplies the additional code beyond expression matching needed
to complete the tasks, possibly including code written by other genera-
tors.		The	program	that	recognizes	the	expressions	is	generated	in	the	
general purpose programming language employed for the user’s program
fragments. Thus, a high-level expression language is provided to write
the string expressions to be matched while the user’s freedom to write
actions is unimpaired. This avoids forcing the user who wishes to use a
string manipulation language for input analysis to write processing pro-
grams in the same and often inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a
new language feature which can be added to different programming
languages, called “host languages.” Just as general purpose languages can
produce code to run on different computer hardware, lex can write code
in different host languages. The host language is used for the output
code generated by lex and also for the program fragments added by the
user. Compatible run-time libraries for the different host languages are
also provided. This makes lex adaptable to different environments and
different users. Each application may be directed to the combination of
hardware and host language appropriate to the task, the user’s back-
ground, and the properties of local implementations. At present, the
only supported host language is C. Although lex is a unix program,
code generated by lex may be taken anywhere the appropriate compilers
exist.

Lex turns input expressions and actions (known collectively as source),
into the host general-purpose language; the generated program is named
yylex. The yylex	program	recognizes	expressions	in	a	stream	(input) and
performs the specified actions for each expression as it is detected. The
diagram	below	summarizes	these	features.

5-2 lex

SECTION 4 Support Tools

Source → lex → yylex

Input → yylex → Output

As an admittedly trivial example, consider the following program to
delete from the input all blanks or tabs at the ends of lines.

[\t]+$xtx;

is all that is required. The program contains a %% delimiter to mark
the beginning of the rules, and one rule. This rule contains a regular
expression which matches one or more instances of the characters blank
or tab (written \t for visibility, in accordance with the C language con-
vention) just prior to the end of a line. The brackets indicate the char-
acter class made of blank and tab; the + indicates “one or more ...”; and
the $ indicates “end of line,” as in QED. No action is specified, so the
program generated by lex (yylex) will ignore these characters. Every-
thing else will be copied. To change any remaining string of blanks or
tabs to a single blank, add another rule:

%%
[\t]+$xtx;
[\t]+xtxprintf(” ”);

The finite automaton generated for this source will scan for both rules at
once, observing at the termination of the string of blanks or tabs whether
or not there is a newline character, and executing the desired rule action.
The first rule matches all strings of blanks or tabs at the end of lines,
and the second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and
statistics gathering on a lexical level. Lex can also be used with a parser
generator to perform the lexical analysis phase; it is particularly easy to
interface lex and yacc[3]. Lex	programs	recognize	only	regular	expres-
sions; yacc writes parsers that accept a large class of context-free gram-
mars,	but	require	a	lower	level	analyzer	to	recognize	input	tokens.		Thus,	
a combination of lex and yacc is often appropriate. (See Chapter 6 for
more on yacc.) When used as a preprocessor for a later parser generator,
lex is used to partition the input stream, and the parser generator
assigns structure to the resulting pieces. The flow of control in such a
case (which might be the first half of a compiler, for example) is shown
below. Additional programs, written by other generators or by hand, can
be added easily to programs written by lex.

lex 5-3

SECTION 4 Support Tools

lexical
rules

↓

grammar
rules

↓
lex yacc

↓ ↓

Input → yylex → yyparse → Parsed input

lex with yacc

Yacc	users	will	realize	that	the	name	yylex is what yacc expects its lexi-
cal	analyzer	to	be	named,	so	that	the	use	of	this	name	by	lex simplifies
interfacing.

Lex generates a deterministic finite automaton from the regular expres-
sions in the source [4], The automaton is interpreted, rather than com-
piled,	in	order	to	save	space.		The	result	is	still	a	fast	analyzer.		In	par-
ticular, the time taken by a lex	program	to	recognize	and	partition	an	
input stream is proportional to the length of the input. The number of
lex rules or the complexity of the rules is not important in determining
speed, unless rules which include forward context require a significant
amount of rescanning. What does increase with the number and com-
plexity	of	rules	is	the	size	of	the	finite	automaton,	and	therefore	the	size	
of the program generated by lex.

In the program written by lex, the user’s fragments (representing the
actions to be performed as each regular expression is found) are gathered
as cases of a switch. The automaton interpreter directs the control flow.
Opportunity is provided for the user to insert either declarations or addi-
tional statements in the routine containing the actions, or to add subrou-
tines outside this action routine.

Lex is not limited to source which can be interpreted on the basis of
one-character lookahead. For example, if there are two rules, one looking
for ab and another for abcdefg, and the input stream is abcdefh, Lex will
recognize	ab and leave the input pointer just before cd. This type of
backing up is more costly than the processing of simpler languages.

5.2 LEX SOURCE
The general format of lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often omitted. The
second %% is optional, but the first is required to mark the beginning of
the rules. The absolute minimum lex program is thus,

5-4 lex

SECTION 4 Support Tools

%%

(no definitions, no rules) which translates into a program which copies the
input to the output unchanged.

In the outline of lex programs shown above, the rules represent the user’s
control decisions; they are a table, in which the left column contains reg-
ular expressions and the right column contains actions	—	program	frag-
ments	to	be	executed	when	the	expressions	are	recognized.		Thus,	an	
individual rule might appear

integer printf(”found keyword INT”);

to look for the string integer in the input stream and print the message
“found keyword INT” whenever it appears. In this example, the host
procedural language is C and the C library function printf is used to
print the string. The end of the expression is indicated by the first blank
or tab character. If the action is merely a single C expression, it can just
be given on the right side of the line; if it is compound, or takes more
than a line, it should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words from British
to American spelling. Lex rules such as

colour printf(”color”);
mechanise		 	 	 printf(”mechanize”);
petrol printf(”gas”);

would be a start. These rules are not quite enough, since the word petro-
leum would become gaseum; a way of dealing with this will be described
later.

5.3 LEX REGULAR EXPRESSIONS
The definitions of regular expressions are very similar to those in QED
[5]. A regular expression specifies a set of strings to be matched. It con-
tains text characters (which match the corresponding characters in the
strings being compared) and operator characters (which specify repeti-
tions, choices, and other features). The letters of the alphabet and the
digits are always text characters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a57D.

5.3.1 Operators
The operator characters are listed below.

•	”

•	\

lex 5-5

SECTION 4 Support Tools

•	[

•]

•	̂

•	-

•	?

•	.

•	*

•	+	

•	|	

•	(

•)

•	$

•	/	

•	{	

•	}

•	%

•	<

•	>
If any operator is to be used as a text character, you must escape it with
quotes. The quotation mark operator (”) indicates that whatever is con-
tained between a pair of quotes is to be taken as text characters. Thus,

xyz”++”

matches the string xyz++ when it appears. Note that a part of a string
may be quoted. It is harmless but unnecessary to quote an ordinary text
character; the expression

”xyz++”

is the same as the one above. If you quote every non-alphanumeric char-
acter being used as a text character, you can avoid having to remember
the list of current operator characters, or having to worry that further
extensions to lex might lengthen the list.

An operator character may also be turned into a text character by preced-
ing it with \ as in

xyz\+\+

which is another, less readable, equivalent of the above expressions.
Another use of the quoting mechanism is to get a blank into an

5-6 lex

SECTION 4 Support Tools

expression; normally, as explained above, blanks or tabs end a rule. Any
blank character not contained within [] (see below) must be quoted.
Several	normal	C	escapes	with	\	are	recognized:	\n	is	newline,	\t	is	tab,	
and \b is backspace. To enter \ itself, use \\. Since newline is illegal in
an expression, \n must be used; it is not required to escape tab and back-
space. Every character but blank, tab, newline and the list above is
always a text character.

5.3.2 Character Classes
Classes of characters can be specified using the operator pair []. The
construction [abc] matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ignored. Only three
characters are special, these are \ - and ^. The - character indicates
ranges. For example,

[a-z0-9<>_]

indicates the character class containing all the lower case letters, the
digits, the angle brackets, and underline. Ranges may be given in either
order. Using - between any pair of characters which are not both upper
case letters, both lower case letters, or both digits is implementation
dependent	and	will	get	a	warning	message,	(e.g.,	[0-z]	in	ascii is
many more characters than it is in ebcdic.) If you need to include
the character - in a character class, it should be first or last; thus,

[-+0-9]

matches all the digits and the two signs.

In character classes, the ^ operator must appear as the first character
after the left bracket; it indicates that the resulting string is to be com-
plemented with respect to the computer character set. Thus,

[^abc]

matches all characters except a, b, or c, including all special or control
characters, and

[^a-zA-Z]

matches any character that is not a letter. The \ character provides the
usual escapes within character class brackets.

5.3.3 Arbitrary Character Match
To match almost any character, the operator character “dot”,

.
matches all characters except newline. Escaping into octal is possible
although non-portable.

[\40-\176]

matches all printable characters in the ascii character set, from octal 40
(blank) to octal 176 (tilde).

lex 5-7

SECTION 4 Support Tools

5.3.4 Optional Expressions
The question mark operator (?) indicates an optional element of an
expression. Thus,

ab?c

matches either ac or abc.

5.3.5 Repeated Expressions
Repetitions of classes are indicated by the operators * and +.

a*

is any number of consecutive a	characters,	including	zero;	while

a+

matches one or more instances of a. For example,

[a-z]+	

is all strings of lower case letters. And

[A-Za-z][A-Za-z0-9]*

indicates all alphanumeric strings with a leading alphabetic character.
This	is	a	typical	expression	for	recognizing	identifiers	in	computer	
languages.

5.3.6 Alternation and Grouping
The operator | indicates alternation:

(ab|cd)

matches either ab or cd. Note that we use parentheses for grouping,
although they are not necessary on the outside level;

ab|cd

would have sufficed. Parentheses can be used for more complex expres-
sions:

(ab|cd+)?(ef)*

matches such strings as abefef, efefef, cdef, or cddd; but not abc, abed,
or abedef.

5.3.7 Context Sensitivity
Lex	recognizes	a	small	amount	of	surrounding	context.		The	two	simplest	
operators for this are ^ and $. If the first character of an expression is ^,
the expression will only be matched at the beginning of a line (after a
newline character, or at the beginning of the input stream). This can
never conflict with the other meaning of ^, complementation of character
classes, since that only applies within the [] operators. If the very last
character is $, the expression will only be matched at the end of a line
(when immediately followed by newline). The latter operator is a special

5-8 lex

SECTION 4 Support Tools

case of the / operator character, which indicates trailing context. The
expression

ab/cd

matches the string ab, but only if followed by cd. Thus,

ab$

is the same as

ab/\n

Left context is handled in lex by start conditions, which are explained
later. If a rule is only to be executed when the lex automaton inter-
preter is in start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered “being at
the beginning of a line” to be start condition ONE, then the ^ operator
would be equivalent to

<ONE>

5.3.8 Repetitions and Definitions
The brace operators {} specify either repetitions (if they enclose numbers)
or definition expansion (if they enclose a name). For example,

{digit}

looks for a predefined string named digit and inserts it at that point in
the expression. The definitions are given in the first part of the lex
input, before the rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of a.

Finally, an initial % is special, being the separator for lex source seg-
ments.

5.4 LEX ACTIONS
When an expression written as above is matched, lex executes the
corresponding action. This section describes some features of lex which
aid in writing actions.

Note: There	is	a	default	action	—	copy	the	input	to	the	output	—
that is performed on all strings not otherwise matched.

The lex user who wishes to absorb the entire input without producing
any output must provide rules to match everything. This is the normal
situation when lex is being used with yacc. If you assume that an
action is something lex does instead of the default action (copying the

lex 5-9

SECTION 4 Support Tools

input to the output), it follows that a rule which merely copies can be
safely omitted. As a corollary to this, a character combination which is
omitted from the rules and which appears as input is likely to be printed
on the output, thus calling attention to the gap in the rules.

A simple “solution” is to ignore the input. Specifying a C null statement
(;), as an action causes this result. A frequent rule is

[\t\n] ;

which causes the three spacing characters (blank, tab, and newline) to be
ignored.

Another easy way to avoid writing actions is to use the action character
|, which indicates that the action for this rule is the action for the next
rule. The previous example could also have been written

” ” |
”\t” |
”\n” ;

with the same result, although in different style. The quotes around \n
and \t are not required.

In more complex actions, the user will often want to know the actual text
that matched some expression like [a-z]+. Lex leaves this text in an
external character array named yytext. Thus, to print the name found, a
rule like

[a-z]+	 printf(”%s”,	yytext);

will print the string in yytext. The C function printf accepts a format
argument and data to be printed; in this case, the format is “print
string” (% indicating data conversion, and s indicating string type), and
the data are the characters in yytext. So this just places the matched
string on the output. This action is so common that it may be written
as ECHO:

[a-z]+	 ECHO;

is the same as the above. Since the default action is just to print the
characters found, why give a rule, like this one, which merely speci-
fies the default action? Such rules are often required to avoid matching
some other rule which is not desired. For example, if there is a rule that
matches read it will normally match the instances of read contained in
bread or readjust; to avoid this, a rule of the form [a-z]+ is needed. This is
explained further below.

It is sometimes more convenient to know the end of what has been
found; hence lex also provides a count yyleng of the number of characters
matched. To count both the number of words and the number of char-
acters in words in the input, you might write

[a-zA-Z]+		 	 	 {words++;	chars	+=	yyleng;}

5-10 lex

SECTION 4 Support Tools

which accumulates in chars the number of characters in the words recog-
nized.		The	last	character	in	the	string	matched	can	be	accessed	by

yytext[yyleng-1]

Occasionally, a lex	action	may	decide	that	a	rule	has	not	recognized	the	
correct span of characters. Two routines are provided to aid with this
situation. First, yymore() can be called to indicate that the next input
expression	recognized	is	to	be	tacked	on	to	the	end	of	this	input.		Nor-
mally, the next input string would overwrite the current entry in yytext.
Second, yylex(n) may be called to indicate that not all the characters
matched by the currently successful expression are wanted right now.
The argument n indicates the number of characters in yytext that are to
be retained. Additional characters that were previously matched are
returned to the input. This provides the same sort of lookahead offered
by the / operator, but in a different form.

5.4.1 An Example
Consider a language that defines a string as a set of characters between
quotation (”) marks. To include a ” in a string, you must escape it with
a preceding \. The regular expression which matches that is somewhat
confusing, so that it might be preferable to write

\”[^”]* {
 if (yytext[yyleng-1] == ´ \\´)
 yymore(); else
 ... normal user processing
}

which will, when faced with a string such as abc\def” first match the
five characters ”abc\; then the call to yymore() will cause the next part
of the string, ”def, to be tacked on the end. Note that the final quote
terminating the string should be picked up in the code labeled “normal
processing”.

The function yyless() might be used to reprocess text in various cir-
cumstances. Consider the C problem of distinguishing the ambiguity of
“=-a”. Suppose it is desired to treat this as “=- a” but print a mes-
sage. A rule might be

=-[a-zA-Z]	 {
 printf(”Operator (=-) ambiguous\n”);
 yyless(yyleng-1);
 ... action for =- ...
}

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as “=-”. Alternatively, it might be
desired to treat this as “= -a”. To do this, just return the minus sign
as well as the letter to the input:

lex 5-11

SECTION 4 Support Tools

=-[a-zA-Z]	 {
 printf(”Operator (=-) ambiguous\n”);
 yyless(yyleng-2);
 ... action for = ...
}

will perform the other interpretation. Note that the expressions for the
two cases might more easily be written

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not
necessary	to	recognize	the	whole	identifier	to	observe	the	ambiguity.		The	
possibility of “=-3”, however, makes

=-/[^\t\n]

an even better rule.

In addition to these routines, lex also permits access to the I/O routines
it uses. They are:

input() returns the next input character

output(c) writes the character c on the output

unput(c) pushes the character c back onto the input stream to be
read later by input().

By default these routines are provided as macro definitions, but you can
override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all
be retained or modified consistently. They may be redefined, to cause
input or output to be transmitted to or from unusual places, including
other programs or internal memory; but the character set used must be
consistent	in	all	routines;	a	value	of	zero	returned	by	input must mean
end of file; and the relationship between unput and input must be
retained or the lex lookahead will not work. Lex does not look ahead at
all if it does not have to, but every rule ending in + * ? or $ or contain-
ing / implies lookahead. Lookahead is also necessary to match an
expression that is a prefix of another expression. See below for a discus-
sion of the character set used by lex.

Note: The standard lex library imposes a 100-character limit on
backup.

Another lex library routine that you may want to redefine is yywrap()
which is called whenever lex reaches an end-of-file. If yywrap returns a
1, lex continues with the normal wrapup on end of input. Sometimes,
however, it is convenient to arrange for more input to arrive from a new

5-12 lex

SECTION 4 Support Tools

source. In this case, provide a yywrap that arranges for new input and
returns 0. This instructs lex to continue processing. The default
yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at
the end of a program. Note that it is not possible to write a normal rule
which	recognizes	end-of-file;	the	only	access	to	this	condition	is	through	
yywrap. In fact, unless a private version of input() is supplied, a file con-
taining nulls cannot be handled, since a value of 0 returned by input is
taken to be end-of-file.

5.5 AMBIGUOUS SOURCE RULES
Lex can handle ambiguous specifications. When more than one expres-
sion can match the current input, lex chooses as follows:

1. The longest match is preferred.

2. Among rules which matched the same number of characters, the rule
given first is preferred.

Assume that the rules

integer keyword action ...;
[a-z]+	 identifier	action	...;

have been given in that order. If the input is integers, it is taken as an
identifier, because [a-z]+ matches 8 characters while integer matches
only 7. If the input is integer, both rules match 7 characters, and the
keyword rule is selected because it was given first. Anything shorter
(e.g., int) will not match the expression integer and so the identifier
interpretation is used.

The principle of preferring the longest match makes rules containing
expressions like .* dangerous. For example,

’.*’

might	seem	a	good	way	of	recognizing	a	string	in	single	quotes.		In	fact	it	
is an invitation for the program to read far ahead, looking for a distant
single quote. Presented with the input

’first’ quoted string here, ’second’

here the above expression will match

’first’ quoted string here, ’second’

which is probably not what was wanted. A better rule is of the form

’[^’\n]*’

which, on the above input, will stop after ’first’. The consequences of
errors like this are mitigated by the fact that the . (dot) operator will
not match a newline. Thus, expressions like

lex 5-13

SECTION 4 Support Tools

.*
stop on the current line. Don’t try to defeat this with expressions like

[.\n]+

or equivalents; the generated program will try to read the entire input
file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for
all possible matches of each expression. This means that each character
is accounted for once and only once. For example, suppose it is desired to
count occurrences of both she and he in an input text. Some lex rules to
do this might be

she s++;
he h++;
\n |
. ;

where the last two rules ignore everything besides he and she.
Remember that dot does not include newline. Since she includes he, lex
will normally not	recognize	the	instances	of	he included in she, since once
it has passed a she those characters are gone.

You may override this choice. The action REJECT means “go do the
next alternative.” It causes whatever rule was second choice after the
current rule to be executed. The position of the input pointer is adjusted
accordingly. Suppose you really want to count the included instances of
he:

she {s++; REJECT;}
he {h++; REJECT;}
\n |
. ;

these rules are one way of changing the previous example to do just that.
After counting each expression, it is rejected; whenever appropriate, the
other expression will then be counted. In this example, of course, you
could note that she includes he but not vice versa, and omit the
REJECT action on he; in other cases, however, it would not be possible a
priori to tell which input characters were in both classes.

Consider the two rules

a[bc]+ { ... ; REJECT;}
a[cd]+ { ... ; REJECT;}

If the input is ab, only the first rule matches, and on ad only the second
matches. The input string accb matches the first rule for four characters
and then the second rule for three characters. In contrast, the input accd
agrees with the second rule for four characters and then the first rule for
three.

5-14 lex

SECTION 4 Support Tools

In general, REJECT is useful whenever the purpose of lex is not to parti-
tion the input stream but to detect all examples of some items in the
input, and the instances of these items may overlap or include each
other. Suppose a digram table of the input is desired; normally the
digrams overlap, that is, the word the is considered to contain both th
and he. Assuming a two-dimensional array named digram is to be incre-
mented, the appropriate source is

%%
[a-z][a-z]	 	 	 {digram[yytext[0]][yytext[1]]++;	REJECT;}
\n ;

where the REJECT is necessary to pick up a letter pair beginning at
every character, rather than at every other character.

5.6 LEX SOURCE DEFINITIONS
As we have stated, the format of lex source is:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. There is a need for additional
options to define variables for use in user programs and for use by lex.
These can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. Such source
falls into three classes.

1. Any line which is not part of a lex rule or action which begins with
a blank or tab is copied into the lex generated program. Such
source input prior to the first %% delimiter will be external to any
function in the code; if it appears immediately after the first %%,
it appears in an appropriate place for declarations in the function
written by lex which contains the actions. This material must look
like program fragments, and should precede the first lex rule. As
a side effect of the above, lines which begin with a blank or tab, and
which contain a comment, are passed through to the generated pro-
gram. This can be used to include comments in either the lex
source or the generated code. The comments should follow the host
language convention.

2. Anything included between lines containing only %{ and %} is
copied out as above. The delimiters are discarded. This format
permits entering text like preprocessor statements that must begin
in column 1, or copying lines that do not look like programs.

lex 5-15

SECTION 4 Support Tools

3. Anything after the third %% delimiter, regardless of formats, etc.,
is copied out after the lex output.

Definitions intended for lex are given before the first %% delimiter. Any
line in this section not contained between %{ and %}, and begining in
column 1, is assumed to define lex substitution strings. The format of
such lines is

name translation

where translation becomes associated with name. The name and transla-
tion must be separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out by the
{name} syntax in a rule. Using {D} for the digits and {E} for an
exponent	field,	for	example,	might	abbreviate	rules	to	recognize	numbers:

D [0-9]
E [DEde][-+]?{D}+
%%
{D}+ printf(”integer”);
{D}+”.”{D}*({E})? |
{D}*”.”{D}+({E})? |
{D}+{E} printf(”real”);

Note the first two rules for real numbers; both require a decimal point
and contain an optional exponent field, but the first requires at least one
digit before the decimal point and the second requires at least one digit
after the decimal point. To correctly handle the problem posed by a
fortran expression such as 35.EQ.I, which does not contain a real
number, a context-sensitive rule such as

[0-9]+/” .”EQ printf(”integer”);

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the
selection of a host language, a character set table, a list of start condi-
tions,	or	adjustments	to	the	default	size	of	arrays	within	lex itself for
larger source programs. We discuss these possibilities further below in
the “Summary of Source Format.”

5.7 USAGE
There are two steps to compiling a lex source program. First, the lex
source must be turned into a generated program in the host general pur-
pose language. Then this program must be compiled and loaded, usually
with a library of lex subroutines. The generated program is on a file
named lex.yy.c. The I/O library is defined in terms of the C standard
library [6].

The library is accessed by the loader flag -ll. So an appropriate set of
commands is

5-16 lex

SECTION 4 Support Tools

lex source
cc lex.yy.c -ll

The resulting program is placed on the usual file a.out for later execution.
To use lex with yacc see below. Although the default lex I/O routines
use the C standard library, the lex automata themselves do not do so; if
private versions of input, output, and unput are given, the library can be
avoided.

5.8 LEX AND YACC
If you want to use lex with yacc, note that what lex writes is a program
named yylex(),	the	name	required	by	yacc	for	its	analyzer.		Normally,	the	
default main program on the lex library calls this routine, but if yacc is
loaded, and its main program is used, yacc will call yylex(). In this case,
each lex rule should end with

return(token);

where the appropriate token value is returned. An easy way to get
access to yacc’s names for tokens is to compile the lex output file as part
of the yacc output file by placing the line

include ”lex.yy.c”

in the last section of yacc input. If the grammar is named “good” and
the lexical rules are named “better,” the unix command sequence can
just be:

yacc good
lex better
cc y.tab.c -ly -ll

The yacc library (-ly) should be loaded before the lex library to obtain a
main program which invokes the yacc parser. The generation of lex and
yacc programs can be done in either order.

5.9 MORE EXAMPLES
Consider copying an input file while adding 3 to every positive number
divisible by 7. Here is a lex source program to do just that.

%%
 int k;
[0-9]+ {
 k = atoi(yytext);
 if (k%7 == 0)
 printf(”%d”, k+3);
 else
 printf(”%d”,k);
 }

The	rule	[0-9]+	recognizes	strings	of	digits;	atoi converts the digits to

lex 5-17

SECTION 4 Support Tools

binary and stores the result in k. The operator % (remainder) is used to
check whether k is divisible by 7; if it is, it is incremented by 3 as it is
written out. It may be objectionable that this program alters such input
items as 49.63 or X7. Furthermore, it increments the absolute value of
all negative numbers divisible by 7. To avoid this, just add a few more
rules after the active one.

%%
 int k;
-?[0-9]+ {
 k = atoi(yytext);
 printf(”%d”, k%7 == 0 ? k+3 : k);
 }
-?[0-9.]+ ECHO;
[A-Za-z][A-Za-z0-9]+	 	 ECHO;

Numerical strings containing a “.” or preceded by a letter will be picked
up by one of the last two rules, and not changed. The if-else has been
replaced by a C conditional expression to save space; the form a?b:c
means “if a then b else c”.

For an example of statistics gathering, here is a program which histo-
grams the lengths of words, where a word is defined as a string of letters.

 int lengs[100];
%%
[a-z]+	 lengs[yyleng]++;
. |
\n ;
%%
l s.
yywrap()
{
int i;
printf(”Length No. words\n”);
for(i=0; i<100; \++)
if (lengs[i] > 0)
printf(”%5d%10d\n”,i,lengs[i]);
return(1);
}

This program accumulates the histogram, while producing no output. At
the end of the input, it prints the table. The final statement return(1);
indicates that lex is to perform wrapup. If yywrap	returns	zero	(false),	it	
implies that further input is available and the program is to continue
reading and processing. If you provide a yywrap that never returns true,
it will generate an infinite loop.

As a larger example, here are some parts of a program written by N. L.
Schryer to convert double precision fortran to single precision for-
tran. Because fortran does not distinguish uppercase and lowercase

5-18 lex

SECTION 4 Support Tools

letters, this routine begins by defining a set of classes including both
cases of each letter:

a [aA]
b [bB]
c [cC]
...
z	 [zZ]

An	additional	class	recognizes	white	space:

W [\t]*

The first rule changes “double precision” to “real”, or “DOUBLE PRE-
CISION” to “REAL”.

{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n} {
printf(yytext[o]==’d’? ”real” : ”REAL”);
}

Care is taken throughout this program to preserve the case (upper or
lower) of the original program. The conditional operator is used to select
the proper form of the keyword. The next rule copies continuation card
indications to avoid confusing them with constants:

^” ”[^ 0] ECHO;

In the regular expression, the quotes surround the blanks. It is inter-
preted as “beginning of line, then five blanks, then anything but blank or
zero.”	Note	the	two	different	meanings	of	^	.		Next	come	a	few	rules	to	
change double precision constants to ordinary floating constants.

[0-9]+{W}{d}{W}[+-]?{W}[0-9]+ |
[0-9]+{W}”.”{W}{d}{W}[+-]?{W}[0-9]+ |
”.”{W}[0-9]+{W}{d}{W}[+-]}{W}[0-9]+ {
/* convert constants */
for(p=yytext; *p != 0; p++)
{
if (*p == ’d’ || *p == ’D’)
*p=+ ’e’- ’d’;
ECHO;
}

After	the	floating	point	constant	is	recognized,	it	is	scanned	by	the	for
loop to find the letter d or D. The program than adds ’e’-’d’, which
converts it to the next letter of the alphabet. The modified constant,
now single-precision, is written out again. Next comes a series of names
that must be respelled to remove their initial d. By using the array
yytext the same action suffices for all the names (only a sample of a
rather long list is given here).

lex 5-19

SECTION 4 Support Tools

{d}{s}{i}{n} |
{d}{c}{o}{s} |
{d}{s}{q}{r}{t} |
{d}{a}{t}{a}{n} |
...
{d}{f}{l}{o}{a}{t} printf(”%s”,yytext+l);

Another list of names must have initial d changed to initial a:

{d}{l}{o}{g} |
{d}{l}{o}{g}10 |
{d}{m}{i}{n}1 |
{d}{m}{a}{x}1 {
 yytext[0] =+ ‘a’ - ‘d’;
 ECHO;
 }

And one routine must have initial d changed to initial r:

{d}1{m}{a}{c}{h} {yytext[0] =+ ’r’ - ’d’;
 ECHO;
 }

To avoid such names as dsinx being detected as instances of dsin, some
final rules pick up longer words as identifiers and copy some surviving
characters:

[A-Za-z][A-Za-z0-9]*	 	 |
[0-9]+ |
\n |
. ECHO;

Note that this program is not complete; it does not deal with the spacing
problems in fortran or with the use of keywords as identifiers.

5.10 LEFT CONTEXT SENSITIVITY
It is sometimes desirable to have several sets of lexical rules to be applied
at different times in the input. For example, a compiler preprocessor
might	distinguish	preprocessor	statements	and	analyze	them	differently	
from ordinary statements. This requires sensitivity to prior context, and
there are several ways of handling such problems. The ^ operator, for
example,	is	a	prior	context	operator,	recognizing	immediately	preceding	
left	context	just	as	$	recognizes	immediately	following	right	context.	
Adjacent left context could be extended, to produce a facility similar to
that for adjacent right context, but it is unlikely to be as useful, since
often, the relevant left context appeared some time earlier, such as at the
beginning of a line.

This section describes three means of dealing with different environ-
ments: a simple use of flags, when only a few rules change from one
environment to another; the use of start conditions on rules, and the

5-20 lex

SECTION 4 Support Tools

possibility	of	making	multiple	lexical	analyzers	all	run	together.		In	each	
case,	there	are	rules	which	recognize	the	need	to	change	the	environment	
in	which	the	following	input	text	is	analyzed,	and	set	some	parameter	to	
reflect the change. This may be a flag explicitly tested by the user’s
action code; such a flag is the simplest way of dealing with the problem,
since lex is not involved at all.

It may be more convenient, however, to have lex remember the flags as
initial conditions on the rules. Any rule may be associated with a start
condition.		It	will	only	be	recognized	when	lex is in that start condition.
The current start condition may be changed at any time. Finally, if the
sets of rules for the different environments are very dissimilar, clarity
may	be	best	achieved	by	writing	several	distinct	lexical	analyzers,	and	
switching from one to another as desired.

Consider the following problem: copy the input to the output, changing
the word magic to first on every line which began with the letter a,
changing magic to second on every line which began with the letter b,
and changing magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a
flag. The program below should be adequate.

 int flag;
%%
^a {flag = ‘a’; ECHO;}
^b {flag = ‘b’; ECHO;}
^c {flag = V; ECHO;}
\n {flag = 0 ; ECHO;}
magic {
 switch (flag)
 {
 case ’a’: printf(”first”); break;
 case ’b’: printf(”second”); break;
 case ’c’: printf(”third”); break;
 default: ECHO; break;
 }
 }

To handle the same problem with start conditions, each start condition
must be introduced to lex in the definitions section with a line reading

%Start name1 name2 ...

where the conditions may be named in any order. The word Start may
be abbreviated to s or S. The conditions may be referenced at the head
of a rule with the < > brackets:

< name1 > expression

is	a	rule	which	is	only	recognized	when	lex is in the start condition
name1. To enter a start condition, execute the action statement

lex 5-21

SECTION 4 Support Tools

BEGIN name1;

which changes the start condition to name1. To resume the normal state,

BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may
be active in several start conditions:

< name1,name2,name3 >

is a legal prefix. Any rule not beginning with the < > prefix operator is
always active.

The previous example can be written another way.

%START AA BB CC
%%
^a {ECHO; BEGIN AA;}
^b {ECHO; BEGIN BB;}
^c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA> magic printf(”first”);
<BB> magic printf(”second”);
<CC> magic printf(”third”);

where the logic is exactly the same as in the previous method of handling
the problem, but lex does the work rather than the user’s code.

5.11 CHARACTER SET
The programs generated by lex handle character I/O only through the
routines input, output, and unput. Thus, the character representation
provided in these routines is accepted by lex and employed to return
values in yytext. For internal use, a character is represented as a small
integer which, if the standard library is used, has a value equal to the
integer value of the bit pattern representing the character on the host
computer. Normally, the letter a is represented as the same form as the
character constant ’a’. If this interpretation is changed, by providing
I/O routines which translate the characters, Lex must be given a transla-
tion table. This table must be in the definitions section, and must be
bracketed by lines containing only “%T”. The table contains lines of the
form

{integer} {character string}

which indicate the value associated with each character. Thus, the
example character table below

5-22 lex

SECTION 4 Support Tools

%T
1 Aa
2 Bb
...
26	 	 Zz
27 \n
28 +
29 -
30 0
31 1
...
39 9
%T

maps the lowercase and uppercase letters together into the integers 1
through 26, newline into 27, + and - into 28 and 29, and the digits into
30 through 39. Note the escape for newline. If a table is supplied, every
character that is to appear either in the rules or in any valid input must
be included in the table. No character may be assigned the number 0,
and	no	character	may	be	assigned	a	bigger	number	than	the	size	of	the	
hardware character set.

5.12 SUMMARY OF SOURCE FORMAT
The general form of a lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

•	Definitions,	in	the	form	“name	space	translation”.

•	Included	code,	in	the	form	“space	code”.

•	Included	code,	in	the	form

 %{
 code
 %}

•	Start	conditions,	given	in	the	form

 %S name1 name2 ...

•	Character	set	tables,	in	the	form

lex 5-23

SECTION 4 Support Tools

 %T
 number space character-string
 ...
 %T

•	Changes	to	internal	array	sizes,	in	the	form

 %x nnn

 where nnn	is	a	decimal	integer	representing	an	array	size	and	x selects
the parameter as follows:

Letter Parameter
P
n
e
a
k
o

positions
states
tree nodes
transitions
packed character classes
output	array	size

Lines in the rules section have the form “expression action” where the
action may be continued on succeeding lines by using braces to delimit it.

Regular expressions in lex use the following operators:

x
”x”
\x
[xy]
[x-z]
[^x]
.
^x
<y>x
x$
x?
x*
x+
x|y
(x)
x/y
{xx}
x{m,n}

the character ”x”
an ”x”, even if x is an operator.
an ”x”, even if x is an operator.
the character x or y.
the	characters	x,	y	or	z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

5.13 CAVEATS
There are pathological expressions which produce exponential growth of
the tables when converted to deterministic machines; fortunately, they
are rare.

REJECT does not rescan the input; instead it remembers the results of
the previous scan. This means that if a rule with trailing context is
found, and REJECT executed, the user must not have used unput to
change the characters forthcoming from the input stream. This is the

5-24 lex

SECTION 4 Support Tools

only restriction on the user’s ability to manipulate the not-yet-processed
input.

yacc 6-1

SECTION 4 Support Tools

Chapter 6: Yacc (Yet Another Compiler Compiler)

6.1 INTRODUCTION
Yacc provides a general tool for imposing structure on the input to a
computer program. The yacc user prepares a specification of the input
process; this includes rules describing the input structure, code to be
invoked	when	these	rules	are	recognized,	and	a	low-level	routine	to	do	
the basic input. Yacc then generates a function to control the input
process. This function, called a “parser,” calls the user-supplied low-
level	input	routine	(the	“lexical	analyzer”)	to	pick	up	the	basic	items	
(called	“tokens”)	from	the	input	stream.		These	tokens	are	organized	
according to the input structure rules, called “grammar rules”; when one
of	these	rules	has	been	recognized,	then	user	code	supplied	for	this	rule,	
an “action” is invoked; actions have the ability to return values and
make use of the values of other actions.

Yacc is written in C, and the actions and output subroutine are in C as
well. Moreover, many of the syntactic conventions of Yacc follow those
used in C.

The heart of the input specification is a collection of grammar rules.
Each rule describes an allowable structure and gives it a name. For
example, one grammar rule might be

date : month_name day ´,´ year ;

Here, date, month_name, day, and year represent structures of interest
in the input process; presumably, month_name, day, and year are defined
elsewhere. The comma “,” is enclosed in single quotes; this implies that
the comma is to appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule, and have no significance in con-
trolling the input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical
analyzer.		This	user	routine	reads	the	input	stream,	recognizing	the	lower	
level structures, and communicates these tokens to the parser. For his-
torical	reasons,	a	structure	recognized	by	the	lexical	analyzer	is	called	a	
“terminal	symbol,”	while	the	structure	recognized	by	the	parser	is	called	
a “nonterminal symbol.” To avoid confusion, terminal symbols will usu-
ally be referred to as tokens.

There	is	considerable	leeway	in	deciding	whether	to	recognize	structures	
using	the	lexical	analyzer	or	grammar	rules.		For	example,	the	rules

6-2 yacc

SECTION 4 Support Tools

month_name : ´J´ ´a´ ´n´ ;
month_name : ´F´ ´e´ ´b´ ;
 . . .
month_name : ´D´ ´e´ ´c´ ;

might	be	used	in	the	above	example.		The	lexical	analyzer	would	only	
need	to	recognize	individual	letters,	and	month_name would be a nonter-
minal symbol. Such low-level rules tend to waste time and space, and
may complicate the specification beyond yacc’s ability to deal with it.
Usually,	the	lexical	analyzer	would	recognize	the	month	names,	and	
return an indication that a month_name was seen; in this case,
month_name would be a token.

Literal characters such as “,’’ must also be passed through the lexical
analyzer,	and	are	also	considered	tokens.

Specification files are very flexible. It is relatively easy to add to the
above example the rule

date : month ´/´ day ´/´ year ;

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be “slipped in” to a working system
with minimal effort, and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input
errors are detected as early as is theoretically possible with a left-to-right
scan; thus, not only is the chance of reading and computing with bad
input data substantially reduced, but the bad data can usually be quickly
found. Error handling, provided as part of the input specifications, per-
mits the reentry of bad data, or the continuation of the input process
after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self contradictory,
or they may require a more powerful recognition mechanism than that
available to yacc. The former cases represent design errors; the latter
cases	can	often	be	corrected	by	making	the	lexical	analyzer	more	power-
ful, or by rewriting some of the grammar rules. While yacc cannot han-
dle all possible specifications, its power compares favorably with similar
systems; moreover, the constructions which are difficult for yacc to han-
dle are also frequently difficult for human beings to handle. Some users
have reported that the discipline of formulating valid yacc specifications
for their input revealed errors of conception or design early in the pro-
gram development.

yacc 6-3

SECTION 4 Support Tools

The theory underlying yacc has been described elsewhere. Yacc has
been extensively used in numerous practical applications, including the C
Program checker lint.

6.2 BASIC SPECIFICATIONS
Names refer to either tokens or nonterminal symbols. Yacc requires
token names to be declared as such. In addition, for reasons discussed
later,	it	is	often	desirable	to	include	the	lexical	analyzer	as	part	of	the	
specification file; it may be useful to include other programs as well.
Thus, every specification file consists of three sections: the declarations,
(grammar) rules, and programs. The sections are separated by double
percent “%%” marks. (The percent “%” is generally used in yacc
specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs sec-
tion is omitted, the second %% mark may be omitted also; thus, the
smallest legal yacc specification is

%%
rules

Blanks, tabs, and newlines may not appear in names or multi-character
reserved symbols. Otherwise, they are ignored. Comments may appear
wherever a name is legal; they are enclosed in /* . . . */, as in C and
PL/I.

The rules section is made up of one or more grammar rules. A grammar
rule has the form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of
zero	or	more	names	and	literals.		The	colon	and	the	semicolon	are	yacc
punctuation.

Names may be of arbitrary length, and may be made up of letters, dot
“.”, underscore “_”, and non-initial digits. Uppercase and lowercase
letters are distinct. The names used in the body of a grammar rule may
represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes “´”. As in C, the
backslash “\” is an escape character within literals, and all the C escapes
are	recognized.		Thus,

6-4 yacc

SECTION 4 Support Tools

´\n´ newline
´\r´ return
´\´´ single quote “´”
´\\´ backslash “\”
´\t´ tab
´\b´ backspace
´\f form feed
´\xxx´ “xxx” in octal

Note: For a number of technical reasons, the NUL character (´\0´
or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the verti-
cal bar “|” can be used to avoid rewriting the left-hand side. In addi-
tion, the semicolon at the end of a rule can be dropped before a vertical
bar. Thus the grammar rules

A : B C D ;
A : E F ;
A : G ;

can be given to yacc as

A: B C D
| E F
| G
;

It is not necessary for all grammar rules with the same left side to appear
together in the grammar rules section, although it makes the input easier
to read and change.

If a nonterminal symbol matches the empty string, this can be indicated
in the obvious way:

empty : ;

Names representing tokens must be declared; this is most simply done by
writing

%token name1 name2 . . .

in the declarations section. Every name not defined in the declarations
section is assumed to represent a nonterminal symbol. Every nontermi-
nal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particu-
lar	importance.		The	parser	is	designed	to	recognize	the	start	symbol;	
thus, this symbol represents the largest, most general structure described
by the grammar rules. By default, the start symbol is taken to be the
left-hand side of the first grammar rule in the rules section. It is possi-
ble, and in fact desirable, to declare the start symbol explicitly in the
declarations section using the %start keyword:

yacc 6-5

SECTION 4 Support Tools

%start symbol

The end of the input to the parser is signaled by a special token, called
the endmarker. If the tokens up to, but not including, the endmarker
form a structure which matches the start symbol, the parser function
returns to its caller after the endmarker is seen; it accepts the input. If
the endmarker is seen in any other context, it is an error.

It	is	the	job	of	the	user-supplied	lexical	analyzer	to	return	the	endmarker	
when appropriate. Usually, the endmarker represents some reasonably
obvious I/O status, such as “end-of-file” or “end-of-record”.

6.3 ACTIONS
With each grammar rule, the user may associate actions to be performed
each	time	the	rule	is	recognized	in	the	input	process.		These	actions	may	
return values, and may obtain the values returned by previous actions.
Moreover,	the	lexical	analyzer	can	return	values	for	tokens,	if	desired.

An action is an arbitrary C statement, and as such can do input and out-
put, call subprograms, and alter external vectors and variables. An
action is specified by one or more statements, enclosed in curly braces
“{” and “}”. For example,

A : ´(´ B ´)´
{ hello(1, ”abc”); }

and

XXX : YYY ZZZ
{ printf(”a message\n”);
flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the
action statements are altered slightly. The symbol “dollar sign” “$” is
used as a signal to yacc in this context.

To return a value, the action normally sets the pseudo-variable “$$” to
some value. For example, an action that does nothing but return the
value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical
analyzer,	the	action	may	use	the	pseudo-variables	$1,	$2,	.	.	.,	which	refer	
to the values returned by the components of the right side of a rule,
reading from left to right. Thus, if the rule is

A : B C D ;

for example, then $2 has the value returned by C, and $3 the value
returned by D.

6-6 yacc

SECTION 4 Support Tools

As a more concrete example, consider the rule

expr : ´(´ expr ´)´ ;

The value returned by this rule is usually the value of the expr in
parentheses. This can be indicated by

expr : ´(´ expr ´)´ { $$ = $2 ; }

By default, the value of a rule is the value of the first element in it ($1).
Thus, grammar rules of the form

A : B ;

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules.
Sometimes, it is desirable to get control before a rule is fully parsed.
Yacc permits an action to be written in the middle of a rule as well as at
the end. This rule is assumed to return a value, accessible through the
usual $ mechanism by the actions to the right of it. In turn, it may
access the values returned by the symbols to its left. Thus, in the rule

A : B
{ $$ = 1; } C
{ x = $2; y = $3; }
;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name, and a new rule match-
ing this name to the empty string. The interior action is the action trig-
gered	off	by	recognizing	this	added	rule.		Yacc actually treats the above
example as if it had been written:

$ACT : /* empty */
{ $$ = 1; }
;

A : B $ACT C
{ x = $2; y = $3; }
;

In many applications, output is not done directly by the actions; rather,
a data structure, such as a parse tree, is constructed in memory, and
transformations are applied to it before output is generated. Parse trees
are particularly easy to construct, given routines to build and maintain
the tree structure desired. For example, suppose there is a C function
node, written such that the call

node(L, n1, n2)

creates a node with label L, and descendants n1 and n2, and returns the

yacc 6-7

SECTION 4 Support Tools

index of the newly created node. The parse tree can be built by supply-
ing actions such as:

expr : expr ´+´ expr
{ $$ = node(´+´,$1, $3); }

in the specification.

You may define other variables to be used by the actions. Declarations
and definitions can appear in the declarations section, enclosed in the
marks “%{” and “%}”. These declarations and definitions have global
scope, so they are known to the action statements and the lexical
analyzer.		For	example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to
all of the actions. The yacc parser uses only names beginning in “yy”.
You should avoid using such names in your own variables.

In these examples, all the values are integers. A discussion of other value
types will be found in a later section.

6.4 LEXICAL ANALYSIS
The	user	must	supply	a	lexical	analyzer	to	read	the	input	stream	and	
communicate tokens (with values, if desired) to the parser. The lexical
analyzer	is	an	integer-valued	function	called	yylex. The function returns
an integer, the token number, representing the kind of token read. If
there is a value associated with that token, it should be assigned to the
external variable yylval.

The	parser	and	the	lexical	analyzer	must	agree	on	these	token	numbers	
in order for communication between them to take place. The numbers
may be chosen by yacc, or chosen by the user. In either case, the “#
define”	mechanism	of	C	is	used	to	allow	the	lexical	analyzer	to	return	
these numbers symbolically. For example, suppose that the token name
DIGIT has been defined in the declarations section of the yacc
specification	file.		The	relevant	portion	of	the	lexical	analyzer	might	look	
like:

6-8 yacc

SECTION 4 Support Tools

yylex(){
extern int yylval;
int c;
c = getchar();
switch(c) {
case ´0´:
case ´1´:
case ´9´:
yylval = c-´0´;
return(DIGIT);
}

The intent is to return a token number of DIGIT, and a value equal to
the	numerical	value	of	the	digit.		Provided	that	the	lexical	analyzer	code	
is placed in the programs section of the specification file, the identifier
DIGIT will be defined as the token number associated with the token
DIGIT.

This	mechanism	leads	to	clear,	easily-modified	lexical	analyzers;	the	only	
pitfall is the need to avoid using any token names in the grammar that
are reserved or significant in C or the parser; for example, the use of
token names if or while will almost certainly cause severe difficulties
when	the	lexical	analyzer	is	compiled.		The	token	name	error is reserved
for error handling, and should be used carefully.

As mentioned above, the token numbers may be chosen by yacc or by
the user. In the default situation, the numbers are chosen by yacc. The
default token number for a literal character is the numerical value of the
character in the local character set. Other names are assigned token
numbers starting at 257.

To assign a token number to a token (including literals), the first appear-
ance of the token name or literal in the declarations section can be
immediately followed by a nonnegative integer. This integer is taken to
be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important
that all token numbers be distinct.

Note: For historical reasons, the endmarker must have token
number 0 or negative.

This token number cannot be redefined by the user; thus, all lexical
analyzers	should	be	prepared	to	return	0	or	negative	as	a	token	number	
upon reaching the end of their input.

Lex, described in Chapter 5, was designed to work in close harmony with
yacc parsers. The specifications for lex	and	other	lexical	analyzers	use	
regular expressions instead of grammar rules. Lex can be easily used to
produce	quite	complicated	lexical	analyzers,	but	there	remain	some	
languages (such as FORTRAN) which do not fit any theoretical frame-
work,	and	whose	lexical	analyzers	must	be	crafted	by	hand.

yacc 6-9

SECTION 4 Support Tools

6.5 HOW THE PARSER WORKS
Yacc turns the specification file into a C program, which parses the
input according to the specification given. The algorithm used to go
from the specification to the parser is complex, and will not be discussed
here. The parser itself, however, is relatively simple, and understanding
how it works, while not strictly necessary, will nevertheless make treat-
ment of error recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite state machine with a
stack. The parser is also capable of reading and remembering the next
input token (called the lookahead token). The current state is always the
one on the top of the stack. The states of the finite state machine are
given small integer labels; initially, the machine is in state 0, the stack
contains only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce,
accept, and error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a
lookahead token to decide what action should be done; if it needs
one, and does not have one, it calls yylex to obtain the next token.

2. Using the current state, and the lookahead token if needed, the
parser decides on its next action, and carries it out. This may
result in states being pushed onto the stack, or popped off of the
stack, and in the lookahead token being processed or left alone.

Shift is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state
56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state
(56) is pushed down on the stack, and state 34 becomes the current state
(on the top of the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bounds.
Reduce actions are appropriate when the parser has seen the right-hand
side of a grammar rule, and is prepared to announce that it has seen an
instance of the rule, replacing the right-hand side by the left-hand side.
It may be necessary to consult the lookahead token to decide whether to
reduce, but usually it is not; in fact, the default action (represented by a
“.”) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar
rules are also given small integer numbers, leading to some confusion.
The action

.reduce 18

refers to grammar rule 18, while the action

6-10 yacc

SECTION 4 Support Tools

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A	:	x	y	z	;

The reduce action depends on the left-hand symbol (A in this case), and
the number of symbols on the right-hand side (three in this case). To
reduce, first pop off the top three states from the stack. (In general, the
number of states popped equals the number of symbols on the right side
of the rule). In effect, these states were the ones put on the stack while
recognizing	x, y, and z, and no longer serve any useful purpose. After
popping these states, a state is uncovered which was the state the parser
was in before beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing of the
left-hand symbol and an ordinary shift of a token, however, so this
action is called a goto action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the
uncovered state contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current
state.

In effect, the reduce action “turns back the clock” in the parse, popping
the states off the stack to go back to the state where the right-hand side
of the rule was first seen. The parser then behaves as if it had seen the
left side at that time. If the right-hand side of the rule is empty, no
states are popped off of the stack. The uncovered state is, in fact, the
current state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the
rule is executed before the stack is adjusted. In addition to the stack
holding the states, another stack, running in parallel with it, holds the
values	returned	from	the	lexical	analyzer	and	the	actions.		When	a	shift	
takes place, the external variable yylval is copied onto the value stack.
After the return from the user code, the reduction is carried out. When
the goto action is done, the external variable yyval is copied onto the
value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches
the specification. This action appears only when the lookahead token is
the endmarker, and indicates that the parser has successfully done its
job. The error action, on the other hand, represents a place where the
parser can no longer continue parsing according to the specification. The
input tokens it has seen, together with the lookahead token, cannot be

yacc 6-11

SECTION 4 Support Tools

followed by anything that would result in a legal input. The parser
reports an error and attempts to resume parsing. The error recovery
mechanism (as opposed to the one for error detection) will be covered in
a later section.

As an initial example, consider the specification:

%token DING DONG DELL
%%
rhyme : sound place
;
sound : DING DONG
;
place : DELL
;

When yacc is invoked with the -v option, a file called y.output is pro-
duced, with an english-like description of the parser. The y.output file
corresponding to the above grammar (with some statistics stripped off
the end) is:

6-12 yacc

SECTION 4 Support Tools

state 0
$accept : _rhyme $end

DING shift 3

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept

state 2
rhyme : sound_place

DELL shift 5

place goto 4

state 3
sound : DING_DONG

DONG shift 6

state 4
rhyme : sound place_ (1)

state 5
place : DELL_ (3)

state 6
sound : DING DONG_ (2)

Notice that, in addition to the actions for each state, there is a descrip-
tion of the parsing rules being processed in each state. The _ character
is used to indicate what has been seen, and what is yet to come, in each
rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser as it processes this input.

Initially, the current state is state 0. The parser needs to refer to the
input in order to decide between the actions available in state 0, so the
first token, DING, is read, becoming the lookahead token. The action in
state 0 on DING is “shift 3”, so state 3 is pushed onto the stack, and

yacc 6-13

SECTION 4 Support Tools

the lookahead token is cleared. State 3 becomes the current state. The
next token, DONG, is read, becoming the lookahead token. The action
in state 3 on the token DONG is “shift 6”, so state 6 is pushed onto the
stack, and the lookahead is cleared. The stack now contains 0, 3, and 6.
In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right-hand side, so two states, 6 and 3,
are popped off of the stack, uncovering state 0. Consulting the descrip-
tion of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current
state.

In state 2, the next token, DELL, must be read. The action is “shift 5”,
so state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and
the lookahead token is cleared. In state 5, the only action is to reduce by
rule 3. This has one symbol on the right-hand side, so one state, 5, is
popped off, and state 2 is uncovered. The goto in state 2 on place, the
left side of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In
state 4, the only action is to reduce by rule 1. There are two symbols on
the right, so the top two states are popped off, uncovering state 0 again.
In state 0, there is a goto on rhyme causing the parser to enter state 1.
In state 1, the input is read; the endmarker is obtained, indicated by
“Send” in the y.output file. The action in state 1 when the endmarker is
seen is to accept, successfully ending the parse.

Consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL
DELL, etc. A few minutes spent examining this and other simple exam-
ples will help you understand the problems that can arise in more compli-
cated contexts.

6.6 AMBIGUITY AND CONFLICTS
A set of grammar rules is ambiguous if there is some input string that can
be structured in two or more different ways. For example, the grammar
rule

expr : expr ´-´ expr

is a natural way of expressing the fact that one way of forming an arith-
metic expression is to put two other expressions together with a minus
sign between them. Unfortunately, this grammar rule does not com-
pletely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

6-14 yacc

SECTION 4 Support Tools

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser.
It is instructive to consider the problem that confronts the parser when it
is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could
reduce the input by applying this rule; after applying the rule; the input
is reduced to expr (the left side of the rule). The parser would then read
the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative inter-
pretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading
the input until it had seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing
them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right as-
sociative interpretation. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way
of deciding between them. This is called a shift / reduce conflict. It may
also happen that the parser has a choice of two legal reductions; this is
called a reduce / reduce conflict.

Note: There are never any “Shift/shift” conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still pro-
duces a parser. It does this by selecting one of the valid steps wherever

yacc 6-15

SECTION 4 Support Tools

it has a choice. A rule describing which choice to make in a given situa-
tion is called a disambiguating rule.

yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in
favor of shifts. Rule 2 gives you marginal control over the behavior of
the parser in this situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than
yacc can construct. The use of actions within rules can also cause
conflicts if the action must be done before the parser can be sure which
rule	is	being	recognized.		In	these	cases,	the	application	of	disambiguat-
ing rules is inappropriate, and leads to an incorrect parser. For this rea-
son, yacc always reports the number of shift/reduce and reduce/reduce
conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to pro-
duce a correct parser, it is also possible to rewrite the grammar rules so
that the same inputs are read but there are no conflicts. For this reason,
most earlier parser generators considered conflicts to be fatal errors.
Yacc proceeds on the assumption that this rewriting is somewhat unna-
tural and produces slower parsers; thus, yacc will produce parsers even in
the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment
from a programming language involving an “if-then-else” construction:

stat : IF ´(´ cond ´)´ stat
| IF ´(´ cond ´)´ stat ELSE stat
;

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat is a nonterminal
symbol describing statements. The first rule will be called the simple-if
rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways:

IF (C1) {
IF (C2) S1
}
ELSE S2

6-16 yacc

SECTION 4 Support Tools

or

IF (C1) {
IF (C2) S1
ELSE S2
}

The second interpretation is the one given in most programming
languages having this construct. Each ELSE is associated with the last
preceding “un-ELSE’d” IF. In this example, consider the situation where
the parser has seen

IF (C1) IF (C2) S1

and is looking at the ELSE. It can immediately reduce by the simple-if
rule to get

IF (C1) stat

and then read the remaining input,

ELSE S2

and reduce

IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the
input.

On the other hand, the ELSE may be shifted, S2 read, and then the
right-hand portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of
the above groupings of the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce
conflict. The application of disambiguating rule 1 tells the parser to shift
in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs already seen, such as

IF (C1) IF (C2) S1

In general, there may be many conflicts, and each one will be associated
with an input symbol and a set of previously read inputs. The previ-
ously	read	inputs	are	characterized	by	the	state	of	the	parser.

The conflict messages of yacc are best understood by examining the ver-
bose (-v) option output file. For example, the output corresponding to
the above conflict state might be:

yacc 6-17

SECTION 4 Support Tools

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45

The first line describes the conflict, giving the state and the input sym-
bol. The ordinary state description follows, giving the grammar rules
active in the state, and the parser actions. Recall that the underline
marks the portion of the grammar rules which has been seen. Thus in
the example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser
can do two possible things. If the input symbol is ELSE, it is possible to
shift into state 45. State 45 will have, as part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the
alternative action, described by “.”, is to be done if the input symbol is
not mentioned explicitly in the above actions; thus, in this case, if the
input symbol is not ELSE, the parser reduces by grammar rule 18:

stat : IF ´(´ cond ´)´ stat

Once again, notice that the numbers following “shift” commands refer to
other states, while the numbers following “reduce” commands refer to
grammar rule numbers. In the y.output file, the rule numbers are printed
after those rules which can be reduced. In most one states, there is
reduce action possible in the state. This will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably
want to look at the verbose output to decide whether the default actions
are appropriate.

6.7 PRECEDENCE
There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions.
Most of the commonly used constructions for arithmetic expressions can
be naturally described by the notion of precedence levels for operators,
together with information about left or right associativity. It turns out
that ambiguous grammars with appropriate disambiguating rules can be
used to create parsers that are faster and easier to write than parsers
constructed from unambiguous grammars. The basic notion is to write
grammar rules of the form

6-18 yacc

SECTION 4 Support Tools

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambigu-
ous grammar, with many parsing conflicts. As disambiguating rules, the
user specifies the precedence, or binding strength, of all the operators,
and the associativity of the binary operators. This information is
sufficient to allow yacc to resolve the parsing conflicts in accordance
with	these	rules,	and	construct	a	parser	that	realizes	the	desired	pre-
cedences and associativities.

The precedences and associativities are attached to tokens in the declara-
tions section. This is done by a series of lines beginning with a yacc
keyword: %left, %right, or %nonassoc, followed by a list of tokens. All
of the tokens on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of increasing pre-
cedence or binding strength. Thus,

%left ´+´ ´-´
%left ´*´ ´/´

describes the precedence and associativity of the four arithmetic opera-
tors. Plus and minus are left associative, and have lower precedence
than star and slash, which are also left associative. The keyword %right
is used to describe right associative operators, and the keyword %nonas-
soc is used to describe operators, like the operator .LT. in fortran, that
may not associate with themselves; thus,

A .LT. B .LT. C

is illegal in fortran, and such an operator would be described with the
keyword %nonassoc in yacc. As an example of the behavior of these
declarations, the description

%right ´=´
%left ´+´ ´-´
%left ´*´ ´/´

%%

expr : expr ´ =´ expr
| expr ´+ ´ expr
| expr ´-´ expr
| expr ´*´ expr
| expr ´/´ expr
| NAME
;

might be used to structure the input

yacc 6-19

SECTION 4 Support Tools

a = b = c*d - e - f*g

as follows:

a = (b = (((c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given
a precedence. Sometimes a unary operator and a binary operator have
the same symbolic representation, but different precedences. An example
is unary and binary ´-´; unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a lower strength
than multiplication. The keyword, %prec, changes the precedence level
associated with a particular grammar rule. It appears immediately after
the body of the grammar rule, before the action or closing semicolon, and
is followed by a token name or literal. It causes the precedence of the
grammar rule to become that of the following token name or literal. For
example, to make unary minus have the same precedence as multiplica-
tion the rules might resemble:

%left ´+´ ´-´
%left ´*´ ´/´

%%

expr : expr ´+´ expr
| expr ´-´ expr
| expr ´*´ expr
| expr ´/´ expr
| ´-´ expr %prec ´*´
| NAME
;

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work
as follows:

1. The precedences and associativities are recorded for those tokens
and literals that have them.

2. A precedence and associativity is associated with each grammar
rule; it is the precedence and associativity of the last token or
literal in the body of the rule. If the %prec construction is used, it
overrides this default. Some grammar rules may have no pre-
cedence and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

6-20 yacc

SECTION 4 Support Tools

4. If there is a shift/reduce conflict, and both the grammar rule and
the input character have precedence and associativity associated
with them, then the conflict is resolved in favor of the action (shift
or reduce) associated with the higher precedence. If the pre-
cedences are the same, then the associativity is used; left associa-
tive implies reduce, right associative implies shift, and nonassociat-
ing implies error.

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. This means
that mistakes in the specification of precedences may disguise errors in
the input grammar; it is a good idea to be sparing with precedences, and
use them in an essentially “cookbook” fashion, until some experience has
been gained. The y.output file is very useful in deciding whether the
parser is actually doing what was intended.

6.8 ERROR HANDLING
Error handling is an extremely difficult area. Many of the problems
found here are semantic. When an error is found, for example, it may be
necessary to reclaim parse tree storage, delete or alter symbol table
entries, and, typically, set switches to avoid generating any further out-
put.

It is seldom acceptable to stop all processing when an error is found; it is
more useful to continue scanning the input to find further syntax errors.
This leads to the problem of getting the parser “restarted” after an error.
A general class of algorithms to do this involves discarding a number of
tokens from the input string, and attempting to adjust the parser so that
input can continue.

To allow the user some control over this process, Yacc provides a simple,
but reasonably general, feature. The token name “error” is reserved for
error handling. This name can be used in grammar rules; in effect, it
suggests places where errors are expected, and recovery might take place.
The parser pops its stack until it enters a state where the token “error”
is legal. It then behaves as if the token “error” were the current looka-
head token, and performs the action encountered. The lookahead token
is then reset to the token that caused the error. If no special error rules
have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detect-
ing an error, remains in error state until three tokens have been success-
fully read and shifted. If an error is detected when the parser is already
in error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to
skip over the statement in which the error was seen. More precisely, the

yacc 6-21

SECTION 4 Support Tools

parser will scan ahead, looking for three tokens that might legally follow
a statement, and start processing at the first of these; if the beginnings of
statements are not sufficiently distinctive, it may make a false start in
the middle of a statement, and end up reporting a second error where
there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt	to	reinitialize	tables,	reclaim	symbol	table	space,	etc..

Error rules such as the above are very general, but difficult to control.
Somewhat easier are rules such as

stat : error ´;´

Here, when there is an error, the parser attempts to skip over the state-
ment, but will do so by skipping to the next ´;´. All tokens after the
error and before the next ´;´ cannot be shifted, and are discarded.
When the ´;´ is seen, this rule will be reduced, and any “cleanup” action
associated with it performed.

Another form of error rule arises in interactive applications, where it may
be desirable to permit a line to be reentered after an error. A possible
error rule might be

input : error ´\n´ { printf(”Reenter last line: ”); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must
correctly process three input tokens before it admits that it has correctly
resynchronized	after	the	error.		If	the	reentered	line	contains	an	error	in	
the first two tokens, the parser deletes the offending tokens, and gives no
message; this is clearly unacceptable. For this reason, there is a mechan-
ism that can be used to force the parser to believe that an error has been
fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is
better written

input : error ´\n´
{ yyerrok;
printf(”Reenter last line: ”); }
input
{ $$ = $4; }
;

As mentioned above, the token seen immediately after the “error” sym-
bol is the input token at which the error was discovered. Sometimes,
this is inappropriate; for example, an error recovery action might take
upon itself the job of finding the correct place to resume input. In this
case, the previous lookahead token must be cleared. The statement

6-22 yacc

SECTION 4 Support Tools

yyclearin ;

in an action will have this effect. For example, suppose the action after
error	were	to	call	some	sophisticated	resynchronization	routine,	supplied	
by the user, that attempted to advance the input to the beginning of the
next valid statement. After this routine was called, the next token
returned by yylex would presumably be the first token in a legal state-
ment; the old, illegal token must be discarded, and the error state reset.
This could be done by a rule like

stat : error
{ resynch();
yyerrok ;
yyclearin ; }
;

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery of the parser from many errors; moreover, the user can
get control to deal with the error actions required by other portions of
the program.

6.9 THE YACC ENVIRONMENT
When the user inputs a specification to yacc, the output is a file of C
programs, called y.tab.c. The function produced by yacc is called
yyparse; it is an integer valued function. When it is called, it in turn
repeatedly calls yylex,	the	lexical	analyzer	supplied	by	the	user	to	obtain	
input tokens. Eventually, either an error is detected, in which case (if no
error recovery is possible) yyparse returns the value 1, or the lexical
analyzer	returns	the	endmarker	token	and	the	parser	accepts.		In	this	
case, yyparse returns the value 0.

You must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C pro-
gram, a program called main must be defined, that eventually calls
yyparse. In addition, a routine called yyerror prints a message when a
syntax error is detected.

You must supply these two routines in one form or another. To ease the
initial effort of using yacc, a library has been provided with default ver-
sions of main and yyerror. To access the library, supply a -ly argument
to the loader. These default programs are trivial (though sufficient to the
task), as can be seen by examining the source below.

main(){
return(yyparse());
}

and

yacc 6-23

SECTION 4 Support Tools

include <stdio.h>
yyerror(s) char *s; {
fprintf(stderr, ”%s\n”, s);
}

The argument to yyerror is a string containing an error message, usually
the string “syntax error”. The average application will want to do better
than this. Ordinarily, the program should keep track of the input line
number, and print it along with the message when a syntax error is
detected. The external integer variable yychar contains the lookahead
token number at the time the error was detected; this may be of some
interest in giving better diagnostics. Since the main program is probably
supplied by the user (to read arguments, etc.) the yacc library is useful
only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to
a	nonzero	value,	the	parser	will	output	a	verbose	description	of	its	
actions, including a discussion of which input symbols have been read,
and what the parser actions are. Depending on the operating environ-
ment, it may be possible to set this variable by using a debugging sys-
tem.

6.10 HINTS FOR PREPARING SPECIFICATIONS
This section contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual subsections are more or
less independent.

6.10.1 Input Style
It is difficult to provide rules with substantial actions and still have a
readable specification file.

[1] Use all capital letters for token names, all lowercase letters for nonter-
minal names. If you follow this rule, debugging it will be easier, since
you’ll know who to blame when things go wrong.

[2] Put grammar rules and actions on separate lines. This allows either
to be changed without an automatic need to change the other.

[3] Put all rules with the same left-hand side together. Put the left-hand
side in only once, and let all the following rules begin with a vertical
bar.

[4] Put a semicolon only after the last rule with a given left-hand side,
and put the semicolon on a separate line. This allows new rules to be
easily added.

[5] Indent rule bodies by two tab stops, and action bodies by three tab
stops.

6-24 yacc

SECTION 4 Support Tools

The example in the next section is written following this style, as are all
of the examples seen so far (or at least all the examples where space per-
mits). You’ll have to make up your own mind about these stylistic ques-
tions. The first principle, as always, is to make the rules visible through
the body of action code.

6.10.2 Left Recursion
The algorithm used by the yacc parser encourages so called “left recur-
sive” grammar rules: rules of the form

name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and
lists:

list : item
| list ´,´ item
;

and

seq : item
| seq item
;

In each of these cases, the first rule will be reduced for the first item
only, and the second rule will be reduced for the second and all succeed-
ing items.

With right recursive rules, such as

seq : item
| item seq
;

the parser would be a bit bigger, and the items would be seen, and
reduced, from right to left. More seriously, an internal stack in the
parser would be in danger of overflowing if a very long sequence were
read. Thus, the user should use left recursion wherever reasonable.

It	is	worth	considering	whether	a	sequence	with	zero	elements	has	any	
meaning, and if so, consider writing the sequence specification with an
empty rule:

seq : /* empty */ | seq item
;

Once again, the first rule would always be reduced exactly once, before
the first item was read, and then the second rule would be reduced once
for each item read. Permitting empty sequences often leads to increased
generality. However, conflicts might arise if yacc is asked to decide
which empty sequence it has seen, when it hasn’t seen enough to know.

yacc 6-25

SECTION 4 Support Tools

6.10.3 Lexical Tie-ins
Some lexical decisions depend on context. For example, the lexical
analyzer	might	want	to	delete	blanks	normally,	but	not	within	quoted	
strings. Or names might be entered into a symbol table in declarations,
but not in expressions.

One way of handling this situation is to create a global flag that is exam-
ined	by	the	lexical	analyzer,	and	set	by	actions.		For	example,	suppose	a	
program consists of 0 or more declarations, followed by 0 or more state-
ments. Consider:

%{
int dflag;
%}

%%

prog : decls stats
;

decls : /* empty */
{ dflag = 1; }
| decls declaration

stats : /* empty */
{ dflag = 0; }
| stats statement
;

The flag dflag is now 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. This token
must be seen by the parser before it can tell that the declaration section
has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of “backdoor” approach, while arguably impure (and condu-
cive to error), represents a way of doing some things that are difficult, if
not impossible, to do otherwise.

6.10.4 Reserved Words
Some programming languages permit the programmer to use words like
“if”, which are normally reserved, as label or variable names, provided
that such use does not conflict with the legal use of these names in the
programming language. This is extremely hard to do in the framework
of yacc;	it	is	difficult	to	pass	information	to	the	lexical	analyzer	telling	it	
“this instance of ‘if is a keyword, and that instance is a variable.” The
programmer can make a stab at it, using the mechanism described in the
previous subsection, but it is difficult.

6-26 yacc

SECTION 4 Support Tools

A number of ways of making this easier are under advisement. Until
then, it is better that the keywords be reserved, that is, be forbidden for
use as variable names. This is always the preferred course, especially
where style is concerned.

6.11 YACC INPUT SYNTAX
This section has a description of the yacc input syntax, as a yacc
specification. Context dependencies, etc., are not considered. Ironically,
the yacc input specification language is most naturally specified as an
LR(2) grammar; the sticky part comes when an identifier is seen in a
rule, immediately following an action. If this identifier is followed by a
colon, it is the start of the next rule; otherwise, it is a continuation of the
current rule, which just happens to have an action embedded in it. As
implemented,	the	lexical	analyzer	looks	ahead	after	seeing	an	identifier,	
and decides whether the next token (skipping blanks, newlines, com-
ments, etc.) is a colon. If so, it returns the token C_IDENTIFIER. Oth-
erwise, it returns IDENTIFIER. Literals (quoted strings) are also
returned as IDENTIFIERS, but never as part of C_IDENTIFIERs.

/* grammar for the input to yacc */

/* basic entities */
%token IDENTIFIER /* includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal) followed by colon */
%token NUMBER /* [0-9]+ */

/* reserved words: %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */
%token LCURL /* the %{ mark */
%token RCURL /* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec : defs MARK rules tail
;

tail : MARK { In this action, eat up the rest of the file }
| /* empty: the second MARK is optional */
;

defs : /* empty */

yacc 6-27

SECTION 4 Support Tools

| defs def
;

def : START IDENTIFIER
| UNION { Copy union definition to output }
| LCURL { Copy C code to output file } RCURL
| ndefs rword tag nlist
;

rword : TOKEN
| LEFT
| RIGHT
| NONASSOC
| TYPE
;

tag : /* empty: union tag is optional */
| ´ < ´ IDENTIFIER ´ > ´
;

nlist : nmno
| nlist nmno
| nlist ´,´ nmno
;

nmno : IDENTIFIER /* NOTE: literal illegal with %type */
| IDENTIFIER NUMBER /* NOTE: illegal with %type */
;

/* rules section */
rules : C_IDENTIFIER rbody prec
| rules rule
;

rule : C_IDENTIFIER rbody prec
| ´|´ rbody prec
;

rbody : /* empty */
| rbody IDENTIFIER
| rbody act
;

act : ´{´ { Copy action, translate $$, etc. } ´}´
;

prec : /* empty */

6-28 yacc

SECTION 4 Support Tools

| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec ´;´
;

6.12 EXAMPLES
In this section, we supply two related examples of yacc in action. One is
fairly simple; the other is a little more sophisticated. The second builds
upon the foundation laid by the first, so we urge you to examine
both.

6.12.1 A Simple Example
This example gives the complete yacc specification for a small desk cal-
culator;	the	desk	calculator	has	26	registers,	labeled	“a”	through	“z”,	
and accepts arithmetic expressions made up of the operators +, -, *, /, %
(mod operator), & (bitwise and), | (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is not printed; oth-
erwise	it	is.		As	in	C,	an	integer	that	begins	with	0	(zero)	is	assumed	to	
be octal; otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a reason-
able job of showing how precedences and ambiguities are used, and
demonstrating simple error recovery. The major oversimplifications are
that the lexical analysis phase is much simpler than for most applica-
tions, and the output is produced immediately, line by line. Note the
way that decimal and octal integers are read in by the grammar rules;
this	job	is	probably	better	done	by	the	lexical	analyzer.

yacc 6-29

SECTION 4 Support Tools

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left ´|´
%left ´&´
%left ´+´ ´-´
%left ´*´ ´/´ ´%´
%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list : /* empty */
| list stat ´\n´
| list error ´\n´
{ yyerrok; }
;

stat : expr
{printf(”%d\n” , $1); }
| LETTER ´ = ´ expr
{ regs[$1] = $3; }
;

expr : ´(´ expr ´)´
{ $$ = $2; }
| expr ´+´ expr
{ $$ = $1 + $3; }
| expr ´-´ expr
{ $$ = $1 - $3; }
| expr ´*´ expr
{ $$ = $1 * $3; }
| expr ´/´ expr
{ $$ = $1 / $3; }
| expr ´%´ expr
{ $$ = $1 % $3; }
| expr ´&´ expr
{ $$ = $1 & $3; }
| expr ´|´ expr

6-30 yacc

SECTION 4 Support Tools

{ $$ = $1 | $3; }
| ´-´ expr %prec UMINUS
{ $$ = _ $2; }
| LETTER
{ $$ = regs[$1]; }
| number
;

number : DIGIT
{ $$ = $1; base = ($1==0) ? 8 : 10; }
| number DIGIT
{ $$ = base * $1 + $2; }
;

%% /* start of programs */

yylex() { /* lexical analysis routine */
/* returns LETTER for a lower case letter, yylval = 0 through 25 */
/* return DIGIT for a digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

int c;

while((c=getchar()) == ´ ´) { /* skip blanks */ }

/* c is now nonblank */

if(islower(c)) {
yylval = c - ´ a´;
return (LETTER);
}
if(isdigit(c)) {
yylval = c - ´0´;
return(DIGIT);
}
return(c);
}

6.12.2 An Advanced Example
This section gives an example of a grammar using some of the more
advanced features of yacc. The desk calculator of the previous example
is here modified to provide a desk calculator that does floating point
interval arithmetic. The calculator understands floating point constants,
the arithmetic operations +, -, *, /, unary -, and = (assignment), and
has	26	floating	point	variables,	“a”	through	“z”.		Moreover,	it	also	
understands intervals, written

yacc 6-31

SECTION 4 Support Tools

(x , y)

where x is less than or equal to y. There are 26 interval valued variables
“A” through “Z” that may also be used. The usage is similar to that in
the previous section; assignments return no value, and print nothing,
while expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and C.
Intervals are represented by a structure, consisting of the left and right
endpoint values, stored as doubles. This structure is given a type name,
INTERVAL, by using typedef. The yacc value stack can also contain
floating point scalars, and integers (used to index into the arrays holding
the variable values). Notice that this entire strategy depends strongly on
being able to assign structures and unions in C. In fact, many of the
actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions:
division by an interval containing 0, and an interval presented in the
wrong order. In effect, the error recovery mechanism of yacc is used to
throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (e.g.,
scalar or interval) of intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem
can be seen by looking at the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the
second example, but this fact is not known until the “,” is read; by this
time, 2.5 is finished, and the parser cannot go back and change its mind.
More generally, it might be necessary to look ahead an arbitrary number
of tokens to decide whether to convert a scalar to an interval. This
problem is evaded by having two rules for each binary interval valued
operator: one when the left operand is a scalar, and one when the left
operand is an interval. In the second case, the right operand must be an
interval, so the conversion will be applied automatically. Despite this
evasion, there are still many cases where the conversion may be applied
or not, leading to the above conflicts. They are resolved by listing the
rules that yield scalars first in the specification file; in this way, the
conflicts will be resolved in the direction of keeping scalar valued expres-
sions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very gen-
eral. If there were many kinds of expression types, instead of just two,
the number of rules needed would increase dramatically, and the conflicts

6-32 yacc

SECTION 4 Support Tools

even more so. Thus, while this example is instructive, it is better prac-
tice in a more normal programming language environment to keep the
type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is
the treatment of floating point constants. The C library routine atof is
used to do the actual conversion from a character string to a double pre-
cision	value.		If	the	lexical	analyzer	detects	an	error,	it	responds	by	
returning a token that is illegal in the grammar, provoking a syntax error
in the parser, and thence error recovery.

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%}

%start lines

%union {
int ival;
double dval;
INTERVAL wal;
}

%token <ival> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <wal> vexp /* interval expression */

/* precedence information about the operators */

%left ´ + ´ ´-´
%left ´*´ ´/´

yacc 6-33

SECTION 4 Support Tools

%left UMINUS /* precedence for unary minus */

%%

lines : /* empty */
| lines line
;

line :dexp ´\n´
{ printf(”%15.8f\n”, $1); }
| vexp ´\n´
{ printf(”(%15.8f , %15.8f)\n”, $1.lo, $l.hi); }
| DREG ´=´ dexp ´\n´
{ dreg[$1] = $3; }
| VREG ´=´ vexp ´\n´
{ vreg[$1] = $3; }
| error ´\n´
{ yyerrok; }
;

dexp : CONST | DREG
{ $$ = dreg[$l]; } {
| dexp ´+´ dexp
{ $$ = $1 + $3; }
| dexp ´-´ dexp
{ $$ = $1 _ $3; }
| dexp ´*´ dexp
{ $$ = $1 * $3; }
| dexp ´/´ dexp
{ $$ = $1 / $3; }
| ´-´ dexp %prec UMINUS
{ $$ = - $2; }
| ´(´ dexp ´)´
{ $$ = $2; }
;

vexp : dexp
{ $$.hi = $$.lo= $1; }
| ´(´ dexp ´,´ dexp ´)´
{
$$.lo = $2;
$$.hi = $4;
if($$.lo > $$.hi){
printf(”interval out of order\n”);
YYERROR;
}
}

6-34 yacc

SECTION 4 Support Tools

| VREG
{ $$ = vreg[$1]; }
| vexp ´ +´ vexp
{ $$.hi = $l.hi + $3.hi;
$$.lo = $1.lo + $3.lo; }
| dexp ´+´ vexp
{ $$.hi = $1 + $3.hi;
$$.lo = $1 + $3.lo; }
| vexp ´-´ vexp
{ $$.hi = $1.hi - $3.lo;
$$.lo = $1.lo - $3.hi; }
| dexp ´-´ vexp
{ $$.hi = $1 - $3.lo;
$$.lo = $1 - $3.hi; }
| vexp ´*´ vexp
{ $$ = vmul($l.lo, $1.hi, $3); }
| dexp ´*´ vexp
{ $$ = vmul($1, $1, $3); }
| vexp ´/´ vexp
{ if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3); }
| dexp ´/´ vexp
{ if(dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3); }
| ´-´ vexp %precUMINUS
{ $$.hi = -$2.lo; $$.lo = -$2.hi; }
| ´(´ vexp ́)´
{ $$ = $2; }
;

%%

#	define	BSZ	50	/*	buffer	size	for	floating	point	numbers	*/

/* lexical analysis */
yylex(){
register c;

while((c=getchar()) == ´ ´){ /* skip over blanks */ }

if(isupper(c)){
yylval.ival = c - ´A´;
return(VREG);
}
if(islower(c)){
yylval.ival = c - ´a´;
return(DREG);

yacc 6-35

SECTION 4 Support Tools

}

if(isdigit(c) || c==´.´){
/* gobble up digits, points, exponents */
char buf[BSZ+1], *cp = buf; int dot = 0, exp = 0;
for(; (cp-buf)<BSZ ; ++cp,c=getchar()){

*cp = c;
if(isdigit(c)) continue;
if(c == ´.´){
if(dot++ || exp) return(´.´); /* will cause syntax error */
continue;
}
if(c==´e´){
if(exp++) return(´e´); /* will cause syntax error */
continue;
}

/* end of number */
break;
}
*cp = ´\0´;
if((cp-buf) >= BSZ) printf(”constant too long: truncated\n”);
else ungetc(c, stdin); /* push back last char read */
yylval.dval = atof(buf);
return(CONST);
}
return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if(a>b) { v.hi = a; v.lo = b; }
else { v.hi = b; v.lo = a; }

if(c>d) {
if(c>v.hi) v.hi = c;
if(d<v.lo) v.lo = d;
} else {
if(d>v.hi) v.hi = d;

6-36 yacc

SECTION 4 Support Tools

if(c<v.lo) v.lo = c;
}
return(v); }

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= 0.){
printf(”divisor interval contains 0.\n”);
return(1);
}
return(0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

6.13 OLD FEATURES SUPPORTED BUT NOT
 ENCOURAGED

This section mentions synonyms and features that are supported for his-
torical continuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes “””.

2. Literals may be more than one character long. If all the characters
are alphabetic, numeric, or _, the type number of the literal is
defined, just as if the literal did not have the quotes around it.
Otherwise, it is difficult to find the value for such literals.

3. The use of multi-character literals is likely to mislead those unfami-
liar with yacc, since it suggests that yacc is doing a job which
must	be	actually	done	by	the	lexical	analyzer.

4. Most places where % is legal, backslash “\” may be used. In par-
ticular, \\ is the same as %%, \left the same as %left, etc..

5. There are a number of other synonyms:

 %< is the same as %left
 %> is the same as %right
 %binary and %2 are the same as %nonassoc
 %0 and %term are the same as %token
 %= is the same as %prec

6. Actions may also have the form

yacc 6-37

SECTION 4 Support Tools

 ={...}

 and the curly braces can be dropped if the action is a single C
statement.

7. C code between %{ and %} used to be permitted at the head of
the rules section, as well as in the declaration section.

sccs 7-1

SECTION 4 Support Tools

Chapter 7: The Source Code Control System

7.1 INTRODUCTION
In this chapter, we give an overview of the Source Code Control System
(sccs). The material here is for programmers who are concerned with
getting their task done rather than with how sccs works. Those who
need more detailed information will find it under the heading “Further
Information” at the end of this chapter.

sccs is a source management system. It is actually a collection of pro-
grams that, used together, help you maintain a record of versions of a
program. A record kept with each set of changes details what the
changes are, why and when they were made, and who made them. Old
versions can be recovered, and different versions can be maintained
simultaneously. In projects with more than one person, sccs will ensure
that two people are not editing the same file at the same time.

All versions of your program, plus the log and other information, is kept
in a file called the “s-file.” There are three major operations that can be
performed on the s-file:

1. Get a file for compilation (not for editing). This operation retrieves
a version of the file from the s-file. By default, the latest version is
retrieved. This file should not be edited or changed in any way. If
you make any changes made to a file retrieved in this way, they
will probably be lost.

2. Get a file for editing. This operation retrieves from the s-file, a ver-
sion of the file that may be edited, then incorporated back into the
s-file. Only one person may be editing a file at one time.

3. Merge a file back into the s-file. This is the companion operation
to (2). A new version number is assigned, and comments are saved
explaining why this change was made.

7.2 TERMINOLOGY
There are a number of terms that are worth learning before we go any
further.

S-file The s-file is a single file that holds all the different versions
of your file. The s-file is stored in differential format. That
is to say, only the differences between versions are stored,
rather than the entire text of the new version. This saves
disk space and allows selective changes to be removed later.
Also included in the s-file is some header information for

7-2 sccs

SECTION 4 Support Tools

 each version, including the comments given by the person
who created the version explaining why the changes were
made.

Deltas Each set of changes to the s-file which is approximately
equivalent	to	a	version	of	the	file	—	is	called	a	delta.
Although technically a delta only includes the changes
made, in practice it is usual for each delta to be made with
respect to all the deltas that have occurred before. This
matches normal usage, where the previous changes are not
saved at all; so all changes are automatically based on all
other changes that have happened through history. It is
possible to get a version of the file that has selected deltas
removed from the middle of the list of changes. This is
equivalent to removing your changes later.

sid A sid (sccs ID) is a number that represents a delta. This
is normally a two-part number consisting of a release
number and a level number. Normally, the release number
stays the same; however, it is possible to move into a new
release if some major change is being made. Since all past
deltas are normally applied, the sid of the final delta
applied can be used to represent a version number of the
file as a whole.

ID keywords When you get a version of a file with intent to compile and
install it (not edit it), some special keywords are expanded
inline by sccs. These ID Keywords can be used to include
the current version number or other information in the file.
All ID keywords are of the form %x%, where x is an upper
case letter. For example, %I% is the sid of the latest
delta applied, %W% includes the module name, sid, and a
mark that makes it findable by a program, and %G% is
the date of the latest delta applied.

When you retrieve a file for editing, the ID keywords are not expanded.
After you put them back in to the s-file, they will be expanded automati-
cally on each new version. (If keywords were to be expanded acciden-
tally, then a file would always appear to be the same version.) If you
install a version of the program without expanding the ID keywords, it
will be impossible to tell what version it is,

7.3 CREATING SCCS FILES
To put source files into sccs format, run the following C Shell script.

sccs 7-3

SECTION 4 Support Tools

#! /bin/csh
mkdir save
foreach i (*.[ch])
 admin -i$i s.$i
 mv $i save/$i
end

This will create s-files in the current directory. The files will be removed
from the current directory and hidden away in the directory save. To
get all the files out of this directory, use the procedure described below.
When you are convinced that sccs has created the proper s-files, you
should remove the directory save.

If you want to have ID keywords in the files, it is best to put them in be-
fore you create the s-files. Otherwise, admin[1] will display the “No
ID Keywords (cm7)”, warning message.

7.4 Getting Files for Compilation
To get a copy of the latest version of the file prog.c, use the line:

get s.prog.c
Get will respond:

1.1
87 lines

meaning that version 1.1 was retrieved, and that it has 87 lines.

Note: Get obtains the version number from the sid of the final delta
applied.

The file prog.c will be created in the current directory. The file will be
read-only to remind you that you are not supposed to change it.

Caution: This copy of the file should not be changed, since delta is
unable to merge the changes back into the s-file. If you do
make changes, they will be lost the next time someone does a
get.

7.5 Changing Files (Creating Deltas)
In this section, we explain how to retrieve and change (or delta) a file.

7.5.1 Getting a Copy to Edit
To edit a source file, you must first get it, requesting permission to edit it,
as shown below.

get -e prog.c
The response will be the same as with get except that it will also say:

7-4 sccs

SECTION 4 Support Tools

New delta 1.2

You then edit it, using any text editor.

7.5.2 Merging the Changes Into the s-file
When you have completed the desired changes, you can merge them into
the sccs file using the delta command:

delta s.prog.c
Delta will prompt you for “comments?” before it merges the changes in.
At this prompt, you may type a one-line comment. To enter a multi-line
comment, end each line but the last with a concealed newline (a
backslash \). Delta will then display a message like:

1.2
5 inserted
3 deleted
84 unchanged

meaning that

•	delta	1.2	was	created

•	it	inserted	five	lines

•	it	removed	three	lines

•	it	left	84	lines	unchanged.		(Changes	to	a	line	are	counted	as	a	line	
deleted and a line inserted.)

The prog.c file will be removed; it can be retrieved using get.
7.5.3 When to Make Deltas
It is probably unwise to make a delta before every recompilation or test;
otherwise, you tend to get a lot of deltas with comments like “fixed com-
pilation problem in previous delta” or “fixed botch in 1.3.” However, it
is very important to delta everything before installing a module for gen-
eral use. A good technique is to edit the files you need, make all neces-
sary changes and tests, compiling and editing as often as necessary
without making deltas. When you are satisfied that you have a working
version, delta everything being edited, re-get the files, and recompile
everything.

7.5.4 The sact Command
To find out what files where being edited, you can use:

sact .
to print out all the files being edited in the current directory. The out-
put for each named file consists of five fields separated by spaces. These
fields specify the following information:

Field 1 SID of an existing delta in the sccs file to which changes
will be made to create the new delta.

sccs 7-5

SECTION 4 Support Tools

Field 2 SID for the new delta to be created.

Field 3 Logname of the user who will make the delta (i.e., the per-
son who executed a get for editing).

Field 4 Date that get -e was executed.

Field 5 Time that get -e was executed.

Note: The command:

 sacct s.prog.c
 prints a report for file prog.c only.

7.5.5 ID Keywords
ID keywords can be inserted into your file that will be expanded
automatically by get. For example, a line such as:

static char SccsId[] = ”%W%\t%G%”;

will be replaced with something like:

static char SccsId[] = ”@(#)prog.c 1.208/29/80”;

This tells you the name and version of the source file and the time the
delta was created. The string @(#) is a special string that signals the
beginning of an sccs ID keyword.

7.5.6 The what Command
To find out what version of a program is being run, use:

what prog.c /usr/bin/prog
which will print all strings it finds that begin with @(#). This works on
all types of files, including binaries and libraries. For example, the above
command will output something like:

prog.c:
 prog.c 1.208/29/80
/usr/bin/prog:
 prog.c 1.102/05/79

This means that the source in prog.c will not compile into the same ver-
sion as the binary in /usr/bin/prog.

7.5.7 Where to Put ID Keywords
ID keywords can be inserted anywhere, including in comments, but ID
Keywords that are compiled into the object module are especially useful,
since it lets you get version information from object as well as the source
code. This practice requires additional address space for the object
module, something that will not normally present a problem on virtual
memory machines.

7-6 sccs

SECTION 4 Support Tools

When you put ID Keywords into header files, it is important that you
assign them to different variables. For example, you might use:

static char AccessSid[] = ”%W% %G%”;

in the file access.h and:

static char OpsysSid[] = ”%W% %G%”;

in the file opsys.h. Otherwise, you will get compilation errors because
SccsId is redefined. The problem with this is that if the header file is
included by many modules that are loaded together, the version number
of that header file is included in the object module many times; you may
find it more to your taste to put ID keywords in header files in com-
ments.

7.5.8 Keeping SID’s Consistent Across Files
With some care, it is possible to keep the sid’s consistent in multi-file
systems. The trick here is to always edit all files at once. The changes
can then be made to whatever files are necessary and then all files (even
those not changed) given new deltas. This can be done fairly easily by

get -e s.*
which will create editable copies of all files in the current directory. To
make the delta, use:

delta s.*
You will be prompted for comments only once.

7.5.9 Creating a New Release
When you want to create a new release of a program, you can specify the
release number you want to create on the get command line. For exam-
ple,

get -e -r2 s.prog.c
will cause the next delta to be in release two (that is, it will be numbered
2.1). Future deltas will automatically be in release two. To change the
release number of an entire system, use:

get -e -r2 s.*

7.6 RESTORING OLD VERSIONS
7.6.1 Reverting to Old Versions
Suppose that after delta 1.2 was stable you made and released a delta 1.3,
which introduced a bug, so you made a delta 1.4 to correct it. But 1.4
was still buggy, and you decided you wanted to go back to the old version.
You could revert to delta 1.2 by choosing the sid in a get:

get -r1.2 s.prog.c

sccs 7-7

SECTION 4 Support Tools

This will produce a version of prog.c as it was at delta 1.2. This version
can then be reinstalled.

In some cases you don’t know the sid of the delta you want. However,
you can revert to the version of the program that was running as of a
certain date by using the -c (cutoff) flag. For example,

get -C850122120000 s.prog.c
will retrieve whatever version was current as of January 22, 1985 at 12:00
noon. Trailing components can be stripped off (defaulting to their
highest legal value), and punctuation can be inserted in the obvious
places; for example, the above line could be equivalently stated:

get -c”85/01/22 12:00:00” s.prog.c
7.6.2 Selectively Deleting Old Deltas
Suppose that you later decided that the delta you made at 1.3 was
incorrect. You could remove it by

rmdel -x1.3 s.prog.c
Rmdel removes the latest delta from each named sccs file. The delta to
be removed must be the newest (most recent) one in its branch in the
delta chain. The SID specified must not be that of a version being edited
for the purpose of making a delta. Thus, if a p-file exists for the named
sccs file, the SID specified must not appear in any entry of the p-file.

If you give a directory as an argument, rmdel behaves as though each
file in the directory were specified as a named file, except that it silently
ignores any non-sccs or otherwise unreadable files. If you supply a dash
(-) in place of a filename, the standard input is read. Each line of the
standard input is taken to be the name of an sccs file to be processed.
Here, too, non-sccs files and unreadable files are silently ignored.

Permission to remove a delta is granted to the person who created it, as
well as to the owner of the associated file and directory.

7.7 AUDITING CHANGES
7.7.1 The prs Command
When you created a delta, you presumably gave a reason for the delta to
the “comments?” prompt. To print out these comments later, use:

prs s.prog.c
This will produce a report for each delta of the sid, time and date of
creation, user who created the delta, number of lines inserted, deleted,
and unchanged, and the comments associated with the delta. For exam-
ple, the output of the above command might be:

7-8 sccs

SECTION 4 Support Tools

% prs //ice/kate/s.foo.h
//ice/kate/s.foo.h:

D 2.2 85/05/16 12:53:45 kate 4 3 00001/00000/00002
MRs:
COMMENTS:
third time is a charmer

D 2.1 85/05/16 12:52:58 kate 3 2 00001/00000/00001
MRs:
COMMENTS:
new test

D 1.2 85/05/16 12:48:12 kate 2 1 00000/00000/00001
MRs:
COMMENTS:
testint

D 1.1 85/05/16 12:41:58 kate 1 0 00001/00000/00000
MRs:
COMMENTS:
date and time created 85/05/16 12:41:58 by kate

7.7.2 Finding Why Lines Were Inserted
To find out why you inserted lines, you can get a copy of the file with
each line preceded by the sid that created it:

get -m s.prog.c
You can then find out what this delta did by printing the comments
using prs.
To find out what lines are associated with a particular delta (e.g., 1.3),
use:

get -m -p s.prog.c | grep ´^1.3´
The -p flag causes get to output the generated source to the standard
output rather than to a file.

7.7.3 Finding What Changes You Have Made
To compare two versions that are in deltas, use:

sccsdiff -r1.3 -r1.6 s.prog.c
to see the differences between delta 1.3 and delta 1.6.

sccs 7-9

SECTION 4 Support Tools

7.7.4 Unget
If you inadvertently edit the wrong file, you can back out by using the
unget command.

unget s.prog.c
7.8 USING SCCS ON A PROJECT
Working on a project with several people has its own set of special prob-
lems. The main problem occurs when two people modify a file at the
same time. sccs prevents this by locking an s-file while it is being
edited.

As a result, files should not be reserved for editing unless they are actu-
ally being edited at the time, since this will prevent other people on the
project from making necessary changes. For example, a typical session
might include the following command lines and messages. (We show a C
Shell prompt, although sccs will run in any shell, under any version of
domain/ix)

% get -e s.a.c s.g.c s.t.c
% vi a.c g.c t.c
...do testing of the (experimental) version
% delta s.a.c s.g.c s.t.c
% get s.a.c s.g.c s.t.c
% sact
No outstanding deltas for s.a.c
No outstanding deltas for s.g.c
No outstanding deltas for s.t.c
% make install

As a general rule, all source files should be given new deltas before instal-
ling the program for general use. This will ensure that it is possible to
restore any version in use at any time.

7.9 ERROR RECOVERY
7.9.1 Recovering a Damaged Edit File
Sometimes you may find that you have destroyed or damaged a file that
you were trying to edit. Unfortunately, you can’t just remove and re-
edit it. sccs keeps track of the fact that someone is trying to edit it, so
it won’t let you do it again. Neither can you just get it using since that
would expand the ID Keywords. Instead, you must say:

get -k s.prog.c
This will not expand the ID Keywords, so it is safe to do a delta with it.

7.9.2 Restoring the s-file
Occasionally, the sccs file itself may get damaged (usually edited). Since
sccs keeps a checksum, you will get errors every time you read the file.
To fix this checksum, use:

admin -z s.prog.c

7-10 sccs

SECTION 4 Support Tools

7.10 USING THE admin[1] COMMAND
There are a number of parameters that can be set using the admin[1]
command. The most interesting of these are flags. Flags can be added
by using the -f flag. For example:

admin —fd1 s.prog.c
sets the d flag to the value 1. This flag can be deleted by using:

admin -dd s.prog.c
The most useful flags are:

b Allow branches to be made using the -b flag to get.
dS S is the default sid to be used on a get. If this is just a release

number, it constrains the version to a particular release only.

i Gives a fatal error if there are no ID Keywords in a file. This is
useful to guarantee that a version of the file does not get merged
into the s-file that has the ID Keywords inserted as constants
instead of internal forms.

y The type of the module. Actually, the value of this flag is unused
by sccs except that it replaces the %Y% keyword.

The -tfile flag can be used to store descriptive text from file. This
descriptive text might be the documentation or a design and implementa-
tion document. Using the -t flag ensures that if the sccs file is sent, the
documentation will be sent also. If file is omitted, the descriptive text is
deleted. To see the descriptive text, use prs -t.
The admin command can be used safely any number of times on files.
A file need not be gotten for admin to work.

7.11 MAINTAINING DIFFERENT VERSIONS (BRANCH-
ES)

Sometimes it is convenient to maintain an experimental version of a pro-
gram for an extended period while normal maintenance continues on the
version in production. This can be done using a branch. Normally, del-
tas continue in a straight line, each depending on the delta before.
Creating a branch forks off a version of the program.

The ability to create branches must be enabled in advance using:

admin -fb s.prog.c
The -fb flag can be specified when the sccs file is first created.

7.11.1 Creating a Branch
To create a branch, use:

get -e -b s.prog.c

sccs 7-11

SECTION 4 Support Tools

This will create a branch with (for example) sid 1.5.1.1. The deltas for
this version will be numbered 1.5.1.n.

7.11.2 Getting from a Branch
Deltas in a branch are normally not included when you do a get. To get
these versions, you will have to say:

get -r1.5.1 s.prog.c
7.11.3 Merging a Branch Back into the Main Trunk
At some point, you will have finished the experiment, and if it was suc-
cessful you will want to incorporate it into the release version. But in
the meantime, someone may have created a delta 1.6 that you do not
want to lose. The commands:

get -e -i1.5.1.1-1.5.1 s.prog.c
delta s.prog.c

will merge all of your changes into the release system. If some of the
changes conflict, get will print an error; the generated result should be
carefully examined before the delta is made.

Note: Branches should be kept to a minimum. After the first
branch from the trunk, sid’s	are	assigned	rather	haphazardly,	
and the structure gets complex fast.

7.12 USING SCCS WITH MAKE
sccs and make can be made to work together with a little care. A few
sample makefiles for common applications are shown.

There are a few entries that every makefile should include. These are:

a.out (or other makefile output) This entry regenerates whatever
this makefile is supposed to regenerate. If the makefile
regenerates many things, this should be called all and
should in turn have dependencies on everything the
makefile can generate.

install Moves the objects to the final resting place, doing any spe-
cial chmod’s or ranlib’s that are required.

sources Creates all the source files from sccs files.

clean Removes all unwanted objects from the directory.

print Prints the contents of the directory.

The clean entry should not remove files that can be regenerated from the
sccs files. It is sufficiently important to have the source files around at
all times that the only time they should be removed is when the
directory is being mothballed.

7-12 sccs

SECTION 4 Support Tools

7.12.1 To Maintain Single Programs
Frequently there are directories with several largely unrelated programs
(such as simple commands). These can be put into a single makefile:

LDFLAGS= -i -s
prog: prog.o
 $(CC) $(LDFLAGS) -o prog prog.o
prog.o: prog.c prog.h
example: example.o
 $(CC) $(LDFLAGS) -o example example.o
example.o: example.c
.DEFAULT:
 get s.$<

The trick here is that the .DEFAULT rule is called every time something
is needed that does not exist, and no other rule exists to make it. The
explicit dependency of the .o file on the .c file is important. Another
way of doing the same thing is:

SRCS= s.prog.c s.prog.h s.example.c

LDFLAGS= -i -s

prog: prog.o
 $(CC) $(LDFLAGS) -o prog prog.o
prog.o: prog.h
example: example.o
 $(CC) $(LDFLAGS) -o example example.o
sources: $(SRCS)
$(SRCS):
 get s.$@

There are a couple of advantages to this approach.

1. The explicit dependencies of the .o on the .c files are not needed.

2. There is an entry called “sources” so if you want to get all the
sources you can just say

 make sources
3. The makefile is less likely to do confusing things since it won’t try

to get things that do not exist.

7.12.2 To Maintain a Library
Libraries that are largely static are best updated using explicit com-
mands, since make doesn’t know about updating them properly. How-
ever, libraries that are in the process of being developed can be handled
quite adequately. The problem is that the .o files have to be kept out of
the library as well as in the library.

sccs 7-13

SECTION 4 Support Tools

configuration information
OBJS= a.o b.o c.o d.o
SRCS=	a.c	b.c	c.c	d.s	x.h	y.h	z.h	
TARG= /usr/lib

programs
GET= get
REL=
AR= -ar
RANLIB= ranlib

lib.a: $(OBJS)
 $(AR) rvu lib.a $(OBJS)
 $(RANLIB) lib.a

install: lib.a
 cp lib.a $(TARG)/lib.a
 $(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$(SRCS):
 $(GET) $(REL) s.$@

print: sources
 pr *.h *.[cs]
clean:
 rm -f *.o
 rm -f core a.out $(LIB)

The $(REL) in the get can be used to get old versions easily; for example:

make b.o REL=-r1.3
7.12.3 To Maintain a Large Program

OBJS= a.o b.o c.o d.o
SRCS=	a.c	b.c	c.y	d.s	x.h	y.h	z.h

GET= get
REL=

a.out: $(OBJS)
 $(CC) $(LDFLAGS) $(OBJS) $(LIBS)

sources: $(SRCS)
$(SRCS):
 $(GET) $(REL) $@

It is probably also wise to include lines of the form:

7-14 sccs

SECTION 4 Support Tools

a.o: x.h y.h
b.o:	z.h
c.o:	x.h	y.h	z.h	
z.h:	x.h

so that modules will be recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find
in some makefiles lines like:

z.h:	x.h
	 touch	z.h

This	would	be	used	in	cases	where	file	z.h	has	a	line:

#include ”x.h”

in	order	to	bring	the	mod	date	of	z.h	in	line	with	the	mod	date	of	x.h.		
When you have a makefile such as above, the touch command can be
removed completely; the equivalent effect will be achieved by doing an
automatic get	on	z.h.

7.13 SUMMARY OF COMMANDS AND KEYWORDS
7.13.1 Commands
get Gets files for compilation (not for editing). ID Keywords

are expanded.

-rsid Version to get.

-p Send to standard output rather than to the actual
file.

-k Don’t expand ID Keywords.

-ilist List of deltas to include.

-xlist List of deltas to exclude.
-m Precede each line with sid of creating delta.

-cdate Don’t apply any deltas created after date.

-e Gets files for editing.

-b Create a branch.

-ilist Same as get.
-xlist Same as get.

delta Merge a file gotten using get -e back into the s-file. Col-
lect comments about why this delta was made.

unget Remove a file that has been edited previously without
merging the changes into the s-file.

sccs 7-15

SECTION 4 Support Tools

prs Produce a report of changes.

what Find and print ID Keywords.

admin Create or set parameters on s-files.

-ifile Create, using file as the initial contents.

-z Rebuild the checksum in case the file has been dam-
aged.

-tfile Replace the descriptive text in the s-file with the
contents of file. If file is omitted, the text is
deleted. Useful for ensuring that documentation gets
distributed with the s-file.

-fflag Turn on the flag.

-dflag Turn off (delete) the flag.

 flags

b Allow branches to be made using the -b flag
to edit.

dS S is the default sid to be used on a get.
i Cause No ID Keywords error message to be a

fatal error rather than a warning.

t The module type; the value of this flag
replaces the %Y% keyword.

7.13.2 ID Keywords
%Z% Expands to @(#) for the what command to find.

%M% The current module name, e.g., prog.c.

%l% The highest sid applied.

%W% A shorthand for %Z%%M% < tab> %I%.

%G% The date of the delta corresponding to the %I% keyword.

%K% The current release number, i.e., the first component of the
%I% keyword.

%Y% Replaced by the value of the t flag (set by admin.)

Index 1

*
$
 in make 4-4
 in yacc 6-5
 lex operator 5-7
%, in yacc 6-3
*, lex operator 5-7
+, lex operator 5-7
;, in yacc 6-4
?, lex operator 5-7
^, lex operator 5-7
{, lex operator 5-8
|, in yacc 6-4
, lex operator 5-7

A
action, awk 1-1
arguments, unused, and lint 3-2
awk
 arithmetic functions 1-8
 arrays in 1-10
 comment 1-11
 pattern 1-5
 program 1-2
 regular expressions 1-5
 action, print 1-3
 function, split 1-9
 statement, printf 1-4

B
backslash, yacc escape 6-3
BEGIN, awk pattern 1-5

C
comment,
 in awk program 1-11
 in yacc 6-3

D
delta, SCCS command 7-4
disambiguating rule 6-14, 6-19
dollar sign, in yacc 6-5

E
END, awk pattern 1-5
extern, and lint 3-2

F
field separator, awk 1-3
for, awk statement 1-11

I
if, awk statement 1-11
IGNORE, in make 4-6
input(), lex routine 5-11, 5-16, 5-21

L
large files, to edit 2-1
length, awk function 1-7
lex
 actions 5-2
 default actions 5-8
 REJECT 5-13
 and make 4-7, 4-8
 regular expressions 5-4
 rules 5-2
line-number, in sed 2-3
lint
 and DOMAIN C compiler 3-2
 and lex, yacc 3-3
 LINTLIBRARY directive 3-12
 NOSTRICT directive 3-11
 NOTREACHED directive 3-11
 VARARGS directive 3-11
lint messages
 constant in conditional context 3-6
 degenerate unsigned comparison 3-6
 nonportable character comparison 3-6
 null effect 3-6
LINTLIBRARY, lint directive 3-12

M
make
and lex, yacc 4-7

Index

2 Index

SECTION 4 Support Tools

 and lex, yacc 4-8
 command line arguments 4-6
 comments 4-4
 dependency line 4-5
 macros 4-3
 suffix rules 4-11
 “touch” option 4-10
makefile 4-7

N
NOSTRICT, lint directive 3-11
NOTREACHED, lint directive 3-11

O
output(), lex routine 5-11, 5-16, 5-21

P
pattern,
 in awk 1-1
 in sed 2-2

R
record separator, awk 1-3
regular expressions, in awk 1-5
regular expressions, in lex 5-4
regular expressions, in sed 2-1
REJECT, lex action 5-23
release number, sees 7-6

S
sccs
 delta 7-2
 ID keywords 7-3
 ID keywords 7-5
 release number 7-6
 s-file 7-1
 sact 7-5
 SID 7-2
 to edit files 7-3
sed commands
 c 2-6
 d 2-5
 i 2-6
 n 2-5
 s 2-7
sed functions
 G 2-10
 g 2-10
 H 2-10
 h 2-10

 N 2-10
 P 2-10
 p 2-8
 R 2-10
 r 2-9
 w 2-9
 x 2-10
semicolon, in yacc 6-4
sprintf, awk function 1-8
SUFFIXES, used by make 4-11

U
unput(), lex routine 5-11, 5-16, 5-21

V
VARARGS, lint directive 3-11

W
while, awk statement 1-11

Y
y.output, file 6-17
yacc
 actions 6-5
 and make 4-7, 4-8
 comment 6-3
 conflict messages 6-16
 endmarker 6-5
 error handling in 6-2
 grammar rule numbers 6-9
 paser actions 6-9
 start symbol 6-4
 y.output file 6-17
yacc actions,
 error 6-10
 goto 6-10
 reduce 6-10
 shift 6-9
 within rules 6-15
yacc keywords 6-18
yydebug, yacc variable 6-23
yylex 5-1, 6-7
yyval, yacc variable 6-7
yywrap(), lex library routine 5-11

APPENDICES

Appendix A: The C Language—Reference Manual†
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
This manual describes the C language on the DEC PDP-11, the Honeywell

6000, the IBM System/370, and the Interdata 8/32. Where differences exist, it
concentrates on the PDP-11, but tries to point out implementation-dependent
details. With few exceptions, such dependencies follow directly from the proper-
ties of the hardware; the various compilers are generally quite compatible.

2. LEXICAL CONVENTIONS
There are six classes of tokens: identifiers, keywords, constants, strings, opera-

tors, and other separators. Blanks, tabs, new-lines, and comments (collectively,
“white space”) as described below are ignored except as they serve to separate
tokens. Some white space is required to separate otherwise adjacent identifiers,
keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to include the longest string of characters which could possi-
bly constitute a token.

2.1 Comments
The characters /* introduce a comment, which terminates with the charac-

ters */. Comments do not nest.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the first character must be a

letter; the underscore _ counts as a letter. Upper and lower case letters are
different. No more than the first eight characters are significant, although more
may be used. External identifiers, which are used by various assemblers and
loaders, are more restricted:

DEC PDP-11 7 characters, 2 cases
Honeywell 6000 6 characters, 1 case
IBM 360/370 7 characters, 1 case
Interdata 8/32 8 characters, 2 cases

† This manual is reprinted, with minor changes, from The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, Inc., 1978.

A-2 C Reference Manual

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be

used otherwise:

int short goto for
char unsigned return do
float auto sizeof while
double extern break switch
struct register continue case
union typedef if default
long static else entry

The entry keyword is not currently implemented by any compiler but is
reserved for future use. Some implementations also reserve the words fortran
and asm.

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteris-

tics	that	affect	sizes	are	summarized	in	§2.6.

2.4.1 Integer constants
An integer constant consisting of a sequence of digits is taken to be octal if it

begins with 0	 (digit	zero),	decimal	otherwise.	 	The	digits	8 and 9 have octal
value 10 and 11 respectively. A sequence of digits preceded by 0x or 0X (digit
zero)	is	taken	to	be	a	hexadecimal	integer.		The	hexadecimal	digits	include	a or A
through f or F with values 10 through 15. A decimal constant whose value
exceeds the largest signed machine integer is taken to be long; an octal or hex
constant which exceeds the largest unsigned machine integer is likewise taken to
be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by l

(letter ell) or L is a long constant. As discussed below, on some machines integer
and long values may be considered identical.

2.4.3 Character constants
A character constant is a character enclosed in single quotes, as in ’x’. The

value of a character constant is the numerical value of the character in the
machine’s character set.

Certain non-graphic characters, the single quote ‘ and the backslash \, may
be represented according to the following table of escape sequences:

C Reference Manual A-3

new-line NL (LF) \n
horizontal	tab	 HT	 \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ’ \’
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits
which are taken to specify the value of the desired character. A special case of
this construction is (not followed by a digit), which indicates the character
NUL. If the character following a backslash is not one of those specified, the
backslash is ignored.

2.4.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction

part, an e or E, and an optionally signed integer exponent. The integer and frac-
tion parts both consist of a sequence of digits. Either the integer part or the
fraction part (not both) may be missing; either the decimal point or the e and
the exponent (not both) may be missing. Every floating constant is taken to be
double-precision.

2.5 Strings
A string is a sequence of characters surrounded by double quotes, as in

”. . .”. A string has type “array of characters” and storage class static (see
§4	below)	and	 is	 initialized	with	the	given	characters.	 	All	strings,	even	when	
written identically, are distinct. The compiler places a null byte at the end of
each string so that programs which scan the string can find its end. In a string,
the double quote character ” must be preceded by a \; in addition, the same
escapes as described for character constants may be used. Finally, a \ and the
immediately following new-line are ignored.

2.6 Hardware characteristics
The	following	table	summarizes	certain	hardware	properties	that	vary	from	

machine to machine. Although these affect program portability, in practice they
are less of a problem than might be thought a priori.

char
int
short
long
float
double
range

DEC PDP-11
ASCII
 8 bits
 16
 16
 32
 32
 64
±10±38

Honeywell 6000
ASCII
 9 bits
 36
 36
 36
 36
 72
±10±38

IBM 370
EBCDIC

 8 bits
 32
 16
 32
 32
 64
±10±76

Interdata 8/32
ASCII
 8 bits
 32
 16
 32
 32
 64
±10±76

A-4 C Reference Manual

3. SYNTAX NOTATION
In the syntax notation used in this manual, syntactic categories are indicated

by italic type, and literal words and characters in bold type. Alternative
categories are listed on separate lines. An optional terminal or non-terminal sym-
bol is indicated by the subscript “opt,” so that

{ expressionopt }

indicates	an	optional	expression	enclosed	in	braces.		The	syntax	is	summarized	in	
§18.

4. WHAT’S IN A NAME?
C bases the interpretation of an identifier upon two attributes of the

identifier: its storage class and its type. The storage class determines the loca-
tion and lifetime of the storage associated with an identifier; the type determines
the meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and
register.		Automatic	variables	are	local	to	each	invocation	of	a	block	(§9.2),	and	
are discarded upon exit from the block; static variables are local to a block, but
retain their values upon reentry to a block even after control has left the block;
external variables exist and retain their values throughout the execution of the
entire program, and may be used for communication between functions, even
separately compiled functions. Register variables are (if possible) stored in the
fast registers of the machine; like automatic variables they are local to each block
and disappear on exit from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member

of the implementation’s character set, and if a genuine character from that char-
acter set is stored in a character variable, its value is equivalent to the integer
code for that character. Other quantities may be stored into character variables,
but the implementation is machine-dependent.

Up	 to	 three	 sizes	 of	 integer,	 declared	 short int, int, and long int, are
available. Longer integers provide no less storage than shorter ones, but the
implementation may make either short integers, or long integers, or both,
equivalent	to	plain	integers.	“Plain”	integers	have	the	natural	size	suggested	by	
the	host	machine	architecture;	the	other	sizes	are	provided	to	meet	special	needs.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n
where n is the number of bits in the representation. (On the PDP-11, unsigned
long quantities are not supported.)

Single-precision floating point (float) and double-precision floating point
(double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers,
they will be referred to as arithmetic types. Types char and int	 of	 all	 sizes	
will collectively be called integral types, float and double will collectively
be called floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class
of derived types constructed from the fundamental types in the following ways:

arrays of objects of most types;

C Reference Manual A-5

functions which return objects of a given type;
pointers to objects of a given type;
structures containing a sequence of objects of various types;
unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

5. OBJECTS AND LVALUES
An object is a manipulatable region of storage; an lvalue is an expression

referring to an object. An obvious example of an lvalue expression is an
identifier. There are operators which yield lvalues: for example, if E is an expres-
sion of pointer type, then *E is an lvalue expression referring to the object to
which E points. The name “lvalue” comes from the assignment expression
E1 = E2 in which the left operand E1 must be an lvalue expression. The dis-
cussion of each operator below indicates whether it expects lvalue operands and
whether it yields an lvalue.

6. CONVERSIONS
A number of operators may, depending on their operands, cause conversion of

the value of an operand from one type to another. This section explains the
result	 to	be	 expected	 from	 such	 conversions.	 §6.6	 summarizes	 the	 conversions	
demanded by most ordinary operators; it will be supplemented as required by the
discussion of each operator.

6.1 Characters and integers
A character or a short integer may be used wherever an integer may be used.

In all cases the value is converted to an integer. Conversion of a shorter integer
to a longer always involves sign extension; integers are signed quantities.
Whether or not sign-extension occurs for characters is machine dependent, but it
is guaranteed that a member of the standard character set is non-negative. Of
the machines treated by this manual, only the PDP-11 sign-extends. On the
PDP-11, character variables range in value from -128 to 127; the characters of
the ASCII alphabet are all positive. A character constant specified with an octal
escape suffers sign extension and may appear negative; for example, ’\377’ has
the value -1.

When a longer integer is converted to a shorter or to a char, it is truncated
on the left; excess bits are simply discarded.

6.2 Float and double
All floating arithmetic in C is carried out in double-precision; whenever a

float appears in an expression it is lengthened to double	by	zero-padding	its	
fraction. When a double must be converted to float, for example by an
assignment, the double is rounded before truncation to float length.

6.3 Floating and integral
Conversions of floating values to integral type tend to be rather machine-

dependent; in particular the direction of truncation of negative numbers varies
from machine to machine. The result is undefined if the value will not fit in the
space provided.

Conversions of integral values to floating type are well behaved. Some loss of
precision occurs if the destination lacks sufficient bits.

A-6 C Reference Manual

6.4 Pointers and integers
An integer or long integer may be added to or subtracted from a pointer; in

such a case the first is converted as specified in the discussion of the addition
operator.

Two pointers to objects of the same type may be subtracted; in this case the
result is converted to an integer as specified in the discussion of the subtraction
operator.

6.5 Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain

integer is converted to unsigned and the result is unsigned. The value is the least
unsigned integer congruent to the signed integer (modulo 2wordsize). In a 2’s com-
plement representation, this conversion is conceptual and there is no actual
change in the bit pattern.

When an unsigned integer is converted to long, the value of the result is the
same numerically as that of the unsigned integer. Thus the conversion amounts
to	padding	with	zeros	on	the	left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar

way. This pattern will be called the “usual arithmetic conversions.”

First, any operands of type char or short are converted to int, and any
of type float are converted to double.
Then, if either operand is double, the other is converted to double and
that is the type of the result.
Otherwise, if either operand is long, the other is converted to long and
that is the type of the result.
Otherwise, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.
Otherwise, both operands must be int, and that is the type of the result.

7. EXPRESSIONS
The precedence of expression operators is the same as the order of the ma-

jor subsections of this section, highest precedence first. Thus, for example, the
expressions	referred	to	as	the	operands	of	+	(§7.4)	are	those	expressions	defined	in	
§§7.1-7.3.		Within	each	subsection,	the	operators	have	the	same	precedence.		Left-	
or right-associativity is specified in each subsection for the operators discussed
therein. The precedence and associativity of all the expression operators is sum-
marized	in	the	grammar	of	§18.

Otherwise the order of evaluation of expressions is undefined. In particular
the compiler considers itself free to compute subexpressions in the order it
believes most efficient, even if the subexpressions involve side effects. The order
in which side effects take place is unspecified. Expressions involving a commuta-
tive and associative operator (*, +, &, |, ^) may be rearranged arbitrarily, even
in the presence of parentheses; to force a particular order of evaluation an expli-
cit temporary must be used.

The handling of overflow and divide check in expression evaluation is
machine-dependent. All existing implementations of C ignore integer overflows;
treatment of division by 0, and all floating-point exceptions, varies between
machines, and is usually adjustable by a library function.

C Reference Manual A-7

7.1 Primary expressions
Primary expressions involving ., ->, subscripting, and function calls group

left to right.

primary-expression:
 identifier
 constant
 string
 (expression)
 primary-expression [expression]
 primary-expression (expression-listopt)
 primary-lvalue . identifier
 primary-expression -> identifier

expression-list:
 expression
 expression-list , expression

An identifier is a primary expression, provided it has been suitably declared as
discussed below. Its type is specified by its declaration. If the type of the
identifier is “array of . . .”, however, then the value of the identifier-expression is
a pointer to the first object in the array, and the type of the expression is
“pointer to . . .”. Moreover, an array identifier is not an lvalue expression. Like-
wise, an identifier which is declared “function returning . . .”, when used except
in the function-name position of a call, is converted to “pointer to function
returning . . .”.

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int; floating constants
are double.

A string is a primary expression. Its type is originally “array of char”; but
following the same rule given above for identifiers, this is modified to “pointer to
char” and the result is a pointer to the first character in the string. (There is
an	exception	in	certain	initializers;	see	§8.6.)

A	parenthesized	expression	is	a	primary	expression	whose	type	and	value	are	
identical to those of the unadorned expression. The presence of parentheses does
not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a pri-
mary expression. The intuitive meaning is that of a subscript. Usually, the pri-
mary expression has type “pointer to . . .”, the subscript expression is int, and
the type of the result is “ . . . ”. The expression E1 [E2] is identical (by
definition) to *((E1)+(E2)). All the clues needed to understand this nota-
tion	are	contained	in	this	section	together	with	the	discussions	in	§§	7.1,	7.2,	and	
7.4 on identifiers, *, and +	respectively;	§14.3	below	summarizes	the	implications.

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions which constitute the actual
arguments to the function. The primary expression must be of type “function
returning . . .”, and the result of the function call is of type “ . . . ”. As indicated
below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the
most common case, integer-valued functions need not be declared.

A-8 C Reference Manual

Any actual arguments of type float are converted to double before the
call; any of type char or short are converted to int; and as usual, array
names are converted to pointers. No other conversions are performed automati-
cally; in particular, the compiler does not compare the types of actual arguments
with	those	of	formal	arguments.		If	conversion	is	needed,	use	a	cast;	see	§7.2,	8.7.

In preparing for the call to a function, a copy is made of each actual parame-
ter; thus, all argument-passing in C is strictly by value. A function may change
the values of its formal parameters, but these changes cannot affect the values of
the actual parameters. On the other hand, it is possible to pass a pointer on the
understanding that the function may change the value of the object to which the
pointer points. An array name is a pointer expression. The order of evaluation
of arguments is undefined by the language; take note that the various compilers
differ.

Recursive calls to any function are permitted.
A primary expression followed by a dot followed by an identifier is an expres-

sion. The first expression must be an lvalue naming a structure or a union, and
the identifier must name a member of the structure or union. The result is an
lvalue referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a - and a >) followed
by an identifier is an expression. The first expression must be a pointer to a
structure or a union and the identifier must name a member of that structure or
union. The result is an lvalue referring to the named member of the structure or
union to which the pointer expression points.

Thus the expression E1->MOS is the same as (*E1) .MOS. Structures and
unions	are	discussed	in	§8.5.		The	rules	given	here	for	the	use	of	structures	and	
unions are not enforced strictly, in order to allow an escape from the typing
mechanism.		See	§14.1.

7.2 Unary operators
Expressions with unary operators group right-to-left.

unary- expression:
 * expression
 & lvalue
 - expression
 ! expression
 ~ expression
 ++ lvalue
 -- lvalue
 lvalue ++
 lvalue --
 (type-name) expression
 sizeof expression
 sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and
the result is an lvalue referring to the object to which the expression points. If
the type of the expression is “pointer to . . .”, the type of the result is “ . . . ”.

The result of the unary & operator is a pointer to the object referred to by
the lvalue. If the type of the lvalue is “ . . . ”, the type of the result is “pointer
to . . .”.

C Reference Manual A-9

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 2n, where n is the number of bits in an
int. There is no unary + operator.

The result of the logical negation operator ! is 1 if the value of its operand is
0,	0	if	the	value	of	its	operand	is	non-zero.		The	type	of	the	result	is	int. It is
applicable to any arithmetic type or to pointers.

The ~ operator yields the one’s complement of its operand. The usual arith-
metic conversions are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The
value is the new value of the operand, but is not an lvalue. The expression ++x
is equivalent to x+=1.		See	the	discussions	of	addition	(§7.4)	and	assignment	
operators	(§7.14)	for	information	on	conversions.

The lvalue operand of prefix -- is decremented analogously to the prefix ++
operator.

When postfix ++ is applied to an lvalue the result is the value of the object
referred to by the lvalue. After the result is noted, the object is incremented in
the same manner as for the prefix ++ operator. The type of the result is the
same as the type of the lvalue expression.

When postfix -- is applied to an lvalue the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented in
the manner as for the prefix -- operator. The type of the result is the same as
the type of the lvalue expression.

An	 expression	 preceded	 by	 the	 parenthesized	 name	 of	 a	 data	 type	 causes	
conversion of the value of the expression to the named type. This construction is
called a cast.		Type	names	are	described	in	§8.7.

The sizeof	 operator	 yields	 the	 size,	 in	 bytes,	 of	 its	 operand.	 (A	 byte is
undefined by the language except in terms of the value of sizeof. However, in
all existing implementations a byte is the space required to hold a char.) When
applied	to	an	array,	the	result	is	the	total	number	of	bytes	in	the	array.		The	size	
is determined from the declarations of the objects in the expression. This expres-
sion is semantically an integer constant and may be used anywhere a constant is
required. Its major use is in communication with routines like storage allocators
and I/O systems.

The sizeof	operator	may	also	be	applied	to	a	parenthesized	type	name.		In	
that	case	it	yields	the	size,	in	bytes,	of	an	object	of	the	indicated	type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type) - 2 is the same as (sizeof(type)) - 2.

7.3 Multiplicative operators
The multiplicative operators *, /, and % group left-to-right. The usual arith-

metic conversions are performed.

multiplicative-expression:
 expression * expression
 expression / expression
 expression % expression

The binary * operator indicates multiplication. The * operator is associative
and expressions with several multiplications at the same level may be rearranged
by the compiler.

A-10 C Reference Manual

The binary / operator indicates division. When positive integers are divided
truncation is toward 0, but the form of truncation is machine-dependent if either
operand is negative. On all machines covered by this manual, the remainder has
the same sign as the dividend. It is always true that (a/b) *b + a%b is equal
to a (if b is not 0).

The binary % operator yields the remainder from the division of the first
expression by the second. The usual arithmetic conversions are performed. The
operands must not be float.

7.4 Additive operators
The additive operators + and - group left-to-right. The usual arithmetic

conversions are performed. There are some additional type possibilities for each
operator.

additive-expression:
 expression + expression
 expression - expression

The result of the + operator is the sum of the operands. A pointer to an object
in an array and a value of any integral type may be added. The latter is in all
cases converted to an address offset by multiplying it by the length of the object
to which the pointer points. The result is a pointer of the same type as the origi-
nal pointer, and which points to another object in the same array, appropriately
offset from the original object. Thus if P is a pointer to an object in an array,
the expression P+1 is a pointer to the next object in the array.

No further type combinations are allowed for pointers.
The + operator is associative and expressions with several additions at the

same level may be rearranged by the compiler.
The result of the - operator is the difference of the operands. The usual

arithmetic conversions are performed. Additionally, a value of any integral type
may be subtracted from a pointer, and then the same conversions as for addition
apply.

If two pointers to objects of the same type are subtracted, the result is con-
verted (by division by the length of the object) to an int representing the
number of objects separating the pointed-to objects. This conversion will in gen-
eral give unexpected results unless the pointers point to objects in the same
array, since pointers, even to objects of the same type, do not necessarily differ
by a multiple of the object-length.

7.5 Shift operators
The shift operators << and >> group left-to-right. Both perform the usual

arithmetic conversions on their operands, each of which must be integral. Then
the right operand is converted to int; the type of the result is that of the left
operand. The result is undefined if the right operand is negative, or greater than
or equal to the length of the object in bits.

shift-expression:
 expression << expression
 expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits;
vacated bits are 0-filled. The value of E1>>E2 is E1 right-shifted E2 bit

C Reference Manual A-11

positions. The right shift is guaranteed to be logical (0-fill) if E1 is unsigned;
otherwise it may be (and is, on the PDP-11) arithmetic (fill by a copy of the
sign bit).

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful;

a<b<c does not mean what it seems to.

relational-expression:
 expression < expression
 expression > expression
 expression <= expression
 expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >=
(greater than or equal to) all yield 0 if the specified relation is false and 1 if it
is true. The type of the result is int. The usual arithmetic conversions are per-
formed. Two pointers may be compared; the result depends on the relative loca-
tions in the address space of the pointed-to objects. Pointer comparison is port-
able only when the pointers point to objects in the same array.

7.7 Equality operators

equality-expression:
 expression == expression
 expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to
the relational operators except for their lower precedence. (Thus a<b == c<d
is 1 whenever a<b and c<d have the same truth-value).

A pointer may be compared to an integer, but the result is machine depen-
dent unless the integer is the constant 0. A pointer to which 0 has been assigned
is guaranteed not to point to any object, and will appear to be equal to 0; in con-
ventional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-expression:
 expression & expression

The & operator is associative and expressions involving & may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise AND
function of the operands. The operator applies only to integral operands.

7.9 Bitwise exclusive OR operator

exclusive-or-expression:
 expression ^ expression

The ^ operator is associative and expressions involving ^ may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise exclusive
OR function of the operands. The operator applies only to integral operands.

A-12 C Reference Manual

7.10 Bitwise inclusive OR operator

inclusive-or-expression:
 expression | expression

The | operator is associative and expressions involving | may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise inclusive
OR function of its operands. The operator applies only to integral operands.

7.11 Logical AND operator

logical-and-expression:
 expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-
zero,	0	otherwise.		Unlike	&, && guarantees left-to-right evaluation; moreover the
second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

7.12 Logical OR operator

logical-or-expression:
 expression || expression

The || operator groups left-to-right. It returns 1 if either of its operands is
non-zero,	 and	 0	 otherwise.	 	 Unlike	 |, || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the value of the first operand
is	non-zero.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

7.13 Conditional operator

conditional-expression:
 expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and
if	it	is	non-zero,	the	result	is	the	value	of	the	second	expression,	otherwise	that	of	
third expression. If possible, the usual arithmetic conversions are performed to
bring the second and third expressions to a common type; otherwise, if both are
pointers of the same type, the result has the common type; otherwise, one must
be a pointer and the other the constant 0, and the result has the type of the
pointer. Only one of the second and third expressions is evaluated.

7.14 Assignment operators
There are a number of assignment operators, all of which group right-to-left.

All require an lvalue as their left operand, and the type of an assignment expres-
sion is that of its left operand. The value is the value stored in the left operand
after the assignment has taken place. The two parts of a compound assignment
operator are separate tokens.

C Reference Manual A-13

assignment-expression:
 lvalue = expression
 lvalue += expression
 lvalue -= expression
 lvalue *= expression
 lvalue /= expression
 lvalue %= expression
 lvalue <<= expression
 lvalue >>= expression
 lvalue &= expression
 lvalue ^= expression
 lvalue |= expression

In the simple assignment with =j the value of the expression replaces that of
the object referred to by the lvalue. If both operands have arithmetic type, the
right operand is converted to the type of the left preparatory to the assignment.

The behavior of an expression of the form E1 op= E2 may be inferred by
taking it as equivalent to E1 = E1 op (E2); however, E1 is evaluated only
once. In += and -=, the left operand may be a pointer, in which case the
(integral)	right	operand	is	converted	as	explained	in	§7.4;	all	right	operands	and	
all non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer, an
integer to a pointer, and a pointer to a pointer of another type. The assignment
is a pure copy operation, with no conversion. This usage is nonportable, and
may produce pointers which cause addressing exceptions when used. However, it
is guaranteed that assignment of the constant 0 to a pointer will produce a null
pointer distinguishable from a pointer to any object.

7.15 Comma operator

comma-expression:
 expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the
value of the left expression is discarded. The type and value of the result are the
type and value of the right operand. This operator groups left-to-right. In con-
texts where comma is given a special meaning, for example in a list of actual
arguments	to	functions	(§7.1)	and	lists	of	initializers	(§8.6),	the	comma	operator	
as described in this section can only appear in parentheses; for example,

f (a , (t=3 , t+2) , c)

has three arguments, the second of which has the value 5.

8. DECLARATIONS
Declarations are used to specify the interpretation which C gives to each

identifier; they do not necessarily reserve storage associated with the identifier.
Declarations have the form

declaration:
 decl-specifiers declarator-listopt ;

The declarators in the declarator-list contain the identifiers being declared. The
decl-specifiers consist of a sequence of type and storage class specifiers.

A-14 C Reference Manual

decl-specifiers:
 type-specifier decl-specifiersopt
 sc-specifier decl-specifiersopt

The list must be self-consistent in a way described below.

8. Storage class specifiers
The sc-specifiers are:

sc-specifier:
 auto
 static
 extern
 register
 typedef

The typedef specifier does not reserve storage and is called a “storage class
specifier”	only	for	syntactic	convenience;	it	is	discussed	in	§8.8.		The	meanings	of	
the	various	storage	classes	were	discussed	in	§4.

The auto, static, and register declarations also serve as definitions
in that they cause an appropriate amount of storage to be reserved. In the
extern	case	there	must	be	an	external	definition	(§10)	for	the	given	identifiers	
somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration,
together with a hint to the compiler that the variables declared will be heavily
used. Only the first few such declarations are effective. Moreover, only variables
of certain types will be stored in registers; on the PDP-11, they are int, char,
or pointer. One other restriction applies to register variables: the address-of
operator & cannot be applied to them. Smaller, faster programs can be expected
if register declarations are used appropriately, but future improvements in code
generation may render them unnecessary.

At most one sc-specifier may be given in a declaration. If the sc-specifier is
missing from a declaration, it is taken to be auto inside a function, extern
outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
 char
 short
 int
 long
 unsigned
 float
 double
 struct-or-union-specifier
 typedef-name

The words long, short, and unsigned may be thought of as adjectives; the
following combinations are acceptable.

C Reference Manual A-15

short int
long int
unsigned int
long float

The meaning of the last is the same as double. Otherwise, at most one type-
specifier may be given in a declaration. If the type-specifier is missing from a
declaration, it is taken to be int.

Specifiers	for	structures	and	unions	are	discussed	in	§8.5;	declarations	with	
typedef	names	are	discussed	in	§8.8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence

of	declarators,	each	of	which	may	have	an	initializer.

declarator-list:
 init-declarator
 init-declarator , declarator-list

init-declarator:
 declarator initializeropt

Initializers	are	discussed	in	§8.6.		The	specifiers	in	the	declaration	indicate	the	
type and storage class of the objects to which the declarators refer. Declarators
have the syntax:

declarator:
 identifier
 (declarator)
 * declarator
 declarator ()
 declarator [constant-expressionopt]

The grouping is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the

same form as the declarator appears in an expression, it yields an object of the
indicated type and storage class. Each declarator contains exactly one identifier;
it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indi-
cated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the examples
below.

Now imagine a declaration

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this
declaration makes the identifier have type “ . . . T,” where the “ . . . ” is empty
if D1 is just a plain identifier (so that the type of x in “int x” is just int).
Then if D1 has the form

A-16 C Reference Manual

*D

the type of the contained identifier is “ . . . pointer to T.”
If D1 has the form

D()

then the contained identifier has the type “ . . . function returning T.”
If D1 has the form

D[constant-expression]

or

D[]

then the contained identifier has type “ . . . array of T.” In the first case the con-
stant expression is an expression whose value is determinable at compile time,
and whose type is int.	 (Constant	 expressions	 are	 defined	 precisely	 in	 §15.)	
When several “array of” specifications are adjacent, a multi-dimensional array is
created; the constant expressions which specify the bounds of the arrays may be
missing only for the first member of the sequence. This elision is useful when the
array is external and the actual definition, which allocates storage, is given else-
where. The first constant-expression may also be omitted when the declarator is
followed	by	initialization.		In	this	case	the	size	is	calculated	from	the	number	of	
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer,
from a structure or union, or from another array (to generate a multi-dimension-
al array).

Not all the possibilities allowed by the syntax above are actually permitted.
The restrictions are as follows: functions may not return arrays, structures,
unions or functions, although they may return pointers to such things; there are
no arrays of functions, although there may be arrays of pointers to functions.
Likewise a structure or union may not contain a function, but it may contain a
pointer to a function.

As an example, the declaration

int i, *ip, f(), *fip(), (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an
integer, a function fip returning a pointer to an integer, and a pointer pfi to a
function which returns an integer. It is especially useful to compare the last
two. The binding of *fip() is *(fip()), so that the declaration suggests, and the
same construction in an expression requires, the calling of a function fip, and
then using indirection through the (pointer) result to yield an integer. In the
declarator (*pfi)(), the extra parentheses are necessary, as they are also in
an expression, to indicate that indirection through a pointer to a function yields a
function, which is then called; it returns an integer. As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float
numbers. Finally,

C Reference Manual A-17

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In com-
plete detail, x3d is an array of three items; each item is an array of five arrays;
each of the latter arrays is an array of seven integers. Any of the expressions
x3d, x3d[i], x3d[i][j], x3d[i][j][k] may reasonably appear in an expression.
The first three have type “array,” the last has type int.

8.5 Structure and union declarations
A structure is an object consisting of a sequence of named members. Each

member may have any type. A union is an object which may, at a given time,
contain any one of several members. Structure and union specifiers have the
same form.

struct-or-union-specifier:
 struct-or-union { struct-decl-list }
 struct-or-union identifier { struct-decl-list }
 struct-or-union identifier

struct-or-union:
 struct
 union

The struct-decl-list is a sequence of declarations for the members of the structure
or union:

struct-decl-list:
 struct-declaration
 struct-declaration struct-decl-list

struct-declaration:
 type-specifier struct-declarator-list ;

struct-declarator-list:
 struct-declarator
 struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a struc-
ture or union. A structure member may also consist of a specified number of
bits. Such a member is also called a field; its length is set off from the field name
by a colon.

struct-declarator:
 declarator
 declarator : constant-expression
 : constant-expression

Within a structure, the objects declared have addresses which increase as their
declarations are read left-to-right. Each non-field member of a structure begins
on an addressing boundary appropriate to its type; therefore, there may be
unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining
in a word is put into the next word. No field may be wider than a word. Fields
are assigned right-to-left on the PDP-11, left-to-right on other machines.

A-18 C Reference Manual

A struct-declarator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts. As a
special case, an unnamed field with a width of 0 specifies alignment of the next
field at a word boundary. The “next field” presumably is a field, not an ordinary
structure member, because in the latter case the alignment would have been
automatic.

The language does not restrict the types of things that are declared as fields,
but implementations are not required to support any but integer fields. More-
over, even int fields may be considered to be unsigned. On the PDP-11, fields
are not signed and have only integer values. In all implementations, there are no
arrays of fields, and the address-of operator & may not be applied to them, so
that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at
offset	0	and	whose	size	is	sufficient	to	contain	any	of	its	members.		At	most	one	
of the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure
specified by the list. A subsequent declaration may then use the third form of
specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the
long part of the declaration to be given once and used several times. It is illegal
to declare a structure or union which contains an instance of itself, but a struc-
ture or union may contain a pointer to an instance of itself.

The names of members and tags may be the same as ordinary variables.
However, names of tags and members must be mutually distinct.

Two structures may share a common initial sequence of members; that is, the
same member may appear in two different structures if it has the same type in
both and if all previous members are the same in both. (Actually, the compiler
checks only that a name in two different structures has the same type and offset
in both, but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

struct tnode {
 char tword[20];
 int count;
 struct tnode *left;
 struct tnode *right;
};

which contains an array of 20 characters, an integer, and two pointers to similar
structures. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a struc-
ture of the given sort. With these declarations, the expression

C Reference Manual A-19

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right->tword [0]

refers to the first character of the tword member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared.

The	initializer	is	preceded	by	=, and consists of an expression or a list of values
nested in braces.

initializer:
 = expression
 = { initializer-list }
 = { initializer-list , }

initializer-list:
 expression
 initializer-list , initializer-list
 { initializer-list }

All	 the	 expressions	 in	 an	 initializer	 for	 a	 static	 or	 external	 variable	must	 be	
constant	expressions,	which	are	described	in	§15,	or	expressions	which	reduce	to	
the address of a previously declared variable, possibly offset by a constant expres-
sion.		Automatic	or	register	variables	may	be	initialized	by	arbitrary	expressions	
involving constants, and previously declared variables and functions.

Static	and	external	variables	which	are	not	initialized	are	guaranteed	to	start	
off	as	0;	automatic	and	register	variables	which	are	not	initialized	are	guaranteed	
to start off as garbage.

When	an	initializer	applies	to	a	scalar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value of
the object is taken from the expression; the same conversions as for assignment
are performed.

When the declared variable is an aggregate (a structure or array) then the ini-
tializer	consists	of	a	brace-enclosed,	comma-separated	list	of	initializers	for	the	
members of the aggregate, written in increasing subscript or member order. If
the aggregate contains subaggregates, this rule applies recursively to the members
of	the	aggregate.		If	there	are	fewer	initializers	in	the	list	than	there	are	members	
of the aggregate, then the aggregate is padded with 0’s. It is not permitted to
initialize	unions	or	automatic	aggregates.

Braces	may	be	elided	as	follows.		If	the	initializer	begins	with	a	left	brace,	
then	the	succeeding	comma-separated	list	of	initializers	initializes	the	members	of	
the	aggregate;	it	is	erroneous	for	there	to	be	more	initializers	than	members.		If,	
however,	the	initializer	does	not	begin	with	a	left	brace,	then	only	enough	ele-
ments from the list are taken to account for the members of the aggregate; any
remaining	members	 are	 left	 to	 initialize	 the	next	member	 of	 the	 aggregate	 of	
which the current aggregate is a part.

A-20 C Reference Manual

A final abbreviation allows a char	array	to	be	initialized	by	a	string.		In	this	
case	successive	characters	of	the	string	initialize	the	members	of	the	array.		

For example,

int x[] ={ 1, 3, 5 };

declares	 and	 initializes	x as a 1-dimensional array which has three members,
since	no	size	was	specified	and	there	are	three	initializers.

float y[4][3] = {
 { 1, 3, 5 },
 { 2, 4, 6 },
 { 3, 5, 7 },
};

is	a	completely-bracketed	initialization:	1,	3,	and	5	initialize	the	first	row	of	the	
array y[0], namely y[0][0], y[0][1], and y[0][2]. Likewise the next two
lines	 initialize	 y[1] and y[2].	 	 The	 initializer	 ends	 early	 and	 therefore	
y[3]	is	initialized	with	0.		Precisely	the	same	effect	could	have	been	achieved	by

float y[4][3] = {
 1, 3, 5, 2, 4, 6, 3, 5, 7
};

The	initializer	for	y begins with a left brace, but that for y[0] does not, there-
fore 3 elements from the list are used. Likewise the next three are taken succes-
sively for y[1] and y[2]. Also,

float y[4][3] = {
 { 1 }, { 2 }, { 3 }, { 4 }
};

initializes	the	first	column	of	y (regarded as a two-dimensional array) and leaves
the rest 0. Finally,

char msg[] = ”Syntax error on line %s0;

shows	a	character	array	whose	members	are	initialized	with	a	string.

8.7 Type names
In two contexts (to specify type conversions explicitly by means of a cast, and

as an argument of sizeof) it is desired to supply the name of a data type.
This is accomplished using a “type name,” which in essence is a declaration for
an object of that type which omits the name of the object.

type-name:
 type-specifier abstract-declarator

abstract-declarator:
 empty
 (abstract-declarator)
 * abstract-declarator
 abstract-declarator ()
 abstract-declarator [constant-expressionopt]

C Reference Manual A-21

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be non-empty. Under this restriction, it is
possible to identify uniquely the location in the abstract-declarator where the
identifier would appear if the construction were a declarator in a declaration.
The named type is then the same as the type of the hypothetical identifier. For
example,

int
int *
int *[3]
int (*)[3]
int *()
int (*)()

name respectively the types “integer,” “pointer to integer,” “array of 3 pointers
to integers,” “pointer to an array of 3 integers,” “function returning pointer to
integer,” and “pointer to function returning an integer.”

8.8 Typedef
Declarations whose “storage class” is typedef do not define storage, but

instead define identifiers which can be used later as if they were type keywords
naming fundamental or derived types.

typedef-name:
 identifier

Within the scope of a declaration involving typedef, each identifier appearing
as part of any declarator therein become syntactically equivalent to the type key-
word	naming	the	type	associated	with	the	identifier	in	the	way	described	in	§8.4.	
For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
comp lex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is
“pointer to int,” and that of z is the specified structure, zp is a pointer to
such a structure.

typedef does not introduce brand new types, only synonyms for types
which could be specified in another way. Thus in the example above distance
is considered to have exactly the same type as any other int object.

9. STATEMENTS
Except as indicated, statements are executed in sequence.

A-22 C Reference Manual

9.1 Expression statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound

statement (also, and equivalently, called “block”) is provided:

compound-statement:
 { declaration-listopt statement-listopt }

declaration-list:
 declaration
 declaration declaration-list

statement-list:
 statement
 statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer
declaration is pushed down for the duration of the block, after which it resumes
its force.

Any	 initializations	 of	auto or register variables are performed each time
the block is entered at the top. It is currently possible (but a bad practice) to
transfer	into	a	block;	in	that	case	the	initializations	are	not	performed.		Initializa-
tions of static variables are performed only once when the program begins
execution. Inside a block, extern declarations do not reserve storage so initiali-
zation	is	not	permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In	both	cases	the	expression	is	evaluated	and	if	it	is	non-zero,	the	first	substate-
ment is executed. In the second case the second substatement is executed if the
expression is 0. As usual the “else” ambiguity is resolved by connecting an
else with the last encountered else-less if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression
remains	non-zero.		The	test	takes	place	before	each	execution	of	the	statement.

C Reference Manual A-23

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression
becomes	zero.		The	test	takes	place	after	each	execution	of	the	statement.

9.6 For statement
The for statement has the form

for (expression-1 ; expression-2opt ; expression-3opt) statement

This statement is equivalent to

expression-1 ;
while (expression-2) {
 statement
 expression-3 ;
}

Thus	the	first	expression	specifies	initialization	for	the	loop;	the	second	specifies	a	
test, made before each iteration, such that the loop is exited when the expression
becomes 0; the third expression often specifies an incrementing that is performed
after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes
the implied while clause equivalent to while(1); other missing expressions
are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several

statements depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result
must be int. The statement is typically compound. Any statement within the
statement may be labeled with one or more case prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the
same switch may have the same value. Constant expressions are precisely defined
in	§15.

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and com-
pared with each case constant. If one of the case constants is equal to the value
of the expression, control is passed to the statement following the matched case
prefix. If no case constant matches the expression, and if there is a default
prefix, control passes to the prefixed statement. If no case matches and if there is
no default then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control,
which continues unimpeded across such prefixes. To exit from a switch, see

A-24 C Reference Manual

break,	§9.8.
Usually the statement that is the subject of a switch is compound. Declara-

tions	may	appear	at	the	head	of	this	statement,	but	initializations	of	automatic	
or register variables are ineffective.

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch state-
ment; control passes to the statement following the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing
while, do, or for statement; that is to the end of the loop. More precisely, in
each of the statements

while (...) { do { for (...) {

contin: ; contin: ; contin: ;
} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a
null	statement,	§9.13.)

9.10 Return statement
A function returns to its caller by means of the return statement, which has

one of the forms

return ;
return expression ;

In the first case the returned value is undefined. In the second case, the value of
the expression is returned to the caller of the function. If required, the expression
is converted, as if by assignment, to the type of the function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The	identifier	must	be	a	label	(§9.12)	located	in	the	current	function.

9.12 Labeled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as
a target of a goto. The scope of a label is the current function, excluding any

C Reference Manual A-25

sub-blocks	in	which	the	same	identifier	has	been	redeclared.		See	§11.

9.13 Null statement
The null statement has the form

;

A null statement is useful to carry a label just before the } of a compound state-
ment or to supply a null body to a looping statement such as while.

10. EXTERNAL DEFINITIONS
A C program consists of a sequence of external definitions. An external

definition declares an identifier to have storage class extern (by default) or
perhaps static,	 and	 a	 specified	 type.	 	 The	 type-specifier	 (§8.2)	may	 also	 be	
empty, in which case the type is taken to be int. The scope of external
definitions persists to the end of the file in which they are declared just as the
effect of declarations persists to the end of a block. The syntax of external
definitions is the same as that of all declarations, except that only at this level
may the code for functions be given.

10.1 External function definitions
Function definitions have the form

function-definition:
 decl-specifiersopt function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static;
see	§11.2	for	the	distinction	between	them.		A	function	declarator	is	similar	to	a	
declarator for a “function returning ...” except that it lists the formal parame-
ters of the function being defined.

function-declarator:
 declarator (parameter-listopt)

parameter-list:
 identifier
 identifier , parameter-list

The function-body has the form

function-body:
 declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared
in the declaration list. Any identifiers whose type is not given are taken to be
int. The only storage class which may be specified is register; if it is
specified, the corresponding actual parameter will be copied, if possible, into a
register at the outset of the function.

A simple example of a complete function definition is

A-26 C Reference Manual

int max(a, b, c)
int a, b, c;
{
 int m;

 m = (a > b) ? a : b ;
 return((m> c) ? m : c);
}

Here int is the type-specifier; max(a, b, c) is the function-declarator;
int a, b, c ; is the declaration-list for the formal parameters; { . . . } is
the block giving the code for the statement.

C converts all float actual parameters to double, so formal parameters
declared float have their declaration adjusted to read double. Also, since a
reference to an array in any context (in particular as an actual parameter) is
taken to mean a pointer to the first element of the array, declarations of formal
parameters declared “array of . . . ” are adjusted to read “pointer to . . . ”.
Finally, because structures, unions and functions cannot be passed to a function,
it is useless to declare a formal parameter to be a structure, union or function
(pointers to such objects are of course permitted).

10.2 External data definitions
An external data definition has the form

data-definition:
 declaration

The storage class of such data may be extern (which is the default) or
static, but not auto or register.

11. SCOPE RULES
A C program need not all be compiled at the same time: the source text

of the program may be kept in several files, and precompiled routines may be
loaded from libraries. Communication among the functions of a program may be
carried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called
the lexical scope of an identifier, which is essentially the region of a program dur-
ing which it may be used without drawing “undefined identifier” diagnostics; and
second,	the	scope	associated	with	external	identifiers,	which	is	characterized	by	
the rule that references to the same external identifier are references to the same
object.

11.1 Lexical scope
The lexical scope of identifiers declared in external definitions persists from

the definition through the end of the source file in which they appear. The lexi-
cal scope of identifiers which are formal parameters persists through the func-
tion with which they are associated. The lexical scope of identifiers declared at
the head of blocks persists until the end of the block. The lexical scope of labels
is the whole of the function in which they appear.

Because all references to the same external identifier refer to the same object
(see	§11.2)	the	compiler	checks	all	declarations	of	the	same	external	identifier	for	
compatibility; in effect their scope is increased to the whole file in which they

C Reference Manual A-27

appear.
In all cases, however, if an identifier is explicitly declared at the head of a

block, including the block constituting a function, any declaration of that
identifier outside the block is suspended until the end of the block.

Remember	also	(§8.5)	that	identifiers	associated	with	ordinary	variables	on	the	
one hand and those associated with structure and union members and tags on the
other form two disjoint classes which do not conflict. Members and tags follow
the same scope rules as other identifiers, typedef names are in the same class
as ordinary identifiers. They may be redeclared in inner blocks, but an explicit
type must be given in the inner declaration:

typedef float distance;
...
{
 auto int distance;
 ...

The int must be present in the second declaration, or it would be taken to be a
declaration with no declarators and type distance*.

11.2 Scope of externals
If a function refers to an identifier declared to be extern, then somewhere

among the files or libraries constituting the complete program there must be an
external definition for the identifier. All functions in a given program which refer
to the same external identifier refer to the same object, so care must be taken
that	 the	 type	 and	 size	 specified	 in	 the	 definition	 are	 compatible	 with	 those	
specified by each function which references the data.

The appearance of the extern keyword in an external definition indicates
that storage for the identifiers being declared will be allocated in another file.
Thus in a multi-file program, an external data definition without the extern
specifier must appear in exactly one of the files. Any other files which wish to
give an external definition for the identifier must include the extern in the
definition.		The	identifier	can	be	initialized	only	in	the	declaration	where	storage	
is allocated.

Identifiers declared static at the top level in external definitions are not
visible in other files. Functions may be declared static.

12. COMPILER CONTROL LINES
The C compiler contains a preprocessor capable of macro substitution, condi-

tional compilation, and inclusion of named files. Lines beginning with # com-
municate with this preprocessor. These lines have syntax independent of the rest
of the language; they may appear anywhere and have effect which lasts (indepen-
dent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

#define identifier token-string

* It is agreed that the ice is thin here.

A-28 C Reference Manual

(note: no trailing semicolon) causes the preprocessor to replace subsequent
instances of the identifier with the given string of tokens. A line of the form

#define identifier(identifier , ... , identifier) token-string

where there is no space between the first identifier and the (, is a macro
definition with arguments. Subsequent instances of the first identifier followed by
a (, a sequence of tokens delimited by commas, and a) are replaced by the
token string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token
string from the call. The actual arguments in the call are token strings separated
by commas; however commas in quoted strings or protected by parentheses do
not separate arguments. The number of formal and actual parameters must be
the same. Text inside a string or a character constant is not subject to replace-
ment.

In both forms the replacement string is rescanned for more defined identifiers.
In both forms a long definition may be continued on another line by writing \ at
the end of the line to be continued.

This facility is most valuable for definition of “manifest constants,” as in

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

#undef identifier

causes the identifier’s preprocessor definition to be forgotten.

12.2 File inclusion
A compiler control line of the form

#include ”filename”

causes the replacement of that line by the entire contents of the file filename.
The named file is searched for first in the directory of the original source file, and
then in a sequence of standard places. Alternatively, a control line of the form

#include <filename>

searches only the standard places, and not the directory of the source file.
#include’s may be nested.

12.3 Conditional compilation
A compiler control line of the form

#if constant-expression

checks	whether	the	constant	expression	(see	§15)	evaluates	to	non-zero.		A	control	
line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is,
whether it has been the subject of a #define control line. A control line of the
form

C Reference Manual A-29

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly contain-

ing a control line

#else

and then by a control line

#endif

If the checked condition is true then any lines between #else and #endif are
ignored. If the checked condition is false then any lines between the test and an
#else or, lacking an #else, the #endif, are ignored.

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs, a line of

the form

#line constant identifier

causes the compiler to believe, for purposes of error diagnostics, that the line
number of the next source line is given by the constant and the current input file
is named by the identifier. If the identifier is absent the remembered file name
does not change.

13. IMPLICIT DECLARATIONS
It is not always necessary to specify both the storage class and the type of

identifiers in a declaration. The storage class is supplied by the context in exter-
nal definitions and in declarations of formal parameters and structure members.
In a declaration inside a function, if a storage class but no type is given, the
identifier is assumed to be int; if a type but no storage class is indicated, the
identifier is assumed to be auto. An exception to the latter rule is made for
functions, since auto functions are meaningless (C being incapable of compiling
code into the stack); if the type of an identifier is “function returning . . . ”, it is
implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is con-
textually declared to be “function returning int”.

14. TYPES REVISITED
This	section	summarizes	the	operations	which	can	be	performed	on	objects	

of certain types.

14.1 Structures and unions
There are only two things that can be done with a structure or union: name

one of its members (by means of the . operator); or take its address (by unary
&). Other operations, such as assigning from or to it or passing it as a parame-
ter, draw an error message. In the future, it is expected that these operations,
but not necessarily others, will be allowed.

§7.1	says	that	in	a	direct	or	indirect	structure	reference	(with	. or ->) the
name on the right must be a member of the structure named or pointed to by the
expression on the left. To allow an escape from the typing rules, this restriction

A-30 C Reference Manual

is not firmly enforced by the compiler. In fact, any lvalue is allowed before .,
and that lvalue is then assumed to have the form of the structure of which the
name on the right is a member. Also, the expression before a -> is required only
to be a pointer or an integer. If a pointer, it is assumed to point to a structure of
which the name on the right is a member. If an integer, it is taken to be the
absolute address, in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are only two things that can be done with a function: call it, or take its

address. If the name of a function appears in an expression not in the function-
name position of a call, a pointer to the function is generated. Thus, to pass one
function to another, one might say

int f();
...
g(f);

Then the definition of g might read

g(funcp)
int (* funcp)();
{
 ...
 (*funcp)();
 ...
}

Notice that f must be declared explicitly in the calling routine since its appear-
ance in g(f) was not followed by (.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is convert-

ed into a pointer to the first member of the array. Because of this conversion,
arrays are not lvalues. By definition, the subscript operator [] is interpreted in
such a way that E1[E2] is identical to *((E1)+(E2)). Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer, then
E1 [E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is
an n-dimensional array of rank i×j×⋯×k, then E appearing in an expression is
converted to a pointer to an (n-1)-dimensional array with rank j×⋯×k. If the
* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n-1)-dimensional array, which itself is
immediately converted into a pointer.

For example, consider

int x[3][5];

Here x is a 3×5 array of integers. When x appears in an expression, it is con-
verted to a pointer to (the first of three) 5-membered arrays of integers. In the
expression x[i], which is equivalent to *(x+i), x is first converted to a
pointer as described; then i is converted to the type of x, which involves

C Reference Manual A-31

multiplying i by the length the object to which the pointer points, namely 5
integer objects. The results are added and indirection applied to yield an array
(of 5 integers) which in turn is converted to a pointer to the first of the integers.
If there is another subscript the same argument applies again; this time the result
is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript
varies fastest) and that the first subscript in the declaration helps determine the
amount of storage consumed by an array but plays no other part in subscript cal-
culations.

14.4 Explicit pointer conversions
Certain conversions involving pointers are permitted but have

implementation-dependent aspects. They are all specified by means of an explicit
type-conversion	operator,	§§7.2	and	8.7.

A pointer may be converted to any of the integral types large enough to hold
it. Whether an int or long is required is machine dependent. The mapping
function is also machine dependent, but is intended to be unsurprising to those
who know the addressing structure of the machine. Details for some particular
machines are given below.

An object of integral type may be explicitly converted to a pointer. The map-
ping always carries an integer converted from a pointer back to the same pointer,
but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions upon use if the subject pointer
does not refer to an object suitably aligned in storage. It is guaranteed that a
pointer	to	an	object	of	a	given	size	may	be	converted	to	a	pointer	to	an	object	of	
a	smaller	size	and	back	again	without	change.

For	example,	a	storage-allocation	routine	might	accept	a	size	(in	bytes)	of	an	
object to allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp =22.0 / 7.0;

alloc must ensure (in a machine-dependent way) that its return value is suit-
able for conversion to a pointer to double; then the use of the function is port-
able.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and
is measured in bytes, chars have no alignment requirements; everything else
must have an even address.

On the Honeywell 6000, a pointer corresponds to a 36-bit integer; the word
part is in the left 18 bits, and the two bits that select the character in a word
just to their right. Thus char pointers are measured in units of 216 bytes; every-
thing else is measured in units of 218 machine words, double quantities and
aggregates containing them must lie on an even word address (0 mod 219).

The IBM 370 and the Interdata 8/32 are similar. On both, addresses are
measured in bytes; elementary objects must be aligned on a boundary equal to
their length, so pointers to short must be 0 mod 2, to int and float 0 mod
4, and to double 0 mod 8. Aggregates are aligned on the strictest boundary

A-32 C Reference Manual

required by any of their constituents.

15. CONSTANT EXPRESSIONS
In several places C requires expressions which evaluate to a constant: after

case,	as	array	bounds,	and	in	initializers.		In	the	first	two	cases,	the	expression	
can	involve	only	integer	constants,	character	constants,	and	sizeof	expressions,	
possibly connected by the binary operators

+ - * / % & | ^ << >> == != < > <= >=

or by the unary operators

- ~

or by the ternary operator

? :

Parentheses can be used for grouping, but not for function calls.
More	latitude	is	permitted	for	initializers;	besides	constant	expressions	as	dis-

cussed above, one can also apply the unary & operator to external or static
objects, and to external or static arrays subscripted with a constant expression.
The unary & can also be applied implicitly by appearance of unsubscripted arrays
and	functions.		The	basic	rule	is	that	initializers	must	evaluate	either	to	a	con-
stant or to the address of a previously declared external or static object plus or
minus a constant.

16. PORTABILITY CONSIDERATIONS
Certain parts of C are inherently machine dependent. The following list of

potential trouble spots is not meant to be all-inclusive, but to point out the main
ones.

Purely	 hardware	 issues	 like	word	 size	 and	 the	 properties	 of	 floating	 point	
arithmetic and integer division have proven in practice to be not much of a prob-
lem. Other facets of the hardware are reflected in differing implementations.
Some of these, particularly sign extension (converting a negative character into
a negative integer) and the order in which bytes are placed in a word, are a nui-
sance that must be carefully watched. Most of the others are only minor prob-
lems.

The number of register variables that can actually be placed in registers
varies from machine to machine, as does the set of valid types. Nonetheless, the
compilers all do things properly for their own machine; excess or invalid
register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is
exceedingly unwise to write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the
language. It is right to left on the PDP-11, left to right on the others. The order
in which side effects take place is also unspecified.

Since character constants are really objects of type int, multi-character
character constants may be permitted. The specific implementation is very
machine dependent, however, because the order in which characters are assigned
to a word varies from one machine to another.

Fields are assigned to words and characters to integers right-to-left on the
PDP-11 and left-to-right on other machines. These differences are invisible to

C Reference Manual A-33

isolated programs which do not indulge in type punning (for example, by convert-
ing an int pointer to a char pointer and inspecting the pointed-to storage),
but must be accounted for when conforming to externally-imposed storage lay-
outs.

The language accepted by the various compilers differs in minor details.
Most	notably,	the	current	PDP-11	compiler	will	not	initialize	structures	contain-
ing bitfields, and does not accept a few assignment operators in certain contexts
where the value of the assignment is used.

17. ANACHRONISMS
Since C is an evolving language, certain obsolete constructions may be found

in older programs. Although most versions of the compiler support such
anachronisms, ultimately they will disappear, leaving only a portability problem
behind.

Earlier versions of C used the form =op instead of op= for assignment
operators. This leads to ambiguities, typified by

x=-1

which actually decrements x since the = and the - are adjacent, but which might
easily be intended to assign -1 to x .

The	syntax	of	initializers	has	changed:	previously,	the	equals	sign	that	intro-
duces	an	initializer	was	not	present,	so	instead	of

int x = 1;

one used

int x 1;

The	change	was	made	because	the	initialization

int f (1+2)

resembles a function declaration closely enough to confuse the compilers.

A-34 C Reference Manual

18. SYNTAX SUMMARY
This summary of C syntax is intended more for aiding comprehension than as

an exact statement of the language.

18.1 Expressions
The basic expressions are:

expression:
 primary
 * expression
 & expression
 - expression
 ! expression
 ~ expression
 ++ lvalue
 -- lvalue
 lvalue ++
 lvalue --
 sizeof expression
 (type-name) expression
 expression binop expression
 expression ? expression : expression
 lvalue asgnop expression
 expression , expression

primary:
 identifier
 constant
 string
 (expression)
 primary (expression-listopt)
 primary [expression]
 lvalue . identifier
 primary -> identifier

lvalue:
 identifier
 primary [expression]
 lvalue . identifier
 primary -> identifier
 * expression (lvalue)

The primary-expression operators

() [] . ->

have highest priority and group left-to-right. The unary operators

* & - ! ~ ++ -- sizeof(type-name)

have priority below the primary operators but higher than any binary operator,
and group right-to-left. Binary operators group left-to-right; they have priority

C Reference Manual A-35

decreasing as indicated below. The conditional operator groups right to left.

binop:
 * / %
 + -
 >> <<
 < > <= >=
 &
 ^
 |
 &&
 ||
 ? :

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
 = += -= *= /= %= >>= <<= &= ^= |=

The comma operator has the lowest priority, and groups left-to-right.

18.2 Declarations

declaration:
 decl-specifiers init-declarator-listopt ;

decl-specifiers:
 type-specifier decl-specifiersopt
 sc-specifier decl-specifiersopt

sc-specifier:
 auto
 static
 extern
 register
 typedef

type-specifier:
 char
 short
 int
 long
 unsigned
 float
 double
 struct-or-union-specifier
 typedef-name

init-declarator-list:
 init-declarator
 init-declarator , init-declarator-list

A-36 C Reference Manual

init-declarator:
declarator initializeropt

declarator:
 identifier
 (declarator)
 * declarator
 declarator ()
 declarator [constant-expressionopt]

struct-or-union-specifier:
 struct { struct-decl-list }
 struct identifier { struct-decl-list }
 struct identifier
 union { struct-decl-list }
 union identifier { struct-decl-list }
 union identifier

struct-decl-list:
 struct-declaration
 struct-declaration struct-decl-list

struct-declaration:
 type-specifier struct-declarator-list ;

struct-declarator-list:
 struct-declarator
 struct-declarator , struct-declarator-list

struct-declarator:
 declarator
 declarator : constant-expression
 : constant-expression

initializer:
 = expression
 = { initializer-list }
 = { initializer-list , }

initializer-list:
 expression
 initializer-list , initializer-list
 { initializer-list }

type-name:
 type-specifier abstract-declarator

C Reference Manual A-37

abstract-declarator:
 empty
 (abstract-declarator)
 * abstract-declarator
 abstract-declarator ()
 abstract-declarator [constant-expressionopt]

typedef-name:
 identifier

18.3 Statements

compound-statement:
 { declaration-listopt statement-listopt }

declaration-list:
 declaration
 declaration declaration-list

statement-list:
 statement
 statement statement-list

statement:
 compound-statement
 expression ;
 if (expression) statement
 if (expression) statement else statement
 while (expression) statement
 do statement while (expression) ;
 for (expression-1opt ; expression-2opt ; expression-3opt) statement
 switch (expression) statement
 case constant-expression : statement
 default : statement
 break ;
 continue ;
 return ;
 return expression ;
 goto identifier ;
 identifier : statement

18.4 External definitions

program:
 external-definition
 external-definition program

A-38 C Reference Manual

external-definition:
 function-definition
 data-definition

function-definition:
 type-specifieropt function-declarator function-body

function-declarator:
 declarator (parameter-listopt)

parameter-list:
 identifier
 identifier , parameter-list

function-body:
 type-decl-list function-statement

function-statement:
 { declaration-listopt statement-list }

data-definition:
 externopt type-specifieropt init-declarator-listopt ;
 staticopt type-specifieropt init-declarator-listopt ;

C Reference Manual A-39

18.5 Preprocessor

#define identifier token-string
#define identifier (identifier , . . . , identifier) token-string
#undef identifier
#include ”filename”
#include <filename>
#if constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant identifier

A-40 C Reference Manual

Recent Changes to C

November 15, 1978

A few extensions have been made to the C language beyond what is described
in the book The C Programming Language by Brian W. Kernighan and Dennis
M. Ritchie, Prentice Hall, Inc., 1978.

1. STRUCTURE ASSIGNMENT
Structures may be assigned, passed as arguments to functions, and returned

by functions. The types of operands taking part must be the same. Other plau-
sible operators, such as equality comparison, have not been implemented.

There is a subtle defect in the PDP-11 implementation of functions that return
structures: if an interrupt occurs during the return sequence, and the same func-
tion is called reentrantly during the interrupt, the value returned from the first
call may be corrupted. The problem can occur only in the presence of true inter-
rupts, as in an operating system or a user program that makes significant use of
signals; ordinary recursive calls are quite safe.

2. ENUMERATION TYPE
There is a new data type analogous to the scalar types of Pascal. To the

type-specifiers in the syntax on p. 193 of the C book add

enum-specifier

with syntax

enum-specifier:
 enum { enum-list }
 enum identifier { enum-list }
 enum identifier

enum-list:
 enumerator
 enum-list , enumerator

enumerator:
 identifier
 identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the
structure tag in a struct-specifier; it names a particular enumeration. For exam-
ple,

enum color { chartreuse, burgundy, claret, puce };
. . .
enum color *cp, col;

makes color the enumeration-tag of a type describing various colors, and then
declares cp as a pointer to an object of that type, and col as an object of that
type.

C Reference Manual A-41

The identifiers in the enum-list are declared as constants, and may appear
wherever constants are required. If no enumerators with = appear, then the
values of the constants begin at 0 and increase by 1 as the declaration is read
from left to right. An enumerator with = gives the associated identifier the value
indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure
tags and members, are drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct
from objects of all other types, and lint flags type mismatches. In the PDP-11
implementation all enumeration variables are treated as if they were int.

May 1979

Appendix B: RATFOR — A Preprocessor for a Rational
Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
Most programmers will agree that Fortran is an unpleasant language to pro-

gram in, yet there are many occasions when they are forced to use it. For exam-
ple, Fortran is often the only language thoroughly supported on the local com-
puter. Indeed, it is the closest thing to a universal programming language
currently available: with care it is possible to write large, truly portable Fortran
programs[1]. Finally, Fortran is often the most “efficient” language available,
particularly for programs requiring much computation.

But Fortran is unpleasant. Perhaps the worst deficiency is in the control
flow	statements	—	conditional	branches	and	loops	—	which	express	the	logic	of	
the program. The conditional statements in Fortran are primitive. The Arith-
metic if forces the user into at least two statement numbers and two (implied)
goto’s; it leads to unintelligible code, and is eschewed by good programmers.
The Logical if is better, in that the test part can be stated clearly, but hopelessly
restrictive because the statement that follows the if can only be one Fortran
statement (with some further restrictions!). And of course there can be no else
part to a Fortran if: there is no way to specify an alternative action if the if is
not satisfied.

The Fortran do restricts the user to going forward in an arithmetic progres-
sion. It is fine for “1 to N in steps of 1 (or 2 or ...)”, but there is no direct way
to go backwards, or even (in ANSI Fortran[2]) to go from 1 to N-1. And of
course the do is useless if one’s problem doesn’t map into an arithmetic progres-
sion.

The result of these failings is that Fortran programs must be written with
numerous labels and branches. The resulting code is particularly difficult to read
and understand, and thus hard to debug and modify.

When one is faced with an unpleasant language, a useful technique is to
define a new language that overcomes the deficiencies, and to translate it into the
unpleasant one with a preprocessor. This is the approach taken with Ratfor.
(The preprocessor idea is of course not new, and preprocessors for Fortran are
especially popular today. A recent listing [3] of preprocessors shows more than
50,	of	which	at	least	half	a	dozen	are	widely	available.)

2. LANGUAGE DESCRIPTION

B-2 ratfor

Design
Ratfor attempts to retain the merits of Fortran (universality, portability,

efficiency) while hiding the worst Fortran inadequacies. The language is Fortran
except for two aspects. First, since control flow is central to any program,
regardless of the specific application, the primary task of Ratfor is to conceal this
part of Fortran from the user, by providing decent control flow structures. These
structures are sufficient and comfortable for structured programming in the nar-
row sense of programming without GOTO’s. Second, since the preprocessor must
examine an entire program to translate the control structure, it is possible at the
same time to clean up many of the “cosmetic” deficiencies of Fortran, and thus
provide a language which is easier and more pleasant to read and write.

Beyond	these	two	aspects	—	control	flow	and	cosmetics	—	Ratfor	does	noth-
ing about the host of other weaknesses of Fortran. Although it would be
straightforward to extend it to provide character strings, for example, they are
not needed by everyone, and of course the preprocessor would be harder to imple-
ment. Throughout, the design principle which has determined what should be in
Ratfor and what should not has been Ratfor doesn’t know any Fortran. Any
language feature which would require that Ratfor really understand Fortran has
been omitted. We will return to this point in the section on implementation.

Even within the confines of control flow and cosmetics, we have attempted
to be selective in what features to provide. The intent has been to provide a
small set of the most useful constructs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an informal description of the Ratfor
language. The control flow aspects will be quite familiar to readers used to
languages like Algol, PL/I, Pascal, etc., and the cosmetic changes are equally
straightforward. We shall concentrate on showing what the language looks like.

Statement Grouping
Fortran provides no way to group statements together, short of making

them into a subroutine. The standard construction “if a condition is true, do
this group of things,” for example,

if (x > 100)
 { call error(”x>100”); err = 1; return }

cannot be written directly in Fortran. Instead a programmer is forced to
translate this relatively clear thought into murky Fortran, by stating the negative
condition and branching around the group of statements:

 if (x .le. 100) goto 10
 call error(5hx>100)
 err = 1
 return
10 ...

When the program doesn’t work, or when it must be modified, this must be
translated back into a clearer form before one can be sure what it does.

Ratfor eliminates this error-prone and confusing back-and-forth translation;
the first form is the way the computation is written in Ratfor. A group of state-
ments can be treated as a unit by enclosing them in the braces { and }. This is

ratfor B-3

true throughout the language: wherever a single Ratfor statement can be used,
there can be several enclosed in braces. (Braces seem clearer and less obtrusive
than begin and end or do and end, and of course do and end already have
Fortran meanings.)

Cosmetics contribute to the readability of code, and thus to its understanda-
bility. The character “>” is clearer than “.GT.”, so Ratfor translates it appropri-
ately, along with several other similar shorthands. Although many Fortran com-
pilers permit character strings in quotes (like ”x>100”), quotes are not allowed
in ansi Fortran, so Ratfor converts it into the right number of H’s: computers
count better than people do.

Ratfor is a free-form language: statements may appear anywhere on a line,
and several may appear on one line if they are separated by semicolons. The
example above could also be written as

if (x > 100) {
 call error(”x>100”)
 err = 1
 return
}

In this case, no semicolon is needed at the end of each line because Ratfor
assumes there is one statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement (Ratfor
or otherwise), no braces are needed:

if	(y	<==	0.0	&	z	<=	0.0)
	 write(6,	20)	y,	z

No continuation need be indicated because the statement is clearly not finished
on the first line. In general Ratfor continues lines when it seems obvious that
they are not yet done. (The continuation convention is discussed in detail later.)

Although a free-form language permits wide latitude in formatting styles, it
is wise to pick one that is readable, then stick to it. In particular, proper inden-
tation is vital, to make the logical structure of the program obvious to the reader.

The “else” Clause
Ratfor provides an else statement to handle the construction “if a condition

is true, do this thing, otherwise do that thing.”
if(a<=b)
 { sw = 0; write(6, 1) a, b }
else
 { sw = 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the larger, and sets sw appropri-
ately.

The Fortran equivalent of this code is circuitous indeed:

B-4 ratfor

 if (a .gt. b) goto 10
 sw = 0
 write(6, 1) a, b
 goto 20
10 sw = 1
 write(6, 1) b, a
20 ...

This is a mechanical translation; shorter forms exist, as they do for many similar
situations. But all translations suffer from the same problem: since they are
translations, they are less clear and understandable than code that is not a trans-
lation. To understand the Fortran version, one must scan the entire program to
make sure that no other statement branches to statements 10 or 20 before one
knows that indeed this is an if-else construction. With the Ratfor version, there
is no question about how one gets to the parts of the statement. The if-else is a
single unit, which can be read, understood, and ignored if not relevant. The pro-
gram says what it means.

As before, if the statement following an if or an else is a single statement,
no braces are needed:

if (a <= b)
 sw = 0 else
 sw = 1

The syntax of the if statement is

if (legal Fortran condition)
 Ratfor statement
else
 Ratfor statement

where the else part is optional. The legal Fortran condition is anything that can
legally go into a Fortran Logical if. Ratfor does not check this clause, since it
does not know enough Fortran to know what is permitted. The Ratfor statement
is any Ratfor or Fortran statement, or any collection of them in braces.

Nested if ’s
Since the statement that follows an if or an else can be any Ratfor state-

ment, this leads immediately to the possibility of another if or else. As a useful
example, consider this problem: the variable f is to be set to -1 if x is less than
zero,	to	+1	if	x	is	greater	than	100,	and	to	0	otherwise.		Then	in	Ratfor,	we	write

if (x < 0)
 f = -1
else if (x > 100)
 f = +1
else
 f = 0

Here the statement after the first else is another if-else. Logically it is just a sin-
gle statement, although it is rather complicated.

ratfor B-5

This code says what it means. Any version written in straight Fortran will
necessarily be indirect because Fortran does not let you say what you mean. And
as always, clever shortcuts may turn out to be too clever to understand a year
from now.

Following an else with an if is one way to write a multi-way branch in Rat-
for. In general the structure

if (...)
 – – –
else if (...)
 – – –
else if (...)
 – – –
...
else
 – – –

provides a way to specify the choice of exactly one of several alternatives. (Rat-
for also provides a switch statement which does the same job in certain special
cases; in more general situations, we have to make do with spare parts.) The tests
are laid out in sequence, and each one is followed by the code associated with it.
Read down the list of decisions until one is found that is satisfied. The code
associated with this condition is executed, and then the entire structure is
finished. The trailing else part handles the “default” case, where none of the
other conditions apply. If there is no default action, this final else part is omit-
ted:

if (x < 0)
 x = 0
else if (x > 100)
 x = 100

if-else ambiguity
There is one thing to notice about complicated structures involving nested

if’s and else’s. Consider
if (x > 0)
 if (y > 0)
 write(6, 1) x, y
 else
 write(6, 2) y

There are two if’s and only one else. Which if does the else go with?
This is a genuine ambiguity in Ratfor, as it is in many other programming

languages. The ambiguity is resolved in Ratfor (as elsewhere) by saying that in
such cases the else goes with the closest previous un-else’ed if. Thus in this case,
the else goes with the inner if, as we have indicated by the indentation.

It is a wise practice to resolve such cases by explicit braces, just to make
your intent clear. In the case above, we would write

B-6 ratfor

if (x > 0) {
 if (y > 0)
 write(6, 1) x, y
 else
 write(6, 2) y
}

which does not change the meaning, but leaves no doubt in the reader’s mind. If
we want the other association, we must write

if (x > 0) {
 if (y > 0)
 write(6, 1) x, y
}
else
 write(6, 2) y

The “switch” Statement
The switch statement provides a clean way to express multi-way branches

which branch on the value of some integer-valued expression. The syntax is
switch (expression) {

 case expr1 :
 statements
 case expr2, expr3 :
 statements
 ...
 default:
 statements
}

Each case is followed by a list of comma-separated integer expressions. The
expression inside switch is compared against the case expressions expr1, expr2,
and so on in turn until one matches, at which time the statements following that
case are executed. If no cases match expression, and there is a default section,
the statements with it are done; if there is no default, nothing is done. In all
situations, as soon as some block of statements is executed, the entire switch is
exited immediately. (Readers familiar with C[4] should beware that this behavior
is not the same as the C switch.)

The “do” Statement
The do statement in Ratfor is quite similar to the do statement in Fortran,

except that it uses no statement number. The statement number, after all,
serves only to mark the end of the do, and this can be done just as easily with
braces. Thus

ratfor B-7

do i = 1, n {
 x(i) = 0.0
 y(i) = 0.0
	 z(i)	=	0.0
}

is the same as
 do 10 i = 1, n
 x(i) = 0.0
 y(i) = 0.0
	 	 z(i)	=	0.0	
10 continue

The syntax is:
do legal-Fortran-DO-text
 Ratfor statement

The part that follows the keyword do has to be something that can legally go
into a Fortran do statement. Thus if a local version of Fortran allows do limits
to be expressions (which is not currently permitted in ansi Fortran), they can be
used in a Ratfor do.

The Ratfor statement part will often be enclosed in braces, but as with the
if, a single statement need not have braces around it. This code sets an array to
zero:

do i = 1, n
 x(i) = 0.0

Slightly more complicated,
do i = 1, n
 do j = 1, n
 m(i, j) = 0

sets the entire array m	to	zero,	and
do i = 1, n
 do j = 1, n
 if (i < j)
 m(i, j) = -1
 else if (i == j)
 m(i, j) = 0
 else
 m(i, j) = +1

sets the upper triangle of m	to	-1,	the	diagonal	to	zero,	and	the	lower	triangle	to	
+1. (The operator == is “equals”, that is, “.EQ.”.) In each case, the statement
that follows the do is logically a single statement, even though complicated, and
thus needs no braces.

B-8 ratfor

“break” and “next”
Ratfor provides a statement for leaving a loop early, and one for beginning

the next iteration. break causes an immediate exit from the do; in effect it is a
branch to the statement after the do. next is a branch to the bottom of the loop,
so it causes the next iteration to be done. For example, this code skips over
negative values in an array:

do i = 1, n {
 if (x(i) < 0.0)
 next
 process positive element
}

break and next also work in the other Ratfor looping constructions that we will
talk about in the next few sections.

break and next can be followed by an integer to indicate breaking or
iterating that level of enclosing loop; thus

break 2
exits from two levels of enclosing loops, and break 1 is equivalent to break.
next 2 iterates the second enclosing loop. (Realistically, multi-level break’s and
next’s are not likely to be much used because they lead to code that is hard to
understand and somewhat risky to change.)

The “while” Statement
One of the problems with the Fortran DO statement is that it generally

insists upon being done once, regardless of its limits. If a loop begins
DO I = 2, 1

this will typically be done once with I set to 2, even though common sense would
suggest that perhaps it shouldn’t be. Of course a Ratfor do can easily be pre-
ceded by a test

if (j <=k)
 do i = j, k {
 – – –
 }

but this has to be a conscious act, and is often overlooked by programmers.
A more serious problem with the DO statement is that it encourages that a

program be written in terms of an arithmetic progression with small positive
steps, even though that may not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the Fortran DO, it is that much
harder to write and understand.

To overcome these difficulties, Ratfor provides a while statement, which is
simply a loop: “while some condition is true, repeat this group of statements”. It
has no preconceptions about why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines two termination criteria.

ratfor B-9

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x - x**3/3! + x**5/5! - ...

sin = x
term = x

i = 3
while (abs(term)>e & i<100) {
 term = -term * x**2 / float(i*(i-1))
 sin = sin + term
 i = i + 2
}

return
end

Notice that if the routine is entered with term already smaller than e, the
loop will be done zero times, that is, no attempt will be made to compute x**3
and thus a potential underflow is avoided. Since the test is made at the top of a
while	loop	instead	of	the	bottom,	a	special	case	disappears	—	the	code	works	at	
one of its boundaries. (The test i<100	is	the	other	boundary	—	making	sure	the	
routine stops after some maximum number of iterations.)

As an aside, a sharp character “#” in a line marks the beginning of a com-
ment; the rest of the line is comment. Comments and code can co-exist on the
same	 line	 —	 one	 can	 make	 marginal	 remarks,	 which	 is	 not	 possible	 with	
Fortran’s “C in column 1” convention. Blank lines are also permitted anywhere
(they	are	not	in	Fortran);	they	should	be	used	to	emphasize	the	natural	divisions	
of a program.

The syntax of the while statement is
while (legal Fortran condition)
 Ratfor statement

As with the if, legal Fortran condition is something that can go into a Fortran
Logical if, and Ratfor statement is a single statement, which may be multiple
statements in braces.

The while encourages a style of coding not normally practiced by Fortran
programmers. For example, suppose nextch is a function which returns the next
input character both as a function value and in its argument. Then a loop to
find the first non-blank character is just

while (nextch(ich) == iblank)
 ;

A semicolon by itself is a null statement, which is necessary here to mark the end
of the while; if it were not present, the while would control the next statement.
When the loop is broken, ich contains the first non-blank. Of course the same
code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100
but many Fortran programmers (and a few compilers) believe this line is illegal.

B-10 ratfor

The language at one’s disposal strongly influences how one thinks about a prob-
lem.

The “for” Statement
The for statement is another Ratfor loop, which attempts to carry the

separation of loop-body from reason-for-looping a step further than the while. A
for	 statement	 allows	 explicit	 initialization	 and	 increment	 steps	 as	 part	 of	 the	
statement. For example, a do loop is just

for (i = 1; i <= n; i = i + 1) ...
This is equivalent to

i = 1
while (i <= n) {
 ...
 i = i + 1
}

The	 initialization	and	 increment	of	 i have been moved into the for statement,
making it easier to see at a glance what controls the loop.

The for and while	versions	have	the	advantage	that	they	will	be	done	zero	
times if n is less than 1; this is not true of the do.

The loop of the sine routine in the previous section can be re-written with a
for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
 term = -term * x**2 / float(i*(i-l))
 sin = sin + term
}

The syntax of the for statement is
for (init ; condition ; increment)
 Ratfor statement

init is any single Fortran statement, which gets done once before the loop begins.
increment is any single Fortran statement, which gets done at the end of each
pass through the loop, before the test. condition is again anything that is legal in
a logical if. Any of init, condition, and increment may be omitted, although the
semicolons must always be present. A non-existent condition is treated as always
true, so for(;;) is an indefinite repeat. (But see the repeat-until in the next sec-
tion.)

The for statement is particularly useful for backward loops, chaining along
lists,	loops	that	might	be	done	zero	times,	and	similar	things	which	are	hard	to	
express with a do statement, and obscure to write out with if’s and goto’s. For
example, here is a backwards do loop to find the last non-blank character on a
card:

for (i = 80; i > 0; i = i - 1)
 if (card(i) !=blank)
 break

ratfor B-11

(“!=” is the same as “.NE.”). The code scans the columns from 80 through to 1.
If a non-blank is found, the loop is immediately broken, (break and next work
in for’s and while’s just as in do’s). If i	reaches	zero,	the	card	is	all	blank.

This code is rather nasty to write with a regular Fortran do, since the loop
must go forward, and we must explicitly set up proper conditions when we fall
out of the loop. (Forgetting this is a common error.) Thus:

 DO 10 J = 1, 80
 1 = 81 - J
 IF (CARD(I) .NE. BLANK) GO TO 11
10 CONTINUE
 I = 0
11 ...

The version that uses the for handles the termination condition properly for free;
i	is	zero	when	we	fall	out	of	the	for loop.

The increment in a for need not be an arithmetic progression; the following
program walks along a list (stored in an integer array ptr)	until	a	zero	pointer	is	
found, adding up elements from a parallel array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i))
 sum = sum + value(i)

Notice that the code works correctly if the list is empty. Again, placing the test
at the top of a loop instead of the bottom eliminates a potential boundary er-
ror.

The “repeat-until” statement
In spite of the dire warnings, there are times when one really needs a loop

that tests at the bottom after one pass through. This service is provided by the
repeat-until:

repeat
 Ratfor statement
until (legal Fortran condition)

The Ratfor statement part is done once, then the condition is evaluated. If it is
true, the loop is exited; if it is false, another pass is made.

The until part is optional, so a bare repeat is the cleanest way to specify
an infinite loop. Of course such a loop must ultimately be broken by some
transfer of control such as stop, return, or break, or an implicit stop such as
running out of input with a read statement.

As a matter of observed fact[8], the repeat-until statement is much less
used than the other looping constructions; in particular, it is typically outnum-
bered ten to one by for and while. Be cautious about using it, for loops that
test only at the bottom often don’t handle null cases well.

More on break and next
break exits immediately from do, while, for, and repeat-until. next goes

to the test part of do, while and repeat-until and to the increment step of a
for.

B-12 ratfor

“return” Statement
The standard Fortran mechanism for returning a value from a function uses

the name of the function as a variable which can be assigned to; the last value
stored in it is the function value upon return. For example, here is a routine
equal	which	returns	1	if	two	arrays	are	identical,	and	zero	if	they	differ.		The	
array ends are marked by the special value -1.

equal _ compare str1 to str2;
return 1 if equal, 0 if not
 integer function equal(strl, str2)
 integer str1(100), str2(100)
 integer i

 for (i = 1; str1(i) == str2(i); i = i + 1)
 if (str1(i) == -1) {
 equal = 1
 return
 }
 equal = 0
 return
 end

In many languages (e.g., PL/I) one instead says
return (expression)

to return a value from a function. Since this is often clearer, Ratfor provides
such a return	 statement	—	 in	a	 function	F, return(expression) is equivalent
to

{ F = expression; return }
For example, here is equal again:

equal _ compare str1 to str2;
return 1 if equal, 0 if not
 integer function equal(str1, str2)
 integer str1(100), str2(100)
 integer i

 for (i = 1; str1(i) == str2(i); i = i + 1)
 if (str1(i) == -1)
 return(1)
 return(0)
 end

If	there	is	no	parenthesized	expression	after	return, a normal return is made.
(Another version of equal is presented shortly.)

Cosmetics
As we said above, the visual appearance of a language has a substantial

effect on how easy it is to read and understand programs. Accordingly, Ratfor
provides a number of cosmetic facilities which may be used to make programs
more readable.

= i + l)

ratfor B-13

Free-form Input
Statements can be placed anywhere on a line; long statements are continued

automatically, as are long conditions in if, while, for, and until. Blank lines are
ignored. Multiple statements may appear on one line, if they are separated by
semicolons. No semicolon is needed at the end of a line, if Ratfor can make some
reasonable guess about whether the statement ends there. Lines ending with any
of the characters

= + - * , | & (_
are assumed to be continued on the next line. Underscores are discarded wher-
ever they occur; all others remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a For-
tran label, and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format (”hello”)
is converted into

 write(6, 100)
100 format(5hhello)

Translation Services
Text enclosed in matching single or double quotes is converted to nH... but is

otherwise	unaltered	(except	for	formatting	—	it	may	get	split	across	card	boun-
daries during the reformatting process). Within quoted strings, the backslash ‘\’
serves as an escape character: the next character is taken literally. This provides
a way to get quotes (and of course the backslash itself) into quoted strings:

”\\\´ ”
is a string containing a backslash and an apostrophe. (This is not the standard
convention of doubled quotes, but it is easier to use and more general.)

Any line that begins with the character ‘%’ is left absolutely unaltered
except for stripping off the ‘%’ and moving the line one position to the left. This
is useful for inserting control cards, and other things that should not be
transmogrified (like an existing Fortran program). Use ‘%’ only for ordinary
statements, not for the condition parts of if, while, etc., or the output may come
out in an unexpected place.

The following character translations are made, except within single or double
quotes or on a line beginning with a ‘%’.

== .eq. != .ne.
> .gt. >= .ge.
< .lt. <= .le.
& .and. | .or.
! .not. ¬ .not.

In addition, the following translations are provided for input devices with res-
tricted character sets.

[{] }
$({ $) }

B-14 ratfor

“define” Statement
Any string of alphanumeric characters can be defined as a name; thereafter,

whenever that name occurs in the input (delimited by non-alphanumerics) it is
replaced by the rest of the definition line. (Comments and trailing white spaces
are stripped off). A defined name can be arbitrarily long, and must begin with a
letter.

define is typically used to create symbolic parameters:
define ROWS 100
define COLS 50
dimension a(ROWS), b(ROWS, COLS)
 if (i > ROWS | j > COLS) ...

Alternately, definitions may be written as
define(ROWS, 100)

In this case, the defining text is everything after the comma up to the balancing
right parenthesis; this allows multi-line definitions.

It is generally a wise practice to use symbolic parameters for most constants,
to help make clear the function of what would otherwise be mysterious numbers.
As an example, here is the routine equal again, this time with symbolic con-
stants.

define YES 1
define NO 0
define EOS -1
define ARB 100

equal _ compare str1 to str2;
return YES if equal, NO if not
 integer function equal(str1, str2)
 integer str1(ARB), str2(ARB)
 integer i

 for (i = 1; str1(i) == str2(i); i = i + 1)
 if (str1(i) === EOS)
 return(YES)
 return(NO)
 end

“include” Statement
The statement

include file
inserts the file found on input stream file into the Ratfor input in place of the
include statement. The standard usage is to place common blocks on a file, and
include that file whenever a copy is needed:

ratfor B-15

subroutine x
 include commonblocks
 ...
 end

subroutine y
 include commonblocks
 ...
 end

This ensures that all copies of the common blocks are identical

Pitfalls, Botches, Blemishes and other Failings
Ratfor catches certain syntax errors, such as missing braces, else clauses

without an if, and most errors involving missing parentheses in statements.
Beyond that, since Ratfor knows no Fortran, any errors you make will be
reported by the Fortran compiler, so you will from time to time have to relate a
Fortran diagnostic back to the Ratfor source.

Keywords	are	reserved	—	using	if, else, etc., as variable names will typically
wreak havoc. Don’t leave spaces in keywords. Don’t use the Arithmetic if.

The Fortran nH	 convention	 is	 not	 recognized	 anywhere	 by	 Ratfor;	 use	
quotes instead.

3. IMPLEMENTATION
Ratfor was originally written in C[4] on the unix operating system [5]. The

language is specified by a context free grammar and the compiler constructed
using the yacc compiler-compiler[6].

The Ratfor grammar is simple and straightforward, being essentially
prog : stat
 | prog stat
stat : if (...) stat
 | if (...) stat else stat
 | while (...) stat
 | for (...; ...; ...) stat
 | do ... stat
 | repeat stat
 | repeat stat until (...)
 | switch (...) { case ...: prog ...
 default: prog }
 | return
 | break
 | next
 | digits stat
 | { prog }
	 |	anything	unrecognizable

The observation that Ratfor knows no Fortran follows directly from the rule that
says	a	statement	is	“anything	unrecognizable”;	In	fact	most	of	Fortran	falls	into	
this category, since any statement that does not begin with one of the keywords

B-16 ratfor

is	by	definition	“unrecognizable.”
Code generation is also simple. If the first thing on a source line is not a

keyword (like if, else, etc.) the entire statement is simply copied to the output
with appropriate character translation and formatting. (Leading digits are
treated as a label.) Keywords cause only slightly more complicated actions. For
example, when if	is	recognized,	two	consecutive	labels	L	and	L+1	are	generated	
and the value of L is stacked. The condition is then isolated, and the code

if (.not. (condition)) goto L
is output. The statement part of the if is then translated. When the end of the
statement is encountered (which may be some distance away and include nested
if’s, of course), the code

L continue
is generated, unless there is an else clause, in which case the code is

 goto L+1
L continue

In this latter case, the code
L+1 continue

is produced after the statement part of the else. Code generation for the various
loops is equally simple.

One might argue that more care should be taken in code generation. For
example, if there is no trailing else,

 if (i > 0) x = a
should be left alone, not converted into

 if (.not. (i .gt. 0)) goto 100
 x = a
100 continue

But	what	are	optimizing	compilers	for,	if	not	to	improve	code?	It	is	a	rare	pro-
gram indeed where this kind of “inefficiency” will make even a measurable
difference. In the few cases where it is important, the offending lines can be pro-
tected by ‘%’.

The use of a compiler-compiler is definitely the preferred method of software
development. The language is well-defined, with few syntactic irregularities.
Implementation is quite simple; the original construction took under a week. The
language is sufficiently simple, however, that an ad hoc	recognizer	can	be	readily	
constructed to do the same job if no compiler-compiler is available.

The C version of Ratfor is used on unix and on the Honeywell gcos sys-
tems. C compilers are not as widely available as Fortran, however, so there is
also a Ratfor written in itself and originally bootstrapped with the C version.
The Ratfor version was written so as to translate into the portable subset of For-
tran described in [1], so it is portable, having been run essentially without change
on at least twelve distinct machines. (The main restrictions of the portable sub-
set are: only one character per machine word; subscripts in the form c*v±c;
avoiding expressions in places like do loops; consistency in subroutine argument

ratfor B-17

usage, and in common declarations. Ratfor itself will not gratuitously generate
non-standard Fortran.)

The Ratfor version is about 1500 lines of Ratfor (compared to about 1000
lines of C); this compiles into 2500 lines of Fortran. This expansion ratio is
somewhat higher than average, since the compiled code contains unnecessary
occurrences of common declarations. The execution time of the Ratfor version is
dominated by two routines that read and write cards. Clearly these routines
could be replaced by machine coded local versions; unless this is done, the
efficiency of other parts of the translation process is largely irrelevant.

4. EXPERIENCE

Good Things
“It’s so much better than Fortran” is the most common response of users

when asked how well Ratfor meets their needs. Although cynics might consider
this to be vacuous, it does seem to be true that decent control flow and cosmetics
converts Fortran from a bad language into quite a reasonable one, assuming that
Fortran data structures are adequate for the task at hand.

Although there are no quantitative results, users feel that coding in Ratfor is
at least twice as fast as in Fortran. More important, debugging and subsequent
revision are much faster than in Fortran. Partly this is simply because the code
can be read. The looping statements which test at the top instead of the bottom
seem to eliminate or at least reduce the occurrence of a wide class of boundary
errors. And of course it is easy to do structured programming in Ratfor; this
self-discipline also contributes markedly to reliability.

One interesting and encouraging fact is that programs written in Ratfor tend
to be as readable as programs written in more modern languages like Pascal.
Once one is freed from the shackles of Fortran’s clerical detail and rigid input
format, it is easy to write code that is readable, even esthetically pleasing. For
example, here is a Ratfor implementation of the linear table search discussed by
Knuth [7]:

A(m+1) = x
for (i = 1; A(i) != x; i = i + 1)
 ;
if (i > m) {
 m = i
 B(i) = 1
}
else
 B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including a subset of the Ratfor preproces-
sor itself, can be found in [8].

Bad Things
The biggest single problem is that many Fortran syntax errors are not

detected by Ratfor but by the local Fortran compiler. The compiler then prints
a message in terms of the generated Fortran, and in a few cases this may be
difficult to relate back to the offending Ratfor line, especially if the

B-18 ratfor

implementation conceals the generated Fortran. This problem could be dealt
with by tagging each generated line with some indication of the source line that
created it, but this is inherently implementation-dependent, so no action has yet
been taken. Error message interpretation is actually not so arduous as might be
thought. Since Ratfor generates no variables, only a simple pattern of if’s and
goto’s, data-related errors like missing dimension statements are easy to find in
the Fortran. Furthermore, there has been a steady improvement in Ratfor’s abil-
ity to catch trivial syntactic errors like unbalanced parentheses and quotes.

There are a number of implementation weaknesses that are a nuisance, espe-
cially to new users. For example, keywords are reserved. This rarely makes any
difference, except for those hardy souls who want to use an Arithmetic if. A few
standard Fortran constructions are not accepted by Ratfor, and this is perceived
as a problem by users with a large corpus of existing Fortran programs. Protect-
ing every line with a ‘%’ is not really a complete solution, although it serves as a
stop-gap. The best long-term solution is provided by the program Struct [9],
which converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain that the generated Fortran is
“unreadable” because it is not tastefully formatted and contains extraneous con-
tinue statements. To some extent this can be ameliorated (Ratfor now has an
option to copy Ratfor comments into the generated Fortran), but it has always
seemed that effort is better spent on the input language than on the output
esthetics.

One	 final	 problem	 is	 partly	 attributable	 to	 success	—	 since	Ratfor	 is	 rela-
tively easy to modify, there are now several dialects of Ratfor. Fortunately, so
far most of the differences are in character set, or in invisible aspects like code
generation.

5. CONCLUSIONS
Ratfor demonstrates that with modest effort it is possible to convert Fortran

from a bad language into quite a good one. A preprocessor is clearly a useful way
to extend or ameliorate the facilities of a base language.

When designing a language, it is important to concentrate on the essential
requirement of providing the user with the best language possible for a given
effort.	 	 One	must	 avoid	 throwing	 in	 “features”	—	 things	 which	 the	 user	 may	
trivially construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it
seems pointless for Ratfor to prepare a neatly formatted listing of either its input
or its output. The user is presumably capable of the self-discipline required to
prepare neat input that reflects his thoughts. It is much more important that the
language provide free-form input so he can format it neatly. No one should read
the output anyway except in the most dire circumstances.

Acknowledgements
C. A. R. Hoare once said that “One thing [the language designer] should not

do is to include untried ideas of his own.” Ratfor follows this precept very closely
—	everything	in	it	has	been	stolen	from	someone	else.		Most	of	the	control	flow	
structures are taken directly from the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are adapted from Altran[10].

ratfor B-19

I am grateful to Stuart Feldman, whose patient simulation of an innocent
user during the early days of Ratfor led to several design improvements and the
eradication of bugs. He also translated the C parse-tables and yacc parser into
Fortran for the first Ratfor version of Ratfor.

References
[1] B. G. Ryder, “The PFORT Verifier,” Software—Practice & Experience,

October 1974.
[2] American National Standard Fortran. American National Standards Insti-

tute, New York, 1966.
[3] For-word: Fortran Development Newsletter, August 1975.
[4] B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall, Inc., 1978.
[5] D. M. Ritchie and K. L. Thompson, “The UNIX Time-sharing System.”

CACM, July 1974.
[6]	 S.	C.	 Johnson,	 “YACC	—	Yet	Another	Compiler-Compiler.”	Bell	 Labora-

tories Computing Science Technical Report #32, 1978.
[7] D. E. Knuth, “Structured Programming with goto Statements.” Computing

Surveys, December 1974.
[8] B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.
[9]	 B.	S.	Baker,	“Struct	—	A	Program	which	Structures	Fortran”,	Bell	Labora-

tories internal memorandum, December 1975.
[10]	A.	D.	Hall,	 “The	Altran	System	for	Rational	Function	Manipulation	—	A	

Survey.” CACM, August 1971.

Appendix C: The M4 Macro Processor
Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction
A macro processor is a useful way to enhance a programming language, to

make it more palatable or more readable, or to tailor it to a particular applica-
tion. The #define statement in C and the analogous define in Ratfor are exam-
ples	of	the	basic	facility	provided	by	any	macro	processor	—	replacement	of	text	
by other text.

The M4 macro processor is an extension of a macro processor called M3
which was written by D. M. Ritchie for the AP-3 minicomputer; M3 was in turn
based on a macro processor implemented for [1], Readers unfamiliar with the
basic ideas of macro processing may wish to read some of the discussion there.

M4 is a suitable front end for Ratfor and C, and has also been used succes-
sfully with Cobol. Besides the straightforward replacement of one string of text
by another, it provides macros with arguments, conditional macro expansion,
arithmetic,	file	manipulation,	and	some	specialized	string	processing	functions.

The basic operation of M4 is to copy its input to its output. As the input
is read, however, each alphanumeric “token” (that is, string of letters and digits)
is checked. If it is the name of a macro, then the name of the macro is replaced
by its defining text, and the resulting string is pushed back onto the input to be
res-canned. Macros may be called with arguments, in which case the arguments
are collected and substituted into the right places in the defining text before it is
res-canned.

M4 provides a collection of about twenty built-in macros which perform
various useful operations; in addition, the user can define new macros. Built-ins
and user-defined macros work exactly the same way, except that some of the
built-in macros have side effects on the state of the process.

Usage
On UNIX, use

m4 [files]
Each argument file is processed in order; if there are no arguments, or if an argu-
ment is ‘-’, the standard input is read at that point. The processed text is writ-
ten on the standard output, which may be captured for subsequent processing
with

m4 [files] >outputfile
On GCOS, usage is identical, but the program is called ./m4.

C-2 m4

Defining Macros
The primary built-in function of M4 is define, which is used to define new

macros. The input
define(name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences of
name will be replaced by stuff, name must be alphanumeric and must begin
with a letter (the underscore _ counts as a letter), stuff is any text that contains
balanced parentheses; it may stretch over multiple lines.

Thus, as a typical example,
define(N, 100)
 ...
if (i > N)

defines N to be 100, and uses this “symbolic constant” in a later if statement.
The left parenthesis must immediately follow the word define, to signal that

define has arguments. If a macro or built-in name is not followed immediately
by ‘(’, it is assumed to have no arguments. This is the situation for N above; it
is actually a macro with no arguments, and thus when it is used there need be no
(...) following it.

You	should	also	notice	that	a	macro	name	is	only	recognized	as	such	if	 it	
appears surrounded by non-alphanumerics. For example, in

define(N, 100)
 ...
if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N, even though
it contains a lot of N’s.

Things may be defined in terms of other things. For example,
define(N, 100)
define(M, N)

defines both M and N to be 100.
What happens if N is redefined? Or, to say it another way, is M defined as

N	or	as	100?	In	M4,	the	latter	is	true	—	M is 100, so even if N subsequently
changes, M does not.

This behavior arises because M4 expands macro names into their defining
text as soon as it possibly can. Here, that means that when the string N is seen
as the arguments of define are being collected, it is immediately replaced by 100;
it’s just as if you had said

define(M, 100)
in the first place.

If this isn’t what you really want, there are two ways out of it. The first,
which is specific to this situation, is to interchange the order of the definitions:

define(M,N)
define(N, 100)

m4 C-3

Now M is defined to be the string N, so when you ask for M later, you’ll always
get the value of N at that time (because the M will be replaced by N which will
be replaced by 100).

Quoting
The more general solution is to delay the expansion of the arguments of

define by quoting them. Any text surrounded by the single quotes ` and ´ is not
expanded immediately, but has the quotes stripped off. If you say

define(N, 100)
define(M, N)

the quotes around the N are stripped off as the argument is being collected, but
they have served their purpose, and M is defined as the string N, not 100. The
general rule is that M4 always strips off one level of single quotes whenever it
evaluates something. This is true even outside of macros. If you want the word
define to appear in the output, you have to quote it in the input, as in

`define´ = 1;
As another instance of the same thing, which is a bit more surprising, con-

sider redefining N:
define(N, 100)
 ...
define(N, 200)

Perhaps regrettably, the N in the second definition is evaluated as soon as it’s
seen; that is, it is replaced by 100, so it’s as if you had written

define(100, 200)
This statement is ignored by M4, since you can only define things that look like
names, but it obviously doesn’t have the effect you wanted. To really redefine N,
you must delay the evaluation by quoting:

define(N, 100)
 ...
define(`N´, 200)

In M4, it is often wise to quote the first argument of a macro.
If ` and ´ are not convenient for some reason, the quote characters can be

changed with the built-in changequote:
changequote([,])

makes the new quote characters the left and right brackets. You can restore the
original characters with just

changequote
There are two additional built-ins related to define, undefine removes the

definition of some macro or built-in:
undefine(`N´)

removes the definition of N. (Why are the quotes absolutely necessary?) Built-ins

C-4 m4

can be removed with undefine, as in
undefine(`define´)

but once you remove one, you can never get it back.
The built-in ifdef provides a way to determine if a macro is currently

defined. In particular, M4 has pre-defined the names unix and gcos on the
corresponding systems, so you can tell which one you’re using:

ifdef(`unix´, `define(wordsize,16)´)
ifdef(`gcos´, `define(wordsize,36)´)

makes a definition appropriate for the particular machine. Don’t forget the
quotes!

ifdef actually permits three arguments; if the name is undefined, the value
of ifdef is then the third argument, as in

ifdef(`unix´, on UNIX, not on UNIX)

Arguments
So	far	we	have	discussed	the	simplest	form	of	macro	processing	—	replacing	

one string by another (fixed) string. User-defined macros may also have argu-
ments, so different invocations can have different results. Within the replacement
text for a macro (the second argument of its define) any occurrence of $n will be
replaced by the nth argument when the macro is actually used. Thus, the macro
bump, defined as

define(bump, $1 = $1 + 1)
generates code to increment its argument by 1:

bump(x)
is

x = x + 1
A macro can have as many arguments as you want, but only the first nine

are accessible, through $1 to $9. (The macro name itself is $0, although that
is less commonly used.) Arguments that are not supplied are replaced by null
strings, so we can define a macro cat which simply concatenates its arguments,
like this:

define(cat, $1$2$3$4$5$6$7$8$9)
Thus

cat(x, y, z)
is equivalent to

xyz
$4 through $9 are null, since no corresponding arguments were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument col-
lection are discarded. All other white space is retained. Thus

m4 C-5

define(a, b c)
defines a to be b c.

Arguments are separated by commas, but parentheses are counted properly,
so a comma “protected” by parentheses does not terminate an argument. That
is, in

define(a, (b,c))
there are only two arguments; the second is literally (b,c). And of course a bare
comma or parenthesis can be inserted by quoting it.

Arithmetic Built-ins
M4 provides two built-in functions for doing arithmetic on integers (only).

The simplest is incr, which increments its numeric argument by 1. Thus to han-
dle the common programming situation where you want a variable to be defined
as “one more than N”, write

define(N, 100)
define(N1, `incr(N)´)

Then N1 is defined as one more than the current value of N.
The more general mechanism for arithmetic is a built-in called eval, which

is capable of arbitrary arithmetic on integers. It provides the operators (in
decreasing order of precedence)

unary + and -
** or ^ (exponentiation)
* / % (modulus)
+ -
== !== < <= > >=
! (not)
& or && (logical and)
| or || (logical or)

Parentheses may be used to group operations where needed. All the operands of
an expression given to eval must ultimately be numeric. The numeric value of a
true relation (like 1>0) is 1, and false is 0. The precision in eval is 32 bits on
unix and 36 bits on gcos.

As a simple example, suppose we want M to be 2**N+1. Then
define(N, 3)
define(M, `eval(2**N+1)´)

As a matter of principle, it is advisable to quote the defining text for a macro
unless it is very simple indeed (say just a number); it usually gives the result you
want, and is a good habit to get into.

File Manipulation
You can include a new file in the input at any time by the built-in function

include:
include(filename)

C-6 m4

inserts the contents of filename in place of the include command. The contents
of the file is often a set of definitions. The value of include (that is, its replace-
ment text) is the contents of the file; this can be captured in definitions, etc.

It is a fatal error if the file named in include cannot be accessed. To get
some control over this situation, the alternate form sinclude can be used; sin-
clude (“silent include”) says nothing and continues if it can’t access the file.

It is also possible to divert the output of M4 to temporary files during pro-
cessing, and output the collected material upon command. M4 maintains nine of
these diversions, numbered 1 through 9. If you say

divert(n)
all subsequent output is put onto the end of a temporary file referred to as n.
Diverting to this file is stopped by another divert command; in particular,
divert or divert(0) resumes the normal output process.

Diverted text is normally output all at once at the end of processing, with
the diversions output in numeric order. It is possible, however, to bring back
diversions at any time, that is, to append them to the current diversion.

undivert
brings back all diversions in numeric order, and undivert with arguments brings
back the selected diversions in the order given. The act of undiverting discards
the diverted stuff, as does diverting into a diversion whose number is not between
0 and 9 inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the number of the currently active diversion.
This	is	zero	during	normal	processing.

System Command
You can run any program in the local operating system with the syscmd

built-in. For example,
syscmd(date)

on UNIX runs the date command. Normally syscmd would be used to create a
file for a subsequent include.

To facilitate making unique file names, the built-in maketemp is provided,
with specifications identical to the system function mktemp: a string of XXXXX
in the argument is replaced by the process id of the current process.

Conditionals
There is a built-in called ifelse which enables you to perform arbitrary con-

ditional testing. In the simplest form,
ifelse(a, b, c, d)

compares the two strings a and b. If these are identical, ifelse returns the string
c; otherwise it returns d. Thus we might define a macro called compare which
compares two strings and returns “yes” or “no” if they are the same or different.

m4 C-7

define(compare, `ifelse($1, $2, yes, no)´)
Note the quotes, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.
ifelse can actually have any number of arguments, and thus provides a lim-

ited form of multi-way decision capability. In the input
ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same
as e, the result is f. Otherwise the result is g. If the final argument is omitted,
the result is null, so

ifelse(a, b, c)
is c if a matches b, and null otherwise.

String Manipulation
The built-in len returns the length of the string that makes up its argument.

Thus
len(abcdef)

is 6, and len((a,b)) is 5.
The built-in substr can be used to produce substrings of strings.

substr(s, i, n) returns the substring of s that starts at the ith position (origin
zero),	and	is	n characters long. If n is omitted, the rest of the string is returned,
so

substr(`now is the time´, 1)
is

ow is the time
If i or n are out of range, various sensible things happen.

index(s1, s2) returns the index (position) in s1 where the string s2 occurs,
or -1 if it doesn’t occur. As with substr, the origin for strings is 0.

The built-in translit performs character transliteration.
translit(s, f, t)

modifies s by replacing any character found in f by the corresponding character
of t. That is,

translit(s, aeiou, 12345)
replaces the vowels by the corresponding digits. If t is shorter than f, characters
which don’t have an entry in t are deleted; as a limiting case, if t is not present
at all, characters from f are deleted from s. So

translit(s, aeiou)
deletes vowels from s.

There is also a built-in called dnl which deletes all characters that follow it
up to and including the next newline; it is useful mainly for throwing away
empty lines that otherwise tend to clutter up M4 output. For example, if you

C-8 m4

say
define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied
into the output, where it may not be wanted. If you add dnl to each of these
lines, the newlines will disappear.

Another way to achieve this, due to J. E. Weythman, is
divert(-1)
 define(...)
 ...
divert

Printing
The built-in errprint writes its arguments out on the standard error file.

Thus you can say
errprint(`fatal error´)
dumpdef is a debugging aid which dumps the current definitions of defined

terms. If there are no arguments, you get everything; otherwise you get the ones
you name as arguments. Don’t forget to quote the names!

Summary of Built-ins
Each entry is preceded by the page number where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef(`name´, `name´, ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef(`name´, this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(s1, s2)
5 len(string)
4 maketemp(...XXXXX...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefined(`name´)
4 undivert(number,number,...)

m4 C-9

Acknowledgements
We are indebted to Rick Becker, John Chambers, Doug McIlroy, and espe-

cially Jim Weythman, whose pioneering use of M4 has led to several valuable
improvements. We are also deeply grateful to Weythman for several substantial
contributions to the code.

References
[1] B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, Inc.,

1976.

Appendix D: BC-An Arbitrary Precision Desk-Calculator
Language

ABSTRACT

BC is a language and a compiler for doing arbitrary precision
arithmetic. The output of the compiler is interpreted and executed
by a collection of routines which can input, output, and do arith-
metic on indefinitely large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allo-
cator. Overflow does not occur until all available core storage is
exhausted.

The language has a complete control structure as well as
immediate-mode operation. Functions can be defined and saved for
later execution.

Two five hundred-digit numbers can be multiplied to give a
thousand digit result in about ten seconds.

A small collection of library functions is also available, includ-
ing sin, cos, arctan, log, exponential, and Bessel functions of integer
order.

Some of the uses of this compiler are
- to do computation with large integers,
- to do computation accurate to many decimal places,
- conversion of numbers from one base to another base.

Introduction
BC was written to make conveniently available a collection of routines

(called DC [5]) which are capable of doing arithmetic on integers of arbitrary
size.		The	compiler	is	by	no	means	intended	to	provide	a	complete	programming	
language. It is a minimal language facility.

There is a scaling provision that permits the use of decimal point notation.
Provision is made for input and output in bases other than decimal. Numbers
can be converted from decimal to octal by simply setting the output base to
equal 8.

The actual limit on the number of digits that can be handled depends on the
amount of storage available on the machine. Manipulation of numbers with
many hundreds of digits is possible even on the smallest versions of unix.

D-2 bc

The syntax of BC has been deliberately selected to agree substantially with
the C language [2]. Those who are familiar with C will find few surprises in this
language.

Simple Computations with Integers
The simplest kind of statement is an arithmetic expression on a line by

itself. For instance, if you type in the line:
142857 + 285714

the program responds immediately with the line
428571

The operators -, *, /, %, and ^ can also be used; they indicate subtraction, mul-
tiplication, division, remaindering, and exponentiation, respectively. Division of
integers	produces	an	integer	result	truncated	toward	zero.		Division	by	zero	pro-
duces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that
it is to be negated (the ‘unary’ minus sign). The expression

7+-3
is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are
interpreted just as in Fortran, with ^ having the greatest binding power, then *
and % and /, and finally + and -. Contents of parentheses are evaluated before
material outside the parentheses. Exponentiations are performed from right to
left and the other operators from left to right. The two expressions

a^b^c and a^(b^c)
are equivalent, as are the two expressions

a*b*c and (a*b)*c
BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c
Internal storage registers to hold numbers have single lower-case letter

names. The value of an expression can be assigned to a register in the usual way.
The statement

x = x + 3
has the effect of increasing by three the value of the contents of the register
named x. When, as in this case, the outermost operator is an =, the assignment
is performed but the result is not printed. Only 26 of these named storage regis-
ters are available.

There is a built-in square root function whose result is truncated to an
integer (but see scaling below). The lines

x = sqrt(191) x
produce the printed result

bc D-3

13

Bases
There are special internal quantities, called ‘ibase’ and ‘obase’. The contents

of ‘ibase’, initially set to 10, determines the base used for interpreting numbers
read in. For example, the lines

ibase = 8
11

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of
trying to change the input base back to decimal by typing

ibase = 10
Because the number 10 is interpreted as octal, this statement will have no effect.
For those who deal in hexadecimal notation, the characters A-F are permitted in
numbers (no matter what base is in effect) and are interpreted as digits having
values 10-15 respectively. The statement

ibase = A
will change you back to decimal input base no matter what the current input
base is. Negative and large positive input bases are permitted but useless. No
mechanism has been provided for the input of arbitrary numbers in bases less
than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output
numbers. The lines

obase = 16 1000
will produce the output line

3E8
which is to be interpreted as a 3-digit hexadecimal number. Very large output
bases are permitted, and they are sometimes useful. For example, large numbers
can be output in groups of five digits by setting ‘obase’ to 100000. Strange (i.e.
1, 0, or negative) output bases are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines
which are continued end with \. Decimal output conversion is practically instan-
taneous, but output of very large numbers (i.e., more than 100 digits) with other
bases is rather slow. Non-decimal output conversion of a one hundred digit
number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on
the course of internal computation or on the evaluation of expressions, but only
affect input and output conversion, respectively.

D-4 bc

Scaling
A third special internal quantity called ‘scale’ is used to determine the scale

of calculated quantities. Numbers may have up to 99 decimal digits after the
decimal point. This fractional part is retained in further computations. We refer
to the number of digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules. For addition
and subtraction, the scale of the result is the larger of the scales of the two
operands. In this case, there is never any truncation of the result. For multipli-
cations, the scale of the result is never less than the maximum of the two scales
of the operands, never more than the sum of the scales of the operands and, sub-
ject to those two restrictions, the scale of the result is set equal to the contents of
the internal quantity ‘scale’. The scale of a quotient is the contents of the inter-
nal quantity ‘scale’. The scale of a remainder is the sum of the scales of the quo-
tient and the divisor. The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an integer. The scale of a
square root is set to the maximum of the scale of the argument and the contents
of ‘scale’.

All of the internal operations are actually carried out in terms of integers,
with digits being discarded when necessary. In every case where digits are dis-
carded, truncation and not rounding is performed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is
initially set to 0. In case you need more than 99 fraction digits, you may arrange
your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions
just like other variables. The line

scale = scale + 1
increases the value of ‘scale’ by one, and the line

scale
causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be
retained in internal computation even when ‘ibase’ or ‘obase’ are not equal to 10.
The internal computations (which are still conducted in decimal, regardless of the
bases) are performed to the specified number of decimal digits, never hexadecimal
or octal or any other kind of digits.

Functions
The name of a function is a single lower-case letter. Function names are

permitted to collide with simple variable names. Twenty-six different defined
functions are permitted in addition to the twenty-six variable names. The line

define a(x){
begins the definition of a function with one argument. This line must be followed
by one or more statements, which make up the body of the function, ending with
a right brace }. Return of control from a function occurs when a return state-
ment is executed or when the end of the function is reached. The return

bc D-5

statement can take either of the two forms
return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the
expression in parentheses.

Variables used in the function can be declared as automatic by a statement
of the form

auto	x,y,z
There can be only one ‘auto’ statement in a function and it must be the first
statement in the definition. These automatic variables are allocated space and
initialized	 to	 zero	 on	 entry	 to	 the	 function	 and	 thrown	 away	 on	 return.	 	The	
values of any variables with the same names outside the function are not dis-
turbed. Functions may be called recursively and the automatic variables at each
level of call are protected. The parameters named in a function definition are
treated in the same way as the automatic variables of that function with the sin-
gle exception that they are given a value on entry to the function. An example
of a function definition is

define a(x,y){
	 auto	z	
	 z	=	x*y	
	 return(z)
}

The value of this function, when called, will be the product of its two arguments.
A function is called by the appearance of its name followed by a string of

arguments enclosed in parentheses and separated by commas. The result is
unpredictable if the wrong number of arguments is used.

Functions with no arguments are defined and called using parentheses with
nothing between them: b().

If the function a above has been defined, then the line
a(7,3.14)

would cause the result 21.98 to be printed and the line
x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables
A single lower-case letter variable name followed by an expression in brack-

ets is called a subscripted variable (an array element). The variable name is
called the array name and the expression in brackets is called the subscript. Only
one-dimensional arrays are permitted. The names of arrays are permitted to col-
lide with the names of simple variables and function names. Any fractional part
of a subscript is discarded before use. Subscripts must be greater than or equal
to	zero	and	less	than	or	equal	to	2047.

Subscripted variables may be freely used in expressions, in function calls,
and in return statements.

D-6 bc

An array name may be used as an argument to a function, or may be
declared as automatic in a function definition by the use of empty brackets:

f(a[])
define f(a[])
auto a[]

When an array name is so used, the whole contents of the array are copied for
the use of the function, and thrown away on exit from the function. Array
names which refer to whole arrays cannot be used in any other contexts.

Control Statements
The ‘if ’, the ‘while’, and the ‘for’ statements may be used to alter the flow

within programs or to cause iteration. The range of each of them is a statement
or a compound statement consisting of a collection of statements enclosed in
braces. They are written in the following way

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

or
if (relation) {statements}
while(relation) {statements}
for(expression1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form
x>y

where two expressions are related by one of the six relational operators <, >,
<=, >=, ==, or !=. The relation == stands for ‘equal to’ and != stands
for ‘not equal to’. The meaning of the remaining relational operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of
them are legal, so you will not get a diagnostic message, but = really will not do
a comparison.

The ‘if ’ statement causes execution of its range if and only if the relation is
true. Then control passes to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the
relation is true. The relation is tested before each execution of its range and if
the relation is false, control passes to the next statement beyond the range of the
while.

The ‘for’ statement begins by executing ‘expression1’. Then the relation is
tested and, if true, the statements in the range of the ‘for’ are executed. Then
‘expression2’ is executed. The relation is tested, and so on. The typical use of
the ‘for’ statement is for a controlled iteration, as in the statement

for(i==1; i<=10; i=i+1) i
which will print the integers from 1 to 10. Here are some examples of the use of
the control statements.

bc D-7

define f(n){
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*i
return(x)
}

The line
f(a)

will print a factorial if a is a positive integer. Here is the definition of a function
which will compute values of the binomial coefficient (m and n are assumed to be
positive integers).

define b(n,m){
auto x, j
x=1
for(j=1; j<=m; j = j+1) x=x*(n-j+1)/j
return(x)
}

The following function computes values of the exponential function by summing
the appropriate series without regard for possible truncation errors:

scale = 20
define e(x){
 auto a, b, c, d, n
 a = 1
 b = 1
 c = 1
 d = 0
 n = 1
 while(1==1){
 a = a*x
 b = b*n
 c = c + a/b
 n = n + 1
 if(c==d) return(c)
 d = c
 }
}

Some Details
There are some language features that every user should know about even if

he will not use them.
Normally statements are typed one to a line. It is also permissible to type

several statements on a line separated by semicolons.
If	an	assignment	statement	is	parenthesized,	it	then	has	a	value	and	it	can	

be used anywhere that an expression can. For example, the line
(x=y+17)

D-8 bc

not only makes the indicated assignment, but also prints the resulting value.
Here is an example of a use of the value of an assignment statement even

when	it	is	not	parenthesized.
x = a[i=i+1]

causes a value to be assigned to x and also increments i before it is used as a sub-
script.

The following constructs work in BC in exactly the same manner as they do
in the C language. Consult the appendix or the C manuals [2] for their exact
workings.

x=y=z	 is	the	same	as	 x=(y=z)
x =+ y x = x+y
x =- y x = x-y
x =* y x = x*y
x =/ y x = x/y
x =% y x = x%y
x =^ y x = x^y
x++ (x=x+1)-1
x-- (x=x-1)+1
++x x = x+1
--x x = x-1

Even if you don’t intend to use the constructs, if you type one inadvertently,
something correct but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There
is a real difference between x=-y and x= -y. The first replaces x by x-y and the
second by -y.

Three Important Things
1. To exit a BC program, type ‘quit’.
2. There is a comment convention identical to that of C and of PL/I. Com-

ments begin with ‘/*’ and end with ‘*/’.
3. There is a library of math functions which may be obtained by typing at

command level
bc-1

This command will load a set of library functions which, at the time of writing,
consists of sine (named ‘s’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘l’),
exponential (‘e’) and Bessel functions of integer order (‘j(n,x)’). Doubtless more
functions will be added in time. The library sets the scale to 20. You can reset
it to something else if you like. The design of these mathematical library rou-
tines is discussed elsewhere [3].

If you type
bc file ...

BC will read and execute the named file or files before accepting commands from
the keyboard. In this way, you may load your favorite programs and function
definitions.

bc D-9

Acknowledgement
The compiler is written in YACC [4]; its original version was written by S.

C. Johnson.

References
[1] K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Labora-

tories, 1978.
[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall, 1978.
[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell

Laboratories internal memorandum, 1975.
[4] S. C. Johnson, YACC— Yet Another Compiler-Compiler. Bell Laboratories

Computing Science Technical Report #32, 1978.
[5] R. Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

D-10 bc

Appendix

1. Notation
In the following pages syntactic categories are in italics; literals are in bold;

material in brackets [] is optional.

2. Tokens
Tokens consist of keywords, identifiers, constants, operators, and separators.

Token separators may be blanks, tabs or comments. Newline characters or semi-
colons separate statements.

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers
There are three kinds of identifiers - ordinary identifiers, array identifiers

and function identifiers. All three types consist of single lower-case letters.
Array identifiers are followed by square brackets, possibly enclosing an expression
describing a subscript. Arrays are singly dimensioned and may contain up to
2048	elements.		Indexing	begins	at	zero	so	an	array	may	be	indexed	from	0	to	
2047. Subscripts are truncated to integers. Function identifiers are followed by
parentheses, possibly enclosing arguments. The three types of identifiers do not
conflict; a program can have a variable named x, an array named x and a func-
tion named x, all of which are separate and distinct.

2.3. Keywords
The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants
Constants consist of arbitrarily long numbers with an optional decimal

point. The hexadecimal digits A-F	 are	 also	 recognized	 as	 digits	 with	 values	
10-15, respectively.

3. Expressions
The value of an expression is printed unless the main operator is an assign-

ment. Precedence is the same as the order of presentation here, with highest
appearing first. Left or right associativity, where applicable, is discussed with
each operator.

bc D-11

3.1. Primitive expressions

3.1.1. Named expressions
Named expressions are places where values are stored. Simply stated, named

expressions are legal on the left side of an assignment. The value of a named
expression is the value stored in the place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initial value of

zero.

3.1.1.2. array-name[expression]
Array	elements	are	named	expressions.		They	have	an	initial	value	of	zero.

3.1.1.3. scale, ibase and obase
The internal registers scale, ibase and obase are all named expressions.

scale is the number of digits after the decimal point to be retained in arithmetic
operations. scale	has	an	initial	value	of	zero.		ibase and obase are the input
and output number radix respectively. Both ibase and obase have initial values
of 10.

3.1.2. Function calls

3.1.2.1. function-name([expression[,expression. . .]])
A function call consists of a function name followed by parentheses contain-

ing a comma-separated list of expressions, which are the function arguments. A
whole array passed as an argument is specified by the array name followed by
empty square brackets. All function arguments are passed by value. As a result,
changes made to the formal parameters have no effect on the actual arguments.
If the function terminates by executing a return statement, the value of the func-
tion is the value of the expression in the parentheses of the return statement or is
zero	if	no	expression	is	provided	or	if	there	is	no	return	statement.

3.1.2.2. sqrt(expression)
The result is the square root of the expression. The result is truncated in

the least significant decimal place. The scale of the result is the scale of the
expression or the value of scale, whichever is larger.

3.1.2.3. length(expression)
The result is the total number of significant decimal digits in the expression.

The	scale	of	the	result	is	zero.

3.1.2.4. scale(expression)
The	result	is	the	scale	of	the	expression.		The	scale	of	the	result	is	zero.

D-12 bc

3.1.3. Constants
Constants are primitive expressions.

3.1.4. Parentheses
An expression surrounded by parentheses is a primitive expression. The

parentheses are used to alter the normal precedence.

3.2. Unary operators
The unary operators bind right to left.

3.2.1. -expression
The result is the negative of the expression.

3.2.2. +named-expression
The named expression is incremented by one. The result is the value of the

named expression after incrementing.

3.2.3. --named-expression
The named expression is decremented by one. The result is the value of the

named expression after decrementing.

3.2.4. named-expression++
The named expression is incremented by one. The result is the value of the

named expression before incrementing.

3.2.5. named-expression--
The named expression is decremented by one. The result is the value of the

named expression before decrementing.

3.3. Exponentiation operator
The exponentiation operator binds right to left.

3.3.1. expression ^ expression
The result is the first expression raised to the power of the second expres-

sion. The second expression must be an integer. If a is the scale of the left
expression and b is the absolute value of the right expression, then the scale of
the result is:

min (a×b, max (scale, a))

3.4. Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression * expression
The result is the product of the two expressions. If a and b are the scales of

the two expressions, then the scale of the result is:
min (a+b, max (scale, a, b))

bc D-13

3.4.2. expression / expression
The result is the quotient of the two expressions. The scale of the result is

the value of scale.

3.4.3. expression % expression
The % operator produces the remainder of the division of the two expres-

sions. More precisely, a%b is a-a/b*b.
The scale of the result is the sum of the scale of the divisor and the value of

scale

3.5. Additive operators
The additive operators bind left to right.

3.5.1. expression + expression
The result is the sum of the two expressions. The scale of the result is the

maximum of the scales of the expressions.

3.5.2. expression — expression
The result is the difference of the two expressions. The scale of the result is

the maximum of the scales of the expressions.

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named-expression = expression
This expression results in assigning the value of the expression on the right

to the named expression on the left.

3.6.2. named-expression =+ expression

3.6.3. named-expression =- expression

3.6.4. named-expression =* expression

3.6.5. named-expression =/ expression

3.6.6. named-expression =% expression

3.6.7. named-expression =^ expression
The result of the above expressions is equivalent to “named expression =

named expression OP expression”, where OP is the operator after the = sign.

4. Relations
Unlike all other operators, the relational operators are only valid as the

object of an if, while, or inside a for statement.

D-14 bc

4.1. expression < expression

4.2. expression > expression

4.3. expression <= expression

4.4. expression >= expression

4.5. expression == expression

4.6. expression != expression

5. Storage classes
There are only two storage classes in BC, global and automatic (local). Only

identifiers that are to be local to a function need be declared with the auto com-
mand. The arguments to a function are local to the function. All other iden-
tifiers are assumed to be global and available to all functions. All identifiers,
global	and	local,	have	initial	values	of	zero.		Identifiers	declared	as	auto are allo-
cated on entry to the function and released on returning from the function. They
therefore do not retain values between function calls, auto arrays are specified
by the array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either
C or PL/I. On entry to a function, the old values of the names that appear as
parameters and as automatic variables are pushed onto a stack. Until return is
made from the function, reference to these names refers only to the new values.

6. Statements
Statements must be separated by semicolon or newline. Except where

altered by control statements, execution is sequential.

6.1. Expression statements
When a statement is an expression, unless the main operator is an assign-

ment, the value of the expression is printed, followed by a newline character.

6.2. Compound statements
Statements may be grouped together and used when one statement is

expected by surrounding them with { }.

6.3. Quoted string statements
“any string”

This statement prints the string inside the quotes.

6.4. If statements
if(relation)statement

The substatement is executed if the relation is true.

bc D-15

6.5. While statements
while(relation)statement

The statement is executed while the relation is true. The test occurs before
each execution of the statement.

6.6. For statements
for(expression; relation; expression)statement

The for statement is the same as
first-expression
while(relation) {
 statement
 last-expression
}

All three expressions must be present.

6.7. Break statements
break

break causes termination of a for or while statement.

6.8. Auto statements
auto identifier [,identifier]

The auto statement causes the values of the identifiers to be pushed down.
The identifiers can be ordinary identifiers or array identifiers. Array identifiers
are specified by following the array name by empty square brackets. The auto
statement must be the first statement in a function definition.

6.9. Define statements
define([parameter[,parameter...]]){

statements}
The define statement defines a function. The parameters may be ordinary

identifiers or array names. Array names must be followed by empty square
brackets.

6.10. Return statements return
return(expression)

The return statement causes termination of a function, popping of its auto
variables, and specifies the result of the function. The first form is equivalent to
return(0). The result of the function is the result of the expression in
parentheses.

D-16 bc

6.11. Quit
The quit statement stops execution of a BC program and returns control to

UNIX when it is first encountered. Because it is not treated as an executable
statement, it cannot be used in a function definition or in an if, for, or while
statement.

Appendix E: DC-An Interactive Desk Calculator

DC is an arbitrary precision arithmetic package implemented in the form of
an interactive desk calculator. It works like a stacking calculator using reverse
Polish notation. Ordinarily DC operates on decimal integers, but one may
specify an input base, output base, and a number of fractional digits to be main-
tained.

A language called BC [1] has been developed which accepts programs written
in the familiar style of higher-level programming languages and compiles output
which is interpreted by DC. Some of the commands described below were
designed for the compiler interface and are not easy for a human user to manipu-
late.

Numbers that are typed into DC are put on a push-down stack. DC com-
mands work by taking the top number or two off the stack, performing the
desired operation, and pushing the result on the stack. If an argument is given,
input is taken from that file until its end, then from the standard input.

SYNOPTIC DESCRIPTION
Here we describe the DC commands that are intended for use by people.

The additional commands that are intended to be invoked by compiled output
are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-line
characters are ignored except within numbers and in places where a register name
is expected.

The	following	constructions	are	recognized:
number

The value of the number is pushed onto the main stack. A number is an
unbroken string of the digits 0-9 and the capital letters A-F which are
treated as digits with values 10-15 respectively. The number may be pre-
ceded by an underscore to input a negative number. Numbers may contain
decimal points.

+ - * % ^
The	top	two	values	on	the	stack	are	added	(+),	subtracted	(—),	multiplied	
(*), divided (/), remaindered (%), or exponentiated (A). The two entries are
popped off the stack; the result is pushed on the stack in their place. The
result	 of	 a	 division	 is	 an	 integer	 truncated	 toward	 zero.	 	 See	 the	 detailed	
description below for the treatment of numbers with decimal points. An
exponent must not have any digits after the decimal point.

E-2 dc

sx
The top of the main stack is popped and stored into a register named x,
where x may be any character. If the s	is	capitalized,	x is treated as a stack and
the value is pushed onto it. Any character, even blank or new-line, is a valid
register name.

lx
The value in register x is pushed onto the stack. The register x is not
altered. If the l	 is	 capitalized,	 register	 x is treated as a stack and its top
value is popped onto the main stack.

All	registers	start	with	empty	value	which	is	treated	as	a	zero	by	the	command	 l
and is treated as an error by the command L.
d

The top value on the stack is duplicated.
p

The top value on the stack is printed. The top value remains unchanged.
f

All values on the stack and in registers are printed.
x

treats the top element of the stack as a character string, removes it from the
stack, and executes it as a string of DC commands.

[...]
puts the bracketed character string onto the top of the stack.

q
exits the program. If executing a string, the recursion level is popped by
two. If q	is	capitalized,	the	top	value	on	the	stack	is	popped	and	the	string	
execution level is popped by that value.

<x >x =x !<x !>x !=x
The top two elements of the stack are popped and compared. Register x is
executed if they obey the stated relation. Exclamation point is negation.

v
replaces the top element on the stack by its square root. The square root of
an integer is truncated to an integer. For the treatment of numbers with
decimal points, see the detailed description below.

dc E-3

!
interprets the rest of the line as a unix command. Control returns to DC
when the unix command terminates.

c
All values on the stack are popped; the stack becomes empty.

i
The top value on the stack is popped and used as the number radix for
further input. If i	 is	capitalized,	the	value	of	the	 input	base	 is	pushed	onto	
the stack. No mechanism has been provided for the input of arbitrary
numbers in bases less than 1 or greater than 16.

o
The top value on the stack is popped and used as the number radix for further
output. If o	 is	capitalized,	 the	value	of	 the	output	base	 is	pushed	onto	the	
stack.

k
The top of the stack is popped, and that value is used as a scale factor that
influences the number of decimal places that are maintained during multipli-
cation, division, and exponentiation. The scale factor must be greater than
or	equal	to	zero	and	less	than	100.		If	k	is	capitalized,	the	value	of	the	scale	
factor is pushed onto the stack.

z
The value of the stack level is pushed onto the stack.

?
A line of input is taken from the input source (usually the console) and exe-
cuted.

DETAILED DESCRIPTION

Internal Representation of Numbers
Numbers are stored internally using a dynamic storage allocator. Numbers

are kept in the form of a string of digits to the base 100 stored one digit per byte
(centennial digits). The string is stored with the low-order digit at the beginning
of the string. For example, the representation of 157 is 57,1. After any arith-
metic operation on a number, care is taken that all digits are in the range 0-99
and	that	the	number	has	no	leading	zeros.		The	number	zero	is	represented	by	
the empty string.

Negative numbers are represented in the 100’s complement notation, which
is analogous to two’s complement notation for binary numbers. The high order
digit of a negative number is always -1 and all other digits are in the range 0-99.

E-4 dc

The digit preceding the high order -1 digit is never a 99. The representation of
-157 is 43,98,-1. We shall call this the canonical form of a number. The advan-
tage of this kind of representation of negative numbers is ease of addition. When
addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice
that large, addition can be carried out and the handling of carries done later
when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high order digit
to indicate the number of assumed decimal digits after the decimal point. The
representation of .001 is 1,3	where	the	scale	has	been	italicized	to	emphasize	the	
fact that it is not the high order digit. The value of this extra byte is called the
scale factor of the number.

The Allocator
DC uses a dynamic string storage allocator for all of its internal storage. All

reading and writing of numbers internally is done through the allocator. Associ-
ated with each string in the allocator is a four-word header containing pointers to
the beginning of the string, the end of the string, the next place to write, and the
next place to read. Communication between the allocator and DC is done via
pointers to these headers.

The allocator initially has one large string on a list of free strings. All
headers except the one pointing to this string are on a list of free headers.
Requests	for	strings	are	made	by	size.		The	size	of	the	string	actually	supplied	is	
the next higher power of 2. When a request for a string is made, the allocator
first	checks	the	free	list	to	see	if	there	is	a	string	of	the	desired	size.		If	none	is	
found, the allocator finds the next larger free string and splits it repeatedly until
it	has	a	string	of	the	right	size.		Left-over	strings	are	put	on	the	free	list.		If	there	
are no larger strings, the allocator tries to coalesce smaller free strings into larger
ones. Since all strings are the result of splitting large strings, each string has a
neighbor that is next to it in core and, if free, can be combined with it to make a
string twice as long. This is an implementation of the ‘buddy system’ of alloca-
tion described in [2].

Failing to find a string of the proper length after coalescing, the allocator
asks the system for more space. The amount of space on the system is the only
limitation	on	the	size	and	number	of	strings	in	DC.		If	at	any	time	in	the	process	
of trying to allocate a string, the allocator runs out of headers, it also asks the
system for more space.

There are routines in the allocator for reading, writing, copying, rewinding,
forward-spacing, and backspacing strings. All string manipulation is done using
these routines.

The reading and writing routines increment the read pointer or write pointer
so that the characters of a string are read or written in succession by a series of
read or write calls. The write pointer is interpreted as the end of the
inform at ion-containing portion of a string and a call to read beyond that point
returns an end-of-string indication. An attempt to write beyond the end of a
string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

dc E-5

Internal Arithmetic
All arithmetic operations are done on integers. The operands (or operand)

needed for the operation are popped from the main stack and their scale factors
stripped off. Zeros are added or digits removed as necessary to get a properly
scaled result from the internal arithmetic routine. For example, if the scale of
the operands is different and decimal alignment is required, as it is for addition,
zeros	are	appended	to	the	operand	with	the	smaller	scale.		After	performing	the	
required arithmetic operation, the proper scale factor is appended to the end of
the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic opera-
tions, scale is the bound on the number of decimal places retained in arithmetic
computations, scale may be set to the number on the top of the stack truncated
to an integer with the k command. K may be used to push the value of scale on
the stack, scale must be greater than or equal to 0 and less than 100. The
descriptions of the individual arithmetic operations will include the exact effect
of scale on the computations.

Addition and Subtraction
The	scales	of	the	two	numbers	are	compared	and	trailing	zeros	are	supplied	

to the number with the lower scale to give both numbers the same scale. The
number with the smaller scale is multiplied by 10 if the difference of the scales
is odd. The scale of the result is then set to the larger of the scales of the two
operands.

Subtraction is performed by negating the number to be subtracted and
proceeding as in addition.

Finally, the addition is performed digit by digit from the low order end of
the number. The carries are propagated in the usual way. The resulting number
is	brought	into	canonical	form,	which	may	require	stripping	of	leading	zeros,	or	
for negative numbers replacing the high-order configuration 99,-1 by the digit -1.
In any case, digits which are not in the range 0-99 must be brought into that
range, propagating any carries or borrows that result.

Multiplication
The scales are removed from the two operands and saved. The operands are

both made positive. Then multiplication is performed in a digit by digit manner
that exactly mimics the hand method of multiplying. The first number is multi-
plied by each digit of the second number, beginning with its low order digit. The
intermediate products are accumulated into a partial sum which becomes the
final product. The product is put into the canonical form and its sign is com-
puted from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two
operands. If that scale is larger than the internal register scale and also larger
than both of the scales of the two operands, then the scale of the result is set
equal to the largest of these three last quantities.

E-6 dc

Division
The scales are removed from the two operands. Zeros are appended or digits

removed from the dividend to make the scale of the result of the integer division
equal to the internal quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of
the lengths of the two numbers is computed. If the divisor is longer than the
dividend,	zero	is	returned.		Otherwise	the	top	digit	of	the	divisor	is	divided	into	
the top two digits of the dividend. The result is used as the first (high-order)
digit of the quotient. It may turn out be one unit too low, but if it is, the next
trial quotient will be larger than 99 and this will be adjusted at the end of the
process. The trial digit is multiplied by the divisor and the result subtracted
from the dividend and the process is repeated to get additional quotient digits
until the remaining dividend is smaller than the divisor. At the end, the digits of
the quotient are put into the canonical form, with propagation of carry as
needed. The sign is set from the sign of the operands.

Remainder
The division routine is called and division is performed exactly as described.

The quantity returned is the remains of the dividend at the end of the divide
process.		Since	division	truncates	toward	zero,	remainders	have	the	same	sign	as	
the dividend. The scale of the remainder is set to the maximum of the scale of
the dividend and the scale of the quotient plus the scale of the divisor.

Square Root
The scale is stripped from the operand. Zeros are added if necessary to

make the integer result have a scale that is the larger of the internal quantity
scale and the scale of the operand.

The method used to compute sqrt(y) is Newton’s method with successive
approximations by the rule

The initial guess is found by taking the integer square root of the top two
digits.

Exponentiation
Only	exponents	with	zero	scale	factor	are	handled.		If	the	exponent	is	zero,	

then the result is 1. If the exponent is negative, then it is made positive and the
base is divided into one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly
squared and the result is obtained as a product of those powers of the base that
correspond to the positions of the one-bits in the binary representation of the
exponent. Enough digits of the result are removed to make the scale of the result
the same as if the indicated multiplication had been performed.

Input Conversion and Base
Numbers are converted to the internal representation as they are read in.

The scale stored with a number is simply the number of fractional digits in-
put. Negative numbers are indicated by preceding the number with a _. The

dc E-7

hexadecimal digits A-F correspond to the numbers 10-15 regardless of input
base. The i command can be used to change the base of the input numbers.
This command pops the stack, truncates the resulting number to an integer, and
uses	it	as	the	input	base	for	all	further	input.		The	input	base	is	initialized	to	10	
but may, for example be changed to 8 or 16 to do octal or hexadecimal to
decimal conversions. The command I will push the value of the input base on
the stack.

Output Commands
The command p causes the top of the stack to be printed. It does not

remove the top of the stack. All of the stack and internal registers can be output
by typing the command f. The o command can be used to change the output
base. This command uses the top of the stack, truncated to an integer as the
base	for	all	 further	output.		The	output	base	in	initialized	to	10.		It	will	work	
correctly for any base. The command O pushes the value of the output base on
the stack.

Output Format and Base
The input and output bases only affect the interpretation of numbers on

input and output; they have no effect on arithmetic computations. Large
numbers are output with 70 characters per line; a \ indicates a continued line.
All choices of input and output bases work correctly, although not all are useful.
A particularly useful output base is 100000, which has the effect of grouping
digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-
hexadecimal conversions.

Internal Registers
Numbers or strings may be stored in internal registers or loaded on the stack

from registers with the commands s and l. The command sx pops the top of the
stack and stores the result in register x. x can be any character. lx puts the con-
tents of register x on the top of the stack. The l command has no effect on the
contents of register x. The s command, however, is destructive.

Stack Commands
The command c clears the stack. The command d pushes a duplicate of the

number on the top of the stack on the stack. The command z pushes the stack
size	on	the	stack.		The	command	X replaces the number on the top of the stack
with its scale factor. The command Z replaces the top of the stack with its
length.

Subroutine Definitions and Calls
Enclosing a string in [] pushes the ascii string on the stack. The q command

quits or in executing a string, pops the recursion levels by two.

Internal Registers — Programming DC
The load and store commands together with [] to store strings, x to execute

and	the	testing	commands	‘<’,	‘>’,	‘—\	‘!<’,	‘!>’,	‘!=’	can	be	used	to	program	
DC. The x command assumes the top of the stack is an string of DC commands
and executes it. The testing commands compare the top two elements on the

E-8 dc

stack and if the relation holds, execute the register that follows the relation. For
example, to print the numbers 0-9,

[lip1+ si li10>a]sa
0si lax

Push-Down Registers and Arrays
These commands were designed for used by a compiler, not by people. They

involve push-down registers and arrays. In addition to the stack that commands
work on, DC can be thought of as having individual stacks for each register.
These registers are operated on by the commands S and L. Sx pushes the top
value of the main stack onto the stack for the register x. hx pops the stack for
register x and puts the result on the main stack. The commands s and l also
work on registers but not as push-down stacks. l doesn’t effect the top of the
register stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses
this value as an index into the array x. The next element on the stack is stored
at this index in x. An index must be greater than or equal to 0 and less than
2048. ;x is the command to load the main stack from the array x. The value on
the top of the stack is the index into the array x of the value to be loaded.

Miscellaneous Commands
The command ! interprets the rest of the line as a unix

 command and passes it to unix to execute. One other compiler command is Q.
This command uses the top of the stack as the number of levels of recursion to
skip.

DESIGN CHOICES
The real reason for the use of a dynamic storage allocator was that a general

purpose program could be (and in fact has been) used for a variety of other tasks.
The allocator has some value for input and for compiling (i.e. the bracket [...]
commands) where it cannot be known in advance how long a string will be. The
result was that at a modest cost in execution time, all considerations of string
allocation	and	sizes	of	strings	were	removed	from	the	remainder	of	the	program	
and debugging was made easier. The allocation method used wastes approxi-
mately 25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compel-
ling advantage. Yet the base cannot exceed 127 because of hardware limitations
and at the cost of 5% in space, debugging was made a great deal easier and deci-
mal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC com-
mands from addition to subroutine execution to be implemented in essentially the
same way. The result was a considerable degree of logical separation of the final
program into modules with very little communication between modules.

The rationale for the lack of interaction between the scale and the bases was
to provide an understandable means of proceeding after a change of base or scale
when numbers had already been entered. An earlier implementation which had
global notions of scale and base did not work out well. If the value of scale were

dc E-9

to be interpreted in the current input or output base, then a change of base or
scale in the midst of a computation would cause great confusion in the interpre-
tation of the results. The current scheme has the advantage that the value of the
input and output bases are only used for input and output, respectively, and they
are ignored in all other operations. The value of scale is not used for any essen-
tial purpose by any part of the program and it is used only to prevent the
number of decimal places resulting from the arithmetic operations from growing
beyond all bounds.

The design rationale for the choices for the scales of the results of arith-
metic were that in no case should any significant digits be thrown away if, on appear-
ances, the user actually wanted them. Thus, if the user wants to add the
numbers 1.5 and 3.517, it seemed reasonable to give him the result 5.017 without
requiring him to unnecessarily specify his rather obvious requirements for preci-
sion.

On the other hand, multiplication and exponentiation produce results with
many more digits than their operands and it seemed reasonable to give as a
minimum the number of decimal places in the operands but not to give more
than that number of digits unless the user asked for them by specifying a value
for scale. Square root can be handled in just the same way as multiplication.
The operation of division gives arbitrarily many decimal places and there is sim-
ply no way to guess how many places the user wants. In this case only, the user
must specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the divi-
dend from the quotient and remainder. This is easy to implement; no digits are
thrown away.

References
[1] L. L. Cherry, R. Morris, BC - An Arbitrary Precision Desk-Calculator

Language.
[2] K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625

(Oct. 1965).
May 1979

Curses F-1

Appendix F: Curses
Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

1.
Overview

In	 making	 available	 the	 generalized	 terminal	 descriptions	 in	 /etc/termcap, much in-
formation was made available to the programmer, but little work was taken out of one’s
hands. The purpose of this package is to allow the C programmer to do the most common
type	 of	 terminal	 dependent	 functions,	 those	 of	 movement	 optimization	 and	 optimal	 screen	 up-
dating, without doing any of the dirty work, and (hopefully) with nearly as much ease as is
necessary to simply print or read things.

The package is split into three parts: (1) Screen updating; (2) Screen updating with user
input;	and	(3)	Cursor	motion	optimization.

It	 is	 possible	 to	 use	 the	 motion	 optimization	 without	 using	 either	 of	 the	 other	 two,	 and	
screen updating and input can be done without any programmer knowledge of the motion op-
timization,	or	indeed	the		database	itself.

1.1. Terminology
In this document, the following terminology is kept to with reasonable consistency:

window: An internal representation containing an image of what a section of the terminal screen
may look like at some point in time. This subsection can either encompass the entire termi-
nal screen, or any smaller portion down to a single character within that screen.

terminal: Sometimes called terminal screen. The package’s idea of what the terminal’s screen
currently looks like, i.e., what the user sees now. This is a special screen:

screen: This is a subset of windows which are as large as the terminal screen, i.e., they start at
the upper left hand corner and encompass the lower right hand corner. One of these, stdscr,
is automatically provided for the programmer.

1.2. Compiling Things
In order to use the library, it is necessary to have certain types and variables defined.

Therefore, the programmer must have a line:
include <curses.h>
at the top of the program source. The header file <curses.h> needs to include
<sgtty.h>, so that one need not do so oneself1. Compilations should have the
following form:
cc [flags] file ... -lcurses -ltermlib

1 The screen package also uses the Standard I/O library, so <curses.h> includes <stdio.h>. It is redundant
(but harmless) for the programmer to do it too.

F-2 Curses

1.3.
Screen Updating

In order to update the screen optimally, it is necessary for the routines to know
what the screen currently looks like and what the programmer wants it to look like
next. For this purpose, a data type (structure) named WINDOW is defined which
describes a window image to the routines, including its starting position on the screen
(the	 (y,	 x)	 co-ordinates	 of	 the	 upper	 left	 hand	 corner)	 and	 its	 size.	 	 One	 of	 these	 (called	
curscr for current screen) is a screen image of what the terminal currently looks like.
Another screen (called stdscr, for standard screen) is provided by default to make
changes on.

A window is a purely internal representation. It is used to build and store a po-
tential image of a portion of the terminal. It doesn’t bear any necessary relation to
what is really on the terminal screen. It is more like an array of characters on which
to make changes.

When one has a window which describes what some part the terminal should
look like, the routine refresh() (or wrefresh() if the window is not stdscr) is called, re-
fresh() makes the terminal, in the area covered by the window, look like that window.
Note, therefore, that changing something on a window does not change the terminal.
Actual updates to the terminal screen are made only by calling refresh() or wrefresh().
This allows the programmer to maintain several different ideas of what a portion of
the terminal screen should look like. Also, changes can be made to windows in any
order, without regard to motion efficiency. Then, at will, the programmer can effec-
tively say “make it look like this,” and let the package worry about the best way to
do this.

1.4. Naming Conventions
As hinted above, the routines can use several windows, but two are automatical-

ly given: curscr, which knows what the terminal looks like, and stdscr, which is what
the programmer wants the terminal to look like next. The user should never really ac-
cess curscr directly. Changes should be made to the appropriate screen, and then the
routine refresh() (or wrefresh()) should be called.

Many functions are set up to deal with stdscr as a default screen. For example,
to add a character to stdscr, one calls addch() with the desired character. If a dif-
ferent window is to be used, the routine waddch() (for window-specific addch()) is pro-
vided2. This convention of prepending function names with a “w” when they are to
be applied to specific windows is consistent. The only routines which do not do this
are those to which a window must always be specified.

In order to move the current (y, x) co-ordinates from one point to another, the
routines move() and wmove() are provided. However, it is often desirable to first move
and then perform some I/O operation. In order to avoid clumsiness, most I/O rou-
tines can be preceded by the prefix “mv” and the desired (y, x) co-ordinates then can
be added to the arguments to the function. For example, the calls

move(y, x);
addch(ch);
can be replaced by
 mvaddch(y, x, ch);
 and
 wmove(win, y, x);

2 Actually, addch() is really a “#define” macro with arguments, as are most of the “functions” which deal with stdscr as a
default.

Curses F-3

 waddch(win, ch);
 can be replaced by
 mvwaddch(win, y, x, ch);
 Note that the window description pointer
 (win)
 comes before the added (y, x) co-ordinates.
 If such pointers are need,
 they are always the first parameters passed.

2.
Variables

Many variables which are used to describe the terminal environment are available to the
programmer. They are:

type name description
WINDOW *
WINDOW *
char *
bool

char *
int
int
int
int

curscr
stdscr
Def_term
My_term

ttytype
LINES
COLS
ERR
OK

current version of the screen (terminal screen).
standard screen. Most updates are usually done here.
default terminal type if type cannot be determined
use the terminal specification in Def_term as terminal,
irrelevant of real terminal type
full name of the current terminal.
number of lines on the terminal
number of columns on the terminal
error flag returned by routines on a fail.
error flag returned by routines when things go right.

There are also several “#define” constants and types which are of general usefulness:

reg storage class “register” (e.g., reg int i;)
bool boolean type, actually a “char” (e.g., bool doneit;)
TRUE boolean “true” flag (1).
FALSE boolean “false” flag (0).

addch(ch) †
char ch;

waddch(win, ch)
WINDOW *win;
char ch;

Add the character ch on the window at the current (y, x) co-ordinates. If the character
is a newline (´\n´) the line will be cleared to the end, and the current (y, x) co-ordinates
will be changed to the beginning off the next line if newline mapping is on, or to the
next line at the same x co-ordinate if it is off. A return (´\r´) will move to the begin-
ning of the line on the window. Tabs (´\t´) will be expanded into spaces in the normal
tabstop positions of every eight characters. This returns ERR if it would cause the
screen to scroll illegally.

addstr(str) †
char *str;

waddstr(win, str)

F-4 Curses

WINDOW *win;
char *str;

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This
returns ERR if it would cause the screen to scroll illegally. In this case, it will put on as
much as it can.

box(win, vert, hor)
WINDOW *win;
char vert, hor;

Draws a box around the window using vert as the character for drawing the vertical
sides, and hor	 for	 drawing	 the	 horizontal	 lines.	 	 If	 scrolling	 is	 not	 allowed,	 and	 the	 win-
dow encompasses the lower right-hand corner of the terminal, the corners are left blank
to avoid a scroll.

clear() †

wclear(win)
WINDOW *win;

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will cause
a clear-screen sequence to be sent on the next refresh() call. This also moves the current (y, x)
co-ordinates to (0, 0).

clear ok(scr, boolf) †
WINDOW *scr;
bool boolf;

Sets the clear flag for the screen scr. If boolf is TRUE, this will force a clear-screen to be
printed on the next refresh() refresh(), or stop it from doing so if boolf is FALSE. This only
works on screens, and, unlike clear(), does not alter the contents of the screen. If scr is
curscr, the next refresh() call will cause a clear-screen, even if the window passed to re-
fresh() is not a screen.

clrtobot() †

wclrtobot(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does
not force a clear-screen sequence on the next refresh under any circumstances. This has
no associated “mv” command.

clrtoeol() †

wclrtoeol(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This
has no associated “mv” command.

Curses F-5

delch()

wdelch(win)
WINDOW *win;

Delete the character at the current (y, x) co-ordinates. Each character after it on the
line shifts to the left, and the last character becomes blank.

deleteln()

wdeleteln(win)
WINDOW *win;

Delete the current line. Every line below the current one will move up, and the bottom
line will become blank. The current (y, x) co-ordinates will remain unchanged.

erase() †

werase(win)
WINDOW *win;

Erases the window to blanks without setting the clear flag. This is analogous to clear(),
except that it never causes a clear-screen sequence to be generated on a refresh(). This
has no associated “mv” command.

insch(c)
char c;

winsch(win, c)
WINDOW *win;
char c;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right, and
the last character disappears. This returns ERR if it would cause the screen to scroll
illegally.

insertln()

winsertln(win)
WINDOW *win;

Insert a line above the current one. Every line below the current line will be shifted
down, and the bottom line will disappear. The current line will become blank, and the
current (y, x) co-ordinates will remain unchanged. This returns ERR if it would cause
the screen to scroll illegally.

move(y, x) †
int y, x;

F-6 Curses

wmove(win, y, x)
WINDOW *win;
int y, x;

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it
would cause the screen to scroll illegally.

overlay(win1, win2)
WINDOW *win1, *win2;

Overlay win1 on win2. The contents of win1, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done non-destructively, i.e., blanks on win1
leave the contents of the space on win2 untouched.

overwrite(win1, win2)
WINDOW *win1, *win2;

Overwrite win1 on win2. The contents of win1, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done destructively, i.e., blanks on win1 become
blank on win2.

printw(fmt, arg1, arg2, ...)
char *fmt;

wprintw(win, fmt, arg1, arg2, ...)
WINDOW *win;
char *fmt;

Performs a printf() on the window starting at the current (y, x) co-ordinates. It uses
addstr() to add the string on the window. It is often advisable to use the field width op-
tions of printf() to avoid leaving things on the window from earlier calls. This returns
ERR if it would cause the screen to scroll illegally.

refresh() †

wrefresh(win)
WINDOW *win;

Synchronize	 the	 terminal	 screen	 with	 the	 desired	 window.	 	 If	 the	 window	 is	 not	 a	 screen,	
only that part covered by it is updated. This returns ERR if it would cause the screen
to scroll illegally. In this case, it will update whatever it can without causing the scroll.

standout() †

wstandout(wm)
WINDOW *win;

standend() †

Curses F-7

wstandend(win)
WINDOW *win;

Start and stop putting characters onto win in standout mode, standout() causes any
characters added to the window to be put in standout mode on the terminal (if it has
that capability), standend() stops this. The sequences SO and SE (or US and UE if they
are not defined) are used (see next major section).

crmode() †

nocrmode() †
Set or unset the terminal to/from cbreak mode.

echo() †

noecho() †
Sets the terminal to echo or not echo characters.

getch() †

wgetch(win)
WINDOW *win;

Gets a character from the terminal and (if necessary) echoes it on the window. This re-
turns ERR if it would cause the screen to scroll illegally. Otherwise, the character got-
ten is returned. If noecho has been set, then the window is left unaltered. In order to re-
tain control of the terminal, it is necessary to have one of noecho, cbreak, or rawmode
set. If you do not set one, whatever routine you call to read characters will set cbreak
for you, and then reset to the original mode when finished.

getstr(str) †
char *str;

wgetstr(win, str)
WINDOW *win;
char *str;

Get a string through the window and put it in the location pointed to by str, which is
assumed to be large enough to handle it. It sets tty modes if necessary, and then calls
getch() (or wgetch(win)) to get the characters needed to fill in the string until a newline
or EOF is encountered. The newline stripped off the string. This returns ERR if it
would cause the screen to scroll illegally.

raw() †

noraw() †

F-8 Curses

Set or unset the terminal to/from raw mode. On version 7 unix3 this also turns of new-
line mapping (see nl()).

scanw(fmt, arg1, arg2, ...)
char *fmt;

wscanw(win, fmt, arg1, arg2, ...)
WINDOW *win;
char *fmt;

Perform a scanf() through the window using fmt. It does this using consecutive getch()’s
(or wgetch(win)’s). This returns ERR if it would cause the screen to scroll illegally.

delwin(win)
WINDOW *win;

Deletes the window from existence. All resources are freed for future use by calloc(3).
If a window has a subwin() allocated window inside of it, deleting the outer window the
subwindow is not affected, even though this does invalidate it. Therefore, subwindows
should be deleted before their outer windows are.

endwin()
Finish up window routines before exit. This restores the terminal to the state it was be-
fore initscr() (or gettmode() and setterm()) was called. It should always be called before
exiting. It does not exit. This is especially useful for resetting tty stats when trapping
rubouts via signal(2).

getyx(win, y, x) †
WINDOW *win;
int y, x;

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro,
not a function, you do not pass the address of y and x.

inch() †

winch(win) †
WINDOW *win;

Returns the character at the current (y, x) co-ordinates on the given window. This does
not make any changes to the window. This has no associated “mv” command.

initscr()
Initialize	 the	 screen	 routines.	 	 This	 must	 be	 called	 before	 any	 of	 the	 screen	 routines	 are	
used.	 	 It	 initializes	 the	 terminal-type	 data	 and	 such,	 and	without	 it,	 none	 of	 the	 routines	
can operate. If standard input is not a tty, it sets the specifications to the terminal

3 unix is a trademark of Bell Laboratories.

Curses F-9

whose name is pointed to by Def_term (initially “dumb”). If the boolean My_term is
true, Def_term is always used.

leaveok(win, boolf) †
WINDOW *win;
bool boolf;

Sets the boolean flag for leaving the cursor after the last change. If boolf is TRUE, the
cursor will be left after the last update on the terminal, and the current (y, x) co-
ordinates for win will be changed accordingly. If it is FALSE, it will be moved to the
current (y, x) co-ordinates. This flag (initially FALSE) retains its value until changed by
the user.

longname(termbuf, name)
char *termbuf, *name;

Fills in name with the long (full) name of the terminal described by the termcap entry in
termbuf. It is generally of little use, but is nice for telling the user in a readable format
what terminal we think he has. This is available in the global variable ttytype. Termbuf
is usually set via the termlib routine tgetent().

mvwin(win, y, x)
WINDOW *win;
int y, x;

Move the home position of the window win from its current starting coordinates to (y, x).
If that would put part or all of the window off the edge of the terminal screen, mvwin()
returns ERR and does not change anything.

WINDOW*
newwin(lines, cols, begin_y, begin_x)
int lines, cols, begin_y, begin_x;

Create a new window with lines lines and cols columns starting at position
(begin_y, begin_x). If either lines or cols	 is	0	(zero),	that	dimension	will	be	set	to	(LINES
- begin_y) or (COLS - begin_x) respectively. Thus, to get a new window of dimensions
LINES × COLS, use newwin(0, 0, 0, 0).

nl() †

nonl() †
Set or unset the terminal to/from nl mode, i.e., start/stop the system from mapping
<RETURN> to <LINE-FEED>. If the mapping is not done, refresh() can do
more	optimization,	so	it	is	recommended,	but	not	required,	to	turn	it	off.

scrollok(win, boolf) †
WINDOW *win;
bool boolf;

Set the scroll flag for the given window. If boolf is FALSE, scrolling is not allowed.
This is its default setting.

F-10 Curses

touchwin(win)
WINDOW *win;

Make it appear that the every location on the window has been changed. This is usually
only needed for refreshes with overlapping windows.

WINDOW*
subwin(win, lines, cols, begin_y, begin_x)
WINDOW *win;
int lines, cols, begin_y, begin_x;

Create a new window with lines lines and cols columns starting at position
(begin_y, begin_x) in the middle of the window win. This means that any change made
to either window in the area covered by the subwindow will be made on both windows.
begin_y, begin_x are specified relative to the overall screen, not the relative (0, 0) of win.
If either lines or cols	 is	 0	 (zero),	 that	 dimension	 will	 be	 set	 to	 (LINES - begin_y) or
(COLS - begin_x) respectively.

unctrl(ch) †
char ch;

This is actually a debug function for the library, but it is of general usefulness. It re-
turns a string which is a representation of ch. Control characters become their upper-
case equivalents preceded by a “^”. Other letters stay just as they are. To use unctrl(),
you must have #include <unctrl.h> in your file.

gettmode()
Get the tty stats. This is normally called by initscr().

mvcur(lasty, lastx, newy, newx)
int lasty, lastx, newy, newx;

Moves the terminal’s cursor from (lasty, lastx) to (newy, newx) in an approximation of
optimal fashion. This routine uses the functions borrowed from ex version 2.6. It is pos-
sible	 to	 use	 this	 optimization	without	 the	 benefit	 of	 the	 screen	 routines.	 	With	 the	 screen	
routines, this should not be called by the user. move() and refresh() should be used to
move the cursor position, so that the routines know what’s going on.

8croll(win)
WINDOW *win;

Scroll the window upward one line. This is normally not used by the user.

savetty() †

resetty() †
savetty() saves the current tty characteristic flags. resetty() restores them to what savet-
ty() stored. These functions are performed automatically by initscr() and endwin().

Curses F-11

setterm(name)
char *name;

Set the terminal characteristics to be those of the terminal named name. This is normal-
ly called by initscr().

tstp()
If the new tty(4) driver is in use, this function will save the current tty state and then
put the process to sleep. When the process gets restarted, it restores the tty state and
then calls wrefresh(curscr) to redraw the screen. initscr() sets the signal SIGTSTP to trap to
this routine.

3. Capabilities from termcap

3.1. Disclaimer
The description of terminals is a difficult business, and we only attempt to summar-

ize	the	capabilities	here:	for	a	full	description	see	the	paper	describing	termcap.

3.2. Overview
Capabilities from termcap are of three kinds: string valued options, numeric valued

options, and boolean options. The string valued options are the most complicated, since
they may include padding information, which we describe now.

Intelligent terminals often require padding on intelligent operations at high (and
sometimes even low) speed. This is specified by a number before the string in the capabili-
ty, and has meaning for the capabilities which have a P at the front of their comment.
This normally is a number of milliseconds to pad the operation. In the current system
which has no true programmable delays, we do this by sending a sequence of pad charac-
ters (normally nulls, but can be changed (specified by PC)). In some cases, the pad is
better computed as some number of milliseconds times the number of affected lines (to the
bottom of the screen usually, except when terminals have insert modes which will shift
several lines.) This is specified as, e.g., 12*. before the capability, to say 12 milliseconds
per affected whatever (currently always line). Capabilities where this makes sense say P*.

3.3. Variables Set By setterm()

variables set by setterm()
Type Name Pad Description
char *
bool
char *
bool
char *
bool
char *
char *
char *
char *
char *
char *
char *

AL
AM
BC
BS
BT
CA
CD
CE
CL
CM
DC
DL
DM

P*

P

P*
P
P*
P
P*
P*

Add new blank Line
Automatic Margins
Back Cursor movement
Backspace works
Back Tab
Cursor Addressable
Clear to end of Display
Clear to End of line
CLear screen
Cursor Motion
Delete Character
Delete Line sequence
Delete Mode (enter)

F-12 Curses

char *
char *
bool
char *
char *
bool
char *
bool
char *
char *
char *
char *
bool
bool
char *
bool
char
char *
char *
char *
char *
char *
char *
char *
char *
char *
bool
char *
char *
char *
char *
char *
bool

DO
ED
EO
EI
HO
HZ
IC
IN
IM
IP
LL
MA
MI
NC
ND
OS
PC
SE
SF
SO
SR
TA
TE
TI
UC
UE
UL
UP
US
VB
VE
VS
XN

P

P*

P

P
P

DOwn line sequence
End Delete mode
can Erase Overstrikes with ´ ´
End Insert mode
HOme cursor
HaZeltine ~ braindamage
Insert Character
Insert-Null blessing
enter Insert Mode (IC usually set, too)
Pad after char Inserted using IM+IE
quick to Last Line, column 0
ctrl character MAp for cmd mode
can Move in Insert mode
No Cr: \r sends \r\n then eats \n
Non-Destructive space
OverStrike works
Pad Character
Standout End (may leave space)
Scroll Forwards
Stand Out begin (may leave space)
Scroll in Reverse
TAb (not ^I or with padding)
Terminal address enable Ending sequence
Terminal	address	enable	Initialization	
Underline a single Character
Underline Ending sequence
UnderLining works even though !OS
UPline
Underline Starting sequence4
Visible Bell
Visual End sequence
Visual Start sequence
a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

3.4. Variables Set By gettmode()
variables set by gettmode()

type name description
bool
bool
bool

NONL
GT
UPPERCASE

Term can’t hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

4.
The WINDOW structure

The WINDOW structure is defined as follows:
define WINDOW struct _win_st

struct _win_st {
 short _cury, _curx;

4 US and UE, if they do not exist in the termcap entry, are copied from SO and SE in setterm()

Curses F-13

 short _maxy, _maxx;
 short _begy, _begx;
 short _flags;
 bool _clear;
 bool _leave;
 bool _scroll;
 char **_y;
 short *_firstch;
 short *_lastch;
};
define _SUBWIN 01
define _ENDLINE 02
define _FULLWIN 04
define _SCROLLWIN 010
define _STANDOUT 0200
_cury and _curx are the current (y, x) co-ordinates for the window. New characters

added to the screen are added at this point, _maxy and _maxx are the maximum values
allowed for (_cury, _curx). _begy and _begx are the starting (y, x) co-ordinates on the ter-
minal for the window, i.e., the window’s home. _cury, _curx, _maxy, and _maxx are
measured relative to (_begy, _begx), not the terminal’s home.

_clear tells if a clear-screen sequence is to be generated on the next refresh() call.
This is only meaningful for screens. The initial clear-screen for the first refresh() call is
generated by initially setting clear to be TRUE for curscr, which always generates a
clear-screen if set, irrelevant of the dimensions of the window involved. _leave is TRUE if
the current (y, x) co-ordinates and the cursor are to be left after the last character
changed on the terminal, or not moved if there is no change. _scroll is TRUE if scrolling
is allowed.

_y is a pointer to an array of lines which describe the terminal. Thus:
_y[i]

is a pointer to the ith line, and
_y[i][j]

is the jth character on the ith line.
_flags can have one or more values or’d into it. _SUBWIN means that the win-

dow is a subwindow, which indicates to delwin() that the space for the lines is not to be
freed. _ENDLINE says that the end of the line for this window is also the end of a
screen. _FULLWIN says that this window is a screen. _SCROLLWIN indicates that the
last character of this screen is at the lower right-hand corner of the terminal; i.e., if a
character was put there, the terminal would scroll. _STANDOUT says that all charac-
ters added to the screen are in standout mode.

5. Examples
Here we present a few examples of how to use the package. They attempt to be

representative, though not comprehensive.

5 AH variables not normally accessed directly by the user are named with an initial “_” to avoid conflicts with the
user’s variables.

F-14 Curses

6. Screen Updating
The following examples are intended to demonstrate the basic structure of a pro-

gram using the screen updating sections of the package. Several of the programs require
calculational sections which are irrelevant of to the example, and are therefore usually not
included. It is hoped that the data structure definitions give enough of an idea to allow
understanding of what the relevant portions do. The rest is left as an exercise to the
reader, and will not be on the final.

6.1. Twinkle
This is a moderately simple program which prints pretty patterns on the screen

that might even hold your interest for 30 seconds or more. It switches between pat-
terns of asterisks, putting them on one by one in random order, and then taking them
off in the same fashion. It is more efficient to write this using only the motion optimi-
zation,	as	is	demonstrated	below.

include <curses.h>
include <signal.h>

/*
 * the idea for this program was a product of the imagination of
 * Kurt Schoens. Not responsible for minds lost or stolen.
 */

define NCOLS 80
define NLINES 24
define MAXPATTERNS 4

struct locs {
 char y, x;
};

typedef struct locs LOCS; /* current board layout */

LOCS Layout[NCOLS * NLINES];

int Pattern, /* current pattern number */
 Numstars; /* number of stars in pattern */

main() {

 char *getenv();
 int die();

 srand(getpid()); /* initialize random sequence */

 initscr();
 signal(SIGINT, die);
 noecho();
 nonl();
 leaveok(stdscr, TRUE);
 scrollok(stdscr, FALSE);

 for (;;) {

Curses F-15

 makeboard(); /* make the board setup */
 puton(´*´); /* put on ´*´ s */
 puton(´ ´); /* cover up with ´ ´ s */
 }
}

/*
 * On program exit, move the cursor to the lower left corner by
 * direct addressing, since current location is not guaranteed.
 * We lie and say we used to be at the upper right corner to guarantee
 * absolute addressing.
 */
die() {

 signal(SIGINT, SIGIGN);
 mvcur(0, COLS-1, LINES-1, 0);
 endwin();
 exit(0);
}

/*
 * Make the current board setup. It picks a random pattern and
 * calls ison() to determine if the character is on that pattern
 * or not.
 */
makeboard() {

 reg int y, x;
 reg LOCS *lp;

 Pattern = rand() % MAXPATTERNS;
 lp = Layout;
 for (y = 0; y < NLINES; y++)
 for (x = 0; x < NCOLS; x++)
 if (ison(y, x)) {
 lp->y = y;
 lp++->x = x;
 }
 Numstars = lp - Layout;
}

/*
 * Return TRUE if (y, x) is on the current pattern.
 */
ison(y, x)
reg int y, x; {

 switch (Pattern) {
 case 0: /* alternating lines */
 return !(y & 01);
 case 1: /* box */
 if (x >= LINES && y >= NCOLS)
 return FALSE;
 if (y < 3 || y >= NLINES - 3)

F-16 Curses

 return TRUE;
 return (x < 3 || x >= NCOLS - 3);
 case 2: /* holy pattern! */
 return ((x + y) & 01);
 case 3: /* bar across center */
 return (y >= 9 && y <= 15);
 }
 /* NOTREACHED */
}

puton(ch)
reg char ch; {

 reg LOCS *lp;
 reg int r;
 reg LOCS *end;
 LOCS temp;

 end = &Layout[Numstars];
 for (lp = Layout; lp < end; lp++) {
 r = rand() % Numstars;
 temp = *lp;
 *lp = Layout[r];
 Layout[r] = temp;
 }

 for (lp = Layout; lp < end; lp++) {
 mvaddch(lp->y, lp->x, ch);
 refresh();
 }

6.2.
Life

This program plays the famous computer pattern game of life (Scientific Ameri-
can, May, 1974). The calculational routines create a linked list of structures defining
where each piece is. Nothing here claims to be optimal, merely demonstrative. This
program, however, is a very good place to use the screen updating routines, as it al-
lows them to worry about what the last position looked like, so you don’t have to. It
also demonstrates some of the input routines.

include <curses.h>
include <signal.h>

/*
 * Run a life game. This is a demonstration program for
 * the Screen Updating section of the -lcurses cursor package.
 */

struct lst_st { /* linked list element */
 int y, x; /* (y, x) position of piece */

Curses F-17

 struct lst_st *next, *last; /* doubly linked */
};

typedef struct lst_st LIST;

LIST *Head; /* head of linked list */

main(ac, av)
int ac;
char *av[]; {

 int die();

 evalargs(ac, av); /* evaluate arguments */

 initscr(); /* initialize screen package */
 signal(SIGINT, die); /* set to restore tty stats */
 crmode(); /* set for char-by-char */
 noecho(); /* input */
 nonl(); /* for optimization */

 getstart(); /* get starting position */
 for (;;) {
 prboard(); /* print out current board */
 update(); /* update board position */
 }
}

/*
 * This is the routine which is called when rubout is hit.
 * It resets the tty stats to their original values. This
 * is the normal way of leaving the program.
 */
die() {
 signal(SIGINT, SIG_IGN); /* ignore rubouts */
 mvcur(0, COLS-1, LINES-1, 0); /* go to bottom of screen */
 endwin(); /* set terminal to initial state */
 exit(0);
}

/*
 * Get the starting position from the user. They keys u, i, o, j, l,
 * m, ,, and . are used for moving their relative directions from the
 * k key. Thus, u move diagonally up to the left, , moves directly down,
 * etc. x places a piece at the current position, ” ” takes it away.
 * The input can also be from a file. The list is built after the
 * board setup is ready.
 */
getstart() {

 reg char c;
 reg int x, y;

F-18 Curses

 box(stdscr, ´|´, ´_´); /* box in the screen */
 move(1, 1); /* move to upper left corner */

 do {
 refresh(); /* print current position */
 if((c==getch())== ´q´)
 break;
 switch (c) {
 case ´u´:
 case ´i´:
 case ´o´:
 case ´j´:
 case ´l´:
 case ´m´:
 case ´,´:
 case ´.´:
 adjustyx(c);
 break;
 case ´f´:
 mvaddstr(0, 0, ”File name: ”);
 getstr(buf);
 readfile(buf);
 break;
 case ‘x’:
 addch(´X´);
 break;
 case ´ ´:
 addch(´ ´);
 break;
 }
 }

 if (Head != NULL) /* start new list */
 dellist(Head);
 Head = malloc(sizeof (LIST));

 /*
 * loop through the screen looking for ´x´s, and add a list
 * element for each one
 */
 for (y = 1; y < LINES - 1; y++)
 for (x = 1; x < COLS - 1; x++) {
 move(y, x);
 if (inch() == ´x´)
 addlist(y, x);
 }
 }

/*
 * Print out the current board position from the linked list
 */
prboard() {

 reg LIST *hp;

Curses F-19

 erase(); /* clear out last position */
 box(stdscr, ´|´, ´_´); /* box in the screen */

 /*
 * go through the list adding each piece to the newly
 * blank board
 */
 for (hp = Head; hp; hp = hp->next)
 mvaddch(hp->y, hp->x, ´X´);

 refresh();
}

7.
Motion optimisation

The	 following	 example	 shows	 how	 motion	 optimization	 is	 written	 on	 its	 own.	 	 Pro-
grams which flit from one place to another without regard for what is already there usual-
ly do not need the overhead of both space and time associated with screen updating.
They	should	instead	use	motion	optimization.

7.1. Twinkle
The	 twinkle	 program	 is	 a	 good	 candidate	 for	 simple	 motion	 optimization.	 	 Here	

is how it could be written (only the routines that have been changed are shown):
main() {

 reg char *sp;
 char *getenv();
 int _putchar(), die();

 srand(getpid()); /* initialize random sequence */

 if (isatty(0)) {
 gettmode();
 if (sp=getenv(”TERM”))
 setterm(sp);
 signal(SIGINT, die);
 }
 else {
 printf(”Need a terminal on %d\n”, _tty_ch);
 exit(1);
 }
 _puts(TI);
 _puts(VS);

 noecho();
 nonl();
 tputs(CL, NLINES, _putchar);
 for (;;) {
 makeboard(); /* make the board setup */
 puton(´*´); /* put on ´*´s */

F-20 Curses

 puton(´ ´); /* cover up with ´ ´ s */
 }
}

/*
 * _putchar defined for tputs() (and _puts())
 */
_putchar(c)
reg char c; {

 putchar(c);
}

puton(ch)
char ch;{

 static int lasty, lastx;
 reg LOCS *lp;
 reg int r;
 reg LOCS *end;
 LOCS temp;

 end = &Layout[Numstars];
 for (lp = Layout; lp < end; lp++) {
 r = rand() % Numstars;
 temp = *lp;
 *lp = Layout[r];
 Layout[r] = temp;
 }

 for (lp = Layout; lp < end; lp++)
 /* prevent scrolling */
 if (!AM || (lp->y < NLINES - 1 || lp->x < NCOLS - 1)) {
 mvcur(lasty, lastx, lp->y, lp->x);
 putchar(ch);
 lasty = lp->y;
 if ((lastx = lp->x + 1) >= NCOLS)
 if (AM) {
 lastx = 0;
 lasty++;
 }
 else
 lastx = NCOLS - 1;
 }
}

Appendix G: Introduction to SENDMAIL
Eric Allman†

Britton-Lee, Inc. 1919 Addison Street, Suite 105. Berkeley, California 94704.

ABSTRACT

Routing mail through a heterogeneous internet presents many new prob-
lems. Among the worst of these is that of address mapping. Historically,
this has been handled on an ad hoc basis. However, this approach has be-
come unmanageable as internets grow.

Sendmail acts a unified ”post office” to which all mail can be submitted.
Address interpretation is controlled by a production system, which can
parse both domain-based addressing and old-style ad hoc addresses. The
production system is powerful enough to rewrite addresses in the message
header to conform to the standards of a number of common target net-
works, including old (NCP/RFC733) Arpanet, new (TCP/RFC822) Ar-
panet, UUCP, and Phonenet. Sendmail also implements an SMTP server,
message queueing, and aliasing.

Sendmail implements a general internetwork mail routing facility, featuring aliasing and for-
warding, automatic routing to network gateways, and flexible configuration.

In a simple network, each node has an address, and resources can be identified with a host-
resource pair; in particular, the mail system can refer to users using a host-username pair. Host
names and numbers have to be administered by a central authority, but usernames can be
assigned locally to each host.

In an internet, multiple networks with different characteristics and managements must com-
municate. In particular, the syntax and semantics of resource identification change. Certain spe-
cial cases can be handled trivially by ad hoc techniques, such as providing network names that
appear local to hosts on other networks, as with the Ethernet at Xerox PARC. However, the
general case is extremely complex. For example, some networks require point-to-point routing,
which simplifies the database update problem since only adjacent hosts must be entered into the
system tables, while others use end-to-end addressing. Some networks use a left-associative syn-
tax and others use a right-associative syntax, causing ambiguity in mixed addresses.

Internet standards seek to eliminate these problems. Initially, these proposed expanding the
address pairs to address triples, consisting of {network, host, resource} triples. Network numbers
must be universally agreed upon, and hosts can be assigned locally on each network. The user-
level presentation was quickly expanded to address domains, comprised of a local resource
identification and a hierarchical domain specification with a common static root. The domain
technique separates the issue of physical versus logical addressing. For example, an address of the
form	“eric@a.cc.berkeley.arpa”	describes	only	the	logical	organization	of	the	address	space.

†A considerable part of this work was done while under the employ of the INGRES Project at the University of
California at Berkeley.

G-2 Introduction to Sendmail

Sendmail is intended to help bridge the gap between the totally ad hoc world of networks
that know nothing of each other and the clean, tightly-coupled world of unique network numbers.
It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics specified by the
system administrator, as well as domain-based addressing. It helps guide the conversion of mes-
sage formats between disparate networks. In short, sendmail is designed to assist a graceful tran-
sition to consistent internetwork addressing schemes.

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the basic
functions of the system. In section 3, details of usage are discussed. Section 4 compares sendmail
to other internet mail routers, and an evaluation of sendmail is given in section 5, including future
plans.

1. DESIGN GOALS
 Design goals for sendmail include:
(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell version

7 mail [UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and hopefully
UUCP	 mail	 [Nowitz78a,	 Nowitz78b].	 	 ARPANET	 mail	 [Crocker77a,	 Postel77]	 was	 also	
required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at
least brought to the attention of a human for correct disposal; no message should ever be
completely lost. This goal was considered essential because of the emphasis on mail in
our environment. It has turned out to be one of the hardest goals to satisfy, especially
in the face of the many anomalous message formats produced by various ARPANET
sites. For example, certain sites generate improperly formatted addresses, occasionally
causing error-message loops. Some hosts use blanks in names, causing problems with
UNIX mail programs that assume that an address is one word. The semantics of some
fields are interpreted slightly differently by different sites. In summary, the obscure
features of the ARPANET mail protocol really are used and are difficult to support, but
must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This goal
derives as much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a sin-
gle network type (such as with multiple UUCP or Ether nets [Metcalfe76]). This goal
requires consideration of the contents of an address as well as its syntax in order to
determine which gateway to use. For example, the ARPANET is bringing up the TCP
protocol to replace the old NCP protocol. No host at Berkeley runs both TCP and
NCP, so it is necessary to look at the ARPANET host name to determine whether to
route mail to an NCP gateway or a TCP gateway.

(5) Configuration should not be compiled into the code. A single compiled program should
be able to run as is at any site (barring such basic changes as the CPU type or the
operating system). We have found this seemingly unimportant goal to be critical in real
life. Besides the simple problems that occur when any program gets recompiled in a
different environment, many sites like to “fiddle” with anything that they will be recom-
piling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let
individuals specify their own forwarding, without modifying the system alias file.

(7) Each user should be able to specify which mailer to execute to process mail being
delivered	 for	 him.	 	 This	 feature	 allows	 users	 who	 are	 using	 specialized	mailers	 that	 use	 a	
different format to build their environment without changing the system, and facilitates
specialized	functions	(such	as	returning	an	“I	am	on	vacation”	message).

(8)	 Network	 traffic	 should	 be	 minimized	 by	 batching	 addresses	 to	 a	 single	 host	 where	 possi-
ble, without assistance from the user.

Introduction to Sendmail G-3

2. OVERVIEW

2.1. System Organization
Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it

collects a message generated by a user interface program (UIP) such as Berkeley Mail, MS
[Crocker77b], or MH [Borden79], edits the message as required by the destination network,
and calls appropriate mailers to do mail delivery or queueing for network transmission1.
This discipline allows the insertion of new mailers at minimum cost. In this sense sendmail
resembles the Message Processing Module (MPM) of [Postel79b].

2.2. Interfaces to the Outside World
There are three ways sendmail can communicate with the outside world, both in

receiving and in sending mail. These are using the conventional UNIX argument
vector/return status, speaking SMTP over a pair of UNIX pipes, and speaking SMTP over
an interprocess(or) channel.

2.2.1. Argument vector/exit status
This technique is the standard UNIX method for communicating with the process.

A list of recipients is sent in the argument vector, and the message body is sent on the
standard input. Anything that the mailer prints is simply collected and sent back to
the sender if there were any problems. The exit status from the mailer is collected
after the message is sent, and a diagnostic is printed if appropriate.

2.2.2. SMTP over pipes
The SMTP protocol [Postel82] can be used to run an interactive lock-step inter-

face with the mailer. A subprocess is still created, but no recipient addresses are passed
to the mailer via the argument list. Instead, they are passed one at a time in com-
mands sent to the processes standard input. Anything appearing on the standard out-
put must be a reply code in a special format.

2.2.3. SMTP over an IPC connection
This technique is similar to the previous technique, except that it uses a 4.2BSD

IPC channel [UNIX83]. This method is exceptionally flexible in that the mailer need
not reside on the same machine. It is normally used to connect to a sendmail process
on another machine.

2.3. Operational Description
When a sender wants to send a message, it issues a request to sendmail using one of

the three methods described above. Sendmail operates in two distinct phases. In the first
phase, it collects and stores the message. In the second phase, message delivery occurs. If
there were errors during processing during the second phase, sendmail creates and returns a
new message describing the error and/or returns an status code telling what went wrong.

2.3.1. Argument processing and address parsing
If sendmail is called using one of the two subprocess techniques, the arguments

are first scanned and option specifications are processed. Recipient addresses are then
collected, either from the command line or from the SMTP RCPT command, and a list
of recipients is created. Aliases are expanded at this step, including mailing lists. As
much validation as possible of the addresses is done at this step: syntax is checked, and
local addresses are verified, but detailed checking of host names and addresses is

1except when mailing to a file, when sendmail does the delivery directly.

G-4 Introduction to Sendmail

deferred until delivery. Forwarding is also performed as the local addresses are verified.
Sendmail appends each address to the recipient list after parsing. When a name is

aliased or forwarded, the old name is retained in the list, and a flag is set that tells the
delivery phase to ignore this recipient. This list is kept free from duplicates, preventing
alias loops and duplicate messages delivered to the same recipient, as might occur if a
person is in two groups.

2.3.2. Message collection
Sendmail then collects the message. The message should have a header at the

beginning. No formatting requirements are imposed on the message except that they
must be lines of text (i.e., binary data is not allowed). The header is parsed and stored
in memory, and the body of the message is saved in a temporary file.

To simplify the program interface, the message is collected even if no addresses
were valid. The message will be returned with an error.

2.3.3. Message delivery
For each unique mailer and host in the recipient list, sendmail calls the appropri-

ate mailer. Each mailer invocation sends to all users receiving the message on one host.
Mailers that only accept one recipient at a time are handled properly.

The message is sent to the mailer using one of the same three interfaces used to
submit a message to sendmail.	 	 Each	 copy	 of	 the	message	 is	 prepended	 by	 a	 customized	
header. The mailer status code is caught and checked, and a suitable error message
given as appropriate. The exit code must conform to a system standard or a generic
message (“Service unavailable”) is given.

2.3.4. Queueing for retransmission
If the mailer returned an status that indicated that it might be able to handle the

mail later, sendmail will queue the mail and try again later.

2.3.5. Return to sender
If errors occur during processing, sendmail returns the message to the sender for

retransmission. The letter can be mailed back or written in the file “dead.letter” in the
sender’s home directory2.

2.4. Message Header Editing
Certain editing of the message header occurs automatically. Header lines can be

inserted under control of the configuration file. Some lines can be merged; for example, a
“From:” line and a “Full-name:” line can be merged under certain circumstances.

2.5. Configuration File
Almost all configuration information is read at runtime from an ASCII file, encoding

macro definitions (defining the value of macros used internally), header declarations (telling
sendmail the format of header lines that it will process specially, i.e., lines that it will add
or reformat), mailer definitions (giving information such as the location and characteristics
of each mailer), and address rewriting rules (a limited production system to rewrite
addresses which is used to parse and rewrite the addresses).

To improve performance when reading the configuration file, a memory image can be
provided. This provides a “compiled” form of the configuration file.
2Obviously, if the site giving the error is not the originating site, the only reasonable option is to mail back to the sender.

Also, there are many more error disposition options, but they only effect the error message - the “return to sender” function is
always handled in one of these two ways.

Introduction to Sendmail G-5

3. USAGE AND IMPLEMENTATION

3.1. Arguments
Arguments may be flags and addresses. Flags set various processing options. Follow-

ing flag arguments, address arguments may be given, unless we are running in SMTP
mode. Addresses follow the syntax in RFC822 [Crocker82] for ARPANET address formats.
In brief, the format is:
(1) Anything in parentheses is thrown away (as a comment).
(2) Anything in angle brackets (“< >”) is preferred over anything else. This rule implements the

ARPANET standard that addresses of the form
 user name < machine-address >
 will send to the electronic “machine-address” rather than the human “user name.”
(3) Double quotes (”) quote phrases; backslashes quote characters. Backslashes are more

powerful in that they will cause otherwise equivalent phrases to compare differently - for
example, user and ”user” are equivalent, but \user is different from either of them.
Parentheses, angle brackets, and double quotes must be properly balanced and nested. The

rewriting rules control remaining parsing3.

3.2. Mail to Files and Programs
Files and programs are legitimate message recipients. Files provide archival storage

of messages, useful for project administration and history. Programs are useful as reci-
pients in a variety of situations, for example, to maintain a public repository of systems
messages (such as the Berkeley msgs program, or the MARS system [Sattley78]).

Any address passing through the initial parsing algorithm as a local address (i.e, not
appearing to be a valid address for another mailer) is scanned for two special cases. If
prefixed by a vertical bar (“ | ”) the rest of the address is processed as a shell command. If
the user name begins with a slash mark (“/”) the name is used as a file name, instead of a
login name.

Files that have setuid or setgid bits set but no execute bits set have those bits
honored if sendmail is running as root.

3.3. Aliasing, Forwarding, Inclusion
Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding allows

each user to reroute incoming mail destined for that account. Inclusion directs sendmail to
read a file for a list of addresses, and is normally used in conjunction with aliasing.

3.3.1. Aliasing
Aliasing maps names to address lists using a system-wide file. This file is indexed

to speed access. Only names that parse as local are allowed as aliases; this guarantees a
unique key (since there are no nicknames for the local host).

3.3.2. Forwarding
After aliasing, recipients that are local and valid are checked for the existence of a

“.forward” file in their home directory. If it exists, the message is not sent to that user,
but rather to the list of users in that file. Often this list will contain only one address,
and the feature will be used for network mail forwarding.

3Disclaimer: Some special processing is done after rewriting local names; see below.

G-6 Introduction to Sendmail

Forwarding also permits a user to specify a private incoming mailer. For exam-
ple, forwarding to:

” | /usr/local/newmail myname”
will use a different incoming mailer.

3.3.3. Inclusion
Inclusion is specified in RFC 733 [Crocker77a] syntax:
:Include: pathname
An address of this form reads the file specified by pathname and sends to all users listed

in that file.
The intent is not to support direct use of this feature, but rather to use this as a

subset of aliasing. For example, an alias of the form:
project: :include:/usr/project/userlist
is a method of letting a project maintain a mailing list without interaction with the sys-

tem administration, even if the alias file is protected.
It is not necessary to rebuild the index on the alias database when a :include: list

is changed.

3.4. Message Collection
Once all recipient addresses are parsed and verified, the message is collected. The

message comes in two parts: a message header and a message body, separated by a blank
line.

The header is formatted as a series of lines of the form
 field-name: field-value
Field-value can be split across lines by starting the following lines with a space or a tab.

Some header fields have special internal meaning, and have appropriate special processing.
Other headers are simply passed through. Some header fields may be added automatically,
such as time stamps.

The body is a series of text lines. It is completely uninterpreted and untouched,
except that lines beginning with a dot have the dot doubled when transmitted over an
SMTP channel. This extra dot is stripped by the receiver.

3.5. Message Delivery
The send queue is ordered by receiving host before transmission to implement mes-

sage batching. Each address is marked as it is sent so rescanning the list is safe. An argu-
ment list is built as the scan proceeds. Mail to files is detected during the scan of the send
list. The interface to the mailer is performed using one of the techniques described in sec-
tion 2.2.

After a connection is established, sendmail makes the per-mailer changes to the
header and sends the result to the mailer. If any mail is rejected by the mailer, a flag is
set to invoke the return-to-sender function after all delivery completes.

3.6. Queued Messages
If the mailer returns a “temporary failure” exit status, the message is queued. A

control file is used to describe the recipients to be sent to and various other parameters.
This control file is formatted as a series of lines, each describing a sender, a recipient, the
time of submission, or some other salient parameter of the message. The header of the
message is stored in the control file, so that the associated data file in the queue is just the
temporary file that was originally collected.

Introduction to Sendmail G-7

3.7. Configuration
Configuration is controlled primarily by a configuration file read at startup. Sendmail

should not need to be recompiled except
(1) To change operating systems (V6, V7/32V, 4BSD).
(2) To remove or insert the DBM (UNIX database) library.
(3) To change ARPANET reply codes.
(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (i.e., rewriting) or routing information does not require
recompilation.

If the mail is being sent by a local user, and the file “.mailcf” exists in the sender’s
home directory, that file is read as a configuration file after the system configuration file.
The primary use of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer definitions,
rewriting rules, and options.

3.7.1. Macros
Macros can be used in three ways. Certain macros transmit unstructured textual

information into the mail system, such as the name sendmail will use to identify itself
in error messages. Other macros transmit information from sendmail to the
configuration file for use in creating other fields (such as argument vectors to mailers);
e.g., the name of the sender, and the host and user of the recipient. Other macros are
unused internally, and can be used as shorthand in the configuration file.

3.7.2. Header declarations
Header declarations inform sendmail of the format of known header lines.

Knowledge of a few header lines is built into sendmail, such as the “From:” and
“Date:” lines.

Most configured headers will be automatically inserted in the outgoing message if
they don’t exist in the incoming message. Certain headers are suppressed by some
mailers.

3.7.3. Mailer declarations
Mailer declarations tell sendmail of the various mailers available to it. The

definition specifies the internal name of the mailer, the pathname of the program to
call, some flags associated with the mailer, and an argument vector to be used on the
call; this vector is macro-expanded before use.

3.7.4. Address rewriting rules
The heart of address parsing in sendmail is a set of rewriting rules. These are an

ordered list of pattern-replacement rules, (somewhat like a production system, except
that order is critical), which are applied to each address. The address is rewritten tex-
tually until it is either rewritten into a special canonical form (i.e., a (mailer, host, user)
3-tuple, such as {arpanet, usc-isif, postel} representing the address “postel@usc-isif”),
or it falls off the end. When a pattern matches, the rule is reapplied until it fails.

The configuration file also supports the editing of addresses into different formats. For
example, an address of the form:

ucsfcgl!tef
might be mapped into:

G-8 Introduction to Sendmail

tef@ucsfcgl.UUCP
to conform to the domain syntax. Translations can also be done in the other direction.

3.7.5. Option setting
There are several options that can be set from the configuration file. These

include the pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail
Sendmail is an outgrowth of delivermail. The primary differences are:

(1) Configuration information is not compiled in. This change simplifies many of the
problems of moving to other machines. It also allows easy debugging of new mailers.

(2) Address parsing is more flexible. For example, delivermail only supported one gate-
way to any network, whereas sendmail can be sensitive to host names and reroute to
different gateways.

(3) Forwarding and :include: features eliminate the requirement that the system alias file
be writable by any user (or that an update program be written, or that the system
administration make all changes).

(4) Sendmail supports message batching across networks when a message is being sent to
multiple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately but
can potentially be delivered later is stored in this queue for a later retry. The queue
also provides a buffer against system crashes; after the message has been collected it
may be reliably redelivered even if the system crashes during the initial delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct inter-
face networks such as the ARPANET and/or Ethernet using SMTP (the Simple Mail
Transfer Protocol) over a TCP/IP connection.

4.2. MMDF
MMDF [Crocker79] spans a wider problem set than sendmail. For example, the

domain of MMDF includes a “phone network” mailer, whereas sendmail calls on preexist-
ing mailers in most cases.

MMDF and sendmail	 both	 support	 aliasing,	 customized	 mailers,	 message	 batching,	
automatic forwarding to gateways, queueing, and retransmission. MMDF supports two-
stage timeout, which sendmail does not support.

The configuration for MMDF is compiled into the code4.
Since MMDF does not consider backwards compatibility as a design goal, the address

parsing is simpler but much less flexible.
It is somewhat harder to integrate a new channel5 into MMDF. In particular, MMDF

must know the location and format of host tables for all channels, and the channel must
speak a special protocol. This allows MMDF to do additional verification (such as verify-
ing host names) at submission time.

MMDF strictly separates the submission and delivery phases. Although sendmail has
the concept of each of these stages, they are integrated into one program, whereas in
4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either com-

piled or dynamic tables.
5The MMDF equivalent of a sendmail “mailer.”

MMDF they are split into two programs.

Introduction to Sendmail G-9

4.3. Message Processing Module
The Message Processing Module (MPM) discussed by Postel [Postel79b] matches

sendmail closely in terms of its basic architecture. However, like MMDF, the MPM
includes the network interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus allowing
simpler handling of errors by the mailer than is possible in sendmail. When a message
queued by sendmail is sent, any errors must be returned to the sender by the mailer itself.
Both MPM and MMDF mailers can return an immediate error response, and a single error
processor can create an appropriate response.

MPM prefers passing the message as a structured object, with type-length-value
tuples6. Such a convention requires a much higher degree of cooperation between mailers
than is required by sendmail. MPM also assumes a universally agreed upon internet name
space (with each address in the form of a net-host-user tuple), which sendmail does not.

5. EVALUATIONS AND FUTURE PLANS
Sendmail is designed to work in a nonhomogeneous environment. Every attempt is made

to avoid imposing unnecessary constraints on the underlying mailers. This goal has driven
much of the design. One of the major problems has been the lack of a uniform address space,
as postulated in [Postel79a] and [Postel79b].

A nonuniform address space implies that a path will be specified in all addresses, either
explicitly (as part of the address) or implicitly (as with implied forwarding to gateways). This
restriction has the unpleasant effect of making replying to messages exceedingly difficult, since
there is no one “address” for any person, but only a way to get there from wherever you are.

Interfacing to mail programs that were not initially intended to be applied in an internet
environment	has	been	amazingly	successful,	and	has	reduced	the	job	to	a	manageable	task.

Sendmail has knowledge of a few difficult environments built in. It generates ARPANET
FTP/SMTP compatible error messages (prepended with three-digit numbers [Neigus73, Pos-tel74,
Postel82]) as necessary, optionally generates UNIX-style “From” lines on the front of messages for
some mailers, and knows how to parse the same lines on input. Also, error handling has an option
customized	for	BerkNet.

The decision to avoid doing any type of delivery where possible (even, or perhaps espe-
cially, local delivery) has turned out to be a good idea. Even with local delivery, there are
issues of the location of the mailbox, the format of the mailbox, the locking protocol used,
etc., that are best decided by other programs. One surprisingly major annoyance in many
internet mailers is that the location and format of local mail is built in. The feeling seems to
be that local mail is so common that it should be efficient. This feeling is not born out by our
experience; on the contrary, the location and format of mailboxes seems to vary widely from
system to system.

The ability to automatically generate a response to incoming mail (by forwarding mail to a
program) seems useful (“I am on vacation until late August....”) but can create problems such as
forwarding loops (two people on vacation whose programs send notes back and forth, for instance)
if these programs are not well written. A program could be written to do standard tasks correctly,
but this would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any
mail system that addresses this problem, nor am I aware of any reasonable solution at this
time.

6This is similar to the NBS standard.

G-10 Introduction to Sendmail

The configuration file is currently practically inscrutable; considerable convenience could
be	realized	with	a	higher-level	format.

It seems clear that common protocols will be changing soon to accommodate changing
requirements and environments. These changes will include modifications to the message
header (e.g., [NBS80]) or to the body of the message itself (such as for multimedia messages
[Postel80]). Experience indicates that these changes should be relatively trivial to integrate
into the existing system.

In tightly coupled environments, it would be nice to have a name server such as Grap-
vine [Birrell82] integrated into the mail system. This would allow a site such as “Berkeley” to
appear as a single host, rather than as a collection of hosts, and would allow people to move
transparently among machines without having to change their addresses. Such a facility
would require an automatically updated database and some method of resolving conflicts.
Ideally this would be effective even without all hosts being under a single management. How-
ever, it is not clear whether this feature should be integrated into the aliasing facility or
should be considered a “value added” feature outside sendmail itself.

As a more interesting case, the CSNET name server [Solomon81] provides an facility
that goes beyond a single tightly-coupled environment. Such a facility would normally exist
outside of sendmail however.

Introduction to Sendmail G-11

REFERENCES
[Birrell82] Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D.,

“Grapevine: An Exercise in Distributed Computing.” In Comm.
A.C.M. 25, 4, April 82.

[Borden79] Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Han-
dling System: Users’ Manual. R-2367-PAF. Rand Corporation.
October 1979.

[Crocker77a] Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr.,
Standard for the Format of ARPA Network Text Messages. RFC 733,
NIC 41952. In [Feinler78]. November 1977.

[Crocker77b] Crocker, D. H., Framework and Functions of the MS Personal Mes-
sage System. R-2134-ARPA, Rand Corporation, Santa Monica, Cali-
fornia. 1977.

[Crocker79]	 Crocker,	 D.	 H.,	 Szurkowski,	 E.	 S.,	 and	 Farber,	 D.	 J.,	 An Internetwork
Memo Distribution Facility - MMDF. 6th Data Communication Sym-
posium, Asilomar. November 1979.

[Crocker82] Crocker, D. H., Standard for the Format of Arpa Internet Text Mes-
sages. RFC 822. Network Information Center, SRI International,
Menlo Park, California. August 1982.

[Metcalfe76] Metcalfe, R., and Boggs, D., “Ethernet: Distributed Packet Switching
for Local Computer Networks”, Communications of the ACM 19, 7.
July 1976.

[Feinler78] Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook.
NIC 7104, Network Information Center, SRI International, Menlo
Park, California. 1978.

[NBS80] National Bureau of Standards, Specification of a Draft Message For-
mat Standard. Report No. ICST/CBOS 80-2. October 1980.

[Neigus73] Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542,
NIC 17759. In [Feinler78]. August, 1973.

[Nowitz78a]	 Nowitz,	 D.	 A.,	 and	 Lesk,	M.	 E.,	A Dial-Up Network of UNIX Systems.
Bell Laboratories. In UNIX Programmer’s Manual, Seventh Edition,
Volume 2. August, 1978.

[Nowitz78b]	 Nowitz,	 D.	 A.,	 Uucp Implementation Description. Bell Laboratories.
In UNIX Programmer’s Manual, Seventh Edition, Volume 2.
October, 1978.

[Postel74] Postel, J., and Neigus, N., Revised FTP Reply Codes. RFC 640, NIC
30843. In [Feinler78]. June, 1974.

[Postel77] Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November
1977.

[Postel79a] Postel, J., Internet Message Protocol. RFC 753, DEN 85. Network
Information Center, SRI International, Menlo Park, California.
March 1979.

[Postel79b] Postel, J. B., An Internetwork Message Structure. In Proceedings of
the Sixth Data Communications Symposium, IEEE. New York.
November 1979.

G-12 Introduction to Sendmail

[Postel80] Postel, J. B., A Structured Format for Transmission of Multi-Me-
dia Documents. RFC 767. Network Information Center, SRI Interna-
tional, Menlo Park, California. August 1980.

[Postel82] Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting
RFC788). Network Information Center, SRI International, Menlo
Park, California. August 1982.

[Schmidt79] Schmidt, E., An Introduction to the Berkeley Network. University of
California, Berkeley California. 1979.

[Shoens79] Shoens, K., Mail Reference Manual. University of California, Berke-
ley. In UNIX Programmer’s Manual, Seventh Edition, Volume 2C.
December 1979.

[Sluizer81]	 Sluizer,	 S.,	 and	 Postel,	 J.	 B.,	 Mail Transfer Protocol. RFC 780. Net-
work Information Center, SRI International, Menlo Park, California.
May 1981.

[Solomon81] Solomon, M., Landweber, L., and Neuhengen, D., “The Design of the
CSNET Name Server.” CS-DN-2, University of Wisconsin, Madison.
November 1981.

[Su82] Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for
Internet User Applications. RFC819. Network Information Center,
SRI International, Menlo Park, California. August 1982.

[UNIX83] The UNIX Programmer’s Manual, Seventh Edition, Virtual VAX-11
Version, Volume 1. Bell Laboratories, modified by the University of
California, Berkeley, California. March, 1983.

Sendmail Installation and Operation H-1

Appendix H: Sendmail Installation and Operation Guide

Eric Allman
Britton-Lee, Inc.

Version 4.2

Sendmail implements a general purpose internetwork mail routing facility under
the UNIX operating system. It is not tied to any one transport protocol - its
function may be likened to a crossbar switch, relaying messages from one domain
into another. In the process, it can do a limited amount of message header edit-
ing to put the message into a format that is appropriate for the receiving domain.
All of this is done under the control of a configuration file.

Due to the requirements of flexibility for sendmail, the configuration file can seem somewhat
unapproachable. However, there are only a few basic configurations for most sites, for which
standard configuration files have been supplied. Most other configurations can be built by adjust-
ing an existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has a number of
features that may be used to monitor or adjust the operation under unusual circumstances. These
features are described.

Section one describes how to do a basic sendmail installation. Section two explains the
day-to-day information you should know to maintain your mail system. If you have a relatively
normal site, these two sections should contain sufficient information for you to install sendmail
and keep it happy. Section three describes some parameters that may be safely tweaked. Section
four has information regarding the command line arguments. Section five contains the nitty-
gritty information about the configuration file. This section is for masochists and people who
must write their own configuration file. The addenda give a brief but detailed explanation of a
number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper Sendmail - An
Internetwork Mail Router. This other paper should be read before this manual to gain a basic
understanding of how the pieces fit together.

1. BASIC INSTALLATION
There are two basic steps to installing sendmail. The hard part is to build the

configuration table. This is a file that sendmail reads when it starts up that describes the
mailers it knows about, how to parse addresses, how to rewrite the message header, and the
settings of various options. Although the configuration table is quite complex, a configuration
can usually be built by adjusting an existing off-the-shelf configuration. The second part is
actually doing the installation, i.e., creating the necessary files, etc.

The remainder of this section will describe the installation of sendmail assuming you can
use one of the existing configurations and that the standard installation parameters are accept-
able. All pathnames and examples are given from the root of the sendmail subtree.

H-2 Sendmail Installation and Operation

1.1. Off-The-Shelf Configurations
The configuration files are all in the subdirectory cf of the sendmail directory. The

ones used at Berkeley are in m4 (1) format; files with names ending “.m4” are m4 in-
clude files, while files with names ending “.mc” are the master files. Files with names ending
“.cf” are the m4 processed versions of the corresponding “.mc” file.

Two off the shelf configuration files are supplied to handle the basic cases:
cf/arpaproto.cf for Arpanet (TCP) sites and cf/uucpproto.cf for UUCP sites. These are not
in m4 format. The file you need should be copied to a file with the same name as your sys-
tem, e.g.,

cp uucpproto.cf ucsfcgl.cf
This file is now ready for installation as /usr/lib/sendmail.cf

1.2. Installation Using the Makefile
A makefile exists in the root of the sendmail directory that will do all of these steps

for a 4.2BSD system. It may have to be slightly tailored for use on other systems.
Before using this makefile, you should already have created your configuration file

and left it in the file “cf/system.cf” where system is the name of your system (i.e., what is
returned by hostname (1)). If you do not have hostname you can use the declaration
“HOST=system” on the make (1) command line. You should also examine the file
md/config.m4 and change the m4 macros there to reflect any libraries and compilation flags
you may need.

The basic installation procedure is to type:
make
make install

in the root directory of the sendmail distribution. This will make all binaries and in-
stall them in the standard places. The second make command must be executed as the
superuser (root).

1.3. Installation by Hand
Along with building a configuration file, you will have to install the sendmail startup

into your UNIX system. If you are doing this installation in conjunction with a regular
Berkeley UNIX install, these steps will already be complete. Many of these steps will have
to be executed as the superuser (root).

1.3.1. lib/libsys.a
The library in lib/libsys.a contains some routines that should in some sense be

part of the system library. These are the system logging routines and the new directory
access routines (if required). If you are not running the new 4.2BSD directory code and
do not have the compatibility routines installed in your system library, you should exe-
cute the commands:

cdlib
make ndir

This will compile and install the 4.2 compatibility routines in the library. You should then
type:

cd lib # if required
make

This will recompile and fill the library.

Sendmail Installation and Operation H-3

1.3.2. /usr/lib/sendmail
The binary for sendmail is located in /usr/lib. There is a version available in the source

directory that is probably inadequate for your system. You should plan on recompiling and
installing the entire system:

cd src
rm -f *.o
make
cp sendmail /usr/lib

1.3.3. /usr/lib/sendmail.cf
The configuration file that you created earlier should be installed in

/usr/lib/sendmail.cf:
cp cf/system.cf /usr/lib/sendmail.cf

1.3.4. /usr/ucb/newaliases
If you are running delivermail, it is critical that the newaliases command be

replaced. This can just be a link to sendmail:
rm -f /usr/ucb/newaliases
ln /usr/lib/sendmail /usr/ucb/newaliases

1.3.5. /usr/lib/sendmail.cf
The configuration file must be installed in /usr/lib. This is described above.

1.3.6. /usr/spool/mqueue
The directory /usr/spool/mqueue should be created to hold the mail queue. This

directory should be mode 777 unless sendmail is run setuid, when mqueue should be
owned by the sendmail owner and mode 755.

1.3.7. /usr/lib/aliases*
The system aliases are held in three files. The file “/usr/lib/aliases” is the master

copy. A sample is given in “lib/aliases” which includes some aliases which must be
defined:

cp lib/aliases /usr/lib/aliases
You should extend this file with any aliases that are apropos to your system.

Normally sendmail looks at a version of these files maintained by the dbm (3)
routines. These are stored in “/usr/lib/aliases.dir” and “/usr/lib/aliases.pag.” These can
initially	 be	 created	 as	 empty	 files,	 but	 they	 will	 have	 to	 be	 initialized	 promptly.	 	 These	
should be mode 666 if you are running a reasonably relaxed system:

cp /dev/null /usr/lib/aliases.dir
cp /dev/null /usr/lib/aliases.pag
chmod 666 /usr/lib/aliases.*
newaliases

1.3.8. /usr/lib/sendmail.fc
If	 you	 intend	 to	 install	 the	 frozen	 version	 of	 the	 configuration	 file	 (for	 quick	

startup) you should create the file /usr/lib/sendmail.fc	 and	 initialize	 it.	 	 This	 step	 may	
be safely skipped.

H-4 Sendmail Installation and Operation

cp /dev/null /usr/lib/sendmail.fc
/usr/lib/sendmail	-bz

1.3.9. /etc/rc
It will be necessary to start up the sendmail daemon when your system reboots.

This daemon performs two functions: it listens on the SMTP socket for connections (to
receive mail from a remote system) and it processes the queue periodically to insure
that mail gets delivered when hosts come up.

Add the following lines to “/etc/rc” (or “/etc/rc.local” as appropriate) in the
area where it is starting up the daemons:

if [-f /usr/lib/sendmail]; then
 (cd /usr/spool/mqueue; rm -f [lnx]f*)
 /usr/lib/sendmail -bd -q30m &
 echo -n ’ sendmail’ >/dev/console
fi

The “cd” and “rm” commands insure that all lock files have been removed; extraneous
lock files may be left around if the system goes down in the middle of processing a mes-
sage. The line that actually invokes sendmail has two flags: “-bd” causes it to listen on
the SMTP port, and “-q30m” causes it to run the queue every half hour.

If you are not running a version of UNIX that supports Berkeley TCP/IP, do not
include the -bd flag.

1.3.10. /usr/lib/sendmail.hf
This is the help file used by the SMTP HELP command. It should be copied

from “lib/sendmail.hf”:
cp lib/sendmail.hf /usr/lib

1.3.11. /usr/lib/sendmail.st
If you wish to collect statistics about your mail traffic, you should create the file

“/usr/lib/sendmail .st”:
cp /dev/null /usr/lib/sendmail.st
chmod 666 /usr/lib/sendmail.st

This file does not grow. It is printed with the program “aux/mailstats.”

1.3.12. /etc/syslog
You may want to run the syslog program (to collect log information about send-

mail). This program normally resides in /etc/syslog, with support files /etc/syslog.conf
and /etc/syslog.pid. The program is located in the aux subdirectory of the sendmail
distribution. The file /etc/syslog.conf describes the file(s) that sendmail will log in. For
a complete description of syslog, see the manual page for syslog (8) (located in
sendmail/doc on the distribution).

1.3.13. /usr/ucb/newaliases
If sendmail is invoked as “newaliases,” it will simulate the -bi flag (i.e., will

rebuild the alias database; see below). This should be a link to /usr/lib/sendmail.

1.3.14. /usr/ucb/mailq
If sendmail is invoked as “mailq,” it will simulate the -bp flag (i.e., sendmail will

print the contents of the mail queue; see below). This should be a link to
/usr/lib/sendmail.

Sendmail Installation and Operation H-5

2. NORMAL OPERATIONS

2.1. Quick Configuration Startup
A fast version of the configuration file may be set up by using the -bz flag:
/usr/lib/sendmail	-bz

This creates the file /usr/lib/sendmail.fc	 (“frozen	 configuration”).	 	 This	 file	 is	 an	 image	
of sendmail’s data space after reading in the configuration file. If this file exists, it is used
instead of /usr/lib/sendmail.cf sendmail.fc must be rebuilt manually every time sendmail.cf
is changed.

The	 frozen	 configuration	 file	 will	 be	 ignored	 if	 a	 -C flag is specified or if sendmail
detects that it is out of date. However, the heuristics are not strong so this should not be
trusted.

2.2. The System Log
The system log is supported by the syslog (8) program.

2.2.1. Format
Each line in the system log consists of a timestamp, the name of the machine that

generated it (for logging from several machines over the ethernet), the word “send-
mail:”, and a message.

2.2.2. Levels
If you have syslog (8) or an equivalent installed, you will be able to do logging.

There is a large amount of information that can be logged. The log is arranged as a
succession of levels. At the lowest level only extremely strange situations are logged.
At the highest level, even the most mundane and uninteresting events are recorded for
posterity. As a convention, log levels under ten are considered “useful;” log levels
above ten are usually for debugging purposes.
A complete description of the log levels is given in section 4.3.

2.3. The Mail Queue
The mail queue should be processed transparently. However, you may find that

manual intervention is sometimes necessary. For example, if a major host is down for a
period of time the queue may become clogged. Although sendmail ought to recover grace-
fully when the host comes up, you may find performance unacceptably bad in the mean-
time.

2.3.1. Printing the queue
The contents of the queue can be printed using the mailq command (or by specifying

the -bp flag to sendmail):
mailq

This	will	produce	a	listing	of	the	queue	id’s,	the	size	of	the	message,	the	date	the	message	
entered the queue, and the sender and recipients.

2.3.2. Format of queue files
All queue files have the form xfAA99999 where AA99999 is the id for this file and

the x is a type. The types are:
d The data file. The message body (excluding the header) is kept in this file.
l The lock file. If this file exists, the job is currently being processed, and a queue

run will not process the file. For that reason, an extraneous lf file can cause a job

H-6 Sendmail Installation and Operation

 to apparently disappear (it will not even time out!).
n This file is created when an id is being created. It is a separate file to insure that

no mail can ever be destroyed due to a race condition. It should exist for no more
than a few milliseconds at any given time.

q The queue control file. This file contains the information necessary to process the
job.

t A temporary file. These are an image of the qf file when it is being rebuilt. It
should be renamed to a qf file very quickly.

x A transcript file, existing during the life of a session showing everything that hap-
pens during that session.
The qf file is structured as a series of lines each beginning with a code letter. The

lines are as follows:
D The name of the data file. There may only be one of these lines.
H A header definition. There may be any number of these lines. The order is

important: they represent the order in the final message. These use the same syn-
tax as header definitions in the configuration file.

R A recipient address. This will normally be completely aliased, but is actually
realiased when the job is processed. There will be one line for each recipient.

S The sender address. There may only be one of these lines.
T The job creation time. This is used to compute when to time out the job.
P The current message priority. This is used to order the queue. Higher numbers

mean lower priorities. The priority increases as the message sits in the queue.
The	initial	priority	depends	on	the	message	class	and	the	size	of	the	message.

M A message. This line is printed by the mailq command, and is generally used to
store status information. It can contain any text.
As an example, the following is a queue file sent to “mckusick@calder” and

“wnj”:
DdfA13557
Seric
T404261372
P132
Rmckusick@calder
Rwnj
H?D?date: 23-Oct-82 15:49:32-PDT (Sat)
H?F?from: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an example message
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82])
id A13557; 23-Oct-82 15:49:32-PDT (Sat)
Hphone: (415) 548-3211
HTo: mckusick@calder, wnj
This shows the name of the data file, the person who sent the message, the submission

time (in seconds since January 1, 1970), the message priority, the message class, the recipients,
and the headers for the message.

2.3.3. Forcing the queue
Sendmail should run the queue automatically at intervals. The algorithm is

to read and sort the queue, and then to attempt to process all jobs in order. When it
attempts to run the job, sendmail first checks to see if the job is locked. If so, it

Sendmail Installation and Operation H-7

ignores the job.
There is no attempt to insure that only one queue processor exists at any time,

since there is no guarantee that a job cannot take forever to process. Due to the lock-
ing	algorithm,	it	 is	 impossible	for	one	job	to	freeze	the	queue.		However,	an	uncooperative	
recipient host or a program recipient that never returns can accumulate many pro-
cesses in your system. Unfortunately, there is no way to resolve this without violat-
ing the protocol.

In some cases, you may find that a major host going down for a couple of days
may create a prohibitively large queue. This will result in sendmail spending an inordi-
nate amount of time sorting the queue. This situation can be fixed by moving the
queue to a temporary place and creating a new queue. The old queue can be run later
when the offending host returns to service.

To do this, it is acceptable to move the entire queue directory:
cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in the old
queue directory) and create a new daemon.

To run the old mail queue, run the following command:
/usr/lib/sendmail -oQ/usr/spool/omqueue -q

The -oQ flag specifies an alternate queue directory and the -q flag says to just run
every job in the queue. If you have a tendency toward voyeurism, you can use the -v
flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:
rmdir /usr/spool/omqueue

2.4. The Alias Database
The alias database exists in two forms. One is a text form, maintained in the file

/usr/lib/aliases. The aliases are of the form
name: name1, name2, ...

Only local names may be aliased; e.g.,
eric@mit-xx: eric@berkeley

will not have the desired effect. Aliases may be continued by starting any continuation lines with
a space or a tab. Blank lines and lines beginning with a sharp sign (“#”) are comments.

The second form is processed by the dbm (3) library. This form is in the files
/usr/lib/aliases.dir and /usr/lib/aliases.pag. This is the form that sendmail actually uses
to resolve aliases. This technique is used to improve performance.

2.4.1. Rebuilding the alias database
The DBM version of the database may be rebuilt explicitly by executing the com-

mand
newaliases

This is equivalent to giving sendmail the -bi flag:
/usr/lib/sendmail -bi
If the “D” option is specified in the configuration, sendmail will rebuild the alias

database automatically if possible when it is out of date. The conditions under which it
will do this are:

H-8 Sendmail Installation and Operation

(1) The DBM version of the database is mode 666. -or-
(2) Sendmail is running setuid to root.
Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it
might take more than five minutes to rebuild the database, there is a chance that
several processes will start the rebuild process simultaneously.

2.4.2. Potential problems
There are a number of problems that can occur with the alias database. They all

result from a sendmail process accessing the DBM version while it is only partially
built. This can happen under two circumstances: One process accesses the database
while another process is rebuilding it, or the process rebuilding the database dies (due
to being killed or a system crash) before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it ignores
interrupts while rebuilding the database; this avoids the problem of someone aborting
the process leaving a partially rebuilt database. Second, at the end of the rebuild it
adds an alias of the form

@: @
(which is not normally legal). Before sendmail will access the database, it checks to
insure that this entry exists1. It will wait up to five minutes for this entry to appear, at
which point it will force a rebuild itself2.

2.4.3. List owners
If an error occurs on sending to a certain address, say “x”, sendmail will look for

an alias of the form “owner-x” to receive the errors. This is typically useful for a mail-
ing list where the submitter of the list has no control over the maintenance of the list
itself; in this case the list maintainer would be the owner of the list. For example:

unix-wizards:	eric@ucbarpa,	wnj@monet,	nosuchuser,
 sam@matisse
owner-unix-wizards:	eric@ucbarpa

would cause “eric@ucbarpa” to get the error that will occur when someone sends to
unix-wizards	due	to	the	inclusion	of	“nosuchuser”	on	the	list.

2.5. Per-User Forwarding (.forward Files)
As an alternative to the alias database, any user may put a file with the name “.for-

ward” in his or her home directory. If this file exists, sendmail redirects mail for that user
to the list of addresses listed in the .forward file. For example, if the home directory for
user “mckusick” has a .forward file with contents:

mckusick@ernie
kirk@calder

then any mail arriving for “mckusick” will be redirected to the specified accounts.

2.6. Special Header Lines
Several header lines have special interpretations defined by the configuration file.

Others have interpretations built into sendmail that cannot be changed without changing
the code. These builtins are described here.

1The “a” option is required in the configuration for this action to occur. This should normally be specified unless
you are running delivermail in parallel with sendmail.

2Note: the “D” option must be specified in the configuration file for this operation to occur.

Sendmail Installation and Operation H-9

2.6.1. Return-Receipt-To:
If this header is sent, a message will be sent to any specified addresses when the

final delivery is complete, if the mailer has the l flag (local delivery) set in the mailer
descriptor.

2.6.2. Errors-To:
If errors occur anywhere during processing, this header will cause error messages

to go to the listed addresses rather than to the sender. This is intended for mailing
lists.

2.6.3. Apparently-To:
If a message comes in with no recipients listed in the message (in a To:, Cc:, or

Bcc: line) then sendmail will add an “Apparently-To:” header line for any recipients it
is aware of. This is not put in as a standard recipient line to warn any recipients that
the list is not complete.

At least one recipient line is required under RFC 822.

3. ARGUMENTS
The complete list of arguments to sendmail is described in detail in Addendum A. Some

important arguments are described here.

3.1. Queue Interval
The amount of time between forking a process to run through the queue is defined by

the -q flag. If you run in mode f or a this can be relatively large, since it will only be
relevant when a host that was down comes back up. If you run in q mode it should be
relatively short, since it defines the maximum amount of time that a message may sit in
the queue.

3.2. Daemon Mode
If you allow incoming mail over an IPC connection, you should have a daemon run-

ning. This should be set by your /etc/rc file using the -bd flag. The -bd flag and the -q
flag may be combined in one call:

/usr/lib/sendmail -bd -q30m

3.3. Forcing the Queue
In some cases you may find that the queue has gotten clogged for some reason. You

can force a queue run using the -q flag (with no value). It is entertaining to use the
-v flag (verbose) when this is done to watch what happens:

/usr/lib/sendmail -q -v

3.4. Debugging
There are a fairly large number of debug flags built into sendmail. Each debug flag

has a number and a level, where higher levels means to print out more information. The
convention is that levels greater than nine are “absurd,” i.e., they print out so much infor-
mation that you wouldn’t normally want to see them except for debugging that particular
piece of code. Debug flags are set using the -d option; the syntax is:

H-10 Sendmail Installation and Operation

debug-flag: -d debug-list
debug-list: debug-option [, debug-option]
debug-option: debug-range [. debug-level]
debug-range: integer | integer - integer
debug-level: integer

where spaces are for reading ease only. For example,
-d12 Set flag 12 to level 1
-d12.3 Set flag 12 to level 3
-d3-17 Set flags 3 through 17 to level 1
-d3-17.4 Set flags 3 through 17 to level 4

For a complete list of the available debug flags you will have to look at the code (they are
too dynamic to keep this documentation up to date).

3.5. Trying a Different Configuration File
An alternative configuration file can be specified using the -C flag; for example,

/usr/lib/sendmail -Ctest.cf
uses the configuration file test.cf instead of the default /usr/lib/sendmail.cf. If the -C flag
has no value it defaults to sendmail.cf in the current directory.

3.6. Changing the Values of Options
Options can be overridden using the -o flag. For example,

/usr/lib/sendmail -oT2m
sets the T (timeout) option to two minutes for this run only.

4. TUNING
There are a number of configuration parameters you may want to change, depending on

the requirements of your site. Most of these are set using an option in the configuration file.
For example, the line “OT3d” sets option “T” to the value “3d” (three days).

4.1. Timeouts
All time intervals are set using a scaled syntax. For example, “10m” represents ten

minutes, whereas “2h30m” represents two and a half hours. The full set of scales is:
s seconds
m minutes
h hours
d days
w weeks

4.1.1. Queue interval
The argument to the -q flag specifies how often a subdaemon will run the queue.

This is typically set to between five minutes and one half hour.

4.1.2. Read timeouts
It is possible to time out when reading the standard input or when reading from a

remote SMTP server. Technically, this is not acceptable within the published proto-
cols. However, it might be appropriate to set it to something large in certain environ-
ments (such as an hour). This will reduce the chance of large numbers of idle daemons
piling up on your system. This timeout is set using the r option in the configuration
file.

Sendmail Installation and Operation H-11

4.1.3. Message timeouts
After sitting in the queue for a few days, a message will time out. This is to

insure that at least the sender is aware of the inability to send a message. The timeout
is typically set to three days. This timeout is set using the T option in the
configuration file.

The time of submission is set in the queue, rather than the amount of time left
until timeout. As a result, you can flush messages that have been hanging for a short
period by running the queue with a short message timeout. For example,

/usr/lib/sendmail -oT1d -q
will run the queue and flush anything that is one day old.

4.2. Delivery Mode
There are a number of delivery modes that sendmail can operate in, set by the “d”

configuration option. These modes specify how quickly mail will be delivered. Legal
modes are:

i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (don’t deliver)

There are tradeoffs. Mode “i” passes the maximum amount of information to the sender,
but is hardly ever necessary. Mode “q” puts the minimum load on your machine, but
means that delivery may be delayed for up to the queue interval. Mode “b” is probably a
good compromise. However, this mode can cause large numbers of processes if you have a
mailer that takes a long time to deliver a message.

4.3. Log Level
The level of logging can be set for sendmail. The default using a standard

configuration table is level 9. The levels are as follows:
0 No logging.
1 Major problems only.
2 Message collections and failed deliveries.
3 Successful deliveries.
4 Messages being deferred (due to a host being down, etc.).
5 Normal message queueups.
6 Unusual but benign incidents, e.g., trying to process a locked queue file.
9 Log internal queue id to external message id mappings. This can be useful for trac-

ing a message as it travels between several hosts.
12 Several messages that are basically only of interest when debugging.
16 Verbose information regarding the queue.

4.4. File Modes
There are a number of files that may have a number of modes. The modes depend

on what functionality you want and the level of security you require.

4.4.1. To suid or not to suid?
Sendmail can safely be made setuid to root. At the point where it is about to

exec	 (2)	 a	 mailer,	 it	 checks	 to	 see	 if	 the	 userid	 is	 zero;	 if	 so,	 it	 resets	 the	 userid	 and	
groupid to a default (set by the u and g options). (This can be overridden by setting
the S flag to the mailer for mailers that are trusted and must be called as root.)

H-12 Sendmail Installation and Operation

However, this will cause mail processing to be accounted (using sa (8)) to root rather
than to the user sending the mail.

4.4.2. Temporary file modes
The mode of all temporary files that sendmail creates is determined by the “F”

option. Reasonable values for this option are 0600 and 0644. If the more permissive
mode is selected, it will not be necessary to run sendmail as root at all (even when run-
ning the queue).

4.4.3. Should my alias database be writable?
At Berkeley we have the alias database (/usr/lib/aliases*) mode 666. There are

some dangers inherent in this approach: any user can add him-/her-self to any list, or
can “steal” any other user’s mail. However, we have found users to be basically
trustworthy, and the cost of having a read-only database greater than the expense of
finding and eradicating the rare nasty person.

The database that sendmail actually used is represented by the two files
aliases.dir and aliases.pag (both in /usr/lib). The mode on these files should match the
mode on /usr/lib/aliases. If aliases is writable and the DBM files (aliases.dir and
aliases.pag) are not, users will be unable to reflect their desired changes through to the
actual database. However, if aliases is read-only and the DBM files are writable, a
slightly sophisticated user can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto-rebuild
enabled (with the “D” option), then you must be careful to reconstruct the alias data-
base each time you change the text version:

newaliases
If this step is ignored or forgotten any intended changes will also be ignored or forgot-
ten.

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE
This section describes the configuration file in detail, including hints on how to write one

of your own if you have to.
There is one point that should be made clear immediately: the syntax of the

configuration file is designed to be reasonably easy to parse, since this is done every time send-
mail starts up, rather than easy for a human to read or write. On the “future project” list is
a configuration-file compiler.

An overview of the configuration file is given first, followed by details of the semantics.

5.1. The Syntax
The	 configuration	 file	 is	 organized	 as	 a	 series	 of	 lines,	 each	 of	which	 begins	with	 a	 sin-

gle character defining the semantics for the rest of the line. Lines beginning with a space
or a tab are continuation lines (although the semantics are not well defined in many
places). Blank lines and lines beginning with a sharp symbol (‘#’) are comments.

5.1.1. R and S – rewriting rules
The core of address parsing are the rewriting rules. These are an ordered produc-

tion system. Sendmail scans through the set of rewriting rules looking for a match on
the left hand side (LHS) of the rule. When a rule matches, the address is replaced by
the right hand side (RHS) of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are used
internally and must have specific semantics. Other rewriting sets do not have
specifically assigned semantics, and may be referenced by the mailer definitions or by

Sendmail Installation and Operation H-13

other rewriting sets.
The syntax of these two commands are:

Sn
Sets the current ruleset being collected to n. If you begin a ruleset more than once it
deletes the old definition.

Rlhs rhs comments
The fields must be separated by at least one tab character; there may be embedded
spaces in the fields. The lhs is a pattern that is applied to the input. If it matches, the
input is rewritten to the rhs. The comments are ignored.

5.1.2. D – define macro
Macros are named with a single character. These may be selected from the entire

ASCII set, but user-defined macros should be selected from the set of upper case letters
only. Lower case letters and special symbols are used internally.

The syntax for macro definitions is:
Dxval

where x is the name of the macro and val is the value it should have. Macros can be
interpolated in most places using the escape sequence $x.

5.1.3. C and F – define classes
Classes of words may be defined to match on the left hand side of rewriting rules.

For example a class of all local names for this site might be created so that attempts to
send to oneself can be eliminated. These can either be defined directly in the
configuration file or read in from another file. Classes may be given names from the set
of upper case letters. Lower case letters and special characters are reserved for system
use.

The syntax is:
Ccword1 word2...
Fcfile [format]

The first form defines the class c to match any of the named words. It is permissible to
split them among multiple lines; for example, the two forms:

CHmonet ucbmonet
and

CHmonet
CHucbmonet

are equivalent. The second form reads the elements of the class c from the named file;
the format is a scanf (3) pattern that should produce a single string.

5.1.4. M – define mailer
Programs and interfaces to mailers are defined in this line. The format is:

Mname, { field=value }*
where name is the name of the mailer (used internally only) and the “field=name”
pairs define attributes of the mailer. Fields are:

H-14 Sendmail Installation and Operation

Path The pathname of the mailer
Flags Special flags for this mailer
Sender A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses
Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mailer
Maxsize	 The	maximum	message	length	to	this	mailer

Only the first character of the field name is checked.

5.1.5. H – define header
The format of the header lines that sendmail inserts into the message are defined

by the H line. The syntax of this line is:
H[?mflags?]hname: htemplate

Continuation lines in this spec are reflected directly into the outgoing message. The
htemplate is macro expanded before insertion into the message. If the mflags (sur-
rounded by question marks) are specified, at least one of the specified flags must be
stated in the mailer definition for this header to be automatically output. If one of
these headers is in the input it is reflected to the output regardless of these flags.

Some headers have special semantics that will be described below.

5.1.6. O – set option
There are a number of “random” options that can be set from a configuration file.

Options are represented by single characters. The syntax of this line is:
Oovalue

This sets option o to be value. Depending on the option, value may be a string, an
integer, a boolean (with legal values “t”, “T”, “f”, or “F”; the default is TRUE), or a
time interval.

5.1.7. T – define trusted users
Trusted users are those users who are permitted to override the sender address

using the -f flag. These typically are “root,” “uucp,” and “network,” but on some
users it may be convenient to extend this list to include other users, perhaps to support
a separate UUCP login for each host. The syntax of this line is:

Tuser1 user2...
There may be more than one of these lines.

5.1.8. P – precedence definitions
Values for the “Precedence:” field may be defined using the P control line. The

syntax of this field is:
Pname=num

When the name is found in a “Precedence:” field, the message class is set to num.
Higher	 numbers	 mean	 higher	 precedence.	 	 Numbers	 less	 than	 zero	 have	 the	 special	 pro-
perty	 that	 error	 messages	 will	 not	 be	 returned.	 	 The	 default	 precedence	 is	 zero.	 	 For	
example, our list of precedences is:

Pfirst-class=0
Pspecial-delivery=100
Pjunk=-100

Sendmail Installation and Operation H-15

5.2. The Semantics
This section describes the semantics of the configuration file.

5.2.1. Special macros, conditionals
Macros are interpolated using the construct $x, where x is the name of the macro

to be interpolated. In particular, lower case letters are reserved to have special seman-
tics, used to pass information in or out of sendmail, and some special characters are
reserved to provide conditionals, etc.

The following macros must be defined to transmit information into sendmail:
e The SMTP entry message
j The “official” domain name for this site
l The format of the UNIX from line
n The name of the daemon (for error messages)
o The set of “operators” in addresses
q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be the $j
macro. The $j macro should be in RFC821 format. The $l and $n macros can be con-
sidered constants except under terribly unusual circumstances. The $o macro consists
of a list of characters which will be considered tokens and which will separate tokens
when doing parsing. For example, if “r” were in the $o macro, then the input
“address” would be scanned as three tokens: “add,” “r,” and “ess.” Finally, the $q
macro specifies how an address should appear in a message when it is defaulted. For
example, on our system these definitions are:

De$j Sendmail $v ready at $b
DnMAILER-DAEMON
DlFrom $g $d
Do.:%@!^=/
Dqg?x ($x)$.
Dj$H.$D

An acceptable alternative for the $q macro is “$?x$x $.<$g>”. These correspond to
the following two formats:

eric@Berkeley (Eric Allman)
Eric Allman <eric@Berkeley>

Some macros are defined by sendmail for interpolation into argv’s for mailers or
for other contexts. These macros are:

H-16 Sendmail Installation and Operation

a The origination date in Arpanet format
b The current date in Arpanet format
c The hop count
d The date in UNIX (ctime) format
f The sender (from) address
g The sender address relative to the recipient
h The recipient host
i The queue id
p Sendmail’s pid
r Protocol used
s Sender’s host name
t A numeric representation of the current time
u The recipient user
v The version number of sendmail
w The hostname of this site
x The full name of the sender
y The id of the sender’s tty
z	 The	home	directory	of	the	recipient

There are three types of dates that can be used. The $a and $b macros are in
Arpanet format; $a is the time as extracted from the “Date:” line of the message (if
there was one), and $b is the current date and time (used for postmarks). If no
“Date:” line is found in the incoming message, $a is set to the current time also. The
$d macro is equivalent to the $a macro in UNIX (ctime) format.

The $f macro is the id of the sender as originally determined; when mailing to a
specific host the $g macro is set to the address of the sender relative to the recipient.
For example, if I send to “bollard@matisse” from the machine “ucbarpa” the $f macro
will be “eric” and the $g macro will be “eric@ucbarpa.”

The $x macro is set to the full name of the sender. This can be determined in
several ways. It can be passed as flag to sendmail. The second choice is the value of
the “Full-name:” line in the header if it exists, and the third choice is the comment
field of a “From:” line. If all of these fail, and if the message is being originated
locally, the full name is looked up in the /etc/passwd file.

When sending, the $h, $u, and $z macros get set to the host, user, and home
directory (if local) of the recipient. The first two are set from the $@ and $: part of the
rewriting rules, respectively.

The $p and $t macros are used to create unique strings (e.g., for the “Message-
Id:” field). The $i macro is set to the queue id on this host; if put into the timestamp
line it can be extremely useful for tracking messages. The $y macro is set to the id of
the terminal of the sender (if known); some systems like to put this in the Unix “From”
line. The $v macro is set to be the version number of sendmail; this is normally put in
timestamps and has been proven extremely useful for debugging. The $w macro is set
to the name of this host if it can be determined. The $c field is set to the “hop count,”
i.e., the number of times this message has been processed. This can be determined by
the -h flag on the command line or by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with sendmail
and the sending hostname; these are not supported in the current version.

Conditionals can be specified using the syntax:
$?x text1 $| text2 $.

This interpolates text1 if the macro $x is set, and text2 otherwise. The “else” ($|)
clause may be omitted.

Sendmail Installation and Operation H-17

5.2.2. Special classes
The class $=w is set to be the set of all names this host is known by. This can

be used to delete local hostnames.

5.2.3. The left hand side
The left hand side of rewriting rules contains a pattern. Normal words are simply

matched directly. Metasyntax is introduced using a dollar sign. The metasymbols are:
$*	 Match	zero	or	more	tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$~x Match any token not in class x

If any of these match, they are assigned to the symbol $n for replacement on the right
hand side, where n is the index in the LHS. For example, if the LHS:

$-:$+
is applied to the input:

UCBARPA:eric
the rule will match, and the values passed to the RHS will be:

$1 UCBARPA
$2 eric

5.2.4. The right hand side
When the right hand side of a rewriting rule matches, the input is deleted and replaced

by the right hand side. Tokens are copied directly from the RHS unless they are begin with a
dollar sign. Metasymbols are:

$n Substitute indefinite token n from LHS
$>n “Call” ruleset n
$#mailer Resolve to mailer
$@host Specify host
$:user Specify user

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=, or $~
match on the LHS. It may be used anywhere.

The $>n syntax causes the remainder of the line to be substituted as usual and
then passed as the argument to ruleset n. The final value of ruleset n then becomes the
substitution for this rule.

The $# syntax should only	 be	 used	 in	 ruleset	 zero.	 	 It	 causes	 evaluation	 of	 the	
ruleset to terminate immediately, and signals to sendmail that the address has com-
pletely resolved. The complete syntax is:

$#mailer$@host$:user
This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the
mailer is local the host part may be omitted. The mailer and host must be a single
word, but the user may be multi-part.

A RHS may also be preceded by a $@ or a $: to control evaluation. A $@ prefix
causes the ruleset to return with the remainder of the RHS as the value. A $: prefix
causes the rule to terminate immediately, but the ruleset to continue; this can be used
to avoid continued application of a rule. The prefix is stripped before continuing.

The $@ and $: prefixes may precede a $> spec; for example:

H-18 Sendmail Installation and Operation

R$+ $:$>7$1
matches anything, passes that to ruleset seven, and continues; the $: is necessary to
avoid an infinite loop.

5.2.5. Semantics of rewriting rule sets
There are five rewriting sets that have specific semantics. These are related as

depicted by figure 2.
Ruleset three should turn the address into “canonical form.” This form should

have the basic syntax:
local-part@host-domain-spec

If no “@” sign is specified, then the host-domain-spec may be appended from the sender
address (if the C flag is set in the mailer definition corresponding to the sending
mailer). Ruleset three is applied by sendmail before doing anything with any address.

Ruleset	 zero	 is	 applied	 after	 ruleset	 three	 to	 addresses	 that	 are	 going	 to	 actually	
specify recipients. It must resolve to a {mailer, host, user} triple. The mailer must be
defined in the mailer definitions from the configuration file. The host is defined into the
$h macro for use in the argv expansion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses respec-
tively. They are applied before any specification in the mailer definition. They must
never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to
translate internal to external form.

5.2.6. Mailer flags etc.
There are a number of flags that may be associated with each mailer, each

identified by a letter of the alphabet. Many of them are assigned semantics internally.
These are detailed in Addendum C Any other flags may be used freely to conditionally
assign headers to messages destined for particular mailers.

 Figure 2 - Rewriting set semantics
D - sender domain addition
S - mailer-specific sender rewriting
R - mailer-specific recipient rewriting

Sendmail Installation and Operation H-19

5.2.7. The “error” mailer
The mailer with the special name “error” can be used to generate a user error.

The (optional) host field is a numeric exit status to be returned, and the user field is a
message to be printed. For example, the entry:

$#error$:Host unknown in this domain
on the RHS of a rule will cause the specified error to be generated if the LHS matches.
This	mailer	is	only	functional	in	ruleset	zero.

5.3. Building a Configuration File From Scratch
Building a configuration table from scratch is an extremely difficult job. Fortunately,

it is almost never necessary to do so; nearly every situation that may come up may be
resolved by changing an existing table. In any case, it is critical that you understand what
it is that you are trying to do and come up with a philosophy for the configuration table.
This section is intended to explain what the real purpose of a configuration table is and to
give you some ideas for what your philosophy might be.

5.3.1. What you are trying to do
The configuration table has three major purposes. The first and simplest is to set

up the environment for sendmail. This involves setting the options, defining a few criti-
cal macros, etc. Since these are described in other places, we will not go into more
detail here.

The second purpose is to rewrite addresses in the message. This should typically
be done in two phases. The first phase maps addresses in any format into a canonical
form. This should be done in ruleset three. The second phase maps this canonical form
into the syntax appropriate for the receiving mailer. Sendmail does this in three sub-
phases. Rulesets one and two are applied to all sender and recipient addresses respec-
tively. After this, you may specify per-mailer rulesets for both sender and recipient
addresses;	 this	 allows	 mailer-specific	 customization.	 	 Finally,	 ruleset	 four	 is	 applied	 to	
do any default conversion to external form.

The third purpose is to map addresses into the actual set of instructions necessary
to	 get	 the	 message	 delivered.	 	 Ruleset	 zero	 must	 resolve	 to	 the	 internal	 form,	 which	 is	
in turn used as a pointer to a mailer descriptor. The mailer descriptor describes the
interface requirements of the mailer.

5.3.2. Philosophy
The	 particular	 philosophy	 you	 choose	 will	 depend	 heavily	 on	 the	 size	 and	 struc-

ture	of	your	organization.		I	will	present	a	few	possible	philosophies	here.
One general point applies to all of these philosophies: it is almost always a mis-

take to try to do full name resolution. For example, if you are trying to get names of
the form “user@host” to the Arpanet, it does not pay to route them to
“xyzvax!decvax!ucbvax!c70:user@host”	 since	 you	 then	 depend	 on	 several	 links	 not	
under your control. The best approach to this problem is to simply forward to
“xyzvax!user@host”	 and	 let	 xyzvax	 worry	 about	 it	 from	 there.	 	 In	 summary,	 just	 get	
the message closer to the destination, rather than determining the full path.

5.3.2.1. Large site, many hosts — minimum information
Berkeley is an example of a large site, i.e., more than two or three hosts. We

have decided that the only reasonable philosophy in our environment is to desig-
nate one host as the guru for our site. It must be able to resolve any piece of mail it
receives. The other sites should have the minimum amount of information they can
get away with. In addition, any information they do have should be hints rather
than solid information.

H-20 Sendmail Installation and Operation

For example, a typical site on our local ether network is “monet.” Monet has
a list of known ethernet hosts; if it receives mail for any of them, it can do direct
delivery. If it receives mail for any unknown host, it just passes it directly to
“ucbvax,” our master host. Ucbvax may determine that the host name is illegal
and reject the message, or may be able to do delivery. However, it is important to
note that when a new ethernet host is added, the only host that must have its tables
updated is ucbvax; the others may be updated as convenient, but this is not critical.

This picture is slightly muddied due to network connections that are not actu-
ally located on ucbvax. For example, our TCP connection is currently on
“ucbarpa.” However, monet does not know about this; the information is hidden
totally between ucbvax and ucbarpa. Mail going from monet to a TCP host is
transferred via the ethernet from monet to ucbvax, then via the ethernet from
ucbvax to ucbarpa, and then is submitted to the Arpanet. Although this involves
some extra hops, we feel this is an acceptable tradeoff.

An interesting point is that it would be possible to update monet to send TCP
mail directly to ucbarpa if the load got too high; if monet failed to note a host as a
TCP host it would go via ucbvax as before, and if monet incorrectly sent a message
to ucbarpa it would still be sent by ucbarpa to ucbvax as before. The only problem
that can occur is loops, as if ucbarpa thought that ucbvax had the TCP connection
and vice versa. For this reason, updates should always happen to the master host
first.

This philosophy results as much from the need to have a single source for the
configuration files (typically built using m4 (1) or some similar tool) as any logical
need. Maintaining more than three separate tables by hand is essentially an impos-
sible job.

5.3.2.2. Small site — complete information
A small site (two or three hosts) may find it more reasonable to have complete

information at each host. This would require that each host know exactly where
each network connection is, possibly including the names of each host on that net-
work. As long as the site remains small and the configuration remains relatively
static, the update problem will probably not be too great.

5.3.2.3. Single host
This is in some sense the trivial case. The only major issue is trying to insure

that you don’t have to know too much about your environment. For example, if
you have a UUCP connection you might find it useful to know about the names of
hosts connected directly to you, but this is really not necessary since this may be
determined from the syntax.

5.3.3. Relevant issues
The canonical form you use should almost certainly be as specified in the Arpanet

protocols RFC819 and RFC822. Copies of these RFC’s are included in
/usr/doc/sendmail.dir as rfc819.lpr and rfc822.lpr.

RFC822 describes the format of the mail message itself. Sendmail follows this
RFC closely, to the extent that many of the standards described in this document can
not be changed without changing the code. In particular, the following characters have
special interpretations:

< > () ” \
Any attempt to use these characters for other than their RFC822 purpose in addresses
is probably doomed to disaster.

Sendmail Installation and Operation H-21

RFC819 describes the specifics of the domain-based addressing. This is touched
on in RFC822 as well. Essentially each host is given a name which is a right-to-left dot
qualified pseudo-path from a distinguished root. The elements of the path need not be
physical hosts; the domain is logical rather than physical. For example, at Berkeley
one legal host is “a.cc.berkeley.arpa”; reading from right to left, “arpa” is a top level
domain (related to, but not limited to, the physical Arpanet), “berkeley” is both an
Arpanet host and a logical domain which is actually interpreted by a host called ucbvax
(which is actually just the “major” host for this domain), “cc” represents the Computer
Center, (in this case a strictly logical entity), and “a” is a host in the Computer Center;
this particular host happens to be connected via berknet, but other hosts might be con-
nected via one of two ethernets or some other network.

Beware when reading RFC819 that there are a number of errors in it.

5.3.4. How to proceed
Once you have decided on a philosophy, it is worth examining the available

configuration tables to decide if any of them are close enough to steal major parts of.
Even under the worst of conditions, there is a fair amount of boiler plate that can be
collected safely.

The next step is to build ruleset three. This will be the hardest part of the job.
Beware of doing too much to the address in this ruleset, since anything you do will
reflect through to the message. In particular, stripping of local domains is best
deferred, since this can leave you with addresses with no domain spec at all. Since
sendmail likes to append the sending domain to addresses with no domain, this can
change the semantics of addresses. Also try to avoid fully qualifying domains in this
ruleset. Although technically legal, this can lead to unpleasantly and unnecessarily long
addresses reflected into messages. The Berkeley configuration files define ruleset nine to
qualify	 domain	 names	 and	 strip	 local	 domains.	 	 This	 is	 called	 from	 ruleset	 zero	 to	 get	
all addresses into a cleaner form.

Once you have ruleset three finished, the other rulesets should be relatively
trivial. If you need hints, examine the supplied configuration tables.

5.3.5. Testing the rewriting rules – the -bt flag
When you build a configuration table, you can do a certain amount of testing

using the “test mode” of sendmail. For example, you could invoke sendmail as:
sendmail -bt -Ctest.cf

which would read the configuration file “test.cf” and enter test mode. In this mode,
you enter lines of the form:

rwset address
where rwset is the rewriting set you want to use and address is an address to apply the
set to. Test mode shows you the steps it takes as it proceeds, finally showing you the
address it ends up with. You may use a comma separated list of rwsets for sequential
application of rules to an input; ruleset three is always applied first. For example:

1,21,4 monet:bollard
first applies ruleset three to the input “monet:bollard.” Ruleset one is then applied to
the output of ruleset three, followed similarly by rulesets twenty-one and four.

If you need more detail, you can also use the “-d21” flag to turn on more debug-
ging. For example,

sendmail -bt -d21.99
turns on an incredible amount of information; a single word address is probably going to print
out several pages worth of information.

H-22 Sendmail Installation and Operation

5.3.6. Building mailer descriptions
To add an outgoing mailer to your mail system, you will have to define the

characteristics of the mailer.
Each mailer must have an internal name. This can be arbitrary, except that the

names “local” and “prog” must be defined.
The pathname of the mailer must be given in the P field. If this mailer should be

accessed via an IPC connection, use the string “[IPC]” instead.
The F field defines the mailer flags. You should specify an “f” or “r” flag to pass

the name of the sender as a -f or -r flag respectively. These flags are only passed if
they were passed to sendmail, so that mailers that give errors under some circumstances
can be placated. If the mailer is not picky you can just specify “-f $g” in the argv
template. If the mailer must be called as root the “S” flag should be given; this will
not reset the userid before calling the mailer3. If this mailer is local (i.e., will perform
final delivery rather than another network hop) the “l” flag should be given. Quote
characters (backslashes and ” marks) can be stripped from addresses if the “s” flag is
specified; if this is not given they are passed through. If the mailer is capable of send-
ing to more than one user on the same host in a single transaction the “m” flag should
be stated. If this flag is on, then the argv template containing $u will be repeated for
each unique user on a given host. The “e” flag will mark the mailer as being “expen-
sive,” which will cause sendmail to defer connection until a queue run4.

An unusual case is the “C” flag. This flag applies to the mailer that the message
is received from, rather than the mailer being sent to; if set, the domain spec of the
sender (i.e., the “@host.domain” part) is saved and is appended to any addresses in the
message that do not already contain a domain spec. For example, a message of the
form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will be modified to:
From: eric@ucbarpa
To: wnj@monet, mckusick@ucbarpa

if and only if the “C” flag is defined in the mailer corresponding to “eric@ucbarpa.”
Other flags are described in Addendum C.
The S and R fields in the mailer description are per-mailer rewriting sets to be

applied to sender and recipient addresses respectively. These are applied after the
sending domain is appended and the general rewriting sets (numbers one and two) are
applied, but before the output rewrite (ruleset four) is applied. A typical use is to
append the current domain to addresses that do not already have a domain. For exam-
ple, a header of the form:

From: eric
might be changed to be:

From: eric@ucbarpa
or

From: ucbvax!eric
depending on the domain it is being shipped into. These sets can also be used to do
special purpose output rewriting in cooperation with ruleset four.

3Sendmail must be running setuid to root for this to work.
4The “c” configuration option must be given for this to be effective.

Sendmail Installation and Operation H-23

The E field defines the string to use as an end-of-line indication. A string contain-
ing only newline is the default. The usual backslash escapes (\r, \n, \f, \b) may be
used.

Finally, an argv template is given as the E field. It may have embedded spaces.
If there is no argv with a $u macro in it, sendmail will speak SMTP to the mailer. If
the pathname for this mailer is “[IPC],” the argv should be

IPC $h [port]
where port is the optional port number to connect to.

For example, the specifications:
Mlocal, P=/bin/mail, F=rlsm S=10, R=20, A=mail -d $u
Mether, P=[IPC], F=meC, S=11, R=21, A=IPC $h, M=100000

specifies a mailer to do local delivery and a mailer for ethernet delivery. The first is
called “local,” is located in the file “/bin/mail,” takes a picky -r flag, does local
delivery, quotes should be stripped from addresses, and multiple users can be delivered
at once; ruleset ten should be applied to sender addresses in the message and ruleset
twenty should be applied to recipient addresses; the argv to send to a message will be
the word “mail,” the word “-d,” and words containing the name of the receiving user.
If a -r flag is inserted it will be between the words “mail” and “-d.” The second mailer
is called “ether,” it should be connected to via an IPC connection, it can handle multi-
ple users at once, connections should be deferred, and any domain from the sender
address should be appended to any receiver name without a domain; sender addresses
should be processed by ruleset eleven and recipient addresses by ruleset twenty-one.
There is a 100,000 byte limit on messages passed through this mailer.

Addendum A–1

Addendum A

COMMAND LINE FLAGS

Arguments must be presented with flags before addresses. The flags are:
-f addr The sender’s machine address is addr. This flag is ignored unless the real user is

listed as a “trusted user” or if addr contains an exclamation point (because of
certain restrictions in UUCP).

-r addr An obsolete form of -f.
-h cnt Sets the “hop count” to cnt. This represents the number of times this message

has been processed by sendmail (to the extent that it is supported by the underly-
ing networks). Cnt is incremented during processing, and if it reaches MAXHOP
(currently 30) sendmail throws away the message with an error.

-Fname Sets the full name of this user to name.
-n Don’t do aliasing or forwarding.
-t Read the header for “To:”, “Cc:”, and “Bcc:” lines, and send to everyone listed

in those lists. The “Bcc.” line will be deleted before sending. Any addresses in
the argument vector will be deleted from the send list.

-bx Set operation mode to x. Operation modes are:
m Deliver mail (default)
a Run in arpanet mode (see below)
s Speak SMTP on input side
d Run as a daemon
t Run in test mode
v Just verify addresses, don’t collect or deliver
i	 Initialize	the	alias	database
p Print the mail queue
z	 Freeze	the	configuration	file

 The special processing for the ARPANET includes reading the “From:” line from
the header to find the sender, printing ARPANET style messages (preceded by
three digit reply codes for compatibility with the FTP protocol [Neigus73, Pos-
tel74, Postel77]), and ending lines of error messages with <CRLF>.

-qtime Try to process the queued up mail. If the time is given, a sendmail will run
through the queue at the specified interval to deliver queued mail; otherwise, it
only runs once.

-Cfile Use a different configuration file.
-dlevel Set debugging level.
-oxvalue Set option x to the specified value. These options are described in Addendum B.

There are a number of options that may be specified as primitive flags (provided for compa-
tibility with delivermail). These are the e, i, m, and v options. Also, the f option may be
specified as the -s flag.

Addendum A–2

Addendum B–1

Addendum B

CONFIGURATION OPTIONS

The following options may be set using the -o flag on the command line or the O line in the
configuration file:
Afile Use the named file as the alias file. If no file is specified, use aliases in the

current directory.
a If set, wait for an “@:@” entry to exist in the alias database before starting up.

If it does not appear in five minutes, rebuild the database.
c If an outgoing mailer is marked as being expensive, don’t connect immediately.

This requires that queueing be compiled in, since it will depend on a queue run
process to actually send the mail.

dx Deliver in mode x. Legal modes are:
i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

D If set, rebuild the alias database if necessary and possible. If this option is not
set, sendmail will never rebuild the alias database unless explicitly requested
using -bi.

ex Dispose of errors using mode x. The values for x are:
p Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
e	 Mail	back	errors	and	give	zero	exit	stat	always

Fn The temporary file mode, in octal. 644 and 600 are good choices.
f Save Unix-style “From” lines at the front of headers. Normally they are

assumed redundant and discarded.
gn Set the default group id for mailers to run in to n.
Hfile Specify the help file for SMTP.
i Ignore dots in incoming messages.
Ln Set the default log level to n.
Mxvalue Set the macro x to value. This is intended only for use from the command line.
m Send to me too, even if I am in an alias expansion.
o Assume that the headers may be in old format, i.e., spaces delimit names. This

actually turns on an adaptive algorithm: if any recipient address contains a
comma, parenthesis, or angle bracket, it will be assumed that commas already
exist. If this flag is not on, only commas delimit names. Headers are always out-
put with commas between the names.

Qdir Use the named dir as the queue directory.

Addendum B–2

rtime Timeout reads after time interval.
Sfile Log statistics in the named file.
s Be super-safe when running things, i.e., always instantiate the queue file, even if

you are going to attempt immediate delivery. Sendmail always instantiates the
queue file before returning control the client under any circumstances.

Ttime Set the queue timeout to time. After this interval, messages that have not been
successfully sent will be returned to the sender.

tS,D	 Set	the	 local	timezone	name	to	S for standard time and D for daylight time; this
is only used under version six.

un Set the default userid for mailers to n. Mailers without the S flag in the mailer
definition will run as this user.

v Run in verbose mode.

Addendum C–1

Addendum C

MAILER FLAGS

The following flags may be set in the mailer description.
f The mailer wants a -f from flag, but only if this is a network forward operation (i.e., the

mailer will give an error if the executing user does not have special permissions).
r Same as f, but sends a -r flag.
S Don’t reset the userid before calling the mailer. This would be used in a secure environment

where sendmail ran as root. This could be used to avoid forged addresses. This flag is
suppressed if given from an “unsafe” environment (e.g, a user’s mail.cf file).

n Do not insert a UNIX-style “From” line on the front of the message.
l This mailer is local (i.e., final delivery will be performed).
s Strip quote characters off of the address before calling the mailer.
m This mailer can send to multiple users on the same host in one transaction. When a $u

macro occurs in the argv part of the mailer definition, that field will be repeated as necessary
for all qualifying users.

F This mailer wants a “From:” header line.
D This mailer wants a “Date:” header line.
M This mailer wants a “Message-Id:” header line.
x This mailer wants a “Full-Name:” header line.
P This mailer wants a “Return-Path:” line.
u Upper case should be preserved in user names for this mailer.
h Upper case should be preserved in host names for this mailer.
A This is an Arpanet-compatible mailer, and all appropriate modes should be set.
U This mailer wants Unix-style “From” lines with the ugly UUCP-style “remote from

<host>” on the end.
e This mailer is expensive to connect to, so try to avoid connecting normally; any necessary

connection will occur during a queue run.
X This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any line

beginning with a dot will have an extra dot prepended (to be stripped at the other end).
This insures that lines in the message containing a dot will not terminate the message prema-
turely.

L Limit the line lengths as specified in RFC821.
P Use the return-path in the SMTP “MAIL FROM:” command rather than just the return ad-

dress; although this is required in RFC821, many hosts do not process return paths prop-
erly.

I This mailer will be speaking SMTP to another sendmail – as such it can use special protocol
features. This option is not required (i.e., if this option is omitted the transmission will still
operate successfully, although perhaps not as efficiently as possible).

C If mail is received from a mailer with this flag set, any addresses in the header that do not
have an at sign (“@”) after being rewritten by ruleset three will have the “@domain” clause

Addendum C–2

 from the sender tacked on. This allows mail with headers of the form:
 From: usera@hosta
 To: userb@hostb, userc

 to be rewritten as:
 From: usera@hosta
 To: userb@hostb, userc@hosta

 automatically.

Addendum D–1

Addendum D

OTHER CONFIGURATION

There are some configuration changes that can be made by recompiling sendmail. These are
located in three places:
md/config.m4 These contain operating-system dependent descriptions. They are interpolated

into the Makefiles in the src and aux directories. This includes information about
what version of UNIX you are running, what libraries you have to include, etc.

src/conf.h Configuration parameters that may be tweaked by the installer are included in
conf.h.

src/conf.c Some special routines and a few variables may be defined in conf.c. For the most
part these are selected from the settings in conf.h.

Parameters in md/config.m4
The following compilation flags may be defined in the m4CONFIG macro in md/config.m4

to define the environment in which you are operating.
V6 If set, this will compile a version 6 system, with 8-bit user id’s, single character

tty id’s, etc.
VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.1BSD, including the

vfork (2) system call, special types defined in <sys/types.h> (e.g, u_char), etc.
If none of these flags are set, a version 7 system is assumed.

You will also have to specify what libraries to link with sendmail in the m4LIBS macro.
Most notably, you will have to include if you are running a 4.1BSD system.

Parameters in src/conf.h
Parameters and compilation options are defined in conf.h. Most of these need not normally

be	 tweaked;	 common	 parameters	 are	 all	 in	 sendmail.cf.	 	 However,	 the	 sizes	 of	 certain	 primitive	
vectors, etc., are included in this file. The numbers following the parameters are their default
value.
MAXLINE [256] The maximum line length of any input line. If message lines exceed this

length they will still be processed correctly; however, header lines,
configuration file lines, alias lines, etc., must fit within this limit.

MAXNAME [128] The maximum length of any name, such as a host or a user name.
MAXFIELD [2500] The maximum total length of any header field, including continuation lines.
MAXPV [40] The maximum number of parameters to any mailer. This limits the number

of recipients that may be passed in one transaction.
MAXHOP [30] When a message has been processed more than this number of times, sendmail

rejects the message on the assumption that there has been an aliasing loop.
This can be determined from the -h flag or by counting the number of trace
fields (i.e, “Received:” lines) in the message header.

MAXATOM [100] The maximum number of atoms (tokens) in a single address. For example,
the address “eric@Berkeley” is three atoms.

Addendum D–2

MAXMAILERS [25]
The maximum number of mailers that may be defined in the configuration
file.

MAXRWSETS [30] The maximum number of rewriting sets that may be defined.
MAXPRIORITIES [25]

The maximum number of values for the “Precedence:” field that may be
defined (using the P line in sendmail.cf).

MAXTRUST [30] The maximum number of trusted users that may be defined (using the T line
in sendmail.cf).

A number of other compilation options exist. These specify whether or not specific code should be
compiled in.
DBM If set, the “DBM” package in UNIX is used (see DBM(3X) in [UNIX80]). If not

set, a much less efficient algorithm for processing aliases is used.
DEBUG If set, debugging information is compiled in. To actually get the debugging out-

put, the -d flag must be used.
LOG If set, the syslog routine in use at some sites is used. This makes an informa-

tional log record for each message processed, and makes a higher priority log
record for internal system errors.

QUEUE This flag should be set to compile in the queueing code. If this is not set, mailers
must accept the mail immediately or it will be returned to the sender.

SMTP If set, the code to handle user and server SMTP will be compiled in. This is only
necessary if your machine has some mailer that speaks SMTP.

DAEMON If set, code to run a daemon is compiled in. This code is for 4.2BSD if the
NVMUNIX flag is specified; otherwise, 4.1a BSD code is used. Beware however
that there are bugs in the 4.1a code that make it impossible for sendmail to
work correctly under heavy load.

UGLYUUCP If you have a UUCP host adjacent to you which is not running a reasonable ver-
sion of rmail, you will have to set this flag to include the “remote from sysname”
info on the from line. Otherwise, UUCP gets confused about where the mail
came from.

NOTUNIX If you are using a non-UNIX mail format, you can set this flag to turn off special
processing of UNIX-style “From ” lines.

Configuration in src/conf.c
Not all header semantics are defined in the configuration file. Header lines that should only

be included by certain mailers (as well as other more obscure semantics) must be specified in the
HdrInfo table in conf.c. This table contains the header name (which should be in all lower case)
and a set of header control flags (described below), The flags are:
H_ACHECK Normally when the check is made to see if a header line is compatible with a

mailer, sendmail will not delete an existing line. If this flag is set, sendmail will
delete even existing header lines. That is, if this bit is set and the mailer does
not have flag bits set that intersect with the required mailer flags in the header
definition in sendmail.cf, the header line is always deleted.

H_EOH If this header field is set, treat it like a blank line, i.e., it will signal the end of
the header and the beginning of the message text.

H_FORCE Add this header entry even if one existed in the message before. If a header
entry does not have this bit set, sendmail will not add another header line if a
header line of this name already existed. This would normally be used to stamp
the message by everyone who handled it.

Addendum D–3

H_TRACE If set, this is a timestamp (trace) field. If the number of trace fields in a message
exceeds a preset amount the message is returned on the assumption that it has an
aliasing loop.

H_RCPT If set, this field contains recipient addresses. This is used by the -t flag to deter-
mine who to send to when it is collecting recipients from the message.

H_FROM This flag indicates that this field specifies a sender. The order of these fields in
the HdrInfo table specifies sendmail’s preference for which field to return error
messages to.

Let’s look at a sample HdrInfo specification:
struct hdrinfo HdrInfo[] =
{
 /* originator fields, most to least significant */
 ”resent-sender”, H_FROM,
 ”resent-from”, H_FROM,
 ”sender”, H_FROM,
 ”from”, H_FROM,
 ”full-name”, H_ACHECK,
 /* destination fields */
 ”to”, H_RCPT,
 ”resent-to”, H_RCPT,
 ”cc”, H_RCPT,
 /* message identification and control */
 ”message”, H_EOH,
 ”text”, H_EOH,
 /* trace fields */
 ”received”, H_TRACE|H_FORCE,

 NULL, 0,
};

This structure indicates that the “To:”, “Resent-To:”, and “Cc:” fields all specify recipient
addresses. Any “Full-Name:” field will be deleted unless the required mailer flag (indicated in the
configuration file) is specified. The “Message:” and “Text:” fields will terminate the header; these
are specified in new protocols [NBS80] or used by random dissenters around the network world.
The “Received:” field will always be added, and can be used to trace messages.

There are a number of important points here. First, header fields are not added automati-
cally just because they are in the HdrInfo structure; they must be specified in the configuration
file in order to be added to the message. Any header fields mentioned in the configuration file but
not mentioned in the HdrInfo structure have default processing performed; that is, they are added
unless they were in the message already. Second, the HdrInfo structure only specifies cliched pro-
cessing; certain headers are processed specially by ad hoc code regardless of the status specified in
HdrInfo. For example, the “Sender:” and “From:” fields are always scanned on ARPANET mail
to determine the sender; this is used to perform the “return to sender” function. The “From:”
and “Full-Name:” fields are used to determine the full name of the sender if possible; this is
stored in the macro $x and used in a number of ways.

The file conf.c also contains the specification of ARPANET reply codes. There are four
classifications these fall into:

char Arpa_Info[] = ”050”; /* arbitrary info */
char Arpa_TSyserr[] = ”455”; /* some (transient) system error */
char Arpa_PSyserr[] = ”554”; /* some (transient) system error */
char Arpa_Usrerr[] = ”554”; /* some (fatal) user error */

The class Arpa_Info is for any information that is not required by the protocol, such as forward-
ing information. Arpa_TSyserr and Arpa_PSyserr is printed by the syserr routine. TSyserr is

Addendum D–4

printed out for transient errors, whereas PSyserr is printed for permanent errors; the distinction is
m3.de based on the value of errno. Finally, Arpa_Usrerr is the result of a user error and is gen-
erated by the usrerr routine; these are generated when the user has specified something wrong,
and hence the error is permanent, i.e., it will not work simply by resubmitting the request.

If it is necessary to restrict mail through a relay, the checkcompat routine can be modified.
This routine is called for every recipient address. It can return TRUE to indicate that the
address is acceptable and mail processing will continue, or it can return FALSE to reject the
recipient. If it returns false, it is up to checkcompat to print an error message (using usrerr) say-
ing why the message is rejected. For example, checkcompat could read:

bool
checkcompat(to)
 register ADDRESS *to;
{
	 if	(MsgSize	>	50000	&&	to->q_mailer	!=	LocalMailer)
 {
 usrerr(”Message too large for non-local delivery”);
 NoReturn = TRUE;
 return (FALSE);
 }
 return (TRUE);
}

This would reject messages greater than 50000 bytes unless they were local. The NoReturn flag
can be sent to suppress the return of the actual body of the message in the error return. The
actual use of this routine is highly dependent on the implementation, and use should be limited.

Addendum E–1

Addendum E

SUMMARY OF SUPPORT FILES

This is a summary of the support files that sendmail creates or generates.
/usr/lib/sendmail

The binary of sendmail.
/usr/bin/newaliases

A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running this
program is completely equivalent to giving sendmail the -bi flag.

/usr/bin/mailq Prints a listing of the mail queue. This program is equivalent to using the -bp
flag to sendmail.

/usr/lib/sendmail.cf
The configuration file, in textual form.

/usr/lib/sendmail.fc
The configuration file represented as a memory image.

/usr/lib/sendmail.hf
The SMTP help file.

/usr/lib/sendmail.st
A statistics file; need not be present.

/usr/lib/aliases The textual version of the alias file.
/usr/lib/aliases.{pag,dir}

The alias file in dbm (3) format.
/etc/syslog The program to do logging.
/etc/syslog.conf The configuration file for syslog.
/etc/syslog.pid Contains the process id of the currently running syslog.
/usr/spool/mqueue

The directory in which the mail queue and temporary files reside.
/usr/spool/mqueue/qf*

Control (queue) files for messages.
/usr/spool/mqueue/df*

Data files.
/usr/spool/mqueue/lf*

Lock files
/usr/spool/mqueue/tf*

Temporary versions of the qf files, used during queue file rebuild.
/usr/spool/mqueue/nf*

A file used when creating a unique id.
/usr/spool/mqueue/xf*

A transcript of the current session.

Appendix I: The Berkeley IPC Primer

1. INTRODUCTION
One of the most important parts of domain/ix bsd4.2 is its interprocess

communication (IPC) facilities. These facilities are the result of several years of
research at the University of California at Berkeley. They incorporate many of
the ideas from current research, while trying to maintain a philosophical compat-
bility with the unix system. This document is based on A 4.2BSD Interprocess
Communication Primer, draft of July 9, 1984, by S. J. Leffler, R. S. Fabry, and
W. N. Joy of the Computer Systems Research Group, Department of Electri-
cal Engineering and Computer Science, University of California, Berkeley.

Prior to the advent of these IPC facilities, the only standard mechanism that
allowed two processes to communicate was the pipe. Unfortunately, pipes are
very restrictive in that the two communicating processes must be related through
a common ancestor. Further, the semantics of pipes makes them almost impossi-
ble to maintain in a distributed environment.

Earlier attempts at extending the IPC facilities of unix have met with mixed
reaction. The majority of the problems have been related to the fact that these
facilities have been tied to the unix file system; either through naming, or imple-
mentation. Consequently, the IPC facilities provided in 4.2BSD have been
designed as a totally independent subsystem. The 4.2BSD IPC allows processes
to	 rendezvous	 in	many	 ways.	 	 Processes	 may	 rendezvous	 through	 a	unix file
system-like name space (a space where all names are pathnames) as well as
through a network name space. In fact, new name spaces may be added at a
future time with only minor changes visible to users. Further, the communica-
tion facilities have been extended to include more than the simple byte stream
provided by a pipe-like entity. These extensions have resulted in a completely
new	part	of	the	system	which	users	will	need	time	to	familiarize	themselves	with.		
It is likely that as more use is made of these facilities, they will be refined; only
time will tell.

The	remainder	of	this	appendix	is	organized	in	four	sections.		Section	2	in-
troduces the new system calls and the basic model of communication. Section 3
describes some of the supporting library routines users may find useful in con-
structing distributed applications. Section 4 is concerned with the client/server
model used in developing applications and includes examples of the two major
types of servers. Section 5 delves into advanced topics which sophisticated users
are likely to encounter when using the IPC facilities.

2. BASICS
The basic building block for communication is the socket. A socket is an

endpoint of communication to which a name may be bound. Each socket in use
has a type and one or more associated processes. Sockets exist within communi-
cation domains. A communication domain is an abstraction introduced to bundle

I-2 Berkeley IPC

I-2

common properties of processes communicating through sockets. One such pro-
perty is the scheme used to name sockets. For example, in the unix communica-
tion domain, sockets are named with unix pathnames; e.g., a socket may be
named “/dev/foo”. Sockets normally exchange data only with sockets in the
same domain (it may be possible to cross domain boundaries, but only if some
translation process is performed). The 4.2BSD IPC supports two separate com-
munication domains: the unix domain, and the Internet domain is used by
processes which communicate using the DARPA standard communication pro-
tocols. The underlying communication facilities provided by these domains
have a significant influence on the internal system implementation as well as the
interface to socket facilities available to a user. An example of the latter is that
a socket “operating” in the unix domain sees a subset of the possible error condi-
tions which are possible when operating in the Internet domain.

2.1. Socket Types
Sockets are typed according to the communication properties visible to a

user. Processes are presumed to communicate only between sockets of the same
type, although there is nothing that prevents communication between sockets of
different types should the underlying communication protocols support this.

Three types of sockets currently are available to a user. A stream socket
provides for the bidirectional, reliable, sequenced, and unduplicated flow of data
without record boundaries. Aside from the bidirectionality of data flow, a pair of
connected stream sockets provides an interface nearly identical to that of pipes †.

A datagram socket supports bidirectional flow of data which is not promised
to be sequenced, reliable, or unduplicated. That is, a process receiving messages
on a datagram socket may find messages duplicated, and, possibly, in an order
different from the order in which it was sent. An important characteristic of a
datagram socket is that record boundaries in data are preserved. Datagram sock-
ets closely model the facilities found in many contemporary packet switched net-
works such as the Ethernet.

A raw socket provides users access to the underlying communication proto-
cols which support socket abstractions. These sockets are normally datagram-
oriented, though their exact characteristics are dependent on the interface pro-
vided by the protocol. Raw sockets are not intended for the general user; they
have been provided mainly for those interested in developing new communication
protocols, or for gaining access to some of the more esoteric facilities of an exist-
ing protocol. The use of raw sockets is considered in Section 5.

Two potential socket types which have interesting properties are the
sequenced packet socket and the reliably delivered message socket. A sequenced
packet socket is identical to a stream socket with the exception that record boun-
daries are preserved. This interface is very similar to that provided by the Xerox
NS Sequenced Packet protocol. The reliably delivered message socket has simi-
lar properties to a datagram socket, but with reliable delivery. While these two
socket types have been loosely defined, they are currently unimplemented in
4.2BSD. As such, in this document we will concern ourselves only with the three
socket types for which support exists.

† At SR9.0, DOMAIN/IX does not implement unix domain sockets.

Berkeley IPC I-3

I-3

2.2. Socket Creation
To create a socket, the socket system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of
the specified type. A particular protocol may also be requested. If the protocol is
left unspecified (a value of 0), the system will select an appropriate protocol from
those protocols which comprise the communication domain and which may be
used to support the requested socket type. The user is returned a descriptor (a
small integer number) which may be used in later system calls which operate on
sockets. The domain is specified as one of the manifest constants defined in the
file <sys/socket.h>. For the unix domain, the constant is AF_UNIX †; for the
Internet domain, AF_INET. The socket types are also defined in this file and
one of SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW must be specified.
To create a stream socket in the Internet domain the following call might be
used:

s = socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol
providing the underlying communication support. To create a datagram socket
for on-machine use, a sample call might be:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

To obtain a particular protocol, one selects the protocol number, as defined
within the communication domain. For the Internet domain, the available proto-
cols are defined in <netinet/in.h> or, better yet, one may use one of the library
routines discussed in Section 3, such as getprotobyname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
 ...
pp = getprotobyname(”tcp”);
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

There are several reasons a socket call may fail. Aside from the rare
occurrence of lack of memory (ENOBUFS), a socket request may fail due to a
request for an unknown protocol (EPROTONOSUPPORT), or a request for a
type of socket for which there is no supporting protocol (EPROTOTYPE).

2.3. Binding Names
A socket is created without a name. Until a name is bound to a socket,

processes have no way to reference it and, consequently, no messages may be
received on it. The bind call is used to assign a name to a socket:

† The manifest constants are named AF_whatever as they indicate the “address format”
to use in interpreting names.

I-4 Berkeley IPC

I-4

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the sup-
porting protocol(s). Its interpretation may vary from communication domain to
communication domain (this is one of the properties which comprise the
“domain”). In the unix domain, names are pathnames; in the Internet domain,
names contain an Internet address and port number. If one wanted to bind the
name “/dev/foo” to a unix domain socket, the following would be used:

bind(s,	”/dev/foo”,	sizeof	(”/dev/foo”)	-	1);

(Note how the null byte in the name is not counted as part of the name.) In
binding an Internet address things become more complicated. The actual call is
simple,

#include <sys/types.h>
#include <netinet/in.h>
 ...
struct sockaddr_in sin;
 ...
bind(s,	&sin,	sizeof	(sin));

but the selection of what to place in the address sin requires some discussion.
We will come back to the problem of formulating Internet addresses in section 3
when the library routines used in name resolution are discussed.

2.4. Connection Establishment
With	a	bound	socket,	it	is	possible	to	rendezvous	with	an	unrelated	process.		

This operation is usually asymmetric with one process a “client” and the other a
“server”. The client requests services from the server by initiating a “connec-
tion” to the server’s socket. The server, when willing to offer its advertised ser-
vices, passively “listens” on its socket. On the client side, the connect call is
used to initiate a connection. Using the unix domain, this might appear as,

connect(s,	”server-name”,	sizeof	(”server-name”));

while in the Internet domain,

struct sockaddr_in server;
connect(s,	&server,	sizeof	(server));

If the client process’s socket is unbound at the time of the connect call, the sys-
tem will automatically select and bind a name to the socket (see Section 5.4.).
An error is returned when the connection was unsuccessful (any name automati-
cally bound by the system, however, remains). Otherwise, the socket is associ-
ated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most
common are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system de-
cided there was no point in retrying the connection attempt any more. This
usually occurs because the destination host is down, or because problems in
the network resulted in transmissions being lost.

Berkeley IPC I-5

I-5

ECONNREFUSED
The host refused service for some reason. When connecting to a host run-
ning 4.2BSD, this is usually due to a server process not being present at the
requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned “based on status information delivered
to the client host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is
unknown (no route to the network or host is present), or because of status
information returned by intermediate gateways or switching nodes. Many
times, the status returned is not sufficient to distinguish a network being
down from a host being down. In these cases the system is conservative and
indicates the entire network is unreachable.
For the server to receive a client’s connection it must perform two steps

after binding its socket. The first is to indicate a willingness to listen for incom-
ing connection requests:

listen(s, 5);

The second parameter to the listen call specifies the maximum number of out-
standing connections which may be queued awaiting acceptance by the server
process. Should a connection be requested while the queue is full, the connection
will not be refused, but rather the individual messages which comprise the
request will be ignored. This gives a harried server time to make room in its
pending connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error, the client would be
unable to tell if the server was up or not. It is still possible to get the
ETIMEDOUT error back, though this is unlikely. The backlog figure supplied
with the listen call is limited by the system to a maximum of 5 pending connec-
tions on any one queue. This avoids the problem of processes hogging system
resources by setting an infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:

fromlen	=	sizeof	(from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket).
If the server wishes to find out who its client is, it may supply a buffer for the
client socket’s name. The value-result parameter fromlen	 is	 initialized	by	 the	
server to indicate how much space is associated with from, then modified on
return	to	reflect	the	true	size	of	the	name.		If	the	client’s	name	is	not	of	interest,	
the	second	parameter	may	be	zero.

The accept function normally blocks. That is, the call to accept will not
return until a connection is available or the system call is interrupted by a signal
to the process. Further, there is no way for a process to indicate it will accept
connections from only a specific individual, or individuals. It is up to the user
process to consider who the connection is from and close down the connection if
it does not wish to speak to the process. If the server process wants to accept
connections on more than one socket, or not block on the accept call, there are
alternatives; they will be considered in Section 5.

I-6 Berkeley IPC

I-6

2.5. Data Transfer
With a connection established, data may begin to flow. There are a number

of calls to send and receive data. With the peer entity at each end of a connec-
tion anchored, a user can send or receive a message without specifying the peer.
As one might expect, in this case, then the normal read and write system calls are
useable,

write(s,	buf,	sizeof	(buf));	
read(s,	buf,	sizeof	(buf));

In addition to read and write, the new calls send and recv may be used:

send(s,	buf,	sizeof	(buf),	flags);	
recv(s,	buf,	sizeof	(buf),	flags);

While send and recv are virtually identical to read and write, the extra flags
argument	is	important.		The	flags	may	be	specified	as	a	non-zero	value	if	one	or	
more of the following is required:

SOF_OOB send/receive out of band data
SOF_PREVIEW look at data without reading
SOF_DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will
not immediately consider. The option to have data sent without routing applied
to the outgoing packets is currently used only by the routing table management
process, and is unlikely to be of interest to the casual user. The ability to pre-
view data is, however, of interest. When SOF_PREVIEW is specified with a recv
call, any data present is returned to the user, but treated as still “unread”. That
is, the next read or recv call applied to the socket will return the data previously
previewed.

2.6. Discarding Sockets
Once a socket is no longer of interest, it may be discarded by applying a

close to the descriptor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream
socket) when a close takes place, the system will continue to attempt to transfer
the data. However, after a fairly long period of time, if the data is still un-
delivered, it will be discarded. Should a user have no use for any pending
data, it may perform a shutdown on the socket prior to closing it. This call is of
the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more
data will be sent, or 2 if no data is to be sent or received. Applying shutdown to
a socket causes any data queued to be immediately discarded.

Berkeley IPC I-7

I-7

2.7 Connectionless Sockets
To this point we have been concerned mostly with sockets which follow a

connection oriented model. However, there is also support for connectionless
interactions typical of the datagram facilities found in contemporary packet
switched networks. A datagram socket provides a symmetric interface to data
exchange. While processes are still likely to be client and server, there is no
requirement for connection establishment. Instead, each message includes the
destination address.

Datagram sockets are created as before, and each should have a name bound
to it in order that the recipient of a message may identify the sender. To send
data, the sendto primitive is used,

sendto(s, buf, buflen, flags, &to, tolen);

The s, buf, buflen, and flags parameters are used as before. The to and tolen
values are used to indicate the intended recipient of the message. When using an
unreliable datagram interface, it is unlikely that any errors will be reported to
the	sender.		Where	information	is	present	locally	to	recognize	a	message	which	
may never be delivered (for instance, when a network is unreachable), the call
will return -1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom prim-
itive is provided:

recvfrom(s, buf, buflen, flags, &from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially
containing	the	size	of	the	from buffer.

In addition to the two calls mentioned above, datagram sockets may also use
the connect call to associate a socket with a specific address. In this case, any
data sent on the socket will automatically be addressed to the connected peer,
and only data received from that peer will be delivered to the user. Only one
connected address is permitted for each socket (i.e. no multi-casting). Connect
requests on datagram sockets return immediately, as this simply results in the
system recording the peer’s address (as compared to a stream socket where a con-
nect request initiates establishment of an end to end connection). Other of the
less important details of datagram sockets are described in section 5.

2.8. Input/Output Multiplexing
One last facility often used in developing applications is the ability to multi-

plex I/O requests among multiple sockets and/or files. This is done using the
select call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for
which the caller wishes to be able to read data on, one for those descriptors to
which data is to be written, and one for which exceptional conditions are pend-
ing. Bit masks are created by or-ing bits of the form “1 << fd”. That is, a
descriptor fd is selected if a 1 is present in the fd’th bit of the mask. The nfds
parameter specifies the range of file descriptors (i.e. one plus the value of the
largest descriptor) specified in a mask.

I-8 Berkeley IPC

I-8

A timeout value may be specified if the selection is not to last more than a
predetermined period of time. If timeout is set to 0, the selection takes the form
of a poll, returning immediately. If the last parameter is a null pointer, the selec-
tion will block indefinitely †. Select normally returns the number of file descrip-
tors selected. If the select call returns due to the timeout expiring, then a value
of -1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous
notification of output completion, input availability, and exceptional conditions is
possible through use of the SIGIO and SIGURG signals described in Section 5.

3. NETWORK LIBRARY ROUTINES
The discussion in Section 2 indicated the possible need to locate and con-

struct network addresses when using the interprocess communication facilities in
a distributed environment. To aid in this task, a number of routines have been
added to the standard C run-time library. In this section, we will consider the
new routines provided to manipulate network addresses. While the 4.2BSD net-
working facilities support only the DARPA standard Internet protocols, these
routines have been designed with flexibility in mind. As more communication
protocols become available, we hope the same user interface will be maintained in
accessing network-related address databases. The only difference should be the
values returned to the user. Since these values are normally supplied the system,
users should not need to be directly aware of the communication protocol and/or
naming conventions in use.

Locating a service on a remote host requires many levels of mapping before
client and server may communicate. A service is assigned a name which is in-
tended for human consumption; e.g., “the login server on host monet”. This
name, and the name of the peer host, must then be translated into network
addresses which are not necessarily suitable for human consumption. Finally, the
address must then used in locating a physical location and route to the service.
The specifics of these three mappings is likely to vary between network architec-
tures. For instance, it is undesirable for a network to require that hosts be
named in such a way that their physical location is known by the client host.
Instead, underlying services in the network may discover the actual location of
the host at the time a client host wishes to communicate. This ability to have
hosts named in a location-independent manner may induce overhead in connec-
tion establishment, as a discovery process must take place, but allows a host to
be physically mobile without requiring it to notify its clientele of its current loca-
tion.

Standard routines are provided for: mapping host names to network
addresses, network names to network numbers, protocol names to protocol
numbers, and service names to port numbers and the appropriate protocol to use
in communicating with the server process. The file <netdb.h> must be included
when using any of these routines.

† To be more specific, a return takes place only when a descriptor is selectable, or when a
signal is received by the caller, interrupting the system call.

Berkeley IPC I-9

I-9

3.1. Host Names
A host name to address mapping is represented by the hostent structure:

struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char *h_addr; /* address */
};

The official name of the host and its public aliases are returned, along with a
variable length address and address type. The routine gethostbyname(3N) takes a
host name and returns a hostent structure, while the routine gethostbyaddr(3N)
maps host addresses into a hostent structure. It is possible for a host to have
many addresses, all having the same name. Gethostybyname returns the first
matching entry in the data base file /etc/hosts; if this is unsuitable, the lower
level routine gethostent(3N) may be used. For example, to obtain a hostent struc-
ture for a host on a particular network, the following routine might be used (for
simplicity, only Internet addresses are considered):

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
 ...
struct hostent *
gethostbynameandnet(name, net)
 char *name;
 int net;
{
 register struct hostent *hp;
 register char **cp;

 sethostent(0);
 while ((hp = gethostent()) != NULL) {
 if (hp->h_addrtype != AF_INET)
 continue;
 if (strcmp(name, hp->h_name)) {
 for (cp = hp->h_aliases; cp && *cp != NULL; cp++)
 if (strcmp(name, *cp) == 0)
 goto found;
 continue;
 }
 found:
 if (in_netof(*(struct in_addr *)hp->h_addr)) == net)
 break;
 }
 endhostent(0);
 return (hp);
}

I-10 Berkeley IPC

I-10

(in_netof(3N) is a standard routine which returns the network portion of an
Internet address.)

3.2. Network Names
As for host names, routines for mapping network names to numbers, and

back, are provided. These routines return a netent structure:

/*
 * Assumption here is that a network number
	*		fits	in	32	bits	—	probably	a	poor	one.
 */
struct netent {
 char *n_name; /* official name of net */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net address type */
 int n_net; /* network # */
};

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the
network counterparts to the host routines described above.

3.3. Protocol Names
For protocols, the protoent structure defines the protocol-name mapping

used with the routines getprotobyname(3N), getprotobynumber(3N), and
getprotoent(3N):

struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

3.4. Service Names
Information regarding services is a bit more complicated. A service is

expected to reside at a specific “port” and employ a particular communication
protocol. This view is consistent with the Internet domain, but inconsistent with
other network architectures. Further, a service may reside on multiple ports or
support multiple protocols. If either of these occurs, the higher level library rou-
tines will have to be bypassed in favor of homegrown routines similar in spirit to
the “gethostbynameandnet” routine described above. A service mapping is
described by the servent structure,

struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

The routine getservbyname(3N) maps service names to a servent structure by
specifying a service name and, optionally, a qualifying protocol. Thus the call

Berkeley IPC I-11

I-11

sp = getservbyname(”telnet”, (char *)0);

returns the service specification for a telnet server using any protocol, while the
call

sp = getservbyname(”telnet”, ”tcp”,);

returns only that telnet server which uses the TCP protocol. The routines
getservbyport(3N) and getservent(3N) are also provided. The getservbyport rou-
tine has an interface similar to that provided by getservbyname; an optional pro-
tocol name may be specified to qualify lookups.

3.5. Miscellaneous
With the support routines described above, an application program should

rarely have to deal directly with addresses. This allows services to be developed
as much as possible in a network-independent fashion. It is clear, however, that
purging all network dependencies is very difficult. So long as the user is required
to supply network addresses when naming services and sockets, there will always
be some network dependency in a program. For example, the normal code
included in client programs, such as the remote login program, is of the form
shown in Figure 1.

I-12 Berkeley IPC

I-12

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>
 ...
main(argc, argv)
 char *argv[];
{
 struct sockaddr_in sin;
 struct servent *sp;
 struct hostent *hp;
 int s;
 ...
 sp = getservbyname(”login”, ”tcp”);
 if (sp == NULL) {
 fprintf(stderr, ”rlogin: tcp/login: unknown service\n”);
 exit(1);
 }
 hp = gethostbyname(argv[1]);
 if (hp == NULL) {
 fprintf(stderr, ”rlogin: %s: unknown host\n”, argv[1]);
 exit(2);
 }
	 bzero((char	*)&sin,	sizeof	(sin));
 bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
 sin.sin_family = hp->h_addrtype;
 sin.sin_port = sp->s_port;
 s = socket(AF_INET, SOCK_STREAM, 0);
 if (s < 0) {
 perror(”rlogin: socket”);
 exit(3);
 }
 ...
	 if	(connect(s,	(char	*)&sin,	sizeof	(sin))	<	0)	{	
 perror(”rlogin: connect”);
 exit (5);
 }
 ...
}

Figure 1. Remote login client code.
This example will be considered in more detail in Section 4.
If we wanted to make the remote login program independent of the Internet

protocols and addressing scheme we would be forced to add a layer of routines
which masked the network dependent aspects from the mainstream login code.
For the current facilities available in the system this does not appear to be
worthwhile. Perhaps when the system is adapted to different network architec-
tures	the	utilities	will	be	reorganized	more	cleanly.

Berkeley IPC I-13

I-13

Aside from the address-related database routines, there are several other rou-
tines available in the run-time library which are of interest to users. These are
intended mostly to simplify manipulation of names and addresses. Table 1 sum-
marizes	the	routines	for	manipulating	variable	length	byte	strings	and	handling	
byte swapping of network addresses and values.

Call Synopsis
bcmp(s1, s2, n)
bcopy(s1, s2, n)
bzero(base,	n)
htonl(val)
htons(val)
ntohl(val)
ntohs(val)

compare byte-strings; 0 if same, not 0 otherwise
copy n bytes from s1 to s2
zero-fill	n	bytes	starting	at	base	
convert 32-bit quantity from host to network byte order
convert 16-bit quantity from host to network byte order
convert 32-bit quantity from network to host byte order
convert 16-bit quantity from network to host byte order

Table 1. C Run-Time routines.
The byte swapping routines are provided because the operating system

expects addresses to be supplied in network order. On a VAX, or machine with
similar architecture, this is usually reversed. Consequently, programs are some-
times required to byte swap quantities. The library routines which return net-
work addresses provide them in network order so that they may simply be copied
into the structures provided to the system. This implies that users should
encounter the byte swapping problem only when interpreting network addresses.
For example, if an Internet port is to be printed out, the following code would be
required:

printf(”port number %d\n”, ntohs(sp->s_port));

On machines other than the VAX, these routines are defined as null macros.

4. CLIENT/SERVER MODEL
The most commonly used paradigm in constructing distributed applications

is the client/server model. In this scheme, client applications request services
from a server process. This implies an asymmetry in establishing communication
between the client and server which has been examined in Section 2. In this sec-
tion, we will look more closely at the interactions between client and server, and
consider some of the problems in developing client and server applications.

Client and server require a well known set of conventions before service may
be rendered (and accepted). This set of conventions comprises a protocol which
must be implemented at both ends of a connection. Depending on the situation,
the protocol may be symmetric or asymmetric. In a symmetric protocol, either
side may play the master or slave roles. In an asymmetric protocol, one side is
immutably	recognized	as	the	master,	with	the	other	the	slave.		An	example	of	a	
symmetric protocol is the TELNET protocol used in the Internet for remote ter-
minal emulation. An example of an asymmetric protocol is the Internet file
transfer protocol, FTP. No matter whether the specific protocol used in obtain-
ing a service is symmetric or asymmetric, when accessing a service there is a
“client process” and a “server process”. We will first consider the properties of
server processes, then client processes.

I-14 Berkeley IPC

I-14

A server process normally listens at a well Known address for service
requests. Alternative schemes which use a service server may be used to elim-
inate a flock of server processes clogging the system while remaining dormant
most of the time. The Xerox Courier protocol uses the latter scheme. When
using Courier, a Courier client process contacts a Courier server at the remote
host and identifies the service it requires. The Courier server process then creates
the appropriate server process based on a data base and “splices” the client and
server together, voiding its part in the transaction. This scheme is attractive in
that the Courier server process may provide a single contact point for all services,
as well as carrying out the initial steps in authentication. However, while this is
an	attractive	possibility	for	standardizing	access	to	services,	it	does	introduce	a	
certain amount of overhead due to the intermediate process involved. Implemen-
tations	which	provide	 this	 type	of	 service	within	 the	 system	can	minimize	 the	
cost	of	client	server	rendezvous.		The	portal notion described in the “4.2BSD Sys-
tem	Manual”	embodies	many	of	the	ideas	found	in	Courier,	with	the	rendezvous	
mechanism implemented internal to the system.

4.1. Servers
In 4.2BSD, most servers are accessed at well known Internet addresses or

unix domain names. When a server is started at boot time, it advertises it ser-
vices by listening at a well known location. For example, the remote login
server’s main loop is of the form shown in Figure 2.

Berkeley IPC I-15

I-15

main(argc, argv)
 int argc;
 char **argv;
{
 int f;
 struct sockaddr_in from;
 struct servent *sp;

 sp = getservbyname(”login”, ”tcp”);
 if (sp == NULL) {
 fprintf(stderr, ”rlogind: tcp/login: unknown service\n”);
 exit(1);
 }
 ...
#ifndef DEBUG
 << disassociate server from controlling terminal >>
#endif
 ...
 sin.sin_port = sp->s_port;
 ...
 f = socket(AF_INET, SOCK_STREAM, 0);
 ...
	 if	(bind(f,	(caddr_t)&sin,	sizeof	(sin))	<	0)	{
 ...
 }
 ...
 listen(f, 5);
 for (;;) {
	 	 int	g,	len	=	sizeof	(from);

 g = accept(f, &from, &len);
 if (g < 0) {
 if (errno != EINTR)
 perror(”rlogind: accept”);
 continue;
 }
 if (fork() == 0) {
 close(f);
 doit(g, &from);
 }
 close(g);
 }
}

Figure 2. Remote login server.

The first step taken by the server is look up its service definition:

I-16 Berkeley IPC

I-16

sp = getservbyname(”login”, ”tcp”);
if (sp == NULL) {
 fprintf(stderr, ”rlogind: tcp/login: unknown service\n”);
 exit(1);
}

This definition is used in later portions of the code to define the Internet port at
which it listens for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its
invoker. This is important as the server will likely not want to receive signals
delivered to the process group of the controlling terminal.

Once a server has established a pristine environment, it creates a socket and
begins accepting service requests. The bind call is required to ensure that the
server listens at its expected location. The main body of the loop is fairly simple:

for (;;) {
	 int	g,	len	=	sizeof	(from);

 g = accept(f, &from, &len);
 if (g < 0) {
 if (errno != EINTR)
 perror(”rlogind: accept”);
 continue;
 }
 if (fork() == 0) {
 close(f);
 doit(g, &from);
 }
 close(g);
}

An accept call blocks the server until a client requests service. This call could
return a failure status if the call is interrupted by a signal such as SIGCHLD (to
be discussed in Section 5). Therefore, the return value from accept is checked to
insure a connection has actually been established. With a connection in hand,
the server forks a child process and invokes the main body of the remote login
protocol processing. Note how the socket used by the parent for queueing con-
nection requests is closed in the child, while the socket created as a result of the
accept is closed in the parent. The address of the client is also handed the doit
routine because it requires it in authenticating clients.

4.2. Clients
The client side of the remote login service was shown earlier in Figure 1.

One can see the separate, asymmetric roles of the client and server clearly in the
code. The server is a passive entity, listening for client connections, while the
client process is an active entity, initiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login pro-
cess. As in the server process, the first step is to locate the service definition for
a remote login:

Berkeley IPC I-17

I-17

sp = getservbyname(”login”, ”tcp”);
if (sp == NULL) {
 fprintf(stderr, ”rlogin: tcp/login: unknown service\n”);
 exit(1);
}

Next, the destination host is looked up with a gethostbyname call:

hp = gethostbyname(argv[1]);
if (hp == NULL) {
 fprintf(stderr, ”rlogin: %s: unknown host\n”, argv[1]);
 exit(2);
}

With this accomplished, all that is required is to establish a connection to the
server at the requested host and start up the remote login protocol. The address
buffer is cleared, then filled in with the Internet address of the foreign host and
the port number at which the login process resides:

bzero((char	*)&sin,	sizeof	(sin));
bcopy(hp->h_addr, (char *)sin.sin_addr, hp->h_length);
sin.sin_family = hp->h_addrtype;
sin.sin_port = sp->s_port;

A socket is created, and a connection initiated.

s = socket(hp->h_addrtype, SOCK_STREAM, 0);
if (s < 0) {
 perror(”rlogin: socket”);
 exit(3);
}
if	(connect(s,	(char	*)&sin,	sizeof	(sin))	<	0)	{	
 perror(”rlogin: connect”);
 exit (4);
}

The details of the remote login protocol will not be considered here.

4.3. Connectionless Servers
While connection-based services are the norm, some services are based on

the use of datagram sockets. One, in particular, is the “rwho” service which pro-
vides users with status information for hosts connected to a local area network.
This service, while predicated on the ability to broadcast information to all hosts
connected to a particular network, is of interest as an example usage of datagram
sockets.

A user on any machine running the rwho server may find out the current
status of a machine with the ruptime(1) program. The output generated is illus-
trated in Figure 3.

I-18 Berkeley IPC

I-18

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, 0 users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56
ernie down 0:24
esvax down 17:04
ingres down 0:26
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19+15:37
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07
oz	 down	 16:09	 	 	 	 	
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3. Ruptime Output.

Status information for each host is periodically broadcast by rwho server
processes on each machine. The same server process also receives the status
information and uses it to update a database. This database is then interpreted
to generate the status information for each host. Servers operate autonomously,
coupled only by the local network and its broadcast capabilities.

The rwho server, in a simplified form, is pictured in Figure 4. There are two
separate tasks performed by the server. The first task is to act as a receiver of
status information broadcast by other hosts on the network. This job is carried
out in the main loop of the program. Packets received at the rwho port are
interrogated to ensure they’ve been sent by another rwho server process, then are
time stamped with their arrival time and used to update a file indicating the
status of the host. When a host has not been heard from for an extended period
of time, the database interpretation routines assume that the host is down and
indicate such on the status reports. This algorithm is prone to error as a server
may be down while a host is actually up, but serves our current needs.

Berkeley IPC I-19

I-19

main()
{
 ...
 sp = getservbyname(”who”, ”udp”);
 net = getnetbyname(”localnet”);
 sin.sin_addr = inet_makeaddr(INADDR_ANY, net);
 sin.sin_port = sp->s_port;
 ...
 s = socket(AF_INET, SOCK_DGRAM, 0);
 ...
	 bind(s,	&sin,	sizeof	(sin));
 ...
 sigset(SIGALRM, onalrm);
 onalrm();
 for (;;) {
 struct whod wd;
	 	 int	cc,	whod,	len	=	sizeof	(from);

	 	 cc	=	recvfrom(s,	(char	*)&wd,	sizeof	(struct	whod),	0,	&from,	&len);	
 if (cc <= 0) {
 if (cc < 0 && errno != EINTR)
 perror(” rwhod: recv”);
 continue;
 }
 if (from.sin_port != sp->s_port) {
 fprintf(stderr, ”rwhod: %d: bad from port\n”,
 ntohs(from.sin_port));
 continue;
 }
 ...
 if (!verify(wd.wd_hostname)) {
 fprintf(stderr, ”rwhod: malformed host name from %x\n”,
 ntohl(from.sin_addr.s_addr));
 continue;
 }
 (void) sprintf(path, ”%s/whod.%s”, RWHODIR, wd.wd_hostname);
 whod = open(path, FWRONLY|FCREATE|FTRUNCATE, 0666);
 }
 ...
 (void) time(&wd.wd_recvtime);
 (void) write(whod, (char *)&wd, cc);
 (void) close(whod);
 }
}

Figure 4. Rwho Server.
The second task performed by the server is to supply information regarding

the status of its host. This involves periodically acquiring system status informa-
tion, packaging it up in a message and broadcasting it on the local network for
other rwho servers to hear. The supply function is triggered by a timer and runs
off a signal. Locating the system status information is somewhat involved, but
uninteresting. The necessity of deciding where to transmit the resultant packet

I-20 Berkeley IPC

I-20

does, however, indicate some problems with the current protocol.
Status information is broadcast on the local network. For networks which

do not support the notion of broadcast, another scheme must be used to simulate
or replace broadcasting. One possibility is to enumerate the known neighbors
(based on the status received). This, unfortunately, requires some bootstrapping
information, as a server started up on a quiet network will have no known neigh-
bors and thus never receive, or send, any status information. This is the identi-
cal problem faced by the routing table management process in propagating rout-
ing status information. The standard solution, unsatisfactory as it may be, is
to inform one or more servers of known neighbors and request that they always
communicate with these neighbors. If each server has at least one neighbor sup-
plied to it, status information may then propagate through a neighbor to hosts
which are not (possibly) directly neighbors. If the server is able to support net-
works which provide a broadcast capability, as well as those which do not, then
networks with an arbitrary topology may share status information †.

The second problem with the current scheme is that the rwho process ser-
vices only a single local network, and this network is found by reading a file. It
is important that software operating in a distributed environment not have any
site-dependent information compiled into it. This would require a separate copy
of the server at each host and make maintenance a severe headache. 4.2BSD
attempts to isolate host-specific information from applications by providing sys-
tem calls which return the necessary information‡. Unfortunately, no straightfor-
ward mechanism currently exists for finding the collection of networks to which a
host is directly connected. Thus the rwho server performs a lookup in a file to
find its local network. A better, though still unsatisfactory, scheme used by the
routing process is to interrogate the system data structures to locate those
directly connected networks. A mechanism to acquire this information from the
system would be a useful addition.

5. ADVANCED TOPICS
A number of facilities have yet to be discussed. For most users of the IPC

the mechanisms already described will suffice in constructing distributed applica-
tions.	 	However,	others	will	 find	need	to	utilize	some	of	the	 features	which	we	
consider in this section.

5.1. Out of Band Data
The stream socket abstraction includes the notion of “out of band” data.

Out of band data is a logically independent transmission channel associated with
each pair of connected stream sockets. Out of band data is delivered to the user
independently of normal data along with the SIGURG signal. In addition to
the information passed, a logical mark is placed in the data stream to indicate
the point at which the out of band data was sent. The remote login and remote
shell applications use this facility to propagate signals from between client and
server processes. When a signal is expected to flush any pending output from the

† One must, however, be concerned about “loops”. That is, if a host is connected to
multiple networks, it will receive status information from itself.
‡ An example of such a system call is the gethostname(2) call which returns the host’s
“official” name.

Berkeley IPC I-21

I-21

remote process(es), all data up to the mark in the data stream is discarded.
The stream abstraction defines that the out of band data facilities must sup-

port the reliable delivery of at least one out of band message at a time. This
message may contain at least one byte of data, and at least one message may be
pending delivery to the user at any one time. For communications protocols
which support only in-band signaling (i.e., the urgent data is delivered in
sequence with the normal data) the system extracts the data from the normal
data stream and stores it separately. This allows users to choose between receiv-
ing the urgent data in order and receiving it out of sequence without having to
buffer all the intervening data.

To send an out of band message, the SOF_OOB flag is supplied to a send or
sendto calls, while to receive out of band data SOF_OOB should be indicated
when performing a recvfrom or recv call. To find out if the read pointer is
currently pointing at the mark in the data stream, the SIOCATMARK ioctl is
provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise
(assuming out of band data has arrived), the next read will provide data sent by
the client prior to transmission of the out of band signal. The routine used in the
remote login process to flush output on receipt of an interrupt or quit signal is
shown in Figure 5.

oob()
{
 int out = 1+1;
 char waste[BUFSIZ], mark;

 signal(SIGURG, oob);
 /* flush local terminal input and output */
 ioctl(1, TIOCFLUSH, (char *)&out);
 for (;;) {
 if (ioctl(rem, SIOCATMARK, &mark) < 0) {
 perror(”ioctl”);
 break;
 }
 if (mark)
 break;
	 	 (void)	read(rem,	waste,	sizeof	(waste));
 }
 recv(rem, &mark, 1, SOF_OOB);
 ...
}

Figure 5. Flushing Terminal I/O on Receipt of Out of Band Data.

I-22 Berkeley IPC

I-22

5.2. Signals and Process Groups
Due to the existence of the SIGURG and SIGIO signals, each socket has an

associated process group (just as is done for terminals). This process group is ini-
tialized	to	the	process	group	of	its	creator,	but	may	be	redefined	at	a	later	time	
with the SIOCSPGRP ioctl:

ioctl(s, SIOCSPGRP, &pgrp);

A similar ioctl, SIOCGPGRP, is available for determining the current process
group of a socket.

5.3. Pseudo Terminals
Many programs will not function properly without a terminal for standard

input and output. Since a socket is not a terminal, it is often necessary to have a
process communicating over the network do so through a pseudo terminal. A
pseudo terminal is actually a pair of devices, master and slave, which allow a pro-
cess to serve as an active agent in communication between processes and users.
Data written on the slave side of a pseudo terminal is supplied as input to a pro-
cess reading from the master side. Data written on the master side is given the
slave as input. In this way, the process manipulating the master side of the
pseudo terminal has control over the information read and written on the slave
side. The remote login server uses pseudo terminals for remote login sessions. A
user logging in to a machine across the network is provided a shell with a slave
pseudo terminal as standard input, output, and error. The server process then
handles the communication between the programs invoked by the remote shell
and the user’s local client process. When a user sends an interrupt or quit signal
to a process executing on a remote machine, the client login program traps the
signal, sends an out of band message to the server process who then uses the sig-
nal number, sent as the data value in the out of band message, to perform a
killpg(2) on the appropriate process group.

5.4. Internet Address Binding
Binding addresses to sockets in the Internet domain can be fairly complex.

Communicating processes are bound by an association. An association is com-
posed of local and foreign addresses, and local and foreign ports. Port numbers
are allocated out of separate spaces, one for each Internet protocol. Associations
are always unique. That is, there may never be duplicate <protocol, local
address, local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association,
<local address, local port>, while the connect and accept primitives are used to
complete a socket’s association. Since the association is created in two steps the
association uniqueness requirement indicated above could be violated unless care
is taken. Further, it is unrealistic to expect user programs to always know proper
values to use for the local address and local port since a host may reside on mul-
tiple networks and the set of allocated port numbers is not directly accessible to
a user.

To simplify local address binding, the notion of a “wildcard” address has
been provided. When an address is specified as INADDR_ANY (a manifest con-
stant defined in <netinet/in.h>), the system interprets the address as “any
valid address”. For example, to bind a specific port number to a socket, but

Berkeley IPC I-23

I-23

leave the local address unspecified, the following code might be used:

#include <sys/types.h>
#include <netinet/in.h>
 ...
struct sockaddr_in sin;
 ...
s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;
bind(s,	(char	*)&sin,	sizeof	(sin));

Sockets with wildcarded local addresses may receive messages directed to the
specified port number, and addressed to any of the possible addresses assigned a
host. For example, if a host is on networks 46 and 10 and a socket is bound as
above, then an accept call is performed, the process will be able to accept connec-
tion requests which arrive either from network 46 or network 10.

In	a	similar	fashion,	a	local	port	may	be	left	unspecified	(specified	as	zero),	in	
which case the system will select an appropriate port number for it. For exam-
ple:

sin.sin_addr.s_addr = MYADDRESS;
sin.sin_port = 0;
bind(s,	(char	*)&sin,	sizeof	(sin));

The system selects the port number based on two criteria. The first is that ports
numbered 0 through 1023 are reserved for privileged users (i.e., the super user).
The second is that the port number is not currently bound to some other socket.
In order to find a free port number in the privileged range, the following code is
used by the remote shell server:

struct sockaddr_in sin;
 ...
lport = IPPORT_RESERVED - 1;
sin.sin_addr.s_addr = INADDR_ANY;
...
for (;;) {
 sin.sin_port = htons((u_short)lport);
	 if	(bind(s,	(caddr_t)&sin,	sizeof	(sin))	>=	0)
 break;
 if (errno != EADDRINUSE && errno != EADDRNOTAVAIL) {
 perror(”socket”);
 break;
 }
 lport--;
 if (lport == IPPORT_RESERVED/2) {
 fprintf(stderr, ”socket: All ports in use\n”);
 break;
 }
}

The restriction on allocating ports was done to allow processes executing in a

I-24 Berkeley IPC

I-24

“secure” environment to perform authentication based on the originating address
and port number.

In certain cases, the algorithm used by the system in selecting port numbers
is unsuitable for an application. This is due to associations being created in a
two-step process. For example, the Internet file transfer protocol, FTP, specifies
that data connections must always originate from the same local port. However,
duplicate associations are avoided by connecting to different foreign ports. In
this situation the system would disallow binding the same local address and port
number to a socket if a previous data connection’s socket were around. To over-
ride the default port selection algorithm then an option call must be performed
prior to address binding:

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)0, 0);
bind(s,	(char	*)&sin,	sizeof	(sin));

With the above call, local addresses may be bound which are already in use.
This does not violate the uniqueness requirement as the system still checks at
connect time to be sure that any other sockets with the same local address and
port do not have the same foreign address and port (if an association already
exists, the error EADDRINUSE is returned).

Local	address	binding	may	be	somewhat	haphazard	when	a	host	is	on	multi-
ple networks. Logically, one would expect the system to bind the local address
associated with the network through which a peer was communicating. For
instance, if the local host is connected to networks 46 and 10 and the foreign host
is on network 32, and traffic from network 32 were arriving via network 10, the
local address to be bound would be the host’s address on network 10, not net-
work 46. This is not always the case. For reasons too complicated to discuss
here, the local address bound may be appear to be chosen at random. This pro-
perty of local address binding will normally be invisible to users unless the
foreign host does not understand how to reach the address selected †.

5.5. Broadcasting and Datagram Sockets
By using a datagram socket, it is possible to send broadcast packets on

many networks supported by the system (the network itself must support the
notion of broadcasting; the system provides no broadcast simulation in software).
Broadcast messages can place a high load on a network since they force every
host on the network to service them. Consequently, the ability to send broadcast
packets has been limited to the super user.

To send a broadcast message, an Internet datagram socket should be
created:

s = socket(AF_INET, SOCK_DGRAM, 0);

and at least a port number should be bound to the socket:

† For example, if network 46 were unknown to the host on network 32, and the local
address were bound to that located on network 46, then even though a route between the
two hosts existed through network 10, a connection would fail.

Berkeley IPC I-25

I-25

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;
bind(s,	(char	*)&sin,	sizeof	(sin));

Then the message should be addressed as:

dst.sin_family = AF_INET;
dst.sin_addr.s_addr = INADDR_ANY;
dst.sin_port = DESTPORT;

and, finally, a sendto call may be used:

sendto(s,	buf,	buflen,	0,	&dst,	sizeof	(dst));

Received broadcast messages contain the sender’s address and port
(datagram sockets are anchored before a message is allowed to go out).

5.6. Signals
Two new signals have been added to the system which may be used in con-

junction with the interprocess communication facilities. The SIGURG signal is
associated with the existence of an “urgent condition”. The SIGIO signal is used
with “interrupt driven I/O” (not presently implemented). SIGURG is currently
supplied a process when out of band data is present at a socket. If multiple sock-
ets have out of band data awaiting delivery, a select call may be used to deter-
mine those sockets with such data.

An old signal which is useful when constructing server processes is
SIGCHLD. This signal is delivered to a process when any children processes have
changed state. Normally servers use the signal to “reap” child processes after
exiting. For example, the remote login server loop shown in Figure 2 may be
augmented as follows:

I-26 Berkeley IPC

I-26

int reaper();
 ...
sigset(SIGCHLD, reaper);
listen(f, 10);
for(;;){
	 int	g,	len	=	sizeof	(from);

 g = accept(f, &from, &len, 0); if (g < 0) {
 if (errno != EINTR)
 perror(”rlogind: accept”);
 continue;
 }
 ...
}
 ...
#include <wait.h>
reaper()
{
 union wait status;

 while (wait3(&status, WNOHANG, 0) > 0)
 ;

}

If the parent server process fails to reap its children, a large number of
“zombie”	processes	may	be	created.

Appendix J

Configuring TCP/IP for
DOMAIN/IX bsd4.2

Configuring TCP/IP for DOMAIN/IX J-3

Contents

Part 1 - Defining the TCP/IP Configuration

Names and Addresses . J-5
 Gateway Names and Addresses . J-5
 Names . J-6
 Local Network Addresses . J-7
 Internet Addresses . J-7
Physical Layer Interface Descriptions . J-8
Daemons, Servers, and Helpers . J-9
 Starting Server Processes . J-10
 Configuring Servers and Helpers . J-10
 Configuring the BSD4 .2 Daemons . J-10
 The TCP_SERVER . J-11
 BSD4 .2 Daemons . J-11
 Service Nodes . J-13
TCP/IP Mapping Information Files . J-14
 Links and File Locations . J-16
 Some Notes on Pathnames . J-16
 THISHOST File . J-17
 NETWORKS File . J-17
 Service Node Configuration Files . J-17
 The hosts .txt file . J-17
 The local .txt file . J-18
 HOST_ADDR file . J-21
 DOMAIN/IX Files . J-21
 The hosts .equiv file . J-21
 The networks file . J-22
 The hosts file . J-22
Defining the Configuration . J-22
 Selecting Internet Addresses . J-23
 Defining the Mapping Files . J-25
 Determining the Service and Administrative Nodes . J-25
 Defining the local .txt file . J-25
 Determining the /etc files . J-25
 Determining Server Processes . J-26

Part 2 - Configuring TCP/IP

Configuring TCP/IP on an Internet . J-27
Configuring DOMAIN-Only BSD4 .2 TCP/IP . J-27
Configuring DOMAIN/IX Nodes . J-28
 Procedure 1 . Configuring the Service Node . J-29
 Procedure 2 . Configuring a DOMAIN/IX BSD4 .2 Host or Gateway Node J-32
 Procedure 3 . Configuring a DOMAIN/IX BSD4 .2 Host that Communicates only on the DOMAIN
 Network . J-37

 J-4 Configuring TCP/IP for DOMAIN/IX

Configuring TCP/IP for DOMAIN/IX . J-3
 Configuring Non-DOMAIN Hosts . J-41
 Configuring DARPA TCP/IP Hosts . J-41
 Configuring BSD4 .2 UNIX Hosts . J-41
 Procedure 4 . Configuring the Service Node . J-42

Configuring TCP/IP for DOMAIN/IX J-5

Part 1 - Defining the TCP/IP Configuration
Before you can use TCP/IP, you must decide a number of configuration issues that affect how the TCP/IP
software establishes connections between hosts . You will have to define both addressing information,
which defines the names, addresses, and physical interfaces for the hosts, networks, and gateways, and
process information, which specifies the processes that you run to support TCP/IP communications and
the nodes on which these processes execute .

This part of Appendix J defines this information, and explains its functions . It also defines steps you
should take before you install TCP/IP that will make the configuration procedure easier .

Names and Addresses
Whenever you refer to a TCP/IP host, you usually use an easy to remember name, such as the node name
//DIONYSUS . The operating system converts this name internally to an address value that is meaningful
to it, for example the DOMAIN address 03a2cl76 .06d49 .

Within a DOMAIN network, this mapping between names and addresses is sufficient to get messages from
one point to another . However, when you connect different local networks, such as DOMAIN and
ETHERNET, each network’s local addresses are meaningless to the next . Therefore, another addressing
layer is required; in the case of connecting to an ETHERNET, this is the Internet addressing layer .

While local addresses need only be unique on the local network, Internet addresses must be unique across
all connected networks . For example, let’s give the node //DIONYSUS the Internet address 197 .9 .8 .3 .

TCP/IP also uses mnemonic names . To keep things simple, the local name is usually the Internet name .
While DOMAIN/IX TCP/IP does not require that the node name and Internet name be the same, we
recommend that you follow this convention for the sake of simplicity .

Gateway Names and Addresses

While a host has one local name and address and one Internet name and address, a gateway must have
more than one address, because it sits on two local networks and must be fully identified on both . For
example, the DOMAIN node //JANUS is a gateway to an ETHERNET network . It has:

•	 The	DOMAIN	name	//JANUS

•	 The	DOMAIN	address	03a2cl76.06a3

•	 The	Internet	address	on	the	DOMAIN	ring	197.9.8.1

•	 The	Internet	name	JANUS

•	 The	Internet	address	on	the	ETHERNET	LAN	197.10.9.1

•	 The	ETHERNET	address	1.1.0.3.2.3

Figure 1-1 shows the network example that we have been using . It shows a DOMAIN ring and ETHER-
NET LAN connected to make an Internet . It illustrates the names and addresses for a DOMAIN host,
gateway, and an ETHERNET host .

 J-6 Configuring TCP/IP for DOMAIN/IX

Figure 1-1. Relationships Among Names and Addresses

Names

Since people generally prefer to use names rather than Internet addresses, TCP/IP requires you to as-
sociate an ASCII name with each host and gateway with which you communicate . While TCP/IP does not
require you to do so, people usually use the node or computer names used in their local network as the
TCP/IP names . For example, if your node entry name is //JANUS, you’d name the host JANUS .

The Internet model allows you to use more than one name for a host or gateway . The additional names
are called aliases . Therefore, you could give //JANUS not just the Internet name JANUS, but also the
Internet aliases ODIN and THOR .

Internet names for a gateway do not depend upon the local network . Therefore, if JANUS is a gateway
between a DOMAIN ring and an ETHERNET LAN, you can use JANUS, ODIN, or THOR from hosts on
either network .

Local names depend upon the operating system that runs on the host . Because of the design of the
DOMAIN system, you use DOMAIN names on a ring-wide basis . This is not necessarily true on the
ETHERNET LAN, where one host may be a VAX running UNIX and another host may run a completely
different operating system .

Configuring TCP/IP for DOMAIN/IX J-7

Local Network Addresses

A DOMAIN address consists of one or two parts, depending upon whether you have a multiple-ring
DOMAIN network .

If your installation consists of a single ring, your DOMAIN address may consist of a 20-bit Node ID . This
number is firmware-encoded for each DOMAIN node and always appears as a hexadecimal number with
up to five digits . For example, the node ID for //JANUS is 006a3 . You can determine any node’s ID by
using the NETSTAT Shell command .

If your installation uses the DOMAIN/BRIDGE to connect multiple rings, a Network number precedes
the Node ID and is separated from the node ID by a period . The network number is an up-to eight-digit
hexadecimal number that identifies the host’s ring . Network numbers are assigned by the Apollo Response
Center . In our example, //JANUS is on a ring with a network number of 03a2cl76 . Therefore, //JANUS’
full DOMAIN address is 03a2cl76 .6a3 .

An ETHERNET address is a 48-bit number . Three bytes are reserved for the manufacturer’s identifiers .
Three bytes are assigned by the XEROX Corporation .

Internet Addresses

Each Internet address is 32 bits long, and contains two variable-length fields that identify the local net-
work and the host within that network . The network number, the left field, identifies the local network to
the Internet . The host number, the right field, identifies the host within the local network .

You normally represent Internet addresses in Internet format . In the Internet format, you specify ad-
dresses as follows:

W.X.Y.Z

where W, X, Y and Z are decimal numbers between 0 and 255 . Each of the decimal numbers represents one
byte in the Internet address .

Internet addresses have variable-length fields for the network numbers and host numbers . You choose a
length for your network numbers by choosing Type A, B, or C Internet addresses . Figure 1-2 illustrates
the differences . It also shows how the most significant bits (MSB) in each network number serve as tag
bits to identify the address type as A (MSB of 0), B (MSB of 10) or C (MSB of 110) .

 J-8 Configuring TCP/IP for DOMAIN/IX

Figure 1-2. Type A, B, and C Internet Addresses

For example, the Type A address in the figure has a network number of 21 . Contrast this with the
network number in the Type B address (135 .2) and in the Type C address (192 .9 .9) . In the Type C
address, you may only assign host numbers 0 - 255, whereas in the Type A address, you can assign host
numbers 0 .0 .0 through 255 .255 .255 . We discuss considerations for assigning Internet addresses later in
this appendix .

Physical Layer Interface Descriptions
The Internet model’s layered approach allows communication between networks with varied Physical
Layer protocols . The hardware that supports DOMAIN TCP/IP-based communications translates
protocols between the ETHERNET LAN and the DOMAIN ring . You must indicate to TCP/IP the physi-
cal interface used by each host and by the gateway .

For hosts in the DOMAIN ring, the interface is the DOMAIN ring . The DOMAIN ring always has physi-
cal interface identifier of dr0 . Gateways have two physical interfaces; the DOMAIN ring and the ETHER-
NET LAN . These are identified as dr0 and il0, respectively .

A DOMAIN node that is a router for the DOMAIN BRIDGE is treated as a TCP/IP gateway node . Its
physical interfaces are dr0, for the DOMAIN ring on which it resides, and dr1, for the DOMAIN ring to
which it is connecting via TCP/IP . Like any other DOMAIN TCP/IP gateway, a DOMAIN BRIDGE
router must run the tcp_server process and routed .

Configuring TCP/IP for DOMAIN/IX J-9

Daemons, Servers, and Helpers
DOMAIN/IX TCP/IP-based communications software uses several processes that support communica-
tions in various ways . These processes respond to requests for some form of service . They are generally
called servers or daemons . Table 1-1 lists these processes, describes their purposes, and indicates the
nodes that require them .

Table 1-1. DOMAIN/IX TCP/IP Server Processes

Name Purpose Location

tcp_server Enables TCP/IP
communications on the
node

All TCP/IP hosts

routed Manages gateway
network routing tables

One per gateway node

rwhod System status server,
maintains database
used by rwho and
ruptime

One per gateway node

sendmail Handles mail received
over the Internet

One per network

tftpd Enables TFTP access
to the host

Hosts that accept
TFTP connections

inetd Starts the following
daemons as needed: (in
/etc/inetd.conf)

All BSD4 .2 nodes

ftpd Enables direct ftp
access to the host

Hosts that accept ftp
connections

telnetd Enables inbound telnet
access to the host

Hosts that accept
inbound telnet

rexecd Enables remote
execution of
commands on this node

Hosts that accept
rexec routine

rlogin Enables remote login
to this node

Hosts that accept
rlogin program

rshd Enables remote
execution of
commands on this
node with user
authentication

Hosts that accept rsh
program

 J-10 Configuring TCP/IP for DOMAIN/IX

Starting Server Processes

As a general rule, these processes should execute whenever the node is running; therefore you include
commands to start them in startup files . The files you use depend upon the processes .

Configuring Servers and Helpers

You start some of the server processes in the node startup file . The name and location of this file depends
upon the type of node that you are using . If you are configuring a disked node, use the
/sys/node_data/startup[.node_type] file . If you are configuring a diskless node, use the
//partner_node/sys/node_data.nodeid/startup [.node_type] file . In these pathnames .node_type indicates
the model node you are using; .nodeid is the node identification number . Administering your DOMAIN
System describes node startup files in detail .

You use the node startup file to specify the following process:

•	 tcp_server

To specify the tcp_server, uncomment or enter the following line:

cps /sys/tcp/tcp_server -n tcp_server

Configuring the BSD4.2 Daemons

NOTE: In most installations the /etc directory is located on a single administrative node, and all other
nodes use links to access this directory . In such cases, /etc/rc on the administrative node must be
a link to the file ‘node_data/etc.rc, and /etc/inetd .conf must be a link to ‘node_data/etc.in-
etd.conf . The ‘node_data is automatically interpreted as either /sys/node_data or
//partner_node/sys/node_data.nodeid of the node that is accessing the file .

The BSD4 .2 daemons are started by the /etc/run_rc program, which starts the daemons specified in
the /etc/rc file . You start /etc/run_rc at login time, in the node’s startup file . Put the following line
in either the /sys/node_data/startup[.node_type] or //partner_node/sys/node_data.nodeid/star-
tup[.node_type] file .

cps /etc/run_rc

Use the /etc/rc file to specify any of the following processes:

•	 inetd
•	 routed
•	 rwhod
•	 sendmail
•	 tftpd

Use the /etc/inetd.conf file to specify the following processes . (You must, of course, also specify inetd in
the /etc/rc file .)

•	 ftpd
•	 rexecd
•	 rlogind
•	 rshd

Configuring TCP/IP for DOMAIN/IX J-11

•	 telnetd

Specify each required daemon by uncommenting the lines in the file that start the process . For example,
to specify inetd, uncomment (remove the # characters from the beginning of) the following lines in
/etc/rc:

if [-f /etc/inetd]; then
 /etc/inetd &
fi

The TCP_SERVER

The tcp_server process ensures that all TCP/IP data are reliably transmitted between the end-user
processes such as ftp and telnet . It also performs routing services, and maintains mapping tables that
relate Internet addresses to local addresses .

Rules: The tcp_server must run on each node that uses any form of TCP/IP based communications .

BSD4.2 Daemons

You must run the BSD4 .2 daemons to enable various BSD4 .2 commands and utilities . The following
sections describe these daemons and indicate the nodes where they should execute . See the DOMAIN/IX
Programmer’s Reference for BSD4.2 for detailed descriptions of each daemon .

routed

The routed daemon maintains the gateway network routing tables . It maintains an internal database of
gateways that are directly accessible from the local gateway . It also broadcasts its routing tables every 30
seconds . This dynamic operation eliminates the need to update static gateway tables each time the net-
work configuration changes .

If routed does not execute on the gateway, the gateway does not transmit packets with routing information
to the ETHERNET . Because routed purges its database of gateway entries for gateways that have not sent
a network information packet within three minutes, remote BSD4 .2 gateways that run routed may lose
knowledge of any DOMAIN gateway that does not use routed .

Rules: routed must execute on each gateway .

 routed is not required if you only use BSD4 .2 TCP/IP communications on the DOMAIN net-
work .

rwhod

The rwhod daemon is the Internet system status server . It maintains the database of status information
that is used by the rwho(1) and ruptime(1) programs .

Rules: rwhod should execute on each gateway . In this case, it can provide information on both the
DOMAIN network and the ETHERNET .

 J-12 Configuring TCP/IP for DOMAIN/IX

sendmail

The sendmail program routes mail messages that you send using BSD4 .2 or DARPA mail commands over
the Internet . When it runs as a daemon, it enables the DOMAIN network to send and receive mail
messages from the ETHERNET . Sendmail is not a user-level interface .

Rules: If you use mail between the DOMAIN network and any other network, sendmail must run as a
daemon on one node on your network . You execute sendmail as a daemon by including the -bd
flag in the sendmail command .

tftpd

The tftpd daemon is a server that supports the DARPA Trivial File Transfer Protocol . It listens for and
accepts tftp requests . You can establish a tftp request only to a node that runs the tftpd . That is, you
must specify a host that runs tftpd in the Shell tftp command . However, the tftpd daemon provides access
to files on all nodes on the DOMAIN network . You do not need to run tftpd to issue the tftp command .

Rules: You should have one or more tftpd processes per DOMAIN network if you wish to support the
TFTP protocol .

inetd

The inetd is a server-manager that invokes Internet services such as ftpd or rlogind as necessary . Since
it is a single process, inetd can efficiently manage many types of Internet connections

You must use inetd to invoke the following servers and daemons:

•	 ftpd
•	 rexecd
•	 rlogind
•	 rshd
•	 telnetd

Rules: You must have an inetd process on each node that requires ftpd, rexecd, rlogind, rshd, or tel-
netd .

The file /etc/inetd.conf specifies the daemons that inetd invokes . You only include those daemons in this
file for the services that are supported by the server node . A template file, located in
/sys/node_data/etc.inetd.conf, is automatically installed with DOMAIN/IX BSD4 .2 . You include
daemons by removing the comment marks (#) at the beginning of the lines that specify the required
daemons .

ftpd

The ftpd daemon accepts ftp connections and services ftp requests . You can establish an ftp connection
only to a node that can run the ftpd . That is, you must specify a node that can run ftpd in the Shell ftp
command or in response to the ftp Host: prompt . However, the ftpd provides access to files on all nodes
on the DOMAIN network . You do not need the ftpd to issue the ftp command .

Rules: You should have one or more ftpd processes per DOMAIN network .

 You must use the inetd daemon to invoke the ftpd .

 ftpd and the DOMAIN FTP_SERVER cannot execute on the same node .

Configuring TCP/IP for DOMAIN/IX J-13

rexecd

The rexecd daemon services requests from the rexec(3X) library function . It allows you to remotely
execute UNIX commands on the server node . Rexecd must receive a valid user id and password from
rexec .

Rules: rexecd must execute on each node that supports invocation of commands from a remote host
that uses rexec .

 You must use the inetd daemon to invoke the rexecd .

rlogind

The rlogind daemon services requests from the rlogin(1) program . It allows you to log in remotely on the
server node . Rlogind requires pseudo-ttys . These are normally created when you install DOMAIN/IX,
but can be created by the crpty(8) command . Rlogind does not request a password, if the remote host is
listed in the server’s /etc/hosts.equiv file .

Rules: rlogind must execute on each node that supports login from a remote host using rlogin .

 You must use the inetd daemon to invoke the rlogind .

rshd

The rshd daemon is the remote shell server . It services requests from the rsh program and rcmd library
function . It allows you to remotely execute UNIX commands on the server node . Rshd does not request a
password, if the remote host is listed in the server’s /etc/hosts.equiv file .

Rules: rshd must execute on each node that supports invocation of commands from remote hosts using
rsh or rcmd .

 You must use the inetd daemon to invoke the rshd .

telnetd

The telnetd daemon accepts telnet connections . You must run the telnetd on each node that accepts
inbound telnet sessions . You do not need the telnetd to issue the telnet command .

Rules: telnetd must execute on each node that accepts remote login using telnet .

 You must use the inetd daemon to invoke the telnetd .

 telnetd and the DOMAIN TELNET_SERVER can not execute on the same node .

Service Nodes
Before we can discuss TCP/IP Mapping information files, we must introduce an additional concept that is
not part of standard TCP/IP, but reflects the distributed nature of the DOMAIN system . While TCP/IP
communications distinguishes between gateways and hosts, we add a third type of node, the service node,
for the purposes of configuration .

Defined broadly, a service node is any node that provides some form of support service to other users . A
service node does not necessarily have to use TCP/IP communications itself . Conversely, a service node

 J-14 Configuring TCP/IP for DOMAIN/IX

can also be either a host or a gateway . The TCP/IP service node is that node which contains the TCP/IP
name and address mapping files .

The DOMAIN/IX administrative node, which contains the /etc directory, is also considered a service
node, since the BSD4 .2 mapping files are located in that directory . The TCP/IP service node and the
DOMAIN/IX administrative node may be the same machine .

TCP/IP Mapping Information Files
You provide the information about a host or gateway’s names, addresses, and physical interfaces, and
about the relations among them during the configuration process by editing several files . However, before
you edit the files you should understand the contents of each file . This section describes each file, and the
following sections will help you prepare for configuration . Table 1-2 lists the files that you edit and indi-
cates their functions and locations .

Note that there are two files (/etc/networks and /etc/hosts) that you must manage only if you are using
DOMAIN/IX BSD4 .2 TCP/IP on a DOMAIN network that does not communicate with any other net-
works . These files are automatically generated (by makehost.sh) if you are using BSD4 .2 and com-
municating across a gateway to another Internet network, but if you are using BSD4 .2 TCP/IP on a
DOMAIN network only, you must edit them manually .

Configuring TCP/IP for DOMAIN/IX J-15

Table 1-2. TCP/IP Information Files that you Edit

Name Purpose Location

On all Hosts

thishost Lists the Internet name of the
local host .

/sys/node_data
[node.id]/thishost

networks Lists the Internet addresses and
corresponding physical interfaces
for the local host .

/sys/node_data
[node.id]
/networks

On the Service Node

local.txt Contains information on locally
defined Internet addresses .

/sys/tcp/hostmap/
local.txt

hosts.txt Contains information on Internet
addresses defined by the Network
Information Center (NIC) .

/sys/tcp/hostmap/
hosts.txt

On the Gateway Node

host_addr Associates Internet and local
addresses of non-DOMAIN hosts
that do not use the Address
Resolution Protocol (ARP) .

/sys/tcp/host_addr

On the BSD4.2 Administrative Node

hosts.equiv Contains the names of all hosts
that you can access using rlogin,
rsh and rcp without password
authentication .

/etc/hosts.equiv

On the BSD4.2 Administrative Node if There is No Gateway

networks Contains the Internet network
number of the DOMAIN ring .
This file is different from the
/sys/node_data[node.id]/networks file .

/etc/networks

hosts Contains the names and Internet
addresses of all hosts on the
DOMAIN ring

/etc/hosts

 J-16 Configuring TCP/IP for DOMAIN/IX

Links and File Locations

The service node files and the BSD4 .2 configuration files usually are located on only one or a few nodes
on the DOMAIN network . You access them through links from each host and gateway . This technique
limits the replication of information, and therefore the number of changes you must make when the
network configuration changes . It also provides a measure of security .

When you install DOMAIN/IX BSD4 .2 or TCP/IP on a host node the install procedure creates the re-
quired links between your node and the TCP/IP service node and BSD4 .2 administrative node . However,
you should be familiar with these links, so we list them in Table 1-3 .

Table 1-3. TCP/IP Links

Pathname on Host Links to:

On all Hosts

/sys/tcp/hostmap //service_node/sys/tcp/hostmap
(directory)

/sys/tcp/gateways //service_node/sys/tcp/gateways

/sys/tcp/hosts.hst //service_node/sys/tcp/hosts.hst

/etc (directory) //administrative_node/etc

On BSD4 .2 Administrative Nodes

/etc/rc ‘node_data/etc.rc

/etc/inetd.conf ‘node_data/etc.inetd.conf

Some Notes on Pathnames

The following notes describe how we refer to certain files in this manual .

•	 In	 this	 manual	 we	 refer	 to	 pathnames	 in	 the	 /sys directory . This is a relative pathname, and is
accurate only if you are working at the node you are configuring . If you are manipulating the /sys
directory of a remote node you must use an absolute pathname . For a disked node this is
//nodename/sys; for a diskless node it is //partner_node/sys (where partner_node is the node
name of the diskless node’s partner) .

•	 Files	 in	 the	 /sys/node_data directory are specific to the node on which the directory is located .
Therefore, the corresponding files for a diskless node are located in a special directory,
//partner_node/sys/node_data.nodeid, where nodeid is the node number of the diskless node .
We refer to these directories by using the convention /sys/node_data[.nodeid]

•	 The	 pathname	 ‘node_data is a relative pathname . It always refers to the node_data directory of
the node that is making the reference .

Configuring TCP/IP for DOMAIN/IX J-17

THISHOST File

The /sys/node_data[.nodeid]/thishost file defines the Internet name of the local host . You must have a
thishost file on each node that is a TCP/IP host, including the gateway . The file consists of the host’s
Internet name on a single line . For example, the thishost file for JANUS is simply:

janus

NETWORKS File

The networks file defines the Internet addresses and the physical interface name of the local host . On
disked nodes, it is located in /sys/node_data/networks . On diskless nodes it is located in
/sys/node_data.nodeid/networks, where nodeid is the node number of the diskless node . You must have a
networks file for each node that is a TCP/IP host, including the gateways . The networks file format is:

internet_address ON physical_interface [; comment]

A host node’s networks file consists of a single line with the host’s Internet address on the DOMAIN ring
and the physical interface identifier dr0 . A gateway’s networks file also must have the gateway’s Internet
address on the ETHERNET, with the interface identifier il0 . For example, the networks file for the
gateway //JANUS looks like:

197.9.8.1 on dr0
197.10.9.1 on il0

The physical interface for the second DOMAIN network that a DOMAIN BRIDGE router is connected to
is represented as dr1 . If //JANUS were a DOMAIN BRIDGE router, its networks file would look like this:

197.9.8.1 on dr0
X.X.X.X on dr1

where X .X .X .X was the Internet address for JANUS on the other DOMAIN ring .

Service Node Configuration Files

The hosts.txt File

The /sys/tcp/hostmap/hosts.txt file is the official Department of Defense Internet Host table from the
Network Information Center (NIC) . This file contains the names and addresses of all the hosts on the
ARPANET, as well as many other networks in the Internet . You must have a copy of this file on your
service node if you will communicate over ARPANET or any other network that is listed by the NIC .

If do not plan to connect your DOMAIN ring network to the DoD Internet, you should replace hosts.txt
with an empty file or rename the file . Doing so will make the Shell script makehost.sh run faster .

We include a copy of hosts.txt with the TCP/IP software . However, the copy we send may not be the
most current copy of the hosts.txt file . We suggest that you use the copy we ship you initially to create
your host table, and then retrieve the latest version by executing the gettable(8) program . See the
DOMAIN/IX Programmer’s Reference for BSD4.2 for a detailed description of this utility .

 J-18 Configuring TCP/IP for DOMAIN/IX

The local.txt File

The /sys/tcp/hostmap/local.txt file contains network information that is not provided by the Network
Information Center in the hosts.txt file . You should use this file, and not hosts.txt if you assign your own
network number and addresses . You usually do this if your hosts do not use any network listed by the
Network Information Center . You should also add to this file the names and Internet addresses of new
computers and networks that are not yet in The NIC-supplied version of hosts.txt .

To add these names and Internet addresses, edit the version on the service node . You’ll keep only one
version of the local.txt and hosts.txt file in your network, on the service node . Use the following informa-
tion when you edit the local.txt file .

NOTE: The format of the local.txt file is the same as the format for the hosts.txt file . The format of
these files is defined in RFC 810, “DoD Internet Host Table Specification” and is available on-
line at NIC as the file:

 [SRI-NIC] <NETINFO>RFC810 .TXT

 You can retrieve this file through FTP using username ANONYMOUS with any password . See
Using FTP and Telnet for information about FTP .

The local.txt file has three categories of entries called NET, GATEWAY, and HOST .

•	 The	NET entries define the networks that you can access . You list the network number and a
name for each network linked in your TCP/IP implementation . For DOMAIN TCP/IP implemen-
tations, you’ll be listing a DOMAIN network (or, if you use DOMAIN/BRIDGE connections, a
DOMAIN Internet) and an ETHERNET LAN .

•	 The	GATEWAY entries specify the gateways between the networks that you can access . In this
entry or entries, you list both Internet addresses of each gateway node, its name, and certain
other information .

•	 The	HOST entries specify the TCP/IP hosts that you can access . In these entries, you list each
host, its name, and other information . You have as many HOST entries as there are hosts that
you wish to access, including remote hosts . (If you know the remote hosts are listed in hosts.txt,
you need not add them to local.txt; however, it’s fine to have entries listed in both files .)

Configuring TCP/IP for DOMAIN/IX J-19

; NET : NET-ADDR : NETNAME :
; GATEWAY : ADDR, ADDR : NAME : CPUTYPE : OPSYS : PROTOCOLS:
; HOST : ADDR, ALTERNATE-ADDR (if any): HOSTNAME,NICKNAME:
; CPUTYPE : OPSYS : PROTOCOLS :
;
NET : 197.6.3.0 : OFFICE-ETHER :
NET : 197.9.8.0 : DOMAIN-RING :
GATEWAY : 197.9.8.1,197.6.3.8 : JANUS, APOLLO : DN460 : AEGIS : IP/GW, GW/DUMB :
; The following are remote hosts on the ETHERNET
HOST : 197.6.3.15 : BACCHUS : VAX/11-750 : VMS : TCP/TELNET, TCP/FTP :
HOST : 197.6.3.18 : ODIN, WOTAN : VAX/8650 : UNIX : TCP/TELNET, TCP/FTP :
HOST : 197.6.3.22 : TESTBED : VAX/11-785 : UNIX :TCP/TELNET, TCP/FTP :
; The next host entry is for the gateway node. (The gateway
; needs a host entry, also, since it’s also a host.)
HOST : 197.9.8.1, 197.6.3.8 : JANUS, : DN460 : DOMAIN : TCP/TELNET,TCP/FTP :
; The rest of the file lists hosts on the DOMAIN network.
HOST : 197.9.8.3 : DIONYSUS : DN550 : DOMAIN/IX : TCP/TELNET, TCP/FTP:
HOST : 197.9.8.5 : PAN : DN460 : DOMAIN/IX : TCP/TELNET,TCP/FTP :
HOST : 197.9.8.8 : ATHENA : DN300 : DOMAIN/IX : TCP/TELNET, TCP/FTP:
HOST : 197.9.8.9 : APOLLO : DN460 : DOMAIN/IX : TCP/TELNET, TCP/FTP:

Figure 1-4. A local.txt File

Each entry consists of the keyword NET, GATEWAY, or HOST followed by from two to five fields . You
should start the local.txt file with all NET entries, followed by all GATEWAY entries, and then all HOST
entries .

The following rules apply to each entry:

•	 A	semicolon	(:)	terminates	each	field.

•	 Double	colons	(::)	indicate	a	null	field.

•	 A	comma	(,)	separates	values	within	a	field

•	 A	semicolon	(;)	begins	a	comment.		Any	text	on	a	given	line	following	the	semicolon	is	not	part	of	
the host table . A comment can follow an entry on the same line .

•	 Spaces	are	optional	before	and	after	commas	and	colons.	 	

Each NET entry in the local.txt file has the following format:

NET : net-addr : netname :

Where:

net-addr is the network’s Internet network number, followed by a 0; for example
197 .9 .8 .0

netname is the name of the network; for example OFFICE-ETHER .

Each GATEWAY entry in the local.txt file has the following format:

 J-20 Configuring TCP/IP for DOMAIN/IX

GATEWAY : addr1,addr2 : name : [cputype :] [opsys :]
[protocols :]

Where:

addr1 is the address of the gateway on one of the networks that it connects; for example
197 .9 .8 .1

addr2 is the address of the gateway on the other network that it connects; for example
197 .6 .3 .8

name is the Internet name of the gateway; for example, JANUS .

cputype This optional field describes the gateway processor . This field provides you with
information; TCP/IP software does not use it . To ensure consistency you should
use workstation model numbers for DOMAIN nodes, for example DN330 .

opsys This optional field describes the gateway processor’s operating system . This field
provides you with information; TCP/IP software does not use it . To ensure con-
sistency, you should use DOMAIN/IX for nodes that run DOMAIN/IX and
AEGIS/DOMAIN/IX for nodes that run both .

protocols This optional field describes the Internet protocols that the gateway supports . For
DOMAIN/ETHERNET Gateways, specify:

IP/GW Internet Gateway

and either:

GW/DUMB Non-routing gateway, DOMAIN gateways are normally non-
routing .

or:

GW/PRIME Prime gateway . Specify this protocol only if you wish to access
hosts on other networks that are connected (directly or in-
directly) to the ETHERNET network . Do not specify both GW/
PRIME and GW/DUMB .

Each HOST entry in the local .txt file has the following format:

HOST : addr [,alt-addr] : name [,nickname] : [cputype :]
[opsys :] [protocols :]

Where:

addr is the Internet address of the host; for example, 197 .9 .8 .5

alt-addr is one or more alternate Internet addresses for the host, separated by commas;
for example, 197 .6 .3 .8

name is the Internet name of the host; for example, odin .

nickname is one or more alternate names that you can use to access the host . All names
must be separated by commas; for example, wotan, snaer .

Configuring TCP/IP for DOMAIN/IX J-21

cputype This optional field describes the host processor . This field provides you with in-
formation; TCP/IP software does not use it . To ensure consistency, you should use
workstation model numbers for DOMAIN nodes, for example, DN330 .

opsys This optional field describes the host operating system . This field provides you
with information; TCP/IP software does not use it . To ensure consistency, you
should use DOMAIN/IX for nodes that run DOMAIN/IX and
AEGIS/DOMAIN/IX for nodes that run both .

protocols This optional field describes the Internet protocols that the host or gateway sup-
ports . This field provides you with information; TCP/IP software does not use it .
For DOMAIN hosts, including gateways, specify both of the following . If your
node supports other protocols, specify them as defined in RFC 810 .

TCP/FTP FTP file transfer protocol

TCP/TELNET Telnet terminal emulator protocol

HOST_ADDR File

If you will be communicating with any systems on the ETHERNET LAN that do not support the Address
Resolution Protocol (ARP), you must put information about the system’s ETHERNET address in the
/sys/tcp/host_addr file and run the maphost program on the gateway (from the
/sys/node_data[node.id]/startup[node_type] file, after the tcp_server is started . See Managing TCP/IP-
Based Communications Products for details .

DOMAIN/IX Files

DOMAIN/IX BSD4 .2 uses the following files:

•	 /etc/hosts.equiv

•	 /etc/networks

•	 /etc/hosts

You must create the /etc/networks and /etc/hosts files only if you are using DOMAIN/IX BSD4 .2 TCP/IP-
based communications on a DOMAIN network that does not have a gateway . You must have these files if
you use rlogin, lpr, rcp, rsh, and rexec, as well as ftp and telnet . You do not have to create these files
on DOMAIN networks that use a TCP/IP gateway, because the /sys/tcp/hostmap/makehost.sh Shell
script creates them from information in the local.txt file .

hosts.equiv

The /etc/hosts.equiv file lists hosts that are equivalent to your host for login purposes . That is, if a host is
on the /etc/hosts.equiv file for you node it can execute any of the following programs or functions using
your node:

•	 lpr(1)

•	 lprm(1)

•	 lpq(1)

•	 rcmd(3X)

•	 rcp(1)

•	 rlogin (1) (without entering a password)

 J-22 Configuring TCP/IP for DOMAIN/IX

•	 rsh(1)

Note that the node that runs the line printer daemon lpd must be configured for TCP/IP communications
and must have the names of all nodes that will print files using this daemon in its /etc/hosts.equiv file .

The /etc/hosts.equiv file contains the name of each equivalent TCP/IP host, one name per line . For
example:

janus
dionysys
bacchus
pan
athena

networks File

The /etc/networks file consists of a single line with the following form for each Internet network:

domain-ring network_number

Where domain-ring is a keyword (all lower case) and network_number is the Internet network number
of the DOMAIN network, and the two values are separated by one or more blanks or TAB characters .

In a DOMAIN network where there is no gateway to additional (non-DOMAIN) networks, this file con-
sists of a single line . For example:

domain-ring 197.9.8

The /etc/hosts File

The /etc/hosts file contains the name and Internet address of each TCP/IP host . Each line has the
following form:

lnternet_address Host_name

The address and name must be separated by one or more blanks or TAB characters .

For example:

197.9.8.1 JANUS
197.9.8.3 DIONYSUS
197.9.8.5 PAN
197.9.8.8 ATHENA
197.9.8.9 APOLLO

Defining the Configuration
This section describes how you can define the configuration for a DOMAIN network that uses TCP/IP
communications . It is helpful if you have never configured TCP/IP and must configure a complete net-
work . You can skip this information and begin the configuration procedure (in Part 2) if you are familiar
with TCP/IP or if you are configuring a single node .

To define the configuration you:

1 . Select the network, gateway and host Internet Addresses .

2 . Define the host mapping files .

Configuring TCP/IP for DOMAIN/IX J-23

3 . Select the nodes that execute special server processes .

Selecting Internet Addresses

You must select Internet addresses for your hosts and gateways before you can configure TCP/IP-based
communications .

•	 You	 must	 assign	 an	 Internet	 address	 to	 each	 node	 that	 contains	 TCP/IP	 software	 and	 acts	 as	 a	
host . All the Internet addresses you assign to hosts on a DOMAIN network must have the same
network number, but different host numbers .

•	 You	must	assign	two internet addresses to a gateway node . Since the gateway node belongs to two
local networks, its two Internet addresses have different network numbers .

As described before, Internet addresses have variable-length fields for the network numbers and host
numbers . You choose a length for your network numbers by choosing Type A, B, or C Internet ad-
dresses . Type A, B, and C Internet addresses differ in the size of the network number and host number
fields . Table 1-4 summarizes these differences:

Table 1-4. Type A, B, and C Internet Address Comparison

Type Format Description Example

A W .
(network number)

X .Y .Z
(host number)

One-byte network
number, three-byte
host number .

48 .1 .2 .1
(decimal)

B W .X .
(network number)

Y .Z
(host number)

Two-byte network
number, two-byte
host number .

139 .2 .9 .2
(decimal)

C W .X .Y .

(network
number)

Z

(host
number)

Three-byte network
number,
one-byte host
number .

192 .9 .1 .2
(decimal)

For example, the Type A address in the table has a network number of 48 . Contrast this with the network
number in the Type B address (139 .9) and in the Type C address (192 .9 .1) . In the Type C address, you
may only assign host numbers 0 - 255, whereas in the Type A address, you can assign host numbers 0 .0 .0
through 255 .255 .255 .

You should choose an address type, network numbers, and host numbers to suit the number of hosts at
your site . If you plan to use DOMAIN TCP/IP to communicate on the ARPANET, you must apply to the
Network Information Center (NIC) for a network number .

Use these guidelines to select Type A, B, or C addressing:

•	 Type	 A	 addresses	 allow	 for	 large	 numbers	 of	 hosts,	 up	 to	 16,777,216,	 on	 a	 single	 network.		
Choose Type A addressing ONLY if you plan never to access the ARPANET, because many Type
A addresses are already assigned by the Network Information Center (NIC) .

 Type A network numbers must be in the range 0 - 127 . Type A host numbers must be in the
range 0 .0 .0 through 255 .255 .255 . Therefore, Type A addresses range from 0 .0 .0 .0 through
127 .255 .255 .255 .

 J-24 Configuring TCP/IP for DOMAIN/IX

•	 Type	B	addresses	allow	for	up	to	65,535	hosts.		Choose	Type	B	addresses	if	you	plan	a	very	large	
number of hosts . The NIC will sometimes assign you a Type B network number .

 Type B network numbers must be in the range 128 .0 - 191 .255 . Type B host numbers must be in
the range 0 .0 through 255 .255 . Therefore, Type B addresses range from 128 .0 .0 .0 through
191 .255 .255 .255 .

•	 Type	 C	 addresses	 allow	 for	 only	 256	 hosts,	 but	 allow	 network	 numbers	 between	 192.0.0	 and	
255 .255 .255 (three-byte network numbers) . Therefore, Type C addresses range from 192 .0 .0 .0
through 255 .255 .255 .255 . If you apply to the NIC for a network number, you will usually receive
a Type C network number .

In most cases, you should use Type C addresses even if you don’t plan to register with NIC and access the
ARPANET immediately . We recommend Type C addresses because you can choose a number not yet
used by any other network . (To see the reserved network numbers, read the file
/sys/tcp/hostmap/hosts.txt .) Then, if you wish to access the ARPANET in the future, you will not need to
change network numbers in your Internet addresses .

Configuring TCP/IP for DOMAIN/IX J-25

Defining the Mapping Files

Once you have defined the Internet addresses, you can determine the location of the network-wide mapping
files that you will need, and their contents . You should:

1 . Determine the service node (or nodes) that will have the host mapping tables .

2 . Determine the name of the BSD4 .2 administrative node (or nodes) that will have the /etc direc-
tory .

3 . If you are configuring TCP/IP that uses a gateway, define the contents of the //ser-
vice_node/sys/tcp/local.txt .

 If you are configuring BSD4 .2 TCP/IP on a network that does not have an ETHERNET gateway,
define the contents of the /etc/networks and /etc/hosts files .

Determining the Service and Administrative Nodes

You may wish to have one or a few service nodes . If you have a single such node, then you only have to
maintain a single database . If you have a large network or wish to ensure the availability of mapping
information, additional nodes can be helpful . However, each host is linked to a single node, and you will
have to manually change the links in order to change the host’s service node . Also, you must update each
service node whenever mapping information changes . The same considerations apply to selecting adminis-
tative nodes .

The service node does not have to be a TCP/IP host or gateway . Because the DOMAIN/IX administrative
node uses BSD4 .2, it is usually a TCP/IP host .

Defining the local.txt file

Define the local.txt file by determining the information required for each network, gateway, and host in
your internet . If you allow connection to the DARPA internet, do not include any information that is
already in the hosts.txt file .

If you are connecting the DOMAIN network to an Internet, that is to more than just a single ETHER-
NET, you should apply the following considerations when you define the local.txt GATEWAYS entries .

•	 The	 order	 that	 you	 use	 for	 the	GATEWAY	 entries	 affects	 the	 gateway	 that	 is	 used	when	TCP/IP	
software establishes a connection . TCP/IP always tries to use the first applicable gateway on the
list .

Defining the /etc files

You need to define the /etc directory files if you are configuring a DOMAIN/IX BSD4 .2 network that
does not use gateways . In this case, the /etc/networks file consist of a single line with the network name
and address, for example,

our-net-ether 197.9.8

The /etc/hosts file must contain the Internet address and name of each BSD4 .2 node on the network .

 J-26 Configuring TCP/IP for DOMAIN/IX

Determining Server Processes

Before you begin configuring a network that uses TCP/IP you should determine which nodes use which
server processes . Table 4-1 lists these processes, and the “Servers and Daemons” section describes where
they are required .

Configuring TCP/IP for DOMAIN/IX J-27

Part 2 - Configuring TCP/IP
This part describes how to configure a DOMAIN network or node that uses TCP/IP communications or
supports TCP/IP based communications . It also briefly describes requirements for configuring TCP/IP on
non-DOMAIN hosts .

NOTE: Before you configure a node you should be familiar with the terms and concepts that are
described in Part 1 .

If you are configuring a DOMAIN network to use TCP/IP-based communications for the first time, you
must configure all of the nodes that use or support TCP/IP communications .

Configuring TCP/IP on an Internet

If you are configuring a DOMAIN network that uses an ETHERNET gateway to communicate with other
networks, use the procedures described in this appendix in the following order:

1 . Use Procedure 1 to configure the service node or nodes .

2 . Use Procedure 2 to configure each node that uses DOMAIN/IX TCP/IP, that is, each host and
gateway .

3 . Use Procedure 4 to configure the remote (non-DOMAIN/IX) hosts that will communicate with
the DOMAIN network .

Configuring DOMAIN-Only BSD4.2 TCP/IP

If you are configuring a DOMAIN network that supports DOMAIN/IX BSD4 .2, but does not have access
to any non-DOMAIN networks, use procedure 3 to configure TCP/IP on each BSD4 .2 node .

 J-28 Configuring TCP/IP for DOMAIN/IX

Configuring DOMAIN/IX Nodes
For purposes of installing and configuring TCP/IP, DOMAIN/IX nodes can be divided into three classes:

Host Nodes that use TCP/IP communications to communicate with other hosts

Gateway Nodes that connect two networks (Gateways are also TCP/IP hosts)

Service Nodes that aid TCP/IP communications but do not necessarily act as hosts . Service nodes
provide host mapping tables and contain the /etc directory .

Additionally, the exact procedures that you use depend on whether your node:

•	 Has	a	disk	or	is	diskless

•	 Is	 a	 DOMAIN/IX	 BSD4.2	 node	 on	 a	 DOMAIN	 network	 that	 is	 not	 connected	 to	 any	 other	 net-
works .

This part of the appendix includes procedures for all types of nodes .

Table 2-1 lists the procedures in this part and types of hosts that they can configure . The rest of this part
consists of the configuration procedures .

NOTES: These procedures refer to the /sys/node_data[.nodeid] and ‘node_data directories . These two
terms are not interchangeable; the first is an absolute reference, the second is relative . Using the
wrong name in a link can result in circular file references .

 Always configure the service node before you configure hosts and gateways . This order insures
that all tables are up-to-date and eliminates any duplication of effort

Table 2-1. Configuration Procedures

Procedure System Type

1 Service node

2 DOMAIN/IX Internet Host or Gateway

3 DOMAIN/IX Host on a single DOMAIN
network

4 Various Remote Host

All of these procedures describe the steps required for either a disked or diskless node . (However, you
should not have a diskless service node, as the node’s main function is to provide mapping files informa-
tion .) Similarly, procedures 2 and 3 describe procedures for hosts and gateways . Some steps in these
procedures are required for only disked, or only diskless nodes or for gateways only, and they are marked
as such .

Configuring TCP/IP for DOMAIN/IX J-29

PROCEDURE 1. Configuring the Service Node

NOTE: This procedure assumes that you are using a DOMAIN/IX BSD4 .2 C Shell .

❏ Task 1: Select the Internet Addresses

If you have not already done so, determine the Internet addresses for all hosts, including the remote hosts
that you can access across the gateway .

❏ Task 2: Install the Software

If you have not already done so, use the procedures described in the associated Release Notes to install
software in the following order:

NOTES: See the TCP/IP Release Notes to determine the revision level required for each of the following
software .

 If you are configuring a diskless host, you must install the following software on the hosts’s
partner node .

1 . DOMAIN

2 . C, DOMAIN/IX

Note: When you install BSD4 .2 DOMAIN/IX you must give /etc/run_rc root ownership .
Otherwise, processes required for TCP/IP will not execute properly .

3 . TCP/IP

 A service node can be a host or gateway, but does not have to be either . The files that are in-
stalled when you install TCP/IP depend upon the options you select .

 The Release Notes list the files are installed in each case . Use the ls command to make sure that
all the required files are installed . For example, if this node is a service node only:

% Is /sys/tcp
host_addr hostmap
% Is /sys/tcp/hostmap
hashnic hosts./txt htable local.txt
makehdb makehost.sh sortnic

❏ Task 3: Configure the hosts.txt File

If you are connecting your DOMAIN network to a Department of Defense (DoD) Internet, then you
should use a /sys/tcp/hostmap/hosts.txt file . This file contains the Internet mapping information for all
the hosts, gateways, and networks on the ARPANET and other networks on the Internet .

NOTE: The copy of hosts.txt that we supply may not be the most current version available . After you
have configured at least one host, you can obtain the current hosts.txt file and update the map-
ping tables by running the gettable(8) command .

If you are not connecting your DOMAIN network to the DoD Internet, replace this file with an empty file .
If you wish to save the information, rename the file to /sys/tcp/hostmap/hosts.txt.SRn, where n is the
software release number . Using an empty file prevents the configuration procedure from adding informa-
tion in the hosts.txt file to the mapping tables, and speeds up Task 5 .

 J-30 Configuring TCP/IP for DOMAIN/IX

❏ Task 4: Configure the local.txt File

Edit the /sys/tcp/hostmap/local.txt file .

1 . Add a NET entry to the file for each network that you can access, including your DOMAIN net-
work . Do not add any entries that are already in the hosts.txt file . The NET entries should be the
first entries in the file . NET entries have the following format:

NET : netaddr : netname

 Where netaddr is the network’s Internet network number followed by .0, .0.0, or .0.0.0, depend-
ing on whether the address is Type A, B, or C, and netname is the name that you have assigned
to the network .

 For example, if your DOMAIN network has an Internet network number of 197 .9 .8 and is
named SAMPLE-NET, enter the following in the local.txt file:

NET : 197.9.8.0 : SAMPLE-NET

2 . Add a GATEWAY entry to the file for each gateway between networks that you can access . Do
not add any entries that are already in the hosts.txt file . All GATEWAY entries should follow the
NET entries in the file . GATEWAY entries have the following format:

GATEWAY : addr1, addr2 : name : [cputype :] [opsys :] [protocols :]

 Where addr1 is the gateway’s Internet address on one network, addr2 is the gateway’s Internet
address on the second network, and name is the gateway’s host name .

 For example, if your gateway is named JANUS, is a DSP90 running AEGIS, and has an Internet
address of 197 .9 .8 .1 on the DOMAIN network and an address of 197 .6 .3 .8 on the ETHERNET,
enter the following in the local .txt file:

GATEWAY : 197.9.8.1, 197.6.3.8 : JANUS : DSP90 : DOMAIN : IP/GW , GW/DUMB

3 . Add a HOST entry to the file for each host and each gateway on all networks that you can access .
Do not add any entries that are already in the hosts.txt file . All HOST entries should follow the
GATEWAY entries in the file . HOST entries have the following format:

HOST : addr[,alt-addr] : name [.nickname] : [cputype :] [opsys :] [protocols :]

 For example, if a host is named DIONYSUS, is a DN550 running AEGIS, and has an Internet ad-
dress of 197 .9 .8 .3, enter the following in the local .txt file:

HOST : 197.9.8.3 : DIONYSUS : DN550 : DOMAIN :
 TCP/TELNET, TCP/FTP:

❏ Task 5: Create the Host Tables

Run the /sys/tcp/hostmap/makehost.sh Shell script from any node . This script converts the local.txt file
into a format that TCP/IP software can use .

Configuring TCP/IP for DOMAIN/IX J-31

For example:

% /sys/tcp/hostmap/makehost.sh
Formatting tables
Sorting Tables
Formatting tables (pass 2)
Hashing
input: hosts.tmp1, 1466 lines
output: hosts.hst, 215519 bytes
hash: 1542 bytes, 257 entries, 0 holes
keys: 9794 bytes 534 entries (largest 662 longest 37)
data: 116019 bytes, 1466 entries (largest 740)
(file) "hosts.hst" moved.
(file) "gateways" moved.
(file) "hosts.tmp" deleted.
(file) "hosts.tmpl" deleted.
(file) "nets.tmp" deleted.
(file) "hosts.txt1" deleted.
(file) "nets.txt1" deleted.

❏ Task 6: : Edit the /etc/hosts.equiv File

The /etc/hosts.equiv may or may not be physically located on the service node . We include the file here
because it performs a service function . Also, if you edit /etc/hosts.equiv at this point when you configure a
network for the first time, you do not have to edit it when you configure individual hosts .

As a general rule, the /etc directory resides on the DOMAIN/IX administrative node and all other nodes
access it through links . In most cases, only the system administrator may be able to edit this file .

Enter the name of each host that you will allow to execute the rsh(1) program or rcmd(3) routine, or to
use rlogin(1) without entering a password in the /etc/hosts.equiv file . Each entry in this file consists of a
single line with the host name, for example:

lilly

❏ Task 7: Configure Other Services

The service node can also be a TCP/IP host or gateway . You should now configure that facility .

•	 If	the	Service	is	a	TCP/IP	host	or	gateway,	continue	with	Procedure	2,	skipping	steps	1	through	4.

END OF PROCEDURE 1.

 J-32 Configuring TCP/IP for DOMAIN/IX

PROCEDURE 2. Configuring A DOMAIN/IX BSD4.2 Host or Gateway Node

❏ Task 1: Select an Internet Address

If you have not already done so, select an Internet address for the host .

❏ Task 2: Stop the TCP_SERVER

If you are already using TCP/IP on the node, find the process ID of the tcp_server and stop that process
by entering the following commands:

% ps aux
USER PID SZ STAT TIME COMMAND

root 2 0 R 7693:05 null
root 34 0 S 3425 tcp_server
.
.
.

% kill -9 34

❏ Task 3: Install the Software

If you have not already done so, use the procedures described in the associated Release Notes to install
software in the following order:

NOTES: See the appropriate Release Notes to determine the revision level required for each of the follow-
ing software .

 If you are configuring a diskless host, you must install the following software on the host’s partner
node .

1 . DOMAIN

2 . C, DOMAIN/IX BSD4 .2

Note: When you install the BSD4 .2 you must give /etc/run_rc root ownership . Otherwise,
processes required for TCP/IP will not execute properly .

3 . TCP/IP

 After you install TCP/IP, execute the ls command to check that the TCP/IP software was properly
installed and that the four required links from the /sys/tcp directory to the mapping service node
exist . In the following example, edny is the mapping service node:

Configuring TCP/IP for DOMAIN/IX J-33

% ls -l /sys/tcp
total 452
-rwxrwxrwx 1 root 9824 Sep 19 13:42 ether_diag
-rwxrw-rwx 1 root 78664 Sep 19 13:42 ftp_server
lrwxrwxrwx 1 root 27 Jan 8 10:06 gateways -> //edny/sys/tcp/gateways
lrwxrwxrwx 1 root 28 Jan 8 10:06 host_addr ->//edny/sys/tcp/host_addr
lrwxrwxrwx 1 root 26 Jan 8 10:06 hostmap -> //edny/sys/tcp/hostmap
lrwxrwxrwx 1 root 28 Jan 8 10:06 hosts.hst-> //edny/sys/tcp/hosts.hst
drwxrwxrwx 1 root 1024 Sep 19 13:42 lib
-rwxrwxrwx 1 root 27050 Sep 19 13:42 makegate
-rwxrwxrwx 1 root 3122 Sep 19 13:42 maphost
-rwxrwxrwx 1 root 19 Sep 19 13:57 networks
-rwxrwxrwx 1 root 103214 Sep 19 13:42 tcp_server
-rwxrwxrwx 1 root 91640 Sep 19 11:02 tcp_server.sr8.gateway
-rwxrwxrwx 1 root 4722 Sep 19 13:42 tcpinit
-rwxrwxrwx 1 root 1662 Sep 19 11:02 tcpreset
-rwxr-xr-x 1 root 21648 Dec 17 15:27 telnet_server
-rwxrwxrwx 1 root 7 Sep 19 13:56 thishost

❏ Task 4: Update the Mapping Service Node Host Tables

NOTE: If you are configuring TCP/IP for the first time on your network you should configure your map-
ping service nodes before you configure your host nodes . The mapping service node files will
then be up-to-date . If you’ve already configured your service nodes, skip this task .

If you are configuring a single node for the first time, or if you are changing the node’s Internet address,
use the following steps to update the TCP/IP mapping service node’s host mapping tables:

NOTE: The install procedure creates the pathname /sys/tcp/hostmap on your local node as a link to the
directory //mapping_service_node/sys/tcp/hostmap .

1 . Add (or change) the node’s HOST entry in the /sys/tcp/hostmap/local.txt file . Each host and
gateway must have an entry with the following format:

HOST : addr[,alt-addr] : name [.nickname] : [cputype :] [opsys :] [protocols :]

 For example, if your host is named DIONYSUS, is a DN550 running DOMAIN/IX, and has an
Internet address of 197 .9 .8 .3, enter the following in the local.txt file:

HOST : 197.9.8.3 : DIONYSUS : DN550 : DOMAIN/IX : TCP/TELNET, TCP/FTP:

2 . Gateways Case: If you are configuring a gateway it must also have a GATEWAY entry in the lo-
cal.txt file . All GATEWAY entries must precede the HOST entries in the file .

GATEWAY : addr1, addr2 : name : [cputype :] [opsys :] [protocols :]

 Where addr1 is the gateway’s Internet address on one network, and addr2 is the gateway’s Inter-
net address on the second network .

 For example, if your gateway is named JANUS, is a DSP90 running DOMAIN/IX, and has an In-
ternet address of 197 .9 .8 .1 on the DOMAIN network and an address of 197 .6 .3 .8 on the
ETHERNET, enter the following in the local.txt file:

GATEWAY : 197.9.8.1, 197.6.3.8 : JANUS : DSP90 :
 DOMAIN/IX : IP/GW , GW/DUMB

 J-34 Configuring TCP/IP for DOMAIN/IX

3 . Run the /sys/tcp/hostmap/makehost.sh Shell script from any node . This script converts the lo-
cal.txt file into a format that TCP/IP software can use .

 For example:

% /sys/tcp/hostmap/makehost.sh
Formatting tables
Sorting Tables
Formatting tables (pass 2)
Hashing
input: hosts.tmp1, 1466 lines
output: hosts.hst, 215519 bytes
hash: 1542 bytes, 257 entries, 0 holes
keys: 9794 bytes 534 entries (largest 662 longest 37)
data: 116019 bytes, 1466 entries (largest 740)
(file) "hosts.hst" moved.
(file) "gateways" moved.
Updating 4.2bsd host tables
(file) "/etc/hosts" moved.
(file) "/etc/gateways" moved.
(file) "/etc/networks" moved.
(file) "hosts.tmp" deleted.
(file) "hosts.tmp1" deleted.
(file) "nets.tmp" deleted.
(file) "hosts.txt1" deleted.
(file) "nets.txt1" deleted.

❏ Task 5: Update the /etc/hosts.equiv File

NOTE: In most installations the /etc directory resides on an administrative node and all other nodes ac-
cess it through links . In this case, only the system administrator may be able to edit this file .

If you will allow this host to execute the rsh(1) program or rcmd(3) routine, or to use rlogin(1) without
entering a password, then enter the host name in the /etc/hosts.equiv file . Each entry in this file consists
of a single line with the host name, for example:

lilly

❏ Task 6: Edit the Node Startup Files

Use the following steps to update your node startup files .

1 . Edit the /sys/node_data[.node_id]/startup[.type] file to include the following commands:

 REQUIRED: These commands must be in the following order . Otherwise, processes that are in-
itialized by run_rc will not execute . However, you can include other commands between them .

cps /sys/tcp/tcp_server -n tcp_server
env SYSTYPE ’bsd4.2’
cps /etc/run_rc

2 . Edit the /etc/rc file by removing the comment character (#) from the lines that contain processes
that you want to run on this host . The “BSD4 .2 Daemons” section in Part 1 describes the
processes used for TCP/IP-based communications in detail .

Configuring TCP/IP for DOMAIN/IX J-35

 In most cases you will want to run inetd, which can start several TCP/IP-related daemons . In this
case, uncomment the following lines:

if [-f /etc/inetd]; then
 /etc/inetd &
fi

3 . If you specified inetd in step 2, edit the /etc/inetd.conf file by removing the comment character
(#) from the lines that contain processes that you want to run on this host .

❏ Task 7: Edit the Shell Login Files

Edit your .cshrc file if you use the C shell or your .profile file if you use the Bourne shell to include the
/com directory in the search path . The /com directory includes the tcpstat, host, net, and edip com-
mands that you use to monitor and manage TCP/IP communications . By including the /com directory in
the search path you eliminate the need to specify the full pathname for these commands .

The /com directory also includes the DOMAIN versions (as opposed to BSD4 .2 versions) of telnet and
ftp . Therefore, the /com directory must follow the /usr/ucb directory in the search path .

For example, include the following line in your .cshrc file:

set path=(. /bin /usr/bin /usr/ucb /com)

or include the following line in your .profile file:

export PATH
PATH=:.:/bin:/usr/bin:/usr/ucb:/com:)

❏ Task 8: Edit the thishost File

Disked Case: If your node has a disk, edit the /sys/node_data/thishost file to replace the word “apollo”
with your host’s name . This file must consist of a single line with your host’s name, for example:

lilly

Diskless Case: If your node is diskless, copy the partner node’s /sys/node_data/thishost file to
/sys/node_data.node_id/thishost . Then edit this file to replace the host name with your host’s name .

❏ Task 9: Edit the networks File

Edit the /sys/node_data[.node_id]/networks file to include the host’s Internet address and physical inter-
face .

This file looks as follows immediately after you install TCP/IP:

0.0.0.0 on dr0
0.0.0.0 on il0

Diskless Case: If your node is diskless, copy the partner node’s /sys/node_data/networks file to
/sys/node_data.node_id/networks . Then continue with the Host or Gateway case .

Host Case: Hosts have a single address and a single physical interface . The host’s physical interface must
be dr0 . Therefore, a host’s networks file must have a single entry .

 Edit the file by changing the address on the first line and deleting the second line . For example, if
your host’s Internet address is 197 .9 .8 .3, you should edit the networks file to look as follows:

 J-36 Configuring TCP/IP for DOMAIN/IX

197.9.8.3 on dr0

Gateway Case: Gateways have one address and physical interface for each network . The physical inter-
face for the DOMAIN network is dr0; the physical interface for the ETHERNET network is il0 .
Therefore, a host’s networks file must have two single entries .

 Edit the file by changing the address on each line . For example, if your gateway’s Internet address on
the DOMAIN network is 197 .9 .8 .1 and the address on the ETHERNET LAN is 197 .6 .3 .8, you
should edit the networks file to look as follows:

197.9.8.1 on dr0
197.6.3.8 on il0

❏ Task 10: Initialize TCP/IP

You initialize TCP/IP by starting the node’s tcp_server process and updating its host tables, if necessary .

1 . Start the TCP_server .

•	 Reboot	 the	node.	 	Because	you	have	 included	 the	 required	command	 in	 the	node	startup	 file,	
the TCP_Server automatically initializes when the node reboots . Rebooting the node also en-
sures that any other TCP/IP processes are started, and that all processes are up-to-date .

 To reboot the node:

1 . Enter the DM ex command as follows:

Command: ex

 All current processes stop executing, the operating system exits, and the node enters the
bootshell, which prompts you with parentheses . Enter the go command as follows:

) go

 AEGIS reboots and returns you to the dm login message . You can now log in and use
TCP/IP .

NOTE: When the TCP_server initializes it automatically executes the following programs:

•	 /sys/tcp/tcpinit
•	 /sys/tcp/makegate

2 . If your node will communicate with non-DOMAIN hosts that do not understand the Address
Resolution Protocol (ARP), run the /sys/tcp/maphost program .

END OF PROCEDURE 5-2.

Configuring TCP/IP for DOMAIN/IX J-37

PROCEDURE 3. Configuring a DOMAIN/IX BSD4.2 Host that Communicates Only On the
DOMAIN Network

❏ Task 1: Select an Internet Address

If you have not already done so, select an Internet address for the host .

❏ Task 2: Stop the TCP_SERVER

If you are already using TCP/IP on the node, find the process ID of the tcp_server and stop that process
by entering the following commands:

% ps aux
USER PID SZ STAT TIME COMMAND

root 2 0 R 7693:05 null
root 34 0 S 3425 tcp_server
.
.
.

% kill -9 34

❏ Task 3: Install the Software

If you have not already done so, use the procedures described in the associated Release Notes to install
software in the following order:

NOTES: See the appropriate Release Notes to determine the revision level required for each of the follow-
ing software .

 If you are configuring a diskless host, you must install the following software on the hosts’s
partner node .

1 . DOMAIN

2 . C

3 . DOMAIN/IX BSD4 .2

Note: When you install BSD4 .2 you must give /etc/run_rc root ownership . Otherwise,
processes required for TCP/IP will not execute properly .

❏ Task 4: Update the /etc Directory files

If you are configuring a single node for the first time, or if you are changing the node’s Internet address,
use the following steps to update the TCP/IP files in the /etc directory:

NOTE: In most installations the /etc directory resides on an administrative node and all other nodes ac-
cess it through links . In this case, only the system administrator may be able to edit these files .

1 . Add an entry to the /etc/hosts file . Each entry consists of a single line with the Internet address
followed by the host name . For example, if your host’s Internet Address is 197 .9 .8 .3 and it’s
name is DIONYSUS, add the following line to the /etc/hosts file:

 J-38 Configuring TCP/IP for DOMAIN/IX

197.9.8.3 dionysus

2 . Make sure there is an entry in the /etc/networks file . There should only be a single line in this file,
consisting of a network name followed by the Internet network number . Therefore, you only need
to edit this file once, when you configure the first host on your network .

 For example, if your network is named sample-ring and your network number is 197 .9 .8, the
/etc/networks file should look as follows:

sample-ring 197.9.8

3 . If you will allow this host to execute the rsh(1) program or rcmd(3) routine, or to use rlogin(1)
without entering a password, then enter the host name in the /etc/hosts.equiv file . Each entry in
this file consists of a single line with the host name, for example:

lilly

❏ Task 5: Edit the Node Startup Files

Use the following steps to update your node startup files . See Part 1 for a discussion of the processes that
you can start using each of these files:

1 . Edit the /sys/node_data[.node_id]/startup[.type] file to include the following commands . The
commands must be in the following order, but you can include other commands between them .

cps /sys/tcp/tcp_server -n tcp_server
env SYSTYPE ’bsd4.2’
cps /etc/run_rc

2 . Edit the /etc/rc file by removing the comment character (#) from the lines that contain processes
that you want to run on this host . The “BSD4 .2 Daemons” section in Part 1 describes the
processes used for TCP/IP-based communications in detail .

 In most cases you will want to run inetd, which can start several TCP/IP-related daemons . In this
case, uncomment the following lines:

if [-f /etc/inetd]; then
 /etc/inetd &
fi

3 . If you specified inetd in step 2, edit the /etc/inetd.conf file by removing the comment character
(#) from the lines that contain processes that you want to run on this host .

❏ Task 6: Edit the Shell Login Files

Edit your .cshrc file if you use the C shell or your .profile file if you use the Bourne shell to include the
/com directory in the search path . The /com directory includes the tcpstat, host, net, and edip com-
mands that you use to monitor and manage TCP/IP communications . By including the /com directory in
the search path you eliminate the need to specify the directory in these commands .

The /com directory also includes the DOMAIN versions (as opposed to BSD4 .2 versions) of telnet and
ftp . Therefore, the /com directory must follow the /usr/ucb directory in the search path .

For example, include the following line in your .cshrc file:

set path=(. /bin /usr/bin /usr/ucb /com)

Configuring TCP/IP for DOMAIN/IX J-39

or include the following line in your .profile file:

export PATH
PATH=:.:/bin:/usr/bin:/usr/ucb:/com:

❏ Task 7: Edit the thishost File

Edit the /sys/node_data[.node_id]/thishost file to replace the word “apollo” with your host’s name . This
file must consist of a single line with your host’s name, for example:

lilly

❏ Task 8: Edit the networks File

Edit the /sys/node_data[.node_id]/networks file to include the host’s Internet address and physical inter-
face . The physical interface for a host that is not a gateway must be dr0 .

This file looks like this immediately after you install TCP/IP:

0.0.0.0 on dr0
0.0.0.0 on il0

If your Internet address 197 .9 .8 .3, you should edit this file to look as follows:

197.9.8.3 on dr0

❏ Task 9: Initialize TCP/IP

You initialize TCP/IP by starting the node’s tcp_server process .

•	 Reboot	 the	node.	 	Because	you	have	 included	 the	 required	command	 in	 the	node	 startup	 file,	 the	
TCP_Server automatically initializes when the node reboots . Rebooting the node also ensures that
any other TCP/IP server processes are started, and that all processes are up-to-date .

 To reboot the node:

1 . Enter the DM ex command as follows:

Command: ex

 All current processes stop executing, the operating system exits, and the node enters the boot-
shell, which prompts you with parentheses .

2 . Enter the go command as follows:

) go

 AEGIS reboots and returns you to the DM login message . You can now log in and use
TCP/IP .

 J-40 Configuring TCP/IP for DOMAIN/IX

NOTE: When the TCP_server initializes it automatically executes the following programs:

•	 /sys/tcp/tcpinit
•	 /sys/tcp/makegate

END OF PROCEDURE 3.

Configuring TCP/IP for DOMAIN/IX J-41

Configuring Non-DOMAIN Hosts
In the same way that you must add the names and Internet addresses of foreign networks, gateways, and
hosts to the local.txt file on the DOMAIN network, you must add the names and Internet addresses of the
DOMAIN network, gateway, and hosts to some equivalent file or files on ETHERNET side of the connec-
tion . Each foreign host that will communicate with the DOMAIN network must have access to this infor-
mation .

We can not provide procedures for all possible situations; however, we can provide some general rules
that may be helpful if you are a first-time user of TCP/IP . The following sections cover the case if you are
using a DARPA standard TCP/IP implementation and if you are using BSD4 .2 UNIX TCP/IP .

Configuring DARPA TCP/IP Hosts

If you are configuring a host that uses DARPA standard TCP/IP you must edit the hosts .txt or an equiv-
alent file used for hosts that are not listed by the NIC to include the DOMAIN Network, gateway, and
hosts . After you edit this file you may have to execute additional steps to update the host’s internal
mapping tables .

Configuring BSD4.2 UNIX Hosts

If you are configuring a host that uses BSD4 .2 UNIX you must do the steps described in Procedure 2 at
the non-DOMAIN host . We assume several things in this procedure, including:

•	 You	have	the	permissions	required	to	edit	such	files	as	/etc/hosts on the non-DOMAIN host .

•	 You	 understand	 the	 /etc/rc file on the UNIX system well enough to set up the servers and
daemons that are appropriate for the UNIX host .

 J-42 Configuring TCP/IP for DOMAIN/IX

PROCEDURE 4. Configuring a Non-DOMAIN BSD4.2 Host to Communicate with a Host
on a DOMAIN Network

❏ Task 1: Edit /etc/networks

Make sure that there is an entry in the /etc/networks file for the DOMAIN network that you want to
access . Unless you are adding the first DOMAIN host, there should already be an entry in the file .
/etc/networks file entries consist of the network’s name followed by its Internet network number . For
example:

domain-ring2 197.9.8

Note that in this example the three digit Internet network number indicates that the DOMAIN network
uses class C Internet addresses .

The method you use to manage the /etc/networks file depends upon your system administration
procedures . For example, you might edit the /etc/networks file directly . Or, you might edit a file similar to
local.txt file and use the htable(8) command to put the entries in the /etc/networks file . See your host’s
BSD4 .2 documentation for more information on htable .

❏ Task 2: Edit /etc/hosts

Make sure that there is an entry in the /etc/hosts file for the DOMAIN host (or hosts) that will communi-
cate with this host . Entries in the /etc/hosts file entries consist of the network’s name followed by its
Internet network number . For example:

197.9.8.3 dionysus

The method you use to manage the /etc/hosts file depends upon your system administration procedures .
For example, you might edit the /etc/hosts file directly . Or, you might edit a file similar to local.txt file
and use the htable(8) program to put the entries in the /etc/hosts file . See your host’s BSD4 .2 documen-
tation for more information on htable .

❏ Task 3: Edit /etc/hosts.equiv

Enter in the /etc/hosts.equiv file the name of each DOMAIN host that you will allow this host to access
using the rsh(1) program or rcmd(3) routine, or to use rlogin(1) without entering a password . Each entry
in this file consists of a single line with the host name, for example:

dionysus

❏ Task 4: Edit /etc/rc

Edit the non-DOMAIN host’s /etc/rc file, if necessary . This file controls the services that this host
provides to other hosts; it is a UNIX Shell script that executes automatically when the remote UNIX
system is rebooted . Some installations use a /etc/rc.local file for commands that are pertinent to a single
site . For more details on rc see rc(8) in the BSD4.2 UNIX Programmer’s Manual .

The /etc/rc file must specify the routed routing daemon and any other daemons, such as telnetd and
ftpd, that you require to enable TCP/IP communications with the DOMAIN hosts .

Configuring TCP/IP for DOMAIN/IX J-43

❏ Task 5: Ensure that the daemons are Executing

Make sure the routing daemon, routed, and any other daemons that you require for TCP/IP communica-
tions with DOMAIN hosts run on this host . You can check whether this process is running by using the
UNIX ps command . If necessary, reboot the system or start the processes manually .

END OF PROCEDURE 4.

Appendix K

Line Printer Management for
DOMAIN/IX bsd4.2

Appendix K: Line Printer Management for DOMAIN/IX
bsd4.2

1. Overview
This document describes the structure and installation procedure for the line

printer spooling system developed for the bsd4.2 version of DOMAIN/IX SR9.0.
The line printer system supports:

•	 multiple	printers,
•	 multiple	spooling	queues
•	 local	and	remote	printers,	and
•	 printers	attached	via	serial	lines	that	require	line	initialization.
The line printer system also supports raster output devices like Varian and Ver-
satec and laser printers like Imagen.

The line printer system consists of the following files and commands:
/etc/printcap printer configuration and capability data base
/usr/lib/lpd line printer daemon
/usr/ucb/lpr program to enter a job in a printer queue
/usr/ucb/lpq spooling queue examination program
/usr/ucb/lprm program to delete jobs from a queue
/etc/lpc program to administer printers and spooling queues
/usr/spool/lpd/* spooling directories
/usr/spool/lpd/servername node on which lpd runs (optional)

You must log in as the super-user to run several of the components of the
line printer system; that is, you must log in using the ‘root’ user name and pass-
word.

2. How Does It Work?
Normally, only one node per DOMAIN ring will run the line printer daemon,

/usr/lib/lpd. That node will usually start the daemon at boot time, by means
of the /sys/node_data/etc.rc file. When /usr/lib/lpd is started, the daemon
goes through the printcap file and restarts any printers that have jobs in their
queues. Then lpd listens for print requests from: nodes on your DOMAIN net-
work, nodes on another DOMAIN network to which you’re connected, and/or
foreign hosts that are connected to your network.

When you submit a print request using the lpr command, lpd creates a
copy of itself to process the request. (The original lpd process continues to listen
for requests.) The lpr command places the actual material to be printed in the
appropriate spool directory (/usr/spool/lpd/*), and the copy of lpd then
schedules the job’s printing. If the printer you specified in the lp command line
is unavailable for some reason, or if the machine to which it is connected is not
operating, the request will remain in the spooling directory (or ‘queue’) until it is

K-3 Bsd4.2 Line Printer Management

removed with the lprm command, or until the faulty printer or machine becomes
available.

The file /etc/printcap is a data base that describes the printers that are
available to machines using the lp commands. The manual entry printcap(5)
defines the format of this data base, as well as default values for important items
like the directory in which spooling is performed.

The DOMAIN/IX version of the printcap file has one additional entry, which
is explained more fully on the printcap(5) DOMAIN/IX Programmer’s Refer-
ence Manual pages. It is:
pc Provides an interface to print commands you can use instead of sending out-

put to lp or rp. In DOMAIN/IX, this is set to use the DOMAIN /com/prf
command sequence.

2.1. Prerequisites for DOMAIN/IX
From what we’ve said above, we can see that the lp system must have an

lpd process running, and an entry in /etc/printcap for the printer to which
requests will be sent. We’ll assume that the necessary lp commands, like lpc and
lpr, have been installed in the correct places on the system.

To set up lpd to run at boot time, uncomment (remove the # from the
beginning of) the three lines in the /sys/node_data/etc.rc file that read:

#if [-f /usr/lib/lpd]; then
/usr/lib/lpd &
#fi

Shut down the node and restart it. The DOMAIN/IX implementation of lpd
includes an optional file /usr/spool/lpd/servername that can be used if you want
only one machine on your DOMAIN network to run lpd. If the file exists, it con-
tains the TCP host name of the one machine on the network that is allowed to
run lpd. If you attempt to start an lpd process on a machine other than the
one specified in /usr/spool/lpd/servername, lpd will return an error message that
specifies the name of the only machine that is allowed to run lpd. If the file does
not exist, any number of machines on the network can run lpd, but only one
should run it at a time.

The /etc/printcap file, as installed, contains several default descriptions for
printer types. You may need to create an entry for another printer type. In this
case, use the discussion of printcap later in this document, as well as the
DOMAIN/IX Programmer’s Reference manual pages for printcap(5) and
termcap(5), as your guide. Be certain not to leave a blank line between entries
in the /etc/printcap file, as this will cause the lp system to think that there is a
valid printer on the system with no name, and it may attempt to send requests
there.

The /etc/hosts.equiv file is a list of machine names. In general, this file
allows all the machines named in it to be treated as equivalent; for example, if
your machine name is in this file, you can rlogin to any other machine named in
the	file,	without	going	through	the	normal	user	and	password	authorization	pro-
cedures. In order to use the line printer system on your network, a machine must
have its TCP/IP host name in this file. There should be only one
/etc/hosts.equiv file per network. (See below for references to information about
DOMAIN/IX TCP/IP.)

Bsd4.2 Line Printer Management K-4

The DOMAIN/IX implementation of the line printer spooler runs over a
TCP/IP connection. Therefore, DOMAIN/IX TCP/IP must be configured on all
machines that are to use the lp system, and the DOMAIN tcp_server must be
running on all nodes. See Appendix J to the DOMAIN/IX User’s Guide, as well
as the Release Notes for Software Release 9.2, for information on configuring
TCP/IP correctly.

Note that the node to which the printer is physically connected does not
have to have either TCP/IP or the tcp_server running, unless that node is also
going to run the lp commands or the lpd process.

3. Commands
All of these commands, their options, and any arguments are explained fully

on the DOMAIN/IX Command Reference Manual and the DOMAIN/IX
Programmer’s Reference Manual pages that are included with this update pack-
age.

3.1. lpd — line printer daemon
The program lpd(8), usually invoked at boot time from the

/sys/node_data/etc.rc file, acts as a master server for coordinating and control-
ling the spooling queues configured in the /etc/printcap file. When lpd is
started, it makes a single pass through the /etc/printcap database, restarting any
printers which have jobs. In normal operation, lpd listens for service requests on
an Internet socket (under the “printer” service specification) for requests for
printer access; see socket (2) and services (5) for more information on sockets
and service specifications, respectively. Lpd spawns a copy of itself to process
the request; the master daemon continues to listen for new requests.

Clients communicate with lpd using a simple transaction-oriented protocol.
Remote clients are authenticated by means of the “privilege port” scheme
employed by rshd (8C) and rcmd (3X). The following table shows the requests
that lpd understands. In each request, the first byte indicates the “meaning” of
the request, followed by the name of the printer to which it should be applied.
Additional qualifiers may follow, depending on the request.

Request Interpretation
^Aprinter\n check the queue for jobs and print any found
^Bprinter\n receive and queue a job from another machine
^Cprinter [users ...] [jobs ...]\n return short list of current queue state
^Dprinter [users ...] [jobs ...]\n return long list of current queue state
^Eprinter person [users ...] [jobs ...]\n remove jobs from a queue

The lpr (1) command submits a print job to a local queue and notifies the
local lpd that there are new jobs in the spooling area. Lpd either schedules the
job to be printed locally, or in the case of remote printing, attempts to forward
the job to the appropriate machine. If the printer cannot be opened or if the des-
tination machine is unreachable, the job will remain queued until it is possible to
complete the work.

K-5 Bsd4.2 Line Printer Management

3.2. lpq — show line printer queue
The lpq (1) program works recursively backwards, displaying the queue

of the machine directly connected to the printer and then the queue(s) of the
machine(s) that lead to it. Lpq has two forms of output. In the default short
format, it gives a single line of output per queued job (first example below). In
the long format (second example), it shows the list of files which comprise a job,
and	their	sizes.

%lpq
Rank	 Owner	 Job	 Files	 Total	Size
1st cass 18 memo, manual 4997 bytes

% lpq -l
Warning: no daemon present

cass: 1st [job 018apollo]
 memo 456 bytes
 manual 4541 bytes

If lpr is the last command in a pipeline, lpq cannot distinguish which files
comprised the job. If you request the long format in this case, the legend “(stan-
dard input)” is displayed instead of the filenames.

3.3. lprm — remove jobs from a queue
The lprm (1) command deletes jobs from a spooling queue. If necessary,

lprm will first kill off a running daemon that is servicing the queue, then restart
it after the files are removed. When removing jobs destined for a remote printer,
lprm acts like lpq, except that it first checks locally for jobs to remove and then
tries to remove files in other queues off-machine. You must either be the owner
of a job, or the super-user, to remove it.

3.4. lpc — line printer control program
The lpc(8) program is used by the system administrator to control the

operation of the line printer system. You must log in as the super-user to use lpc
and its associated commands. For each line printer configured in /etc/printcap,
lpc can:

•	 disable	or	enable	a	printer,
•	 disable	or	enable	a	printer’s	spooling	queue,
•	 rearrange	the	order	of	jobs	in	a	spooling	queue,
•	 find	the	status	of	printers,	and	their	associated	

spooling queues and printer daemons.

4. Access control
The printer system maintains protected spooling areas so that users cannot

circumvent printer accounting or remove files other than their own. The follow-
ing strategy is used to maintain protected spooling areas: The spooling area is
writable only by a daemon user and daemon group. The lpr program runs setuid
root and setgid daemon. The root access is used to read any file required,

Bsd4.2 Line Printer Management K-6

verifying accessibility with an access (2) call. The group ID is used in setting up
proper ownership of files in the spooling area for lprm. Control files
(/usr/spool/lpd/*/cf*) in a spooling area are created by the lpd process, with
daemon ownership and group ownership daemon. Their mode is 0660. This in-
sures that control files are not modified by a user and that no user can remove
files except with lprm. The spooling programs, lpd, lpq, and lprm run setuid
root and setgid daemon to access spool files and printers. Lpd uses the same
verification procedures as rshd (8C) in authenticating remote clients. As we
mentioned earlier, the machine name on which an lp user resides must be present
in the file /etc/hosts.equiv.

5. Setting up
The majority of the work in setting up is to create the /etc/printcap file and

any printer filters for printers not supported in the distribution system. (The
current DOMAIN/IX implementation of lp supports only the lp printer filter.)

5.1. Creating a printcap file
The /etc/printcap database contains one or more entries per printer. Each

printer should have a separate spooling directory; otherwise, jobs will be printed
on different printers, depending only on which printer daemon starts first. This
section describes how to create entries for printers which do not conform to the
default printer description.

5.1.1. Remote printers
Printers which reside on remote hosts should have an empty lp entry. For

example, the following printcap entry would send output to the printer named
“lp” on the machine “vax”.

lp|default line printer:\
 :lp=:rm=vax:rp=lp:sd=/usr/spool/vaxlpd:

The /etc/printcap entry rm is the name of the remote machine to connect to;
this name must appear in the /etc/hosts database, see hosts (5). The rp capabil-
ity indicates that the name of the printer on the remote machine is “lp”; in this
case, it could be left out, since this is the default value. The sd entry specifies
/usr/spool/vaxlpd as the spooling directory instead of the default value
of /usr/spool/lpd/lp

A remote printer, for a machine on your DOMAIN ring, is a printer on
another DOMAIN ring, or a printer on a foreign host to which your ring is con-
nected via TCP/IP.

5.2. Output filters
Filters are used to handle device dependencies and to perform accounting

functions. The output filter of is used to filter text data to the printer device
when accounting is not used or when all text data must be passed through a
filter. It is not intended to perform accounting since it is started only once, all
text files are filtered through it, and no provision is made for passing owner’s
login name, identifying the beginning and ending of jobs, etc. The other filters (if
specified) are started for each file printed and perform accounting if there is an af
entry. If entries for both of and one of the other filters are specified, the output

K-7 Bsd4.2 Line Printer Management

filter is used only to print the banner page; it is then stopped to allow other
filters access to the printer.

6. Output filter specifications
The filters supplied with DOMAIN/IX 4.2 BSD handle printing and account-

ing for printers supported by the DOMAIN print command and print server,
/com/prf and /com/prsvr, respectively. For other printers or accounting
methods, you may have to create a new filter.

Normally, lpd spawns filters, with standard input being the data to be
printed, and standard output the printer. Standard error is attached to the lf
file, for logging errors. A filter must return an exit code of 0 if there were no
errors, 1 if the job should be reprinted, and 2 if the job should be discarded.
When lprm sends a kill signal to the lpd process that is controlling printing, it
sends a SIGINT signal to all filters and descendents of filters. If necessary, this
signal can be trapped by filters that need to perform cleanup operations like
deleting temporary files.

The arguments that may be passed to a filter depend on the filter’s type.
The of filter is called with the following arguments.

ofilter -wwidth -llength
The width and length values come from the pw and pl entries in the
/etc/printcap database. The if filter is passed the following parameters.

filter [-c] -wwidth -llength -iindent -n login -h host accounting_file
The -c flag is optional, and only supplied when control characters are to be
passed uninterpreted to the printer (when the -l option of lpr is used to print
the file). The -w and -l parameters are the same as for the of filter. The -n and
-h parameters specify the login name and host name of the job owner. The last
argument is the name of the accounting file from /etc/printcap.

All other filters are called with the following arguments:
filter -xwidth -ylength -n login -h host accounting_file

The -x and -y	 options	 specify	 the	 horizontal	 and	 vertical	 page	 size	 in	 pixels	
(from the px and py entries in the printcap file). The rest of the arguments are
the same as for the if filter.

7. Line printer Administration
The lpc program controls line printer activity. You must be logged in as the

super-user to use lpc. The command format and other commands are described
in lpc(8).
abort and start
 Abort terminates an active spooling daemon on the local host immediately

and then disables printing (preventing new daemons from being started by
lpr). This is normally used to forcibly restart a hung line printer daemon
(i.e., lpq reports that there is a daemon present but nothing is happening).
It does not remove any jobs from the queue (use the lprm command
instead). Abort only operates on a machine that is running the lpd pro-
cess.

Bsd4.2 Line Printer Management K-8

 In addition, if you run lpc on a different node than the one that is running
lpd, abort may kill the wrong process. If the node running lpc has a pro-
cess with the same process ID as the process printing on the node running
lpd, an abort will kill the first, or local, process, rather than the printing
one.

 Start enables printing and requests lpd to start printing jobs.
enable and disable
 Enable and disable allow spooling in the local queue to be turned on and

off. This will allow or prevent lpr from putting new jobs in the spool queue.
It is frequently convenient to turn spooling off while testing new line printer
filters since the root user can still use lpr to put jobs in the queue, but no
one else can. The other common use is to prevent users from putting jobs in
the queue when the printer may be unavailable for a long time.

restart
 Restart allows you to restart printer daemons when lpq reports that there

is no daemon present.
stop
 Stop is used to halt a spooling daemon after the current job completes; this

also disables printing. This is a clean way to shutdown a printer in order to
perform maintenance, etc. Note that users can still enter jobs in a spool
queue while a printer is stopped.

topq
 Topq places jobs at the top of a printer queue. This can be used to reorder

high priority jobs since lpr normally provides first-come-first-serve ordering
of jobs.

8. Troubleshooting
There are a number of messages which may be generated by the line printer

system.	 	This	section	categorizes	the	most	common	and	explains	the	cause	 for	
their generation. Where the message indicates a failure, directions are given to
remedy the problem.

In the examples below, the name printer is the name of the printer. This
would be one of the names from the /etc/printcap database.

8.1. LPR
lpr: printer: unknown printer
 The printer was not found in the /etc/printcap database. Usually this is a

typing mistake; however, it may indicate a missing or incorrect entry in the
/etc/printcap file.

lpr: printer: jobs queued, but cannot start daemon.
 The connection to lpd on your DOMAIN ring failed. This usually means the

printer server started at boot time has died or is hung. Check the file
/usr/spool/lpd/servername to see which machine should be running lpd,
then verify that lpd is running on that machine, with the ps(1) command.

K-9 Bsd4.2 Line Printer Management

 If the file does not exist, at least one TCP host on the ring must be running
lpd. Use the command /bin/hostname to find out the TCP host name
of your node, and make sure that the name is in the /etc/hosts.equiv file.
Then start /usr/lib/lpd on your machine.

 If the ps command shows lpd daemons, but they seem to be hung, do the
following. Get a list of process identifiers of running lpd’s by typing

% ps ax | fgrep lpd
 on the machine that is supposed to run lpd. The lpd to kill is the one

which is not listed in any of the “lock” files. The lock file is contained in
the spool directory of each printer (/usr/spool/lpd/*). Kill the master dae-
mon using the following command.

% kill pid
 where pid is the process ID number of the lpd process, as reported by the ps

command. Then restart the daemon (and printer) with the following com-
mand.

% /usr/lib/lpd
 Another possibility is that the lpr program is not setuid root, setgid daemon.

This can be checked with
% ls -lg /bin/lpr

lpr: printer: printer queue is disabled
 This means the queue was turned off with

% lpc disable printer
 to prevent lpr from putting files in the queue. This is normally done by the

system manager when a printer is going to be down for a long time. The
printer can be turned back on by a super-user with lpc.

8.2. LPQ
waiting for printer to become ready (offline ?)
 The printer device could not be opened by the daemon. This can happen for

a number of reasons, the most common being that the printer is turned off-
line. This message can also be generated if the printer is out of paper, the
paper is jammed, etc. The actual reason depends on the meaning of error
codes returned by system device driver. Not all printers supply sufficient
information to distinguish when a printer is off-line or having trouble (e.g., a
printer connected through a serial line). Another possible cause of this mes-
sage is that some other process, such as an output filter, has an exclusive
open on the device. Your only recourse here is to kill off the offending
program(s) and restart the printer with lpc.

printer is ready and printing
 The lpq program checks to see if a daemon process exists for printer and

prints the file status. If the daemon is hung, a super-user can use lpc to

Bsd4.2 Line Printer Management K-10

 abort the current daemon and start a new one.
waiting for host to come up
 This indicates there is a daemon trying to connect to the remote machine

named host in order to send the files in the local queue. If the remote
machine is up, lpd on the remote machine is probably dead or hung and
should be restarted as mentioned for lpr.

sending to host
 The files should be in the process of being transferred to the remote host. If

not, the local daemon should be aborted and started with lpc.
Warning: printer is down
 The printer has been marked with lpc as being unavailable.
Warning: no daemon present
 The lpd process overseeing the spooling queue, as indicated in the “lock” file

in that directory, does not exist. This normally occurs only when the dae-
mon has unexpectedly died. The error log file for the printer should be
checked for a diagnostic from the deceased process. To restart an lpd, use

% lpc restart printer
 This error might also be reported if lpq is not run on the same machine as

lpd.

8.3. LPRM
lprm: printer: cannot restart printer daemon
 This case is the same as when lpr prints that the daemon cannot be started.

8.4. LPD
The lpd program can write many different messages to the error log file (the

file specified in the lf entry in /etc/printcap). Most of these messages are about
files which can not be opened and usually implicate the /etc/printcap file or
imply that the protection modes of the files are not correct. Files may also be
inaccessible if people manually manipulate the line printer system (i.e., bypass
the lpr program).

In addition to messages generated by lpd, any of the filters that lpd spawns
may also log messages to this file.

8.5. LPC
couldn’t start printer
 This case is the same as when lpr reports that the daemon cannot be

started.

K-11 Bsd4.2 Line Printer Management

cannot examine spool directory
 Error messages beginning with “cannot ...” are usually due to incorrect own-

ership and/or protection mode of the lock file, spooling directory or the lpc
program.

8.6. General TCP/IP Error Conditions
Socket: I/O Error
 This is a general indication of problems with the TCP connection. Restart-

ing /sys/tcp/tcp_server, on either your machine or the one running lpd (if
they are different), or both, is the first thing you should try. If this doesn’t
work, check that any TCP/IP links you’ve set up are pointing to the correct
place, and that all the machines that must communicate are up.

Appendix L

Line Printer Management for
DOMAIN/IX sys5

Sys5 Line Printer Management L-2

Appendix L: Line Printer Management for DOMAIN/IX sys5

1.1 General
The line printer (lp) system is a set of commands that perform various
spooling functions for the sys5 implementation of DOMAIN/IX. Since
the primary lp application is off-line printing, this document will focus
mainly on spooling to line printers. Lp allows administrators to custom-
ize	the	system	to	spool	to	a	collection	of	line	printers	of	any	type,	as	well	
as to group printers into logical classes. Users can:

•		Queue	and	cancel	print	requests

•		Prevent	and	allow	queuing	to	devices

•		Start	and	stop	lp	from	processing	requests

•		Change	configuration	of	printers

•		Find	status	of	the	lp	system.

This appendix describes the role of an lp administrator in configuring
and administering lp for a DOMAIN/IX sys5 lp system.

Throughout this appendix, any reference of the form name(1M) refers to
an entry in the DOMAIN/IX Programmer’s Reference for System V; the
form name(1) refers to an entry for name in the DOMAIN/IX Com-
mand Reference for System V.

1.2 Overview
1.2.1 Definitions
Several terms must be defined before we present a brief summary of the
lp commands.

Lp makes a distinction between printers and printing devices. A device is a
physical peripheral device or a file and is represented by a full system path-
name. A printer is a logical name that represents a device. At
different points in time, a printer may be associated with different dev-
ices. A class is a name given to an ordered list of printers; if you specify
a class when you submit an lp request, the request will print on the first
available printer in that class. Every class must contain at least one
printer, but classes themselves are optional. Each printer may be a
member	of	zero	or	more	classes.

A destination is a printer or a class. One destination may be designated
as the ‘system default destination.’ The lp(1) command will direct all
output to this destination unless the user specifies otherwise. Output
directed to a specific printer will not print on another printer if the one
you specified is unavailable.

L-3 Sys5 Line Printer Management

Each invocation of lp creates an output request that consists of the files
to be printed and options from the lp command line. An interface pro-
gram which formats requests must be supplied for each printer. The lp
scheduler, lpsched(1M), services requests for all destinations by routing
requests to interface programs to perform the printing on devices. An lp
configuration consists of devices, destinations, and interface programs.

1.2.2 Generally Available Commands
The lp(1) command is used to request that a file or files be printed. It
creates an output request and returns a request id of the form

dest-seqno

to the user, where seqno is a unique sequence number across the entire lp
system and dest is the destination to which the request was routed.

Cancel cancels lp requests. The user specifies request ids returned by
lp, or printer names, in which case, the requests currently printing on
those printers are cancelled.

Disable prevents lpsched from routing output requests to printers.

Enable(1) allows lpsched to route output requests to printers.

1.2.3 Commands for lp Administrators Only
Many of the restricted lp functions require that the administrator be
logged in as either the super-user or as lp. All lp files and commands are
owned by lp except for lpadmin and lpsched which are owned by root.
The following commands will be described in more detail later in this
appendix.

lpadmin(1M) Modifies the lp configuration. Many features of
this command cannot be used when lpsched is
running.

lpsched(1M) Routes output requests to interface programs
which perform the actual printing on devices.

lpshut(1M) Stops lpsched. All printing activity is halted, but
other lp commands may still be used.

accept(1M) Allows lp to accept output requests for destina-
tions.

reject(1M) Prevents lp from accepting requests for destina-
tions.

lpmove(1M) Moves output requests from one destination to
another. Whole destinations may be moved at one
time. This command cannot be used when
lpsched is running.

Sys5 Line Printer Management L-4

1.3 Setup
Since many of the administrative functions require that you be logged in
with the username lp, a log-in account for lp must exist on your system.
If there is not already such an account, you should create one before you
attempt to configure the system.

The lp subsystem is made up of the lp commands mentioned above, and
a directory, /usr/spool/lp. The administrative commands reside in the
directory /usr/lib, the user-level commands reside in /usr/bin, and the
configuration information and spool directories reside in /usr/spool/lp.
The /usr/spool/lp directory contains the following files and directories.
total 64
-rwxrwxrwx 1 root 573384 Dec 9 08:14 FIFO
-rw-r--r-- 1 lp 4 Dec 6 13:39 SCHEDLOCK
drwxr-xr-x 1 lp 1024 Nov 25 15:47 class
-rw-r--r-- 1 lp 2 Dec 2 11:30 default
drwxr-xr-x 1 lp 1024 Dec 2 11:07 interface
-rw-r--r-- 1 lp 689 Dec 9 07:25 log
drwxr-xr-x 1 lp 1024 Dec 2 11:07 member
drwxrwxrwx 1 lp 1024 Nov 25 16:18 model
-rw-r--r-- 1 lp 992 Nov 30 15:42 oldlog
-rw-r--r-- 1 lp 376 Dec 9 08:13 outputq
-rw-r--r-- 1 lp 800 Dec 9 08:13 pstatus
-rw-r--r-- 1 lp 600 Dec 9 08:13 qstatus
drwxr-xr-x 1 lp 1024 Dec 2 11:07 request
-rw-r--r-- 1 lp 3 Dec 9 07:23 seqfile

Since you may alter the files in this directory in the course of configuring
the lp system for your network, we suggest that, before you begin, you
make a backup copy of this entire directory.

Once you’ve done that, add the following lines to your
/sys/node_data/etc.rc file:

rm -f /sys5/usr/spool/lp/SCHEDLOCK
/sys5/usr/lib/lpsched
echo “lp scheduler started”

This starts the lp scheduler each time that the system is restarted.
NOTE: The spooling directory (/usr/spool/lp) and the lp scheduler
(/usr/lib/llpschedFR) must run on the same DOMAIN node.

1.4 Configuring lp with the lpadmin Command
If you must change the lp configuration, use the lpadmin command.
Lpadmin will not attempt to alter the lp configuration while lpsched is
running, except where explicitly noted below.

1.4.1 Introducing New Destinations
The following information must be supplied to lpadmin when you intro-
duce a new printer to the system:

L-5 Sys5 Line Printer Management

1. The printer name (-pprinter) is an arbitrary name which must con-
form to the following rules:

•	It	must	be	no	longer	than	14	characters.

•	It	must	consist	solely	of	alphanumeric	characters	and	under-
scores.

•	It	must	not	be	the	name	of	an	existing	lp destination
(printer or class).

2. The device associated with the printer (-vdevice). This is the
pathname of a hard-wired printer, a log-in terminal, or other file
that is writable by lp. If a DOMAIN prf model is specified, device
should be set to /dev/null.

3. The printer interface program. This may be specified in one of
three ways:

•	It	may	be	selected	from	a	list	of	model	interfaces	supplied	
with lp (-mmodel).

•	It	may	be	the	same	interface	that	an	existing	printer	uses	
(-eprinter).

•	It	may	be	a	program	supplied	by	the	lp administrator (-iin-
terface).

Information which need not always be supplied when creating a new printer
includes:

1. The user may specify -h to indicate that the device for the printer
is hardwired or the device is the name of a file (this is assumed by
default). If the device is the pathname of a log-in terminal, then -l
must be included on the command line. This indicates to lpsched
that it must automatically disable this printer each time lpsched
starts running. This fact is reported by lpstat when it indicates
printer status. (The a specifies the printer name.)

$ lpstat -pa
printer a (log-in terminal) disabled Oct 31 11:15 -
 disabled by scheduler: log-in terminal

 This is done because device names for log-in terminals can be (and
usually are) associated with different physical devices from day to
day. If the scheduler did not take this action, somebody might log
in and be surprised that lp is spooling to his/her terminal!

2. The new printer may be added to an existing class or added to a new
class (-cclass). New class names must conform to the same rules for
new printer names.

The following examples will be referenced by further examples in later sec-
tions.

1. Create a printer called pr1 whose device is /dev/sio1 and whose
interface program is the model hp interface:

Sys5 Line Printer Management L-6

$ /usr/lib/lpadmin -ppr1 -v/dev/sio1 -mhp
2. Add a printer called pr2 whose device is /dev/sio2 and whose inter-

face is a variation of the model prx interface. It is also a log-in ter-
minal:

 $ cp /usr/spool/lp/model/prx xxx
 < edit xxx >
 $ /usr/lib/lpadmin -ppr2 -v/dev/sio2 -ixxx -l

3. Create a printer called pr3 that will print to a Spinwriter served by
the DOMAIN prf print facility. The pr3 will be added to a new
class called cl1 and will use the spin interface.

 $ /usr/lib/lpadmin -ppr3 -v/dev/null -mspin -ccl1
1.4.2 Modifying Existing Destinations
You always modify an existing destination with respect to its printer
name (-pprinter). Modifications may be one or more of the following:

1. The device for the printer may be changed (-vdevice). If this is
the only modification, then this may be done even while lpsched is
running. This facilitates changing devices for log-in terminals.

2. The printer interface program may be changed (-mmodel,
-eprinter, -iinterface).

3. The printer may be specified as hardwired (-h) or as a log-in termi-
nal (-l).

4. The printer may be added to a new or existing class (-eclass).
5. The printer may be removed from an existing class (-rclass).

Removing the last remaining member of a class causes the class to
be deleted. No destination may be removed if it has pending
requests. In that case, use lpmove or cancel to move or delete the
pending requests.

These examples are based on the lp configuration created in the previous
examples.

1. Add printer pr2 to class cl1:

 $ /usr/lib/lpadmin -ppr2 -ccl1
2. Change pr2’s interface program to the model prx interface and add it

to a new class called cl2:

 $ /usr/lib/lpadmin -ppr2 -mprx -ccl2
 Note that printers pr2 and pr3 now use different interface programs

even though pr3 was originally created with the same interface as pr2.
Printer pr2 is now a member of two classes.

3. Specify printer pr2 as a hard-wired printer:

 $ /usr/lib/lpadmin -ppr2 -h

L-7 Sys5 Line Printer Management

4. Add printer pr1 to class cl2:

 $ /usr/lib/lpadmin -ppr1 -ccl2
 The members of class cl2 are now pr2 and pr1, in that order.

Requests routed to class cl2 will be serviced by pr2 if both pr2 and
pr1 are ready to print; otherwise, they will be printed by the one
which is next ready to print.

5. Remove printers pr2 and pr3 from class cl1:

 $ /usr/lib/lpadmin -ppr2 -rcl1
 $ /usr/lib/lpadmin -ppr3 -rcl1

 Since pr3 was the last remaining member of class cl1, the class is
removed.

6. Add pr3 to a new class called cl3.

 $ /usr/lib/lpadmin -ppr3 -ccl3
1.4.3 Specifying the System Default Destination
You can change the system default destination even when lpsched is
running.

1. Establish class cl1 as the system default destination:

 $ /usr/lib/lpadmin -dcl1
2. Establish no default destination:

 $ /usr/lib/lpadmin -d
1.4.4 Removing Destinations
You can remove a class or a printer only if it has no pending requests.
Pending requests can be cancelled with cancel or moved to another des-
tination with lpmove before the first destination may be removed. If
the class or printer you remove is the system default destination, then
the system will have no default destination until you explicitly define a
new one. When the last remaining-member of a class is removed, then
the class is also removed. Removing a class does not imply that the
printers in that class were removed.

1. Make printer pr1 the system default destination:

 $ /usr/lib/lpadmin -dpr1

 Remove printer pr1:

 $ /usr/lib/lpadmin -xpr1
 Now there is no system default destination.

2. Remove printer pr2:

 $ /usr/lib/lpadmin -xpr2

 Class cl2 is also removed since pr2 was its only member.

Sys5 Line Printer Management L-8

3. Remove class cl3:

 $ /usr/lib/lpadmin -xcl3
 Class cl3 is removed, but printer pr3 remains.

1.5 Making an Output Request with the lp Command
Once lp destinations have been created, users may request output by
using the lp command. You use the request id that is returned to see if
the request has been printed or to cancel the request.

The lp program determines the destination of a request by checking the
following list in order:

•	If	the	user	specifies	-ddest on the command line, then the request
is routed to dest.

•	If	the	environment	variable	LPDEST	is	set,	the	request	is	routed	
to the value of LPDEST.

•	If	there	is	a	system	default	destination,	then	the	request	is	routed	
there.

•	The	request	is	rejected.

1.	 Print	two	copies	of	file	abc	on	printer	xyz	and	title	the	output	“my	
file”:

 $ pr abc | lp -dxyz -n2 -t”my file”
2.	 Print	file	xxx	on	a	Diablo*	1640	printer	called	zoo	in	12-pitch	and	

write to the user’s terminal when printing has completed:

	 lp	-dzoo	-ol2	-w	xxx

 In this example, “12” is an option that is meaningful to the model
Diablo 1640 interface program that prints output in 12-pitch mode
[see lpadmin(1M)].

1.6 Finding lp Status with lpstat
The lpstat command is used to find status information about lp
requests, destinations, and the scheduler.

1. List the status of all pending output requests made by this user:

 $ lpstat
 The status information for a request includes the request id, the

logname of the user, the total number of characters to be printed,
and the date and time the request was made.

* Registered trademark of Xerox Corporation

L-9 Sys5 Line Printer Management

2. List the status of printers p1 and p2:

 $ lpstat -pp1,p2

1.7 Cancelling Requests with cancel
Lp requests may be cancelled using the cancel command. Two kinds of
arguments	may	be	given	to	the	command—request	ids	and	printer	
names. The requests named by the request ids are cancelled and requests
that are currently printing on the named printers are cancelled. Both
types of arguments may be intermixed.

If the user that is canceling a request is not the same one that made the
request, then mail is sent to the owner of the request. Lp allows any
user to cancel requests in order to eliminate the need for users to find lp
administrators when unusual output should be purged from printers.

1.8 Allowing and Refusing Requests—accept and reject
When a new destination is created, lp will reject requests that are routed
to it, until the lp administrator invokes the accept command to allow lp
to accept requests for that destination.

Sometimes it is necessary to prevent lp from routing requests to destina-
tions. If a printer has been removed or is being repaired, or if there are
too many requests for it, you may wish to make lp reject requests for
those destinations, using the reject command. Use the accept com-
mand to allow requests again.

The acceptance status of destinations is reported by the -a option of
lpstat.

1. Cause lp	to	reject	requests	for	destination	xyz:
 $ /usr/lib/reject -r”printer xyz needs repair” xyz

	 Any	users	that	try	to	route	requests	to	xyz	will	encounter	the	fol-
lowing:

 $ lp -dxyz file
	 lp:	can	not	accept	requests	for	destination	”xyz”	
	 								--	printer	xyz	needs	repair

2. Allow lp	to	accept	requests	routed	to	destination	xyz:
 $ /usr/lib/accept xyz

1.9 Allowing or Inhibiting Printing—enable and disable
The enable command allows the lp scheduler to print requests on
printers. That is, the scheduler routes requests only to the interface pro-
grams of enabled printers. Note that it is possible to enable a printer
and at the same time prevent further requests from being routed to it.

Sys5 Line Printer Management L-10

The disable command will undo the effects of the enable command. It
prevents the scheduler from routing requests to printers, regardless of
whether lp is allowing them to accept requests. Printers may be disabled
for several reasons including malfunctioning hardware, paper jams, and
end-of-day shutdowns. If a printer is busy at the time it is disabled, then
the request that was printing will be reprinted in its entirety either on
another printer (if the request was originally routed to a class of printers)
or on the same one when the printer is reenabled. The -c option causes
the currently printing requests on busy printers to be cancelled, in addi-
tion to disabling the printers. This is useful if strange output is causing
a printer to behave abnormally.

1.	 Disable	printer	xyz	because	of	a	paper	jam:

 $ disable -r”paper jam” xyz
	 printer	”xyz”	now	disabled

2.	 Find	the	status	of	printer	xyz:

 $ lpstat -pxyz
	 printer	”xyz”	disabled	since	Jan	5	10:15	-
 paper jam

3.	 Now,	reenable	xyz:

 $ enable xyz
	 printer	”xyz”	now	enabled

1.10 Moving Requests Between Destinations with lpmove
Occasionally, it is useful for lp administrators to move output requests
between destinations. For instance, when a printer is down for repairs, it
is desirable to move all of its pending requests to a working printer. Use
the lpmove command for this. Lpmove will refuse to move requests
while the lp scheduler is running.

1.	 Move	all	requests	for	printer	abc	to	printer	xyz:

 $ /usr/lib/lpmove abc xyz
	 All	of	the	moved	requests	are	renamed,	from	abc-nnn	to	xyz-nnn.		

As a side effect, destination abc will no longer accept requests.

2.	 Move	requests	zoo-543	and	abc-1200	to	printer	xyz:

 $ /usr/lib/lpmove zoo-543 abc-1200 xyz
	 The	two	requests	are	now	renamed	xyz-543	and	xyz-1200.

1.11 Stopping and Starting the Scheduler: lpshut and lpsched
Lpsched is the program that routes output requests made with lp through
the appropriate printer interface programs to be printed on line printers.
Each time the scheduler routes a request to an interface program, it records
an entry in the log file, /usr/spool/lp/log. This entry

L-11 Sys5 Line Printer Management

contains the logname of the user that made the request, the request id,
the name of the printer that the request is being printed on, and the date
and time that printing first started. In the case where a request has been
restarted, there may be more than one entry in the log file that refers to
the request. The scheduler also records error messages in the log file.
When lpsched is started, it renames /usr/spool/lp/log to
/usr/spool/lp/oldlog and starts a new log file.

No printing will be performed by the lp system unless lpsched is run-
ning. Use the command

$ lpstat -r
to check the status of the lp scheduler.

Lpsched is normally started at boot time as described above and contin-
ues to run until the node is shut down. The scheduler operates in the
/usr/spool/lp directory. When it starts running, it will exit immediately
if a file called SCHEDLOCK exists. Otherwise, it creates this file in
order to prevent more than one scheduler from running at the same time.

Occasionally, it is necessary to shut down the scheduler in order to
reconfigure lp or to rebuild the lp software. The command

$ /usr/lib/lpshut
causes lpsched to stop running and terminates all printing activity. All
requests that were actually being printed will be reprinted in their
entirety when the scheduler is restarted.

To restart the lp scheduler, use the command

$ /usr/lib/lpsched
Shortly after this command is entered, lpstat should report that the
scheduler is running. If not, a previous invocation of lpsched exited
without removing SCHEDLOCK, so try the following:

$ rm -f /usr/spool/lp/SCHEDLOCK
$ /usr/lib/lpsched

The scheduler should be running now.

1.12 Printer Interface Programs
Every lp printer must have an interface program which does the actual
printing on the device that is currently associated with the printer.
Interface programs may be shell procedures, C programs, or any other
executable program. The lp model interfaces are all written as shell pro-
cedures and can be found in the /usr/spool/lp/model directory. At the
time lpsched routes an output request to a printer P, the interface pro-
gram for P is invoked in the directory /usr/spool/lp as follows:

Sys5 Line Printer Management L-12

interface/P id user title copies options file ...
where
id is the request id returned by lp
user is logname of user who made the request
title is optional title specified by the user
copies is number of copies requested by user
options is a blank-separated list of class or
printer-dependent options specified by user
file is the full pathname of a file to be printed

The following examples are requests made by user “smith” with a system
default	destination	of	printer	“xyz”.		Each	example	lists	an	lp command
line followed by the corresponding command line generated for printer
xyz’s	interface	program:

1. $ lp /etc/passwd /etc/group
interface/xyz xyz-52 smith ”” 1 ”” /etc/passwd /etc/group

2. $ pr /etc/passwd | lp -t”users” -n5
interface/xyz xyz-53 smith users 5 ””
/usr/spool/lp/request/xyz/d0-53

3. $ lp /etc/passwd -oa -ob
interface/xyz xyz-54 smith ”” 1 ”a b” /etc/passwd

When the interface program is invoked, its standard input comes from
/dev/null and both the standard output and standard error output are
directed to the printer’s device. Devices are opened for reading as well as
writing when file modes permit. In the case where a device is a regular
file, all output is appended to the end of the file.

Several interface models have been provided to support the DOMAIN
prf facility. These interfaces (p, ge, and spin) do not write to the stan-
dard output, but pipe data to the /com/prf command. These models
may	be	customized	to	create	new	interfaces	to	support	a	variety	of	dev-
ices with the prf command.

Given the command line arguments and the output directed to a device,
interface programs may format their output in any way they choose.
Interface programs must ensure that the proper stty modes (terminal
characteristics such as baud rate, output options, etc.) are in effect on the
output device. This may be done in a shell interface only if the device is
opened for reading:

$ stty mode ... <&1
That is, take the standard input for the stty command from the device.

When printing has completed, it is the responsibility of the interface pro-
gram to exit with a code indicative of the success of the print job. Exit
codes are interpreted by lpsched as follows:

CODE MEANING TO LPSCHED

L-13 Sys5 Line Printer Management

0 The print job has completed successfully.

1 to 127 A problem was encountered in printing this
particular request (e.g., too many nonprint-
able characters). This problem will not affect
future print jobs. Lpsched notifies users by
mail that there was an error in printing the
request.

greater than 127 These codes are reserved for internal use by
lpsched. Interface programs must not exit
with codes in this range.

When problems that are likely to affect future print jobs occur (e.g., a
device filter program is missing), the interface programs should disable
printers so that print requests are not lost. When a busy printer is dis-
abled, the interface program will be terminated with signal 15.

